JP2013031281A - 電池システム - Google Patents

電池システム Download PDF

Info

Publication number
JP2013031281A
JP2013031281A JP2011165219A JP2011165219A JP2013031281A JP 2013031281 A JP2013031281 A JP 2013031281A JP 2011165219 A JP2011165219 A JP 2011165219A JP 2011165219 A JP2011165219 A JP 2011165219A JP 2013031281 A JP2013031281 A JP 2013031281A
Authority
JP
Japan
Prior art keywords
power
battery
supplied
unit
units
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011165219A
Other languages
English (en)
Other versions
JP5156112B2 (ja
Inventor
Yasuaki Hiramura
泰章 平村
Naoki SONODA
直毅 園田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2011165219A priority Critical patent/JP5156112B2/ja
Priority to PCT/JP2012/068691 priority patent/WO2013015273A1/ja
Priority to US14/234,297 priority patent/US9653924B2/en
Priority to EP12818252.4A priority patent/EP2738912A4/en
Publication of JP2013031281A publication Critical patent/JP2013031281A/ja
Application granted granted Critical
Publication of JP5156112B2 publication Critical patent/JP5156112B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/003Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/50Charging stations characterised by energy-storage or power-generation means
    • B60L53/52Wind-driven generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/22Balancing the charge of battery modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J5/00Circuit arrangements for transfer of electric power between ac networks and dc networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0018Circuits for equalisation of charge between batteries using separate charge circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0019Circuits for equalisation of charge between batteries using switched or multiplexed charge circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Secondary Cells (AREA)

Abstract

【課題】並列にそれぞれ接続された電池モジュールの充電効率を高めることができる新しい電池システムを提供する。
【解決手段】電力を供給する電源装置10と、電源装置10から供給される電力を変換する電力変換部と該電力変換部で変換された電力を充電する電池モジュールをそれぞれ備える実質的同一の電池ユニットが複数且つ並列に接続された電池装置20と、電力変換部の所定の電力変換効率に対応する基準電力値に関する情報を記憶する記憶部と、電源装置が供給する電力の供給電力量に関する情報を取得する取得部と、記憶部に記憶された基準電力値の情報と取得部が取得した供給電力量の情報とに基づいて、供給電力量を前記基準電力値以上の電力量に分配可能な電池ユニットの個数を決定し、複数の電池ユニットのうち電源装置から電力を供給する電池ユニットを前記決定した個数選択する選択部とを有する制御装置40と、を含むことを特徴とする電池システム。
【選択図】図2

Description

本発明は、電池システムに関し、特に、複数の電池モジュールを効率よく充電する電池システムに関する。
従来、充放電可能な複数の電池セルからなる電池モジュールをそれぞれ並列に接続した電池システムが知られている。この電池システムは、例えば、風力発電や太陽光発電などの自然エネルギーを利用した電源からの電力や商用電源からの電力をインバータやコンバータなどの電力変換器を介して電池モジュールを充電する。
ここで、並列に接続された複数の電池モジュールを充電する方法として、例えば、電源からの電力を1つの電池モジュールを選択して供給し、該選択した電池モジュールが満充電になった場合に、電力の供給先を他の電池モジュールに切り換えていく方法(例えば、特許文献1参照)や、電源からの電力を1つの電池モジュールを経時的に順番に選択して供給する方法(例えば、特許文献2参照)が知られている。また、電源からの電力を複数の電池モジュールに対して並列に供給する方法も知られている(例えば、特許文献3参照)。
特開2010−028881号公報 特開2011−103746号公報 特開2008−220104号公報
しかしながら、特許文献1及び特許文献2に記載の発明は、複数の電池モジュールを個別に充電するために、供給される電力量が十分に大きく、充電時間を一定時間以上確保する必要があるが、供給される電力量が十分でない場合や充電時間が短い場合、並列に接続された電池モジュールを均等に充電することができないという問題点があった。例えば、風力発電や太陽光発電などの自然エネルギーを利用した電源は、供給可能な電力量が一定ではないことから、該電力量が小さいときは、1つの電池モジュールを充電した後、他の電池モジュールを十分に充電できない場合が起こり得る。また、充電時間が短いとき、例えば、充電を開始した直後に電源からの電力の供給がなくなった場合や、電源からの電力の供給が十分であっても電池モジュールの電力を負荷に対して放電する必要が生じ、充電モードから放電モードに切り換えなければならない場合も、各電池モジュールを均等に充電できない。複数の電池モジュールを均等に充電できないと、例えば、特定の電池モジュールに充放電の負荷が集中してしまい、他の電池モジュールと比較して劣化が進んでしまうなど多くの問題が生じてしまうため、なるべく電池モジュールを均等に充電することが望まれる。
一方、特許文献3に記載の発明は、複数の電池モジュールを並列に充電するため、各電池モジュールに供給される電力を均等にし得る。しかし、供給される電力量が十分に大きくないと、電力が分配されることもあり、例えば、各電池モジュールと電源との間にそれぞれ電力変換器が配置されている場合、各電力変換器に対して入力される電力が非常に小さくなってしまう。そのため、電力変換器の電力変換効率が落ち、結果として、各電池モジュールの充電効率も落ちてしまうという問題点があった。なお、インバータやコンバータなどの電力変換器は、詳しくは後述するが、一般に、一定以上の入力電力がないと、その電力変換効率が極端に落ちてしまうことが知られている。
したがって、本発明は上記問題点に鑑み、並列にそれぞれ接続された電池モジュールの充電効率を高めることができる新しい電池システムを提供することを目的とする。
本発明による電池システムは、電力を供給する電源装置と、電源装置から供給される電力を変換する電力変換部と該電力変換部で変換された電力を充電する電池モジュールをそれぞれ備える実質的同一の電池ユニットが並列に接続された電池装置と、電力変換部の所定の電力変換効率に対応する基準電力値に関する情報を記憶する記憶部と、電源装置が供給する電力の供給電力量に関する情報を取得する取得部と、記憶部に記憶された基準電力値の情報と取得部が取得した供給電力量の情報とに基づいて、供給電力量を前記基準電力値以上の電力量に分配可能な電池ユニットの個数を決定し、複数の電池ユニットのうち電源装置から電力を供給する電池ユニットを上記決定した個数選択する選択部とを有する制御装置と、を含むことを特徴とする。
かかる電池システムによれば、電源装置からの供給電力量に応じて、且つ、電力変換器の電力変換効率をも考慮して、並列にそれぞれ接続された複数の電池ユニットのうち供給すべき電池ユニットを選択することができるので、最適な個数の電池モジュールを高い充電効率を維持して充電することができる。
以上のように構成された本発明の電池システムによれば、電力変換器の電力変換効率を考慮して、高い充電効率を維持した状態で、並列にそれぞれ接続された電池モジュールを充電することができる。
本発明の実施形態の電池システムの概略的な構成図を示す。 本発明の実施形態における電池装置の具体的な構成を説明するための図を示す。 一般的なコンバータの入力電力と変換効率との関係図を示す。 本発明の実施形態の電池システムの動作処理内容を示すフローチャートである。 本発明の実施形態の電池システムの動作処理内容を示すフローチャートである。 本発明の実施形態の電池システムの動作処理内容を示すフローチャートである。 本発明の実施形態の電池システムを動作させた場合の充電状態の遷移の一例を示す図である。 本発明の実施形態の電池システムを動作させた場合の充電状態の遷移の他の一例を示す図である。
以下、本発明を実施するための好適な実施形態を、図面を参照しながら説明する。なお、下記実施形態では、電源装置の一例として風力発電装置、及び電力変換部の一例として交流電力を直流電力に変換するコンバータを用いて説明する。
図1は、本発明の第1実施形態の電池システム1の概略的な構成図を示し、図2は、電池装置20等の具体的な構成を説明するための図を示す。なお、図1及び図2に示す点線は、制御装置との間で種々の情報を送受可能な信号線(有線又は無線の通信線)を示すものとする。
電池システム1は、図1に示すとおり、風力発電装置10、電池装置20、負荷30、制御装置40、及び表示装置50を含んでなり、風力発電装置10で発生した電力を電池装置20に供給し、電池装置20に充電(貯蔵)された電力を負荷30に供給するシステムである。なお、本実施形態の電池システム1は、上記構成に限定されず、構成を適宜追加・変更することも可能である。例えば、風力発電装置10で発生した電力を電力変換した後、負荷30に直接供給するような構成を追加してもよく、この場合、風力発電装置10で発生した電力と電池装置20で充電されている電力とを組み合わせて負荷30に電力を供給することもできる。
風力発電装置10は、自然エネルギーである風力によって回転機を回転させて三相交流電力(交流電力)を発生させる電源装置であって、その構成自体は、一般的な風力発電装置と同様とすることができる。風力発電装置10は、発生した交流電力を、電力配線を介して電池装置20に対して供給する。
電池装置20は、風力発電装置10から供給された交流電力を直流電力に変換して充電(貯蔵)し、また、充電した直流電力を負荷30に適した電力に電力変換して供給する。電池装置20は、図2に示すとおり、並列にそれぞれ接続された実質的同一の電池ユニット20A〜20Cで構成される。
電池ユニット20Aは、複数の充放電可能な電池セルが直列に接続された電池モジュール21Aと、風力発電装置10から交流電力の入力を受けて直流電力に変換するコンバータ22Aと、風力発電装置10からコンバータ22Aへの交流電力の入力を遮断することができるスイッチ23Aとを備える。電池ユニット20Aと実質的に同一の機能及び構成を有するように、電池ユニット20Bは、電池モジュール21Bと、コンバータ22Bと、スイッチ23Bとを備え、電池ユニット20Cは、電池モジュール21Cと、コンバータ22Cと、スイッチ23Cとを備える。いずれの電池ユニット20A〜20Cも、互いに共通の同一の電力配線から上記交流電力の供給を受けることができる。なお、本実施形態の電池システム1では、並列にそれぞれ接続される電池ユニットとして、電池ユニット20A〜20Cの3つを用いて説明するが、この電池ユニットの数は3つに限られずに、少なくとも2つ以上であればよく、例えば、風力発電装置10の最大発電電力量、又は負荷30の要求する電力量などの種々の条件に応じて、その数を適宜変更することができる。
各電池モジュール21A〜21Cは、複数の電池セルを直列接続して構成された直流電源としての組電池であって、それぞれコンバータ22A〜22Cで変換された電力を充電する。各電池モジュール21A〜21Cを構成する各電池セルは、充放電可能な電池セルであって、例えば、リチウムイオン二次電池の電池セルを用いることができる。なお、各電池モジュール21A〜21Cを構成する電池セルの個数は、風力発電装置10の最大発電電力量や並列に接続される電池ユニットの数、又は負荷30の要求する電力量に応じて決めることができる。
また、電池モジュール21A〜21Cには、各電池モジュール21A〜21Cのそれぞれの両端の電圧を測定する電圧センサV〜Vと、各電池モジュール21A〜21Cに流れる電流を測定する電流センサI〜Iとが備えられる。各電圧センサV〜Vで測定された各電圧値、及び各電流センサI〜Iで計測された各電流値は、信号線を介して制御装置40に送られる。なお、電圧センサは、電池モジュールごとに備えられる場合に限られず、例えば、電池モジュールを構成する電池セルごとに備えるようにしてもよい。
コンバータ22A〜22Cは、風力発電装置10から供給される交流電力を直流電力に電力変換する電力変換器である。また、コンバータ22A〜22Cは、制御装置40からの指令を受けて起動(ON)及び停止(OFF)が制御される。コンバータ22A〜22Cは、一般に、入力された交流電力を直流電力に変換する際、電力損失を生じることが知られている。ここで、図3に、一般的なコンバータの入力される電力と変換効率との関係を表した関係図を示す。最大入力(最大入力電力値)Pmaxや最大効率時入力(最大効率時入力電力値)Peは、コンバータの製造メーカごとに異なるものの、一般的なコンバータは、図3に示すように、最大効率時入力Peより小さい入力電力になると急激に変換効率が悪化し、最大効率時入力Peから最大入力Pmaxになるまでの間は、比較的なだらかに変換効率が低下する傾向にある。したがって、一般化した値である最大入力Pmaxや最大効率時入力Peを用いることで、いかようなコンバータも本実施形態の電池システム1に適用することができる。なお、本実施形態の電池システム1では、コンバータ22A〜22Cは、実質的に同一特性のコンバータを用いることとする。
スイッチ23A〜23Cは、それぞれ風力発電装置10から電力配線を介した各コンバータ22A〜22Cへの交流電力の入力を遮断するか否かを切り換えることができる切換手段であり、制御装置40からの指令を受けてON(閉)/OFF(開)を切り換える。各スイッチ23A〜23Cが、ONであれば、風力発電装置10から各コンバータ22A〜22Cへの交流電力が供給され、OFFであれば、風力発電装置10から各コンバータ22A〜22Cへの交流電力の供給が遮断される。なお、スイッチ23A〜23CをOFFとするとき、制御装置40は、スイッチ23A〜23Cのそれぞれに対応するコンバータ22A〜22Cも停止するよう制御することが望ましく、この場合、コンバータ22A〜22Cで無駄に消費される電力を抑制することができる。
負荷30は、電池装置20から電力の供給を受けるものであって、交流電力で駆動する交流電力負荷又は直流電力で駆動する直流電力負荷とすることができる。負荷30が、交流電力負荷であれば、各電池ユニット20A〜20Cには、直流電力を交流電力に変換するインバータ(図示せず)が設けられ、直流電力負荷であれば、各電池ユニット20A〜20Cには、直流電力を負荷30が所望する直流電力(直流電圧)に変換することができるDC−DCコンバータ(図示せず)が設けられる。
制御装置40は、風力発電装置10が供給可能な電力の供給電力量(発電電力量)、各電池モジュール21A〜21Cの充電状態、及び各コンバータ22A〜22Cの電力変換効率に基づいて、風力発電装置10から交流電力を供給すべき電池ユニット20A〜20Cを少なくとも1つ選択するよう電池装置20を制御する。また、制御装置40は、表示装置50も制御することができ、風力発電装置10の供給電力量や電池ユニットの充電状態など各種の情報を、適宜、表示装置50に表示させる。
制御装置40は、電池ユニット20A〜20Cを充電する処理機能として、例えば、図2に示すように、記憶部41、取得部42、選択部43、及び切換部44を有する。なお、制御装置40は、例えば、種々の演算および制御を行うためのプロセッサ、情報(データ)を一時的に格納するとともに、制御時にワーキングエリアとして機能するRAM、プログラム等を格納するROM、及び周辺回路から構成され、上記各部の処理機能を実現することができる。なお、電池システム1の充電動作、すなわち、制御装置40が行う具体的な制御フローについては後述する。
記憶部41は、コンバータ22A〜22Cの所定の電力変換効率に対応する基準電力値に関する情報を記憶する。ここで、本実施形態の電池システム1では、図3を用いて説明した、最適な電力変換効率に対応する最大効率時入力Peを、所定の電力変換効率に対応する基準電力値とする。なお、基準電力値として、最大効率時入力Peを用いる場合に限られず、例えば、図3に示すように、電力変換効率が90(%)以上となる電力のうち最も値が小さい入力電力値P’を用いるなど、電池システムの構成及びコンバータの電力変換効率の特性に応じて適宜設定することができる。
取得部42は、風力発電装置10が供給する電力の供給電力量に関する情報及び複数の電池ユニット20A〜20Cがそれぞれ有する電池モジュール21A〜21Cの各電圧値及び各電流値の情報を所定のタイミングで取得する。取得部42は、取得した各電圧値及び各電流値により、公知の演算方法を用いて各電池ユニット20A〜20Cの充電率SOC(state of charge)を演算し、演算した結果を選択部43に通知する。充電率SOCは、電池モジュールの充電状態、すなわち、満充電時における電池の容量に対して充電残量がどのくらいかを比率(パーセント)で表すものであり、電池モジュールごとの電圧と流れる電流とにより、公知の演算方法を用いて演算することができる。なお、上記所定のタイミングとは、例えば、充電開始直後のタイミング、及び充電開始後一定時間ごとのタイミングとすることができる。
選択部43は、記憶部40Aに記憶された各コンバータ22A〜22Cの基準電力値と、取得部42が取得した供給電力量及び各電池モジュール21A〜21Cの各充電率の各情報に基づいて、供給電力量を上記基準電力値以上の電力量に分配可能な電池ユニットの個数を決定し、複数の電池ユニット20A〜20Cのうち風力発電装置10から電力を供給する電池ユニットを上記決定した個数選択する。また、選択部43は、供給電力量が複数の電池ユニット20A〜20Cのそれぞれの前記基準電力値の総和より低い場合、各電池モジュール21A〜21Cの充電率の情報に基づいて、電池ユニット20A〜20Cに対して電力を供給する優先順位を充電状態の低い順(例えば、SOCの低い順)に決定し、各電池ユニット20A〜20Cの基準電力値と供給電力量と充電率とに基づいて、供給電力量を基準電力値以上の電力量に分配可能な個数を決定し、該決定した個数の電池ユニットを上記優先順位に従って選択する。
切換部44は、選択部43により選択された電池ユニット20A〜20Cのうち少なくとも1つの電池ユニットが備える電池モジュールの充電状態が、選択部43が非選択の電池ユニットのうち少なくとも1つの電池ユニットの備える電池モジュールの充電状態と同一又は略同一となったか否かを判断する。そして、切換部44は、該充電状態と同一又は略同一となったと判断した場合、選択部43により選択され、且つ、同一又は略同一となった充電状態の電池モジュールを備える前記電池ユニットに対して、風力発電装置10から供給されていた電力を、充電状態が同一又は略同一の電力ユニットに対して交互に切り換えて供給する。
表示装置50は、例えば、風力発電装置10の供給電力量や、電池ユニットの充電状態など各種の情報をユーザに対して表示するものであり、例えば、一般的な液晶パネルなどのモニタである。なお、表示装置50は、必要に応じて設ければよく、本実施形態の電池システム1においては省略してもよい。
以下、図4〜図6に示すフローチャートを参照して、制御装置40を用いて実施される本実施形態の電池システム1の充電動作処理について説明する。なお、図4〜図6のフローチャートで示される各処理は、処理内容に矛盾を生じない範囲で任意に順番を変更して又は並列に実行することができる。
まず、電池システム1の充電動作処理を説明するにあたり、電池システム1は、図1及び図2に示すものを用いるものとし、更に、以下の事項を前提とする。電池ユニットの個数を固定値Nで表し、図2に示すように、電池ユニット20A〜20Cの3つを用いるので、N=3とする。そして、コンバータ22A〜22Cへの各最大入力電力値を固定値Pmaxで表し、Pmax=100kWとし、また、最大効率時入力電力値を固定値Peで表し、Pe=40kWとする。よって、図2に示す電池装置20の最大許容入力電力はN×Pmax=300kWとなる。さらに、制御装置40は、コンバータ22A〜22Cにおいて所定の電力変換効率を有する基準電力値Pbとして、最適な電力変換効率に対応する最大効率時入力電力値Pe(=40kW)が予め記憶部41に記憶されているものとする。
また、さらなる前提として、ここでは各電池セルの充電状態を、電池ユニットのSOCを用いて表すものとし、充電前の電池モジュール21A〜21Cの各SOC(電池システム1の充電動作処理前の初期値のSOC)は、それぞれ80%、60%、70%であるとして説明する。
以上を前提とし、以下、電池システム1の充電動作処理を説明する。
まず、制御装置40は、風力発電装置10の供給電力量Pの情報を風力発電装置10から取得する(ステップS100)。本例では、制御装置40は、例えば、風力発電装置10の供給電力量Pが100kWであるとの情報を風力発電装置10から取得したものとする。
次いで、制御装置40は、上記取得した供給電力量Pの情報から、供給電力量Pを電池ユニットの個数Nで除算し、この除算した値P/Nが基準電力値Pb以上であるか否かを判断する(ステップS101)。すなわち、本例では、制御装置40は、供給電力量Pである100kWを電池ユニットの個数Nである3で除算した値P/Nが、基準電力値Pbである40kW以上であるか否かを判断する。
上記除算した値P/Nが、基準電力値Pb以上である場合(ステップS101:Yes)、制御装置40は、信号線を介して電池ユニット20A〜20Cの各スイッチ23A〜23Cに対して制御信号を送り、各スイッチ23A〜23CをONとする(ステップS102)。この場合、各スイッチ23A〜23CをONとしても、各コンバータ22A〜22Cに入力される電力は、それぞれ基準電力値Pb以上となるので、コンバータ22A〜22Cでの電力変換効率が高い状態で、各電池モジュール21A〜21Cを充電することができる。なお、制御装置40は、各スイッチ23A〜23CをONとする際、信号線を介して電池ユニット20A〜20Cの各コンバータ22A〜22Cに対しても制御信号を送り、各コンバータ22A〜22Cを起動する。
ステップS102の処理後、制御装置40は、再度、供給電力量Pの情報を風力発電装置10から取得し(ステップS103)、該取得した供給電力量Pの情報から、供給電力量Pを電池ユニットの個数Nで除算し、この除算した値P/Nが基準電力値Pb以上であるか否かを判断する(ステップS104)。このステップS103〜S104の処理は、所定時間経過後に供給電力量Pが変化した場合、電池システム1における充電効率を高く維持するために、電力の供給を受ける電池ユニットの個数N(=3)を変えた方が良いか否かを判断するために行う処理である。すなわち、ステップS103の処理前では、先のステップS101の処理で取得した供給電力量Pに基づいて電力の供給を受ける電池ユニットの個数をN(=3)として決定しているが、この個数は、供給電力量Pを各電池ユニット21A〜21Cに分配しても各電池ユニット21A〜21Cに基準電力値Pb以上の電力が供給可能であるために決定されたものである。しかし、風力発電装置10のように自然エネルギーを利用した電源装置においてはその供給電力量Pが変化するため、基準電力値Pb以上の電力の供給を受けられる最適な電池ユニットの個数も変わり得ることとなる。したがって、供給電力量Pに応じて電力の供給を受ける最適な電池ユニットの個数を変更することが好ましい。なお、供給電力量Pの情報を取得するタイミングは、例えば、風力発電装置10の特性などの要因に応じて適宜設定することができる。
ステップS104の処理において、上記除算した値P/Nが、基準電力値Pb以上である場合、すなわち、電力を供給する電池ユニットの個数Nを変更しなくても良い場合(ステップS104:Yes)、制御装置40は、各電池モジュール21A〜21Cが充電終了したか否かを判断する(ステップS105)。ここで、各電池モジュール21A〜21Cにおける充電終了とは、例えば、各電池モジュール21A〜21Cの全てが満充電となった場合や、各電池モジュール21A〜21Cに充電された電力を放電する必要が生じた場合である。充電終了であれば(ステップS105:Yes)、本処理フローは終了し、充電終了でなければ(ステップS105:No)、ステップS103の処理に移る。なお、本例では、供給電力量Pが100kW及び電池ユニットの個数Nが3であれば、除算した値P/Nは、約33kWとなり、基準電力値Pbである40kWより小さくなるため、ステップS102〜S105の処理は行われない。
ステップS101の処理において(又は、ステップS104の処理において)、除算した値P/Nが基準電力値Pbより小さい場合(ステップS101:No(又は、ステップS104:No))、制御装置40は、各電池モジュール21A〜21Cの充電状態を示す情報を取得し、SOCを演算する(ステップS106)。本例では、上記除算した値P/Nは、約33kWであり、基準電力値Pbである40kWより小さくなるため、制御装置40は、各電池モジュール21A〜21Cの充電状態を示す情報として、各電圧センサV〜Vで測定された各電圧値と、各電流センサI〜Iで計測された各電流値とを、各電圧センサV〜V及び各電流センサI〜Iから信号線を介して取得する。制御装置40が、上記取得した各電圧値及び各電流値により、公知の演算方法を用いて各電池モジュール21A〜21CのSOCを演算する。なお、上記前提条件で述べたように、本例においては、制御装置40が演算した結果、各電池モジュール21A〜21Cの充電動作処理前のSOC(初期値のSOC)は、それぞれ80%、60%、70%であったものとする。
次いで、制御装置40は、取得した各電池モジュール21A〜21CのSOCに基づいて、各電池ユニット21A〜21Cに対して電力を供給する優先順位を決定する(ステップS107)。すなわち、制御装置40は、電池ユニット20A〜20Cに対して電力を供給する優先順位をSOCの低い順に決定するものとし、本例では、取得した電池モジュール21A〜21CのSOCが、それぞれ80%、60%、70%であるため、電池ユニット20Bの優先順位を1番、電池ユニット20Cの優先順位を2番、電池ユニット20Aの優先順位を3番と決定する。
次に、図5に示すフローチャートに移り、制御装置40は、電力を同時に供給可能な電池ユニットの個数(同時にスイッチをON可能な個数)を変数Mで表し、M=N−1と設定する(ステップS108)。なお、ステップS108〜S111の各処理は、各電池ユニットに供給される電力が基準電力値Pb以上になるように、風力発電装置10から電力が供給される電池ユニットの数を調整するために行う処理である。
制御装置40は、供給電力量PをMで除算した値P/Mが、基準電力値Pbより大きいか否かを判断する(ステップS109)。本例では、供給電力量Pである100kWを、M(=N(3)−1)である2で除算した値P/Mが、基準電力値Pbである40kW以上であるか否かを判断する。
上記除算した値P/Mが基準電力値Pbより小さい場合(ステップS109:No)、制御装置40は、M=M−1と再設定して(ステップS110)、Mが2以上であれば(ステップS111:Yes)、ステップS109の処理に戻る。一方、Mが2より小さい場合(すなわち、Mが1の場合)(ステップS111:No)、制御装置40は、電力の供給可能対象とする電池ユニットの個数を変数Qで表し、Q=1と設定する(ステップS112)。
一方、上記除算した値P/Mが基準電力値Pb以上である場合(ステップS109:Yes)、制御装置40は、電力の供給可能対象とする電池ユニットの個数を変数Qで表し、Q=Mと設定する(ステップS113)。本例では、上記除算した値P/Mは、50kWであり、この値は基準電力値Pbである40kWより大きいため、Q=M(2)と設定する。
次いで、制御装置40は、まず、優先順位が1番目からQ番目の電池ユニットまで各々P/Mの電力を供給するため、信号線を介して対応するスイッチに対して制御信号を送り、当該スイッチをONとする(ステップS114)。本例では、ステップS113の処理において、Q=2と設定されているため、制御装置40は、優先順位が1番目の電池ユニット20Bから優先順位が2番目の電池ユニット20Cまで各々供給電力として50kWを供給(充電)することとなり、対応するスイッチ23B、23CをONとし、また、各コンバータ22B、22Cも起動する。各スイッチ23B、23CがONとなることで、コンバータ22B、22Cは、それぞれ基準電力値Pbである40kW以上の電力が入力されることとなる。その結果、コンバータ22B、22Cでの電力変換効率を高い状態で維持しつつ、電池モジュール21B、21Cは充電される。なお、これまでの処理を行った結果を、図7(A)の表に示す。
次に、図6のフローチャートに移り、ステップS114の処理後、制御装置40は、充電中の電池モジュールの充電状態を示す情報を取得し、SOCを演算する(ステップS115)。すなわち、本例では、制御装置40は、充電中の電池モジュール21B、21Cの充電状態を示す情報として、該電池モジュール21B、21Cの各電圧値及び各電流値をそれぞれ各電圧センサV〜V及び各電流センサI〜Iから信号線を介して取得し、電池モジュール21B、21CそれぞれのSOCを演算する。なお、ステップS115の処理において、充電中の電池モジュールのみならず、全ての電池モジュール21A〜21Cの各電圧値及び各電流値をそれぞれ各電圧センサV〜V及び各電流センサI〜Iから信号線を介して取得し、電池モジュール21A〜21CそれぞれのSOCを演算するようにしてもよい。この場合、下記ステップS116の処理等で、より正確な判断をすることができる。
次いで、制御装置40は、上記取得した充電中の電池モジュールの各SOCに基づいて、充電中の電池モジュールのSOCが、優先順位がQ+1番目の電池モジュールのSOCまで到達したか否か(同一又は略同一になったか否か)を判断する(ステップS116)。本例では、優先順位がQ+1(=3)番目の電池モジュール21AのSOCが80%であるので、制御装置40は、充電中の電池モジュール21BのSOC及び電池モジュール21CのSOCのうち少なくとも1つのSOCが80%まで到達したか否かを判断する。
充電中の電池モジュールのSOCが、優先順位がQ+1番目の電池モジュールのSOCまで到達した場合(ステップS116:Yes)、制御装置40は、該到達した電池モジュールを有する電池ユニットと、優先順位がQ+1番目の電池モジュールを有する電池ユニットとに対して電力P/Mが均等に供給されるように、対応するスイッチに対して信号線を介して信号を送り、それぞれのスイッチのON、OFFを所定のタイミングで相互に切り換える(ステップS117)。このとき、当該SOCまで到達していない電池ユニットについては、依然として電力P/Mが供給される。
一方、上記充電中の電池モジュールのSOCが、優先順位がQ+1番目の電池モジュールのSOCまで到達していない場合(ステップS116:No)、ステップS120の処理に移る。
本例では、例えば、図7(B)の表に示すように、充電中の電池モジュール21CのSOCが、優先順位がQ+1(=3)番目の電池ユニット20Aが有する電池モジュール21AのSOC(=80%)まで到達したとすると、制御装置40は、電池ユニット20Aと電池ユニット20Cとへ電力50kWを相互に供給するべく、それぞれのスイッチ23Aとスイッチ23CのON、OFFを所定のタイミングで相互に切り換えるよう制御する。その結果、電池モジュール21Aと電池モジュール21Cを均等に充電し得ることになる。また、このとき、電池ユニット20Bには依然として電力50kWが供給されて電池モジュール21Bの充電がなされる。なお、上記スイッチ23Aとスイッチ23Cとを相互に切り換える上記所定のタイミングは、例えば、50msec〜100msec毎とすることができる。
ここで、制御装置40は、Q+1≧Nの関係式を満たすか否かを判断する(ステップS118)。これは、電池ユニットとして、まだ供給可能対象となっていない電池ユニットがあるか否かを制御装置40が判断するものである。Q+1≧Nでなければ(ステップS118:No)、制御装置40は、Q=Q+1と再設定する(ステップS119)。このステップS119の処理の後、または、ステップS118の処理において、Q+1≧Nである場合(ステップS118:Yes)、制御装置40は、再度、風力発電装置10の供給電力量Pの情報を風力発電装置10から取得する(ステップS120)。本例では、Q+1(=3)≧N(=3)の関係式を満たすので、制御装置40は、再度、風力発電装置10の供給電力量Pの情報を風力発電装置10から取得する。
制御装置40は、ステップS120の処理で取得した供給電力量Pの値が、M≧2であれば、Pb×(M+1)>P≧Pb×Mの関係式、また、M=1であれば、Pb×2>Pの関係式を満たすか否かを判断する(ステップS121)。この処理は、上記取得した供給電力量Pが、先の処理で取得した供給電力量P(例えば、ステップS101の処理で取得した供給電力量P)と比べて、所定の範囲を超えて電力量が変化したか否かを判断するために行う処理である。ここでの所定の範囲とは、例えば、風力発電装置10から電力の供給すべき電池ユニットの個数Mを変更した方が電池システム1における充電効率が良くなる場合の供給電力量Pの変化の範囲である。上記関係式を満たせば(ステップS121:Yes)、ステップS122の処理に移り、上記関係式を満たさなければ(ステップS121:No)、ステップS101の処理に移る。
本例では、取得した供給電力量Pが先の供給電力量Pの100kWと変わらなかったものとすると、基準電力値Pbが40kWであり、且つ、電力を同時に供給可能な電池ユニットの個数(同時にスイッチをON可能な個数)Mが2であるので、Pb×(M+1)>P≧Pb×M、すなわち、40kW×(2+1)(=120kW)>P≧40kW×2(=80kW)の関係式を満たすので、ステップS122の処理に移る。
ステップS122の処理において、制御装置40が充電終了でないと判断した場合(ステップS122:No)、ステップS115の処理に戻り、一方、制御装置40が充電終了であると判断した場合(ステップS122:Yes)、電池システム1の動作処理を終了する。
本例では、現段階において、まだ充電中であるものとし、ステップS115の処理に戻ったものとする。そして、ステップS116の処理において、優先順位がQ+1(=3)番目の電池ユニット20Aが有する電池モジュール21AのSOC(電池モジュール20CのSOCも均等)と、電池ユニット20Bが有する電池モジュール20BのSOCとが、図7(C)の表に示すように、約87%で同一又は略同一になったとする。この場合、ステップS117の処理において、電池ユニット20A〜20Cのうち2つの電池ユニットに対して上記電力P/M(=50kW)が供給されるように、制御装置40は、対応するスイッチに対して信号を送り、それぞれのスイッチのON、OFFを所定のタイミングで相互に切り換える。例えば、制御装置40は、まず、電池ユニット20A、20Bにそれぞれ50kWの電力を供給し、次に、電池ユニット20A、20Cにそれぞれ50kWの電力を供給し、次に、電池ユニット20B、20Cに50kWの電力を供給するというサイクルで、電池ユニット20A〜20Cのうち2つの電池ユニットを順次選択してそれぞれ50kWの電力を供給するように、スイッチ23A〜23CのON、OFFを所定のタイミングで相互に切り換える。次いで、ステップS120以降の処理に進み、制御装置40が充電終了と判断すれば本処理フローを終了する。
以上のように、本実施形態の電池システム1は動作する。上述では、最初のステップS100の処理において、風力発電装置10の供給電力量Pが100kWである場合を説明したが、別の一例として、供給電力量Pが50kWである場合についても、図8を参照して、以下、簡単に説明する。
まず、ステップS100の処理において、制御装置40は、風力発電装置10から供給電力量P(50kW)の情報を取得する。次いで、ステップS101の処理において、制御装置40は、供給電力量P(=50kW)を電池ユニットの個数N(=3)で除算した値(約16kW)が、基準電力値Pb(=40kW)より小さいと判断して、ステップS106〜S108の処理を上述と同様に行う。
その後、ステップS109の処理において、制御装置40は、供給電力量P(=50kW)をM(=2)で除算した値25kWが、基準電力値Pb(=40kW)より小さいと判断し、ステップS110の処理でM=1と再設定した後、ステップS111の処理を行う。ステップS111の処理において、制御装置40は、M=1であり、M≧2を満たさないと判断し、ステップS112の処理において、電力の供給可能対象とする電池モジュールの個数をQ=1と設定する。次いで、ステップS114の処理において、優先順位が1番目の電池ユニット20Bに供給電力量P(=50kW)を供給するため、制御装置40は、信号線を介して対応するスイッチ23Bのみに制御信号を送り、当該スイッチ23BをONとする。このステップS114までの処理を行った結果を、図8(A)に示す。
次いで、ステップS115〜S116の処理に移り、ステップS116の処理において、図8(B)に示すように、優先順位が2(=Q+1)番目の電池モジュール20CのSOCが70%であり、このSOCまで電池モジュール20Bが到達したと制御装置40が判断した場合、ステップS117の処理に移る。このステップS117の処理において、制御装置40は、電池ユニット20Bと電池ユニット20Cとへ電力を供給するそれぞれのスイッチ23Bとスイッチ23CとのON、OFFを所定のタイミングで相互に切り換える。その結果、電池モジュール21Bと電池モジュール21Cとを均等に充電し得ることになる。次いで、ステップS118の処理において、制御装置40は、Q+1≧N(今、Q=1、N=3)を満たさないと判断し、ステップS119の処理において、Q=2と再設定し、ステップS120の処理に移る。
次いで、ステップS120の処理において、制御装置40が取得した供給電力量Pが先の供給電力量Pの50kWと変わらなかったものとすると、ステップS121の処理に進む。次いで、ステップS121の処理において、基準電力値Pbが40kWであり、且つ、電力を同時に供給可能な電池ユニットの個数Mが1であるので、Pb×2>P、すなわち、40kW×2(=80kW)>Pの関係式を満たすので、ステップS122の処理に移る。
次いで、ステップS122の処理において、現段階では、まだ充電中であるものとし、ステップS115の処理に移ったものとする。そして、ステップS116の処理において、図8(C)に示すように、優先順位が3(=Q+1)番目の電池ユニット20Aが有する電池モジュール21AのSOCが80%であり、このSOCまで電池モジュール21B、21Cがともに到達したと制御装置40が判断すると、ステップS117の処理に移る。このステップS117の処理において、制御装置40は、電池ユニット20A、電池ユニット20B、及び電池ユニット20Cへ電力を供給するそれぞれのスイッチ23A、スイッチ23B、及びスイッチ23のON、OFFを所定のタイミングで順次交互に切り換える。例えば、まず、電池ユニット20Aに50kWの電力を供給し、次に、電池ユニット20Bに50kWの電力を供給し、次に、電池ユニット20Cに50kWの電力を供給するというサイクルで、電池ユニット20A〜20Cのうち1つの電池ユニットを順次選択してそれぞれ50kWの電力を供給する。その結果、電池モジュール21Aと電池モジュール21Bと電池モジュール21Cとを均等に充電し得ることになる。次いで、ステップS120以降の処理に進み、制御装置40が充電終了と判断すれば本処理フローを終了する。
以上、本実施形態の電池システム1によれば、風力発電装置10からの供給電力量に応じて、且つ、電力変換器22A〜22Cの電力変換効率をも考慮して、並列にそれぞれ接続された複数の電池ユニット20A〜20Cのうち供給すべき電池ユニットを選択することができるので、高い充電効率を維持して最適な個数の電池モジュールを充電することができる。
また、本実施形態の電池システム1によれば、電池モジュール21A〜21Cの充電状態を示す各充電情報を取得して、電池ユニットに電力を供給する優先順位を充電状態の低い順に決定することで、電池モジュールの充電状態を均等にしやすくすることができる。また、各電池モジュールの使用状況や、複数の電池モジュールの中に劣化した電池モジュールが存在するなどの要因で、各電池モジュール相互間で電圧がバラつくことも想定され、この場合、単に、並列にそれぞれ接続された複数の電池モジュールを同時に充電すれば、各電池モジュール間で相互充電作用が起こり、充電効率が落ちてしまう問題点もあった。しかし、優先順位を充電状態の低い順に決定するため、複数の電池ユニットに電力を供給するとしても、充電状態が近い電池モジュールを有する電池ユニットを選択して電力を分配供給し得るので、各電池モジュール間での電圧が相違することなどに起因する相互充電作用を抑制することができる。
さらに、本実施形態の電池システム1によれば、選択部43により選択され、且つ、充電中の電池モジュールの充電状態が、非選択の電池ユニットのうち少なくとも1つの電池ユニットの有する電池モジュールの充電状態と同一又は略同一となった場合、風力発電装置10から供給されていた電力の供給先を、充電状態が同一又は略同一の電力ユニット間で所定のタイミングで交互に切り換える。その結果、充電状態がある程度高まり、充電状態が同一又は略同一になった少なくとも2つ以上の電池ユニットに対しては均等に電力を供給し、一方、低い充電状態の電池ユニットに対しては電力を供給し続けることができる。すなわち、充電状態が低い電池ユニットに対しては電力を供給し続けて他の電池モジュールと同等の充電率になるように早く充電をすることができ、且つ、電池モジュールの充電状態が同一又は略同一な電池ユニットに対しては均等を維持した状態で充電をすることができる。
またさらに、本実施形態の電池システム1によれば、所定のタイミングで風力発電装置10が供給する電力の供給電力量Pに関する情報を取得することで、供給電力量Pが変化した場合であっても、供給電力量Pに応じて電力の供給を受ける最適な電池ユニットの個数を決定し、高い充電効率を常に維持することが可能となる。
<変形例>
以上のように本発明の電池システムの好適な実施形態について説明したが、本発明は、上記実施形態に限定されるべきものではなく、特許請求の範囲に表現された思想及び範囲を逸脱することなく、種々の変形、追加、及び省略が当業者によって可能である。
例えば、上記実施形態では、電源装置の一例として風力発電装置を用いて説明したが、本発明はこれに限られず、例えば、太陽光発電や商用電源を利用したものであってもよい。電源装置として太陽光発電装置を用いる場合、電源と電池ユニットとの間に配置される電力変換器は、DC/DCコンバータを用いればよく、この場合、DC/DCコンバータの電力変換効率から上記基準電力値を適宜設定する。また、電源装置として商用電源のように、一定の電力量を受電することができるのであれば、例えば、制御装置40は、供給電力量Pの情報を充電開始直後のみに取得するようにしてもよい。
さらに、上記実施形態では、制御装置40が、電池モジュールの充電状態を示す各充電情報を取得する場合を説明したが、本発明はこれに限定されず、例えば、ある程度、電池ユニット間の充電状態が均等である条件下で使用可能な場合、充電情報の取得を省略してもよい。この場合であっても、制御装置40は、風力発電装置10からの供給電力量に応じて、且つ、電力変換器22A〜22Cの電力変換効率をも考慮して、並列にそれぞれ接続された複数の電池ユニット20A〜20Cのうち供給すべき電池ユニットを選択し、その後、非選択の電池ユニットをも含めて各電池ユニット20A〜20Cに均等に電力が供給されるように各スイッチ23A〜23CのON、OFFを順次、相互に切り換えるように制御することができる。
またさらに、上記実施形態では、制御装置40が、各充電情報に基づいて、電池ユニットに電力を供給する優先順位を充電状態の低い順に決定し、その決定した順に電力を供給するようにしたが、本発明はこれに限られない。例えば、充電情報から各電池モジュールの充電状態のバラつきが所定の範囲内に収まる場合は、制御装置40は、風力発電装置10からの供給電力量に応じて、且つ、電力変換器22A〜22Cの電力変換効率をも考慮して、並列にそれぞれ接続された複数の電池ユニット20A〜20Cのうち供給すべき電池ユニットを選択し、均等に電力を供給するよう各スイッチ23A〜23CのON、OFFを所定のタイミングで相互に切り換えるように制御することもできる。一方、所定の範囲内に収まらない充電状態の電池ユニットがある場合、制御装置40は、該電池ユニットのみ電力を供給し続け、他の電池ユニット間はスイッチを相互に切り換えて均等に電力を供給するようにしてもよい。
さらに、上記実施形態では、制御装置40は、選択部43により選択され、充電中の電池モジュールの充電状態が、非選択の電池ユニットのうち少なくとも1つの電池ユニットの有する電池モジュールの充電状態と同一又は略同一となった場合、電源装置から供給されていた電力の供給先を、充電状態が同一又は略同一の電力ユニット間で交互に切り換えるようにしたが、本発明はこれに限られない。例えば、制御装置40は、選択され、充電中の全ての電池モジュールの充電状態が、非選択の電池ユニットの有する電池モジュールの充電状態と同一又は略同一となるまで、非選択の電池ユニットへの電力の供給をストップするように制御してもよい。
さらに、上記実施形態では、制御装置40において、それぞれの処理機能を有する各部が備えられている構成を説明したが、本発明はこれに限られず、各部を制御装置40と通信可能に接続されたネットワーク上に又は他の装置に備えて構成することもできる。またさらに、制御装置40には、用途に応じた各部がそれぞれ備えられているが、制御装置40に備えられている各部は、そのいくつかを一纏めにして構成されていてもよいし、一つの部をさらに複数の部に分割して構成されていてもよい。
本発明の電池システムは、複数の電池ユニットに備えられた電池モジュールを少なくとも充電を利用するシステムに適用することができ、例えば、電気自動車などモータの回生時に電力を二次電池に貯蔵し、当該二次電池に貯蔵した電力をモータの駆動時に使用する移動用システムとして利用することができる。また、風力発電や太陽光発電のような自然エネルギーを利用して発電した電力を二次電池に貯蔵し、当該二次電池に貯蔵した電力を家庭用の電気設備に使用する電力貯蔵システムや、当該二次電池に貯蔵した電力を交流電力負荷としての電力系統へ売電する電力売電システムなどの定置用システムとして利用することができる。
1…電池システム、10…風力発電装置(電源装置)、20…電池装置、20A〜20C…電池ユニット、21A〜21C…電池モジュール、22A〜22C…コンバータ(電力変換器)、23A〜23C…スイッチ、30…負荷、40…制御装置、50…表示装置。

Claims (6)

  1. 電力を供給する電源装置と、
    前記電源装置から供給される電力を変換する電力変換部と、前記電力変換部で変換された電力を充電する電池モジュールとをそれぞれ備える実質的同一の電池ユニットが複数且つ並列に接続された電池装置と、
    前記電力変換部の所定の電力変換効率に対応する基準電力値に関する情報を記憶する記憶部と、前記電源装置が供給する電力の供給電力量に関する情報を取得する取得部と、前記記憶部に記憶された前記基準電力値に関する情報と前記取得部が取得した前記供給電力量に関する情報とに基づいて、前記供給電力量を前記基準電力値以上の電力量に分配可能な前記電池ユニットの個数を決定し、前記複数の電池ユニットのうち前記電源装置から電力を供給する前記電池ユニットを前記決定した個数選択する選択部とを有する制御装置と、
    を含むことを特徴とする電池システム。
  2. 前記取得部は、前記複数の電池ユニットがそれぞれ備える前記電池モジュールの充電状態を示す各充電情報を取得し、
    前記選択部は、前記記憶部に記憶された前記基準電力値に関する情報と前記取得部が取得した前記供給電力量に関する情報及び前記各充電情報とに基づいて、前記供給電力量を前記基準電力値以上の電力量に分配可能な前記電池ユニットの個数を決定し、前記複数の電池ユニットのうち前記電源装置から電力を供給する前記電池ユニットを前記決定した個数選択する、ことを特徴とする請求項1に記載の電池システム。
  3. 前記選択部は、
    前記供給電力量が前記複数の電池ユニットのそれぞれの前記基準電力値の総和より低い場合、
    前記取得部が取得した前記各充電情報に基づいて、前記電池ユニットに電力を供給する優先順位を前記充電状態の低い順に決定し、
    前記記憶部に記憶された前記基準電力値に関する情報と前記取得部が取得した前記供給電力量及び前記各充電情報に関する情報とに基づいて、前記供給電力量を前記基準電力値以上の電力量に分配可能な前記電池ユニットの個数を決定し、前記決定した個数の前記電池ユニットを前記優先順位に従って選択することを特徴とする請求項2に記載の電池システム。
  4. 前記制御装置は、
    前記選択部により選択された前記電池ユニットのうち少なくとも1つの電池ユニットが備える前記電池モジュールの前記充電状態が、前記選択部が非選択の前記電池ユニットのうち少なくとも1つの電池ユニットの備える前記電池モジュールの前記充電状態と同一又は略同一となった場合、
    前記選択部により選択され、且つ、前記同一又は略同一となった前記充電状態の電池モジュールを備える前記電池ユニットに対して前記電源装置から供給されていた電力を、前記充電状態が同一又は略同一となった前記電池モジュールを備える少なくとも2つ以上の前記電力ユニットに対して交互に切り換えて供給する切換部を更に有することを特徴とする請求項3に記載の電池システム。
  5. 前記取得部は、電源装置が供給する電力の供給電力量に関する情報を所定のタイミングで取得することを特徴とする請求項1乃至請求項4のいずれか1項に記載の電池システム。
  6. 前記所定の電力変換効率は、前記電力変換部における最大の電力変換効率であることを特徴とする請求項1乃至5のいずれか1項に記載の電池システム。
JP2011165219A 2011-07-28 2011-07-28 電池システム Active JP5156112B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011165219A JP5156112B2 (ja) 2011-07-28 2011-07-28 電池システム
PCT/JP2012/068691 WO2013015273A1 (ja) 2011-07-28 2012-07-24 電池システム
US14/234,297 US9653924B2 (en) 2011-07-28 2012-07-24 Battery system
EP12818252.4A EP2738912A4 (en) 2011-07-28 2012-07-24 ACCUMULATOR SYSTEM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011165219A JP5156112B2 (ja) 2011-07-28 2011-07-28 電池システム

Publications (2)

Publication Number Publication Date
JP2013031281A true JP2013031281A (ja) 2013-02-07
JP5156112B2 JP5156112B2 (ja) 2013-03-06

Family

ID=47601118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011165219A Active JP5156112B2 (ja) 2011-07-28 2011-07-28 電池システム

Country Status (4)

Country Link
US (1) US9653924B2 (ja)
EP (1) EP2738912A4 (ja)
JP (1) JP5156112B2 (ja)
WO (1) WO2013015273A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014030334A (ja) * 2012-06-29 2014-02-13 Sekisui Chem Co Ltd 電力管理装置、電力管理方法及びプログラム
KR20150106912A (ko) * 2013-03-04 2015-09-22 가부시끼가이샤 도시바 복수 전지를 갖는 이차 전지 시스템 및 충방전 전력 등의 배분 방법
KR20160003209A (ko) * 2013-04-30 2016-01-08 알리스 에코 에이알케이 코. 엘티디. 대형 전기차 전력 구조체 및 교번-하이버네이션 배터리 관리 및 제어 방법
KR20160094228A (ko) * 2015-01-30 2016-08-09 삼성에스디아이 주식회사 배터리 시스템 및 이를 포함하는 에너지 저장 시스템
WO2016152006A1 (ja) * 2015-03-24 2016-09-29 株式会社デンソー 制御装置
WO2022130936A1 (ja) * 2020-12-17 2022-06-23 株式会社クボタ 電動作業機
WO2023113568A1 (ko) * 2021-12-17 2023-06-22 포스코홀딩스 주식회사 배터리 방전 방법
JP7427557B2 (ja) 2020-07-29 2024-02-05 株式会社東芝 充電制御装置、充電制御方法、および、充電制御プログラム

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1407703A (fr) * 1964-06-12 1965-08-06 Michelin & Cie Produits pour la réparation d'articles en caoutchouc
KR101229441B1 (ko) * 2011-03-18 2013-02-06 주식회사 만도 배터리 충전 장치
KR101553451B1 (ko) * 2013-12-30 2015-09-16 주식회사 효성 에너지 저장 시스템에서 전력 분배 방법 및 장치
US10126723B2 (en) * 2015-01-30 2018-11-13 General Electric Company Performing passive maintenance on an energy storage farm
US10259337B2 (en) * 2015-10-30 2019-04-16 Faraday & Future Inc. Electric vehicle battery charge and discharge management
EP3386068A4 (en) * 2015-11-26 2019-07-10 Kabushiki Kaisha Toshiba POWER CONTROL DEVICE AND POWER CONTROL METHOD
JP6342381B2 (ja) * 2015-12-14 2018-06-13 エスペック株式会社 試験装置
WO2017169655A1 (ja) * 2016-03-30 2017-10-05 三洋電機株式会社 電源システム、制御システムおよび電源システムの電力制御方法
JP6465907B2 (ja) * 2017-02-15 2019-02-06 本田技研工業株式会社 車両用電源システム
DE102017210618A1 (de) 2017-06-23 2018-12-27 Audi Ag Elektrische Energieliefervorrichtung mit einer Vielzahl von Nutzeinheiten, die zu Strängen verschaltet sind, sowie Verfahren zum Betreiben der Energieliefervorrichtung
US11923714B2 (en) * 2018-06-11 2024-03-05 Mitsubishi Electric Corporation Device and method for controlling a storage battery system
US11143740B2 (en) * 2018-09-26 2021-10-12 Saab Ab Vehicle radar system comprising an auxiliary power source
CN109245264B (zh) * 2018-10-19 2022-07-01 东君新能源有限公司 蓄电管理方法、蓄电系统、计算机设备及可读存储介质
JP7055945B2 (ja) * 2019-02-12 2022-04-19 東芝三菱電機産業システム株式会社 蓄電池システム
DE102019130683A1 (de) * 2019-11-14 2021-05-20 Man Energy Solutions Se Verfahren und Steuergerät zum Betreiben eines Batteriesystems sowie Batteriesystem
JP2023027996A (ja) * 2021-08-18 2023-03-03 矢崎総業株式会社 電源制御装置、電源装置、及び電源制御方法
NL2032999B1 (en) * 2022-09-09 2024-03-21 Legrand France Power delivery system and method for delivering power
US11764597B1 (en) * 2023-04-05 2023-09-19 8Me Nova, Llc Systems and methods for optimized loading of battery inverters

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005287146A (ja) * 2004-03-29 2005-10-13 Mazda Motor Corp 車両の電源装置
JP2009033785A (ja) * 2007-07-24 2009-02-12 Toyota Motor Corp 電源システムおよびそれを備えた電動車両ならびに電源システムの制御方法
JP2009197587A (ja) * 2008-02-19 2009-09-03 Tokyo Electric Power Co Inc:The 風力発電設備

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3968913B2 (ja) 1999-05-13 2007-08-29 東北電力株式会社 電源装置および電源装置の制御方法
JP3890168B2 (ja) 1999-08-03 2007-03-07 株式会社東京アールアンドデー 電動装置及びその電池ユニットの充放電方法
KR20070079783A (ko) * 2006-02-03 2007-08-08 엘지전자 주식회사 배터리의 충전제어 장치 및 방법
JP2008220104A (ja) 2007-03-06 2008-09-18 Canon Inc 充電装置および充電装置の充電制御方法。
JP2010028881A (ja) 2008-07-15 2010-02-04 Fujitsu Ten Ltd 制御装置、及び制御方法
JP2011103746A (ja) 2009-11-11 2011-05-26 Sanyo Electric Co Ltd 電池の充電方法
JP4691198B1 (ja) * 2010-07-29 2011-06-01 三菱重工業株式会社 移動体用電池システム及び移動体用電池システムの制御方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005287146A (ja) * 2004-03-29 2005-10-13 Mazda Motor Corp 車両の電源装置
JP2009033785A (ja) * 2007-07-24 2009-02-12 Toyota Motor Corp 電源システムおよびそれを備えた電動車両ならびに電源システムの制御方法
JP2009197587A (ja) * 2008-02-19 2009-09-03 Tokyo Electric Power Co Inc:The 風力発電設備

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014030334A (ja) * 2012-06-29 2014-02-13 Sekisui Chem Co Ltd 電力管理装置、電力管理方法及びプログラム
KR20150106912A (ko) * 2013-03-04 2015-09-22 가부시끼가이샤 도시바 복수 전지를 갖는 이차 전지 시스템 및 충방전 전력 등의 배분 방법
US9825474B2 (en) 2013-03-04 2017-11-21 Kabushiki Kaisha Toshiba Secondary battery system with plural batteries and method of distributing charge/discharge power
KR101725701B1 (ko) * 2013-03-04 2017-04-10 가부시끼가이샤 도시바 복수 전지를 갖는 이차 전지 시스템 및 충방전 전력 또는 전류의 배분 방법
KR101697452B1 (ko) * 2013-04-30 2017-01-17 알리스 에코 에이알케이(케이만) 코. 엘티디. 대형 전기차 전력 구조체 및 교번-하이버네이션 배터리 관리 및 제어 방법
US9592745B2 (en) 2013-04-30 2017-03-14 Aleees Eco Ark (Cayman) Co. Ltd. Large electric vehicle power structure and alternating-hibernation battery management and control method thereof
KR20160003209A (ko) * 2013-04-30 2016-01-08 알리스 에코 에이알케이 코. 엘티디. 대형 전기차 전력 구조체 및 교번-하이버네이션 배터리 관리 및 제어 방법
KR20160094228A (ko) * 2015-01-30 2016-08-09 삼성에스디아이 주식회사 배터리 시스템 및 이를 포함하는 에너지 저장 시스템
KR102332337B1 (ko) * 2015-01-30 2021-11-29 삼성에스디아이 주식회사 배터리 시스템 및 이를 포함하는 에너지 저장 시스템
JP2016182006A (ja) * 2015-03-24 2016-10-13 株式会社デンソー 制御装置
WO2016152006A1 (ja) * 2015-03-24 2016-09-29 株式会社デンソー 制御装置
JP7427557B2 (ja) 2020-07-29 2024-02-05 株式会社東芝 充電制御装置、充電制御方法、および、充電制御プログラム
WO2022130936A1 (ja) * 2020-12-17 2022-06-23 株式会社クボタ 電動作業機
WO2023113568A1 (ko) * 2021-12-17 2023-06-22 포스코홀딩스 주식회사 배터리 방전 방법

Also Published As

Publication number Publication date
US20140197686A1 (en) 2014-07-17
EP2738912A4 (en) 2015-05-06
US9653924B2 (en) 2017-05-16
WO2013015273A1 (ja) 2013-01-31
EP2738912A1 (en) 2014-06-04
JP5156112B2 (ja) 2013-03-06

Similar Documents

Publication Publication Date Title
JP5156112B2 (ja) 電池システム
CN110912235B (zh) 储能系统及其均流方法
US9948119B2 (en) Control of parallel battery utilization
JP6199771B2 (ja) 蓄電システムの制御方式
JP2019165622A (ja) インテリジェント電池の直流充電
WO2016051722A1 (ja) 蓄電装置、制御装置、蓄電システム、蓄電装置の制御方法および制御プログラムを格納した非一時的なコンピュータ可読媒体
EP4054051A1 (en) Energy storage system and battery management method
US20130187465A1 (en) Power management system
WO2019239640A1 (ja) 蓄電池システムの制御装置および制御方法
JP5998454B2 (ja) 制御装置、制御方法および制御システム
EP3748796A1 (en) Energy internet system, energy routing conversion device, and energy control method
KR102308628B1 (ko) 하이브리드 전력변환 시스템 및 이를 이용하는 최대 효율 결정 방법
JP2015106962A (ja) 充放電制御装置及び充放電システム
JP5303024B2 (ja) 電池システム
JP6639686B2 (ja) セルバランシングシステム及び制御方法
JP6102746B2 (ja) 蓄電池装置および充電制御方法
WO2023065588A1 (zh) 用于平衡储能系统中电池组放电或充电的控制器和方法
JP2017060316A (ja) 電力管理システム及び電力管理方法
JP5861063B2 (ja) 蓄電装置及び電力供給システム
KR20150135843A (ko) 하이브리드 에너지 저장 시스템 및 그 제어 방법
JP2014054068A (ja) 充電装置および充電システム
JP6591683B2 (ja) 充電電圧の供給装置及び供給方法
JP2010263755A (ja) 充電制御方法
KR20150144609A (ko) 팬을 이용한 셀 밸런싱 장치 및 방법
JP7177124B2 (ja) バッテリ制御システムおよびコンピュータプログラム

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5156112

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3