WO2023065588A1 - 用于平衡储能系统中电池组放电或充电的控制器和方法 - Google Patents

用于平衡储能系统中电池组放电或充电的控制器和方法 Download PDF

Info

Publication number
WO2023065588A1
WO2023065588A1 PCT/CN2022/080200 CN2022080200W WO2023065588A1 WO 2023065588 A1 WO2023065588 A1 WO 2023065588A1 CN 2022080200 W CN2022080200 W CN 2022080200W WO 2023065588 A1 WO2023065588 A1 WO 2023065588A1
Authority
WO
WIPO (PCT)
Prior art keywords
soc
battery pack
charge
power
battery
Prior art date
Application number
PCT/CN2022/080200
Other languages
English (en)
French (fr)
Inventor
夏尔马·R
辛格·S
奥哈拉·布兰登
古川元子
凯斯·R
Original Assignee
国家能源投资集团有限责任公司
北京低碳清洁能源研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国家能源投资集团有限责任公司, 北京低碳清洁能源研究院 filed Critical 国家能源投资集团有限责任公司
Priority to EP22882213.6A priority Critical patent/EP4422014A1/en
Publication of WO2023065588A1 publication Critical patent/WO2023065588A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L55/00Arrangements for supplying energy stored within a vehicle to a power network, i.e. vehicle-to-grid [V2G] arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/63Monitoring or controlling charging stations in response to network capacity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/13Maintaining the SoC within a determined range
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • H02J3/322Arrangements for balancing of the load in a network by storage of energy using batteries with converting means the battery being on-board an electric or hybrid vehicle, e.g. vehicle to grid arrangements [V2G], power aggregation, use of the battery for network load balancing, coordinated or cooperative battery charging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/005Detection of state of health [SOH]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • Embodiments of the invention generally relate to systems and methods for controlling or managing battery packs. More specifically, the disclosed subject matter relates to controllers, systems, and methods for balancing the discharge or charge of battery packs, such as in energy storage applications.
  • Embodiments of the present invention provide a controller for controlling or managing the discharge or charge of a heterogeneous battery pack, a system such as an electrical energy storage system including such a controller, and a method of using such a controller.
  • controllers, systems and methods utilize techniques to balance the discharge or charge of multiple battery packs based on the voltage and state of charge of each battery pack in the system.
  • a system includes a plurality of battery packs, one or more power converters, and one or more controllers.
  • Each power converter is coupled to at least one of the plurality of battery packs and is configured to convert direct current (DC) from one battery pack to alternating current (AC) or convert AC to DC from one battery pack.
  • a controller is coupled to the plurality of battery packs and one or more power converters.
  • the system may also include more than one controller, with each controller coupled to multiple battery packs.
  • the plurality of battery packs are heterogeneous battery packs, which may be selected from virgin batteries, cascading electric vehicle (EV) batteries, or combinations thereof.
  • EV electric vehicle
  • a plurality of battery packs are connected in parallel, in series, or in a combination thereof (ie, a hybrid combination). In some embodiments, multiple battery packs are connected in parallel.
  • the controller includes one or more processors and at least one tangible, non-transitory machine-readable medium encoded with one or more programs configured to execute for controlling or managing a Set of steps in the discharge process or charge process of the system.
  • these steps include collecting characteristic data for each battery pack including current voltage (V i ), state of charge (SOC i ), number of cells in each pack (Nc), The maximum voltage (V c max ) and the minimum voltage (V c min ) of the battery; and the total power demand D (or total dispatch power) that the system needs to dispatch or charge to the system within the first time interval received.
  • the steps also include based on the current voltage (V i ), state of charge (SOC i ), number of cells in each battery pack (Nci), maximum voltage (V c max ) and minimum voltage (V c min ) of the cells , the first weighting factor (a), the second weighting factor (b) and the total power demand (D) to determine the corresponding discharge or charge power of each battery pack; and to the plurality of battery packs and the one or more
  • Each power converter provides a signal with instructions to discharge from or charge the plurality of battery banks based on the respective discharge or charge power of each battery bank and/or to keep a particular battery bank idle.
  • Sum(C i ) is the sum of the individual voltage-charge combination factors (C i ) in the plurality of battery packs.
  • the controller is also configured to repeat some or all of the steps to re-determine the respective discharge or charge power of each battery pack in a second time interval after the end of the first time interval.
  • the system may optionally further include one or more battery power management units (BPMU).
  • BPMU battery power management units
  • Each BPMU is connectable to one or more battery packs and is configured to monitor the one or more battery packs and provide characteristic data of the one or more battery packs to the controller.
  • the system is an electrical energy storage system.
  • the total power demand is provided by the upper level energy management system (EMS).
  • the controller is configured to discharge power from the plurality of battery packs to the grid or load, or to charge power from the grid or load to the plurality of battery packs.
  • the grid is optional. Power can be released to other components that need power.
  • the time interval can be in any suitable range.
  • the first and second time intervals may be the same or different.
  • the controller may be configured to dynamically control the discharge or charge of multiple battery packs by instantaneously updating the respective discharge or charge power of each battery pack over time.
  • embodiments of the present invention provide a controller as described herein for controlling or managing discharge or charge of a system comprising a plurality of battery packs.
  • controllers include one or more processors and at least one tangible, non-transitory machine-readable medium encoded with one or more programs configured to execute the described steps.
  • the controller is configured to provide signals with instructions to the plurality of battery packs and the one or more power converters to discharge from (or charge to) the plurality of battery packs based on a respective discharge power of each battery pack ) and/or keep specific battery packs idle.
  • the plurality of battery packs to which the controller is configured to be coupled are heterogeneous battery packs selected from virgin batteries, cascading electric vehicle (EV) batteries, or combinations thereof.
  • a plurality of battery packs are connected in parallel, in series, or a combination thereof.
  • the controller is configured to control the discharge or charge of, for example, a heterogeneous battery pack in an electrical energy storage system.
  • the controller is configured to discharge power from the plurality of battery packs to the grid or load, or to charge power from the grid or load to the plurality of battery packs.
  • embodiments of the present invention also include at least one tangible, non-transitory machine-readable medium encoded with one or more programs as described herein.
  • embodiments of the present invention provide a method for controlling or managing, by a controller as described herein, the discharging or charging of a system comprising a plurality of battery packs.
  • the method includes the steps of collecting characteristic data for each battery pack, said characteristic data including current voltage (V i ), state of charge (SOC i ), number of cells in each pack (N c ), maximum voltage (V c max ) and minimum voltage (V c min ); and receiving the total power demand D (or called the total dispatch power) that the system needs to schedule or charge the system within the first time interval.
  • the steps also include based on the current voltage (V i ), state of charge (SOC i ), number of cells in each battery pack (N ci ), maximum voltage (V c max ) and minimum voltage (V c min ) of the cells , the first weighting factor (a), the second weighting factor (b) and the total power demand (D) to determine the corresponding discharge or charge power of each battery pack.
  • Sum(C i ) is the sum of the individual voltage-charge combination factors (C i ) in the plurality of battery packs.
  • the controller also provides signals with instructions to the plurality of battery packs and one or more power converters to charge the plurality of battery packs based on the respective discharge or charge power of each battery pack as described herein. Discharge or charge and/or keep a particular battery pack idle. In some embodiments, instructions are sent from the controller to each battery pack and/or one or more inverters connected to multiple battery packs for discharging or charging based on the respective discharge or charge power of each battery pack. Charge.
  • the plurality of battery packs are heterogeneous battery packs selected from virgin batteries, cascading electric vehicle (EV) batteries, or combinations thereof.
  • a plurality of battery packs are connected in parallel, in series or a combination thereof.
  • the baseline SOC (SOC b ) of each of the plurality of battery packs may be any suitable range, for example, from 10% to 90%, from 20% to 80%, from 30% to 70%, from 20% to 60% % or from 40% to 60%.
  • a certain battery pack remains idle when the corresponding discharge or charge power is allocated to zero.
  • the steps described herein may be repeated to re-determine the corresponding discharge or charge power for each battery pack.
  • the first and second time intervals are in any range, for example from 1 minute to 1 hour, and may be the same or different.
  • the discharge process of multiple battery packs can also be dynamically controlled by instantaneously updating the respective discharge or charge power of each battery pack over time.
  • the systems, controllers and methods provided in the embodiments of the present invention provide many advantages. For example, a variety of new and used battery packs of different qualities are available. No pre-selection or removal of the battery pack is required. Multiple heterogeneous battery packs collectively supply electrical loads to meet electrical demand, while each pack can discharge in a different share. As described herein, the system, controller, and method extend the life of the battery pack through a balancing approach.
  • FIG. 1 is a block diagram illustrating an exemplary system including a heterogeneous battery pack and a controller according to some embodiments.
  • FIG. 2 is a block diagram illustrating an example controller for controlling or managing the discharge or charge of multiple heterogeneous battery packs, the example controller including one or more processors and coded with one or more At least one tangible, non-transitory machine-readable medium of programs.
  • Figure 3 illustrates the relationship between voltage (V) and charge flow (Ah) for an exemplary battery pack in some embodiments.
  • FIG. 4 is a flowchart illustrating an exemplary method for controlling discharging or charging of a battery pack according to some embodiments.
  • FIG. 5 is a flowchart illustrating exemplary steps for determining respective discharge or charge power for each battery pack in the exemplary method of FIG. 4, according to some embodiments.
  • a “heterogeneous battery pack” as referred to herein refers to a battery pack or module with different capacity, state of charge (SOC), state of health (SOH) and/or voltage, and may be selected from new batteries (e.g., from different manufacturing quotient), cascade utilization of electric vehicle (EV) batteries, or a combination thereof.
  • the steps utilize EV batteries for illustration purposes.
  • References to “discharging” or “charging” of multiple batteries are understood to mean that multiple batteries are discharged or charged together, while it is possible that some batteries may remain idle (not charged or discharged).
  • SOH state of health
  • state of charge as used herein is defined as the level of charge of a battery relative to its capacity.
  • the unit of SOC is percentage point, 0% means empty and 100% means full.
  • HMI Human Machine Interface
  • UI User Interface
  • a human-machine interface may refer to an interface between a human and a machine with physical input hardware, such as a keyboard, mouse, or any other human-machine interaction based on touch, vision, or hearing.
  • Such user interfaces may include other layers, such as output hardware, such as computer monitors, speakers, and printers.
  • EMS energy management system
  • the terms “power demand”, “power dispatch” and “power requirement” are used interchangeably and may refer to the power required for a discharging or charging process.
  • the terms “converter” and “inverter” are used interchangeably.
  • Each battery pack includes an inverter and a battery management unit (BMU) within it.
  • BMU battery management unit
  • the term “power inverter” or “AC/DC power converter” is used to describe the internal components in a battery pack
  • the term “power converter” or “power conversion system (PCS)” is used to describe a or multiple battery packs connected to the converter.
  • the term “battery management unit (BMU)” or “battery management system (BMS)” is used to describe the internal components in a battery pack
  • the term “battery power management unit (BPMU)” is used to describe the battery management unit.
  • the terms “power”, “power” and “energy” are used interchangeably, where energy is described in units of time. Power, energy and electricity can change over time.
  • connection or coupling are understood to cover various connections or couplings between or among components for conducting power or transmitting signals for communication. This connection or coupling can be through wired, wireless or cloud-based modes.
  • Power dispatch is a function of charge flow and voltage. Dispatched energy is defined as dispatched power over a user-specified time period. Sometimes, lower voltage discharges provide higher energy. Early approaches did not consider the effect of voltage on power or energy scheduling decisions. In addition, the unevenness of the voltage of the battery pack has not been considered. A more efficient method of using heterogeneous battery packs is needed.
  • Embodiments of the present invention provide a controller for controlling discharge or charge of a heterogeneous battery pack, a system such as an electrical energy storage system including such a controller, and a method of using the controller.
  • Embodiments of the present invention provide such controllers, such systems, and such methods to efficiently utilize heterogeneous battery packs, such as new batteries from different manufacturers or cascade utilization of electric vehicle (EV) batteries, in energy storage applications Group. No pre-selection or removal of the battery pack is required.
  • controllers, systems and methods utilize techniques to balance the discharge or charge of multiple battery packs based on both the voltage and state of charge of each battery pack in the system. Each battery pack can be charged or discharged differently.
  • the controller, system and method provided in the embodiments of the present invention are applicable to different battery packs.
  • the batteries may have the same or different chemical properties, the same or different performance or degradation, the same or different physical and/or electrical properties.
  • the battery pack is a heterogeneous battery pack.
  • embodiments of the present invention provide a method of balancing different sets of battery packs in an energy storage system based on individual battery pack voltages and individual battery pack SOCs.
  • the method relies on instantaneously measuring individual battery pack voltages and SOC, and splitting dispatch power from each pack into individual segments. This segmentation is based on the difference between the instantaneous battery voltage and the voltage budget (Vmax-Vmin) and the difference between the SOC and the desired base SOC of the battery.
  • the split is adjusted for both charge and discharge such that over a period of time all battery packs reach an equilibrium state where the voltage and SOC of all battery packs are within tight ranges.
  • FIGS. 1-2 like items are denoted by like reference numerals, and for the sake of brevity, the description of the structures provided above with reference to the previous figures will not be repeated.
  • the methods in Figures 4-5 are described with reference to the exemplary structures depicted in Figures 1-2.
  • an exemplary system 100 includes one or more power converters 10 , a plurality of battery packs 20 and a controller 60 .
  • the number and arrangement of each component in Fig. 1 is for illustration only. The system may have any suitable number of each component in any suitable combination or configuration.
  • Each power converter 10 is coupled to at least one of the plurality of battery packs 20 and is configured to convert direct current (DC) from the battery pack to alternating current (AC) or vice versa.
  • the power converter 10 may also be referred to as a power conversion system (PCS) or an inverter.
  • the controller 60 is coupled to the plurality of battery packs 20 and the one or more power converters 10 .
  • the system may also include more than one controller 60 , with each controller 60 coupled to multiple battery packs 20 .
  • the controller 60 may be directly or indirectly coupled to the plurality of battery packs 20 .
  • exemplary system 100 may optionally further include one or more battery power management units (BPMUs), which may also be referred to as battery management units (BMUs).
  • BPMUs battery power management units
  • BMUs battery management units
  • Each BPMU 30 is connectable to one or more battery packs 20 and is configured to monitor the one or more battery packs 20 and provide characteristic data of the one or more battery packs 20 to the controller 60.
  • controller 60 is configured to read data from each battery pack 20 . This can be done with each respective BPMU 30 connected to each battery pack.
  • the plurality of battery packs 20 are heterogeneous battery packs, which may be selected from virgin batteries, cascading electric vehicle (EV) batteries, or combinations thereof.
  • the plurality of battery packs 20 are connected in parallel, in series, or a combination thereof. In some embodiments, multiple battery packs 20 are connected in parallel. No series connection between battery packs eliminates circulating currents and losses.
  • a plurality of battery packs 20 are connected in a parallel configuration.
  • plurality of battery packs 20 are second-life (ie, used) electric vehicle (EV) batteries.
  • the EV batteries used can be utilized directly in the system without pre-selection or disassembly.
  • Each battery pack 20 includes one or more batteries.
  • Each battery pack 20 may include an internal battery management unit (BMU) and an internal inverter. The EV battery pack 20 is removed from the vehicle and is not disassembled into modules. A simple test can be performed on these EV battery packs 20 to verify their SOH.
  • BMU battery management unit
  • exemplary system 100 is an electrical energy storage system.
  • the controller 60 is configured to receive the total power demand provided from an upper energy management system (EMS) 110, or to calculate the total power demand based on input data received from the EMS.
  • the controller 60 is configured to discharge power from the plurality of battery packs 20 to the grid or load 85 in direct current, or vice versa.
  • the exemplary system 100 may be used to discharge power from the battery pack 20 to the grid 85 or to charge the battery pack 20 from the grid 85 .
  • a wire connection 12 may be used.
  • the dashed line 13 in Figure 1 shows an alternative power cable. There may be multiple power cable topologies between the converter 10 and the battery pack 20 .
  • the system 100 directly uses the grid-connected AC/DC converter 10 with size expansion flexibility. Grid-connected applications do not require additional power conversion systems.
  • grid 85 is optional. Power can be released to other components that need power.
  • the controller 60 can be connected with other components in a wired or wireless mode.
  • the controller 60 may interface with other components such as the transducer 10, BPMU 30, and EMS 110 via data cables or wireless connections 22.
  • the BPMU 30 can also be connected to the battery pack 20 via a data cable or a wireless connection 22, and the controller 60 can work in a cloud-based mode.
  • Each battery pack 20 may be connected to the power converter 10 (or an individual DC port on the converter 10) through a set of automatic DC breakers (not shown) that activate and control the battery pack 20 and the converter. connection between devices 10.
  • the inverter 10 controls whether to charge or discharge a single EV battery pack 20 by following instructions from the controller 60 .
  • controller 60 includes one or more processors 62 and at least one tangible, non-transitory machine-readable medium encoded with one or more programs configured to execute for controlling Set of steps in the discharge process of the system. Controller 60 , processor 62 and/or program 74 may be external to converter 10 or internal to converter 10 .
  • Processor(s) 62 may include a central controller 64 that includes a parameter input module 66 , a model module 68 , a parameter control module 70 , and an information and instruction module 72 .
  • the parameter input module 66 coordinates with the battery pack 20, and optionally with the BPMU 30 and the HMI or EMS 110, to read data from the battery pack 20 and to read power requirements from the HMI or EMS 110.
  • the parameter input module 66 also coordinates with each power converter 10 .
  • the parameter control module 70 coordinates with each power converter 10 and each battery pack 20, and optionally with the BPMU 30 and HMI or EMS 110 to control the discharge process.
  • model module 68 is configured to perform simulations based on input parameters to provide information and instructions to parameter control module 70 and information and instruction module 72 .
  • Processor 62 may optionally be coupled to one or more displays 76 for displaying information and instructions from module 72 and to an operator.
  • Controller 60 and processor 62 with program 74 are configured to perform the steps of discharging or charging as described herein. As shown in FIG. 4 , in some embodiments, controller 60 is configured to perform the steps described herein. These steps include collecting characteristic data for each battery pack 20 and receiving or calculating the total power demand (D) that needs to be dispatched from or charged to the system 100 during the first time interval. Characteristic data for each battery pack 20 includes, but is not limited to, current voltage (V i ), state of charge (SOC i ), number of cells in each pack (N c ), maximum battery voltage (V c max ) and minimum Voltage ( Vcmin ). The number of battery packs is denoted as "n", and the subscript "i" indicates the battery packs from 1 to n.
  • the total power demand (D) may be in kilowatts.
  • Each battery pack 20 may have a maximum voltage (V max ) and a minimum voltage for discharge (V min ), which may be derived from a voltage versus charge curve (eg, FIG. 3 ) for each battery pack 20 .
  • Each cell can have a maximum voltage (V c max ) and a minimum voltage (V c min ).
  • the maximum voltage (V max ) of the battery pack and the minimum voltage for discharge (V min ) are the number of single cells (cells) in the battery pack multiplied (time) by the maximum voltage (V c max ) and minimum voltage (V c max ) of the single cell (V c min ).
  • different batteries have the same set of Vcmax and Vcmin . Sometimes an average of different batteries is used.
  • the battery used has a maximum voltage (V c max ) and a minimum voltage (V c min ) of 4.2 volts and 3.5 volts, respectively.
  • the steps also include assigning a first weighting factor (a) and a second weighting factor (b) for power distribution based on voltage and state of charge of each battery pack, respectively.
  • a weighting factor
  • b second weighting factor
  • Each of the factors a and b is between 0 and 1, for example in the range of 0.01 to 0.99.
  • the sum of a and b is 1, as shown in equation (1):
  • the steps also include based on the current voltage (V i ), state of charge (SOC i ), number of cells in each battery pack (N ci ), maximum voltage (V c max ) and minimum voltage (V c min ) of the cells , the first weighting factor (a), the second weighting factor (b) and the total power demand (D) to determine the corresponding discharge or charge power of each battery pack.
  • V i current voltage
  • SOC i state of charge
  • N ci number of cells in each battery pack
  • V c max maximum voltage
  • V c min minimum voltage
  • controller 60 is configured to determine the respective discharge or charge power for each battery pack as follows.
  • V i ' The voltage distribution parameter (V i ') of the cell (or average cell) in the corresponding battery pack is defined and calculated using equation (2):
  • V i ' (V i /N ci –V c min )/(V c max –V c min ) (2)
  • a baseline SOC (SOC b ) is set for each of the plurality of battery packs.
  • the change in state of charge (SOC i ') for each battery pack was defined and calculated using the conditions and equations described herein.
  • the term "when” is interchangeable with the term "if”.
  • the steps also include calculating a voltage-charge combination factor (C i ) for each battery pack.
  • C i is defined and calculated using equation (5):
  • the corresponding discharge or charge power (d i ) for each battery pack is then calculated.
  • the corresponding discharge or charge power (d i ) for each battery pack is calculated based on the total power demand (D) and the voltage-charge combination factor (C i ) of each battery pack:
  • Sum(C i ) is the sum of the voltage-charge combination factors (C i ) of each of the plurality of battery packs.
  • the power share (in percent) used for discharging or charging the respective battery pack is represented by the ratio C i /Sum(C i ).
  • the controller 60 is configured to provide signals with instructions to the plurality of battery packs 20 and the one or more power converters to discharge or charge the plurality of battery packs 20 based on the respective discharge or charge power of each battery pack. and/or keep a specific battery pack idle.
  • the controller 60 is also configured to repeat some or all of the steps to re-determine the respective discharge or charge power for each battery pack in a second time interval after the end of the first time interval.
  • the time interval can be in any suitable range.
  • the first and second time intervals may be the same or different.
  • the controller 60 may be configured to dynamically control the discharge or charge of multiple battery packs by instantaneously updating the respective discharge or charge power of each battery pack over time.
  • An embodiment of the present invention provides a controller 60 as described herein for controlling the discharge of a system 100 including a plurality of battery packs 20 .
  • the controller 60 is configured to control the discharge or charge of, for example, a heterogeneous battery pack 20 in an electrical energy storage system.
  • the controller 60 is configured to discharge power from the plurality of battery packs 20 to a grid or load 85 or to charge power to the plurality of battery packs 20 .
  • the controller 60 is configured to provide signals with instructions to the plurality of battery packs 20 and the one or more power converters 10 to discharge from (or to) the plurality of battery packs based on the respective discharge power of each battery pack. charging) and/or keep a specific battery pack idle.
  • the controller 60 is configured to control the discharge or charge of the heterogeneous battery pack 20 in an electrical energy storage system, for example.
  • the controller 60 is configured to discharge power from the plurality of battery packs to the grid or load, or to charge power from the grid or load to the multiple battery packs.
  • the embodiment of the present invention also provides a method 200 for controlling the discharging or charging of the system 100 including a plurality of battery packs 20 by the controller 60 therein, as described herein.
  • FIG. 3 an exemplary plot of voltage versus charge flow for an exemplary battery pack 20 during a discharge process is shown.
  • Input parameters can include voltage, current and time.
  • Charge or charge flow (Q) is calculated from current and elapsed time.
  • Voltage has units of volts (v) and charge flow has units of ampere-hours (Ah) or coulombs.
  • Vmax is the voltage of such a battery when it is fully charged or at its maximum allowable charge level.
  • Vmin is the voltage of such a battery when it is depleted of charge or reaches its minimum allowable charge level.
  • a voltage versus charge curve can be generated empirically at a constant discharge level while monitoring the current during the discharge period until the voltage drops beyond a user-defined minimum limit (Vmin), as shown by the vertical dashed line in Figure 3. Current and voltage follow the same or similar trends with increasing charging time.
  • the voltage versus charge curve is empirically generated at a constant discharge level while monitoring the current during the discharge period until the voltage drops beyond a user-defined minimum limit, as shown by the dashed vertical line with the graph from y The intersection of the horizontal lines of the axes is shown.
  • Different discharge rates can produce different voltage discharge curves for the same battery pack.
  • a family of curves of different discharge rates may be provided for each respective battery pack 20 and may be used to track the voltage trajectory of the battery pack for a given dispatch episode.
  • techniques such as extrapolation, interpolation, or averaging are used to obtain representative curves.
  • Vmax and Vmin are open circuit voltages specified by the manufacturer or derived from predetermined voltage-charge curves. The range from Vmin to Vmax may range from 400 volts to 1000 volts.
  • the voltage distribution parameter V* of the battery pack 20 having the current voltage (V) is defined as (V-Vmin)/(Vmax-Vmin).
  • the voltage distribution parameter (V i ') of the cells in the corresponding battery pack is defined and calculated using equation (2):
  • V i ' (V i /N ci –V c min )/(V c max –V c min ) (2)
  • the voltage distribution parameter V* of the battery pack 20 and the voltage distribution parameter (V i ′) of the battery may be within any suitable range, for example, within a range from 50% to 95% in some embodiments.
  • FIG. 4 illustrates an exemplary method 200 for controlling or managing the discharging or charging of multiple battery packs 20 in system 100 in accordance with some embodiments.
  • the plurality of battery packs 20 are heterogeneous battery packs selected from virgin batteries, cascading electric vehicle (EV) batteries, or combinations thereof.
  • the plurality of battery packs 20 are connected in parallel, in series, or a combination thereof.
  • the plurality of battery packs 20 are preferably connected in parallel.
  • Characteristic data of each battery pack 20 is collected. Characteristic data for each battery pack 20 includes current voltage (V i ), state of charge (SOC i ), number of cells in each pack (N c ), maximum voltage (V c max ) and minimum voltage (V c max ) of the cells (V c min ).
  • the minimum and maximum voltages for each battery pack 20 can be calculated according to the number of batteries in each battery pack and the configuration in which the batteries are arranged. For example, if the maximum and minimum voltages of each cell are 4.2V and 3.5V, respectively, and a battery pack includes 144 cells, the Vmax of the battery pack is 4.2 ⁇ 144V, and the Vmin of such a battery pack is 3.5 ⁇ 144V.
  • the controller 60 receives the total power demand (D) that needs to be dispatched from or charged to the system 100 within a first time interval.
  • the total power demand may be received from the EMS 110.
  • the total power demand (D) for the first time interval may also be calculated by the controller 60 based on information from the EMS 110.
  • a first weighting factor (a) and a second weighting factor (b) are assigned for power distribution based on the voltage and state of charge of each battery pack, respectively.
  • the sum of a and b is equal to one.
  • the weighting parameters a and b are adjustable. For example, when the battery pack is relatively new, the value of b can be close to 1, and the value of a can be close to 0. As such a battery ages, the value of b will be adjusted to decrease, and the value of a will begin to increase accordingly.
  • the corresponding discharge or charge power (d i ) for each battery pack is determined. In some embodiments, based on current voltage (V i ), state of charge (SOC i ), number of cells in each battery pack (N ci ), maximum voltage (V c max ) and minimum voltage (V c min ) of the cells ), the first weighting factor (a), the second weighting factor (b) and the total power demand (D) to calculate the corresponding discharge and charge power. For example, the corresponding discharge or charge power (d i ) of each battery pack is determined by steps including steps 212-220 shown in FIG. 5 .
  • step 212 the respective voltage distribution parameters (V i ') of the cells in the respective battery packs are calculated using equation (2):
  • V i ' (V i /N ci –V c min )/(V c max –V c min ) (2)
  • the cells in a battery pack are identical and share the same V i '.
  • the cells in a battery pack are averaged to provide a value of Vi .
  • a baseline SOC (SOC b ) is set or selected for each of the plurality of battery packs.
  • the baseline SOC (SOC b ) of each of the plurality of battery packs may be any suitable range, for example, from 10% to 90%, from 20% to 80%, from 30% to 70%, from 20% to 60% % or from 40% to 60% (eg, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%).
  • a baseline SOC is established to ensure that each battery pack has a minimum charge during the discharge or charge process, thereby protecting the battery pack 20 .
  • the change in state of charge (SOC i ') for each battery pack is calculated using the conditions and equations as described herein. For discharge (D ⁇ 0), if SOC i >SOC b , use equation (3) to calculate SOC i ':
  • the voltage-charge combination factor (Ci) of the corresponding battery pack 20 is calculated using equation (5):
  • the corresponding discharge or charge power (d i ) for each battery pack is then calculated using equation (6) based on each battery pack's total power demand (D) and voltage-charge combination factor (C i ):
  • Sum(C i ) is the sum of voltage-charge combination factors (C i ) of each of a plurality of battery packs including from 1 to n.
  • the power share (in percent) used for discharging or charging the respective battery pack is represented by the ratio C i /Sum(Ci).
  • one or more battery packs may need to be charged even though multiple battery packs are being discharged to meet the power demand (D). This is illustrated in the example. Alternatively, one or more battery packs may need to be charged even if multiple battery packs are charged to receive the power demand (D) from the EMS.
  • the controller 60 provides signals with instructions to the plurality of battery packs 20 and one or more power converters to discharge or charge the plurality of battery packs 20 based on the respective discharge or charge power of each battery pack. It charges and/or keeps a particular battery bank idle. A discharging or charging process occurs.
  • power from the plurality of battery packs 20 is discharged or power is to be charged to the battery pack 20 .
  • alternating curves of voltage versus charge can be generated.
  • the characteristic data of each battery pack may be the same.
  • the time interval can be in any suitable range.
  • the first and second time intervals may be the same or different.
  • the first and second time intervals are in any range, eg, 10 seconds to 2 hours, 1 minute to 1 hour, and may be the same or different.
  • This interval can be user defined.
  • each time interval may be 1 minute, 2 minutes, 5 minutes, 10 minutes, 15 minutes, 20 minutes, 25 minutes, 30 minutes, 35 minutes, 60 minutes, or any suitable period of time.
  • the controller 60 may be configured to dynamically control the discharge or charge of multiple battery packs by instantaneously updating the respective discharge or charge power of each battery pack over time.
  • the controller 60 will, after the end of the time interval, for The plurality of battery packs 20 redistributes discharging or charging power.
  • the iterative process returns to and begins at step 202 .
  • the iterative process returns to and begins at step 204 .
  • the process can be stopped and the repeated cycle can be restarted when it is ready.
  • the discharge or charge process of multiple battery packs can also be dynamically controlled by instantaneously updating the respective discharge or charge power of each battery pack over time.
  • the time interval can be very short or minimal.
  • the method provided by the embodiment of the present invention utilizes multiple heterogeneous battery packs to provide a consistent and long-term dispatch distribution curve to meet the dispatch requirements of EMS discharge or charge.
  • the managed throughput results in improved lifetime and performance of the energy storage system.
  • the system 100 includes a heterogeneous battery pack 20 integrated with a bidirectional converter (or inverter) 10 connected to a grid or microgrid 85 , which can be run in a local or cloud-based controller 60 using Intelligent algorithm to schedule remotely or locally.
  • the algorithm requires a priori knowledge of the voltage-charge curve, which can be obtained during commissioning and subsequently updated as the battery pack ages or wears out due to use/disuse.
  • the systems, controllers and methods provided in the embodiments of the present invention provide many advantages. For example, various battery packs with different qualities can be used, such as used EV battery packs. No pre-selection or removal of the battery pack is required. The systems, controllers and methods extend the life of some or all battery packs, and they also provide flexibility in maintaining and upgrading the system.
  • the exemplary energy storage system 100 includes nine battery packs, each connected to a single inverter.
  • the battery pack is discharged at 0.5C maximum, and charged at 0.5C.
  • the capacity and voltage characteristics of battery packs are different, so their recommended/allowed maximum charging and discharging powers are different. Assume that the battery pack has the characteristic data shown in Table 1.
  • Voltages V i and SOC i are instantaneously measured voltages and states of charge of the individual battery packs. Assume each battery pack consists of 144 individual cells. It is expected that each cell will work in the range of 4.2V and 3V. Therefore, the maximum voltage (V c max ) and the minimum voltage (V c min ) of the battery are 4.2V and 3V, respectively.
  • Table 2 shows the parameters calculated in this method, including the voltage distribution parameter (V i ') of the battery, the change of state of charge (SOC i '), the voltage-charge combination factor (C i ) of each battery pack, and The corresponding discharge or charge power (d i ) of each battery pack.
  • a first weighting factor (a) and a second weighting factor (b) are used for power distribution based on the voltage and state of charge of each battery pack, respectively. These two weighting factors are also input parameters, and their combined weight is 1.
  • the first weighting factor (a) for voltage is chosen to be 0.45.
  • the second weighting factor (b) for SOC is chosen to be 0.55.
  • the sign of C i for battery pack No. 7 is different from that of other battery packs. This means that, in this particular example, one battery bank will be charged if the desired total schedule is discharged at the desired level. As shown in Table 2, the sign of discharge or charge (d i ) for battery pack 7 is positive (meaning charged), while the other battery packs are discharged. As shown in Table 2, the total power dispatch is -17.56kW. During this time interval, all discharged battery packs except battery pack number 7 were charged at 0.09 kW.
  • This process lasts 15 minutes. At the end of the 15 minutes, the EMS will give a new order for the total required dispatch power (D). The controller will have new measurements of the instantaneous voltage and SOC of each battery pack. The controller then recalculates the individual scheduled power from the battery pack based on the above calculation.
  • embodiments of the present invention also include at least one tangible, non-transitory machine-readable medium encoded with one or more programs as described herein.
  • the methods and systems described herein can be embodied at least in part in the form of computer-implemented processes and apparatus for practicing those processes.
  • the disclosed method can also be embodied at least in part in the form of a tangible non-transitory machine-readable storage medium encoded with computer program code.
  • the medium may include, for example, RAM, ROM, CD-ROM, DVD-ROM, BD-ROM, hard drive, flash memory, or any other non-transitory machine-readable storage medium, or any combination of these, where, when the computer program code is loaded When incorporated into and executed by a computer, the computer becomes the means for practicing the method.
  • the method may also be at least partly embodied in the form of a computer into which computer program code is loaded and/or executed, such that the computer becomes a means for practicing the method.
  • the computer program code segments configure the processor to create specific logic circuits.
  • the method may optionally be embodied at least partly in a digital signal processor formed by an application specific integrated circuit for carrying out the method.
  • the computer or control unit can be operated remotely using a cloud-based system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

提供了一种控制器、包括这种控制器的系统、以及用于控制或管理多个电池组的放电或充电的方法。控制器包括一个或多个处理器和编码有一个或多个程序的至少一个有形的非暂时性机器可读介质,所述一个或多个程序被配置为执行步骤以基于每个电池组的特性数据、电力需求以及基于每个电池组的电压和电荷状态以用于电力分配的第一加权因子(a)和第二加权因子(b)来确定每个电池组的相应放电或充电功率。控制器向多个电池组和/或一个或多个电力变换器提供具有指令的信号,以便从多个电池组放电或向多个电池组充电。

Description

用于平衡储能系统中电池组放电或充电的控制器和方法
优先权要求及交叉参考
本申请要求在2021年10月20日提交的名为“基于单个电池组电压、单个电池组SOC和其他相关参数的ESS电池组平衡”的美国申请序列号17/506,153的权益,该申请的全部内容通过引用的方式合并于此。
技术领域
本发明实施例一般涉及用于控制或管理电池组的系统和方法。更具体地,所公开的主题涉及用于平衡例如在储能应用中的电池组的放电或充电的控制器、系统和方法。
背景技术
由于对环境问题(如全球变暖)的关注增加,清洁和可再生能源变得更加重要。这些能源包括太阳能和风能,以及可充电电池。可再生能源是间歇性的,因为它们不能总是在需要时被调度(dispatch)以满足能量消费者的变化的需求。储能系统预期解决这种灵活性挑战。固定储能系统可以存储能量并且当需要时以电的形式释放能量。
发明内容
本发明实施例提供了一种用于控制或管理异构电池组的放电或充电的控制器、一种包括这样的控制器的诸如电能存储系统的系统、以及使用这样的控制器的方法。
根据一些实施例,控制器、系统和方法利用基于系统中的每个电池组的电压和电荷状态来平衡多个电池组的放电或充电的技术。
根据一些实施例,一种系统包括多个电池组、一个或多个电力变换器和一个或多个控制器。每个电力变换器与多个电池组中的至少一个耦合,并且被配置为将来自一个电池组的直流(DC)转换为交流(AC)或将来自一个电池组的AC转换为DC。控制器耦合到多个电池组和一个或多个电力变换器。在一些实施例中,该系统还可以包括多于一个的控制器,并且每个控制器耦合到多个电池组。
在此限定和描述了多个电池组。在一些实施例中,多个电池组是异构电池组,其可以选自新电池、梯次利用电动车辆(EV)电池或其组合。多个电池组并联连接、串联连接或以其组合(即,混合组合)连接。在一些实施例中,多个电池组并联连接。
控制器包括一个或多个处理器和编码有一个或多个程序的至少一个有形的非暂时性机器可读介质,所述一个或多个程序被配置为执行用于控制或管理具有多个电池组的系统的放电过程或充电过程的步骤。在一些实施例中,这些步骤包括:收集每个电池组的特性数据,所述特性数据包括当前电压(V i)、电荷状态(SOC i)、每个电池组中的电池数量(Nc)、电池的最大电压(V c max)和最小电压(V c min);以及接收第一时间间隔内系统需要调度或向系统充电的总电力需求D(或称总调度电力)。所述步骤还包括分别基于每个电池组的电压和电荷状态分配第一加权因子(a)和第二加权因子(b)以用于电力分配,其中a+b=1。所述步骤还包括基于当前电压(V i)、电荷状态(SOC i)、每个电池组中的电池数量(Nci)、电池的最大电压(V c max)和最小电压(V c min)、第一加权因子(a)、第二加权因子(b)以及总电力需求(D)来确定每个电池组的相应放电或充电功率;以及向所述多个电池组和所述一个或多个电力变换器提供具有指令的信号,以基于每个电池组的相应的放电或充电功率从所述多个电池组放电或向所述多个电池组充电和/或保持特定电池组空闲。
在一些实施例中,确定每个电池组的相应放电或充电功率的步骤包括以下步骤:计算相应电池组中的每个电池的电压分布参数(V i'),其中V i’=(V i/N ci–V min)/(V c max–V c min);设定所述多个电池组中的每一个的基线SOC(SOC b);以及计算每个电池组的电荷状态的变化(SOC i')。
通过使用如本文所述的条件和等式来计算电荷状态的变化(SOC i')。对于放电(D<0),当SOC i>SOC b时,SOC i'=SOC i-SOC b,或者当SOC i≤SOC b,SOC i'=0。对于充电(D>0),当SOC i<SOC b,SOC i'=SOC b-SOC i,或者当SOC i≥SOC b,SOC i'=0。
所述步骤还包括计算每个电池组的电压-电荷组合因子C i,其中C i被定义为C i=a*V i'+b*SOC i';以及计算每个电池组的相应放电或充电功率(d i)。每个电池组的相应的放电或充电功率(d i)基于每个电池组的总电力需求(D)和电压-电荷组 合因子(C i),其中d i=D*C i/Sum(Ci)。Sum(C i)是多个电池组中的各个电压-电荷组合因子(C i)的和。
当某一电池组的相应放电或充电功率为零时,特定电池组保持空闲而不放电或充电。
控制器还被配置为重复一些或所有步骤以在第一时间间隔结束之后的第二时间间隔中重新确定每个电池组的相应放电或充电功率。
该系统可以可选地进一步包括一个或多个电池电源管理单元(BPMU)。每个BPMU可与一个或多个电池组连接,并被配置为监视所述一个或多个电池组并将所述一个或多个电池组的特性数据提供给控制器。
在一些实施例中,所述系统是电能储存系统。总电力需求由上层能量管理系统(EMS)提供。在一些实施例中,控制器被配置成将电力从多个电池组放电到电网或负载,或者将电力从电网或负载充电到多个电池组。在一些实施例中,电网是可选的。电力可以被释放到需要电力的其他部件。
时间间隔可以在任何合适的范围内。第一和第二时间间隔可以相同或不同。控制器可以被配置为通过随时间瞬时更新每个电池组的相应放电或充电功率来动态地控制多个电池组的放电或充电。
在另一方面,本发明实施例提供了一种如本文所述的控制器,用于控制或管理包括多个电池组的系统的放电或充电。如本文所述,这种控制器包括一个或多个处理器和编码有一个或多个程序的至少一个有形的非暂时性机器可读介质,所述一个或多个程序被配置为执行本文所述的步骤。
所述控制器被配置为向多个电池组和一个或多个电力变换器提供具有指令的信号,以基于每个电池组的相应放电功率从多个电池组放电(或向多个电池组充电)和/或保持特定电池组空闲。
所述控制器被配置为与其耦合的所述多个电池组是异构电池组,其选自新电池、梯次利用电动车辆(EV)电池或其组合。多个电池组并联连接、串联连接或以其组合连接。
所述控制器被配置用于控制例如电能存储系统中的异构电池组的放电或充电。在一些实施例中,控制器被配置成将电力从多个电池组放电到电网或负载,或者将电力从电网或负载充电到多个电池组。
在另一方面,本发明实施例还包括编码有如本文所述的一个或多个程序的至少一个有形的非暂时性机器可读介质。
在另一方面,本发明实施例提供了一种用于通过如本文所述的其中的控制器来控制或管理包括多个电池组的系统的放电或充电的方法。该方法包括以下步骤:收集每个电池组的特性数据,所述特性数据包括当前电压(V i)、电荷状态(SOC i)、每个电池组中的电池数量(N c)、电池的最大电压(V c max)和最小电压(V c min);以及接收第一时间间隔内系统需要调度或向系统充电的总电力需求D(或称总调度电力)。所述步骤还包括分别基于每个电池组的电压和电荷状态分配第一加权因子(a)和第二加权因子(b)以用于电力分配,其中a+b=1。所述步骤还包括基于当前电压(V i)、电荷状态(SOC i)、每个电池组中的电池数量(N ci)、电池的最大电压(V max)和最小电压(V c min)、第一加权因子(a)、第二加权因子(b)以及总电力需求(D)来确定每个电池组的相应放电或充电功率。
在一些实施例中,确定每个电池组的相应放电或充电功率的步骤包括以下步骤:计算相应电池组中的每个电池的电压分布参数(V i'),其中V i’=(V i/N ci–V min)/(V c max–V c min);设定所述多个电池组中的每一个的基线SOC(SOC b);以及计算每个电池组的电荷状态的变化(SOC i')。
通过使用如本文所述的条件和方程来计算电荷状态的变化(SOC i')。对于放电(D<0),当SOC i>SOC b时,SOC i'=SOC i-SOC b,或者当SOC i≤SOC b,SOC i'=0。对于充电(D>0),当SOC i<SOC b,SOC i'=SOC b-SOC i,或者当SOC i≥SOC b,SOC i'=0。
所述步骤还包括计算每个电池组的电压-电荷组合因子C i,其中C i被定义为C i=a*V i'+b*SOC i';以及计算每个电池组的相应放电或充电功率(d i)。每个电池组的相应的放电或充电功率(d i)基于每个电池组的总电力需求(D)和电压-电荷组合因子(C i),其中d i=D*C i/Sum(C i)。Sum(C i)是多个电池组中的各个电压-电荷组合因子(C i)的和。
在这种方法中,控制器还向多个电池组和一个或多个电力变换器提供具有指令的信号,以如本文所述基于每个电池组的相应放电或充电功率来对多个电池组放电或充电和/或保持特定电池组空闲。在一些实施例中,指令从控制器被发 送到每个电池组和/或与多个电池组连接的一个或多个变换器,用于基于每个电池组的相应放电或充电功率来放电或充电。
所述多个电池组是选自新电池、梯次利用电动车辆(EV)电池或其组合的异构电池组。多个电池组并联连接、串联连接或其组合连接。
多个电池组中的每一个的基线SOC(SOC b)可以是任何合适的范围,例如,从10%到90%、从20%到80%、从30%到70%、从20%到60%或从40%到60%。当相应的放电或充电功率被分配为零时,某个电池组保持空闲。
在第一时间间隔结束后的第二时间间隔中,可重复本文所述的步骤以重新确定每个电池组的相应放电或充电功率。第一和第二时间间隔在任何范围内,例如从1分钟到1小时,并且可以相同或不同。多个电池组的放电过程也可以通过随时间瞬时更新每个电池组的各自的放电或充电功率来动态地控制。
本发明实施例中提供的系统、控制器和方法提供了许多优点。例如,可以使用具有不同质量的各种新的和使用过的电池组。不需要预先选择或拆除电池组。多个异构电池组共同地供应电力负载以满足电力需求,同时每个电池组可以以不同的份额放电。如本文所述,该系统、控制器和方法通过平衡方法延长电池组的寿命。
附图说明
当结合附图阅读时,从以下详细描述中可以最好地理解本发明实施例。要强调的是,根据惯例,附图的各种特征不一定按比例绘制。相反,为了清楚起见,各种特征的尺寸被任意地扩大或缩小。在整个说明书和附图中,相同的附图标记表示相同的特征。
图1是示出根据一些实施例的包括异构电池组和控制器的示例性系统的框图。
图2是示出根据一些实施例的用于控制或管理多个异构电池组的放电或充电的示例性控制器的框图,该示例性控制器包括一个或多个处理器和编码有一个或多个程序的至少一个有形的非暂时性机器可读介质。
图3示出了一些实施例中的示例性电池组的电压(V)和电荷流(Ah)之间的关系。
图4是示出根据一些实施例的用于控制电池组的放电或充电的示例性方法的流程图。
图5是示出根据一些实施例的用于确定图4的示例性方法中的每个电池组的相应放电或充电功率的示例性步骤的流程图。
具体实施方式
对示例性实施例的描述旨在结合附图来阅读,附图被认为是整个书面描述的一部分。在说明书中,诸如“下”、“上”、“水平”、“垂直”、“上方”、“下方”、“向上”、“向下”、“顶部”和“底部”以及其派生词(例如,“水平地”、“向下地”、“向上地”等)的相对术语应被解释为指代如随后描述的或如在所讨论的附图中示出的取向。这些相对术语是为了便于描述,而不要求装置以特定的取向构造或操作。关于附着、耦合等的术语,例如“连接”和“互连”,指的是一种关系,其中结构直接地或者通过中间结构间接地彼此固定或附着,以及可移动的或刚性的附着或关系,除非另外明确地描述。
为了下文描述的目的,应当理解,下文描述的实施例可以假定替代的变型和实施例。还应当理解,本文所述的具体制品、组合和/或过程是示例性的,并且不应当被认为是限制性的。
在本发明实施例中,单数形式“一”、“一个”和“该”包括复数引用,并且对特定数值的引用至少包括该特定数值,除非上下文另有明确指示。当通过使用先行词“约”将值表示为近似值时,应理解,特定值形成另一个实施例。如本文所用,“约X”(其中X是数值)优选是指所引用值的±10%,包括端值在内。例如,短语“约8”优选地指7.2至8.8的值,包括端值。在存在的情况下,所有范围都是包括在内的和可组合的。例如,当引用“1至5”的范围时,所引用的范围应被解释为包括范围“1至4”、“1至3”、“1-2”、“1-2及4-5”、“1-3及5”、“2-5”等。另外,当肯定地提供了替代物的列表时,这种列表可以解释为意味着可以排除任何替代物,例如,通过权利要求中的否定限制。例如,当引用“1至5”的范围时,所引用的范围可以解释为包括其中1、2、3、4或5中的任一个被否定地排除的情况;因此,对“1至5”的叙述可以被解释为“1和3-5,但不是2”,或简单地“其中不包括2”。意图旨在:本文明确引用的任何组件、元素、属性或步骤可以明确地排除在 权利要求之外,无论这些组件、元素、属性或步骤是否作为替代物列出或者无论它们是否单独引用。
本文所提及的“异构电池组”是指具有不同容量、电荷状态(SOC)、健康状态(SOH)和/或电压的电池组或模块,并且可选自新电池(例如,来自不同制造商)、梯次利用电动车辆(EV)电池或它们的组合。梯次利用EV电池用于说明目的。对多个电池组的“放电”或“充电”的引用被理解为多个电池组共同放电或被充电,同时一些电池组可以保持空闲(没有充电或放电)是可能的。
除非另外明确指出,否则本文所提及的“健康状态(SOH)”将被理解为是指电池、单电池或电池组的状况与其理想状况相比的品质因数。SOH以百分比(%)表征。理想条件下与规格匹配的条件是100%。SOH可以随着时间和使用而减少。
除非另外明确指出,否则本文所述的“电荷状态”(SOC)被定义为电池相对于其容量的电荷水平。SOC的单位是百分点,0%表示空,100%表示满。
本文使用的术语“人机接口(HMI)”被理解为指用户接口(UI),其是人和机器之间发生交互的空间。人机接口(HMI)可以涉及具有物理输入硬件的人机之间的接口,所述物理输入硬件诸如键盘、鼠标或基于触觉、视觉或听觉的任何其它人机交互。这样的用户接口可以包括其他层,例如输出硬件,例如计算机监视器、扬声器和打印机。
本文所使用的术语“能量管理系统(EMS)”是指由公用电网的操作者用来监视、控制和优化发电或输电系统的性能的计算机辅助工具的系统。
在本发明实施例中,术语“电力需求”、“电力调度”和“电力要求”可互换使用,并且可以指放电或充电过程所需的电力。术语“变换器”和“逆变器”可互换使用。每个电池组包括逆变器和其中的电池管理单元(BMU)。为了便于描述,术语“电力逆变器”或“AC/DC电力变换器”用于描述电池组中的内部组件,术语“电力变换器”或“电力变换系统(PCS)”用于描述与一个或多个电池组连接的变换器。术语“电池管理单元(BMU)”或“电池管理系统(BMS)”用于描述电池组中的内部组件,并且术语“电池电源管理单元(BPMU)”用于描述与一个或多个电池组连接的电池管理单元。
在本发明实施例中,术语“电力”、“功率”和“能量”可互换使用,其中能量以时间单位描述。功率、能量和电力可以随时间变换。
除非另外明确指出,否则本文所使用的术语“连接”或“耦合”被理解为涵盖组件之间或组件中的不同连接或耦合,以便传导电力或传输用于通信的信号。这种连接或耦合可以通过有线、无线或基于云的模式。
电力调度(放电)是电荷流和电压的函数。调度能量被定义为在用户指定的时间段上的调度电力。有时,较低电压放电提供较高能量。早期的方法没有考虑电压对电力或能量调度的决定的影响。此外,还没有考虑电池组的电压的不均匀性。需要一种使用异构电池组的更有效的方法。
本发明实施例提供了一种用于控制异构电池组的放电或充电的控制器、一种诸如包括这种控制器的电能存储系统的系统、以及使用该控制器的方法。本发明实施例提供了这样的控制器、这样的系统和这样的方法,以在储能应用中有效地利用异构电池组,诸如来自不同制造商的新电池或梯次利用电动车辆(EV)电池组。不需要预先选择或拆卸电池组。根据一些实施例,控制器、系统和方法利用基于系统中的每个电池组的电压和电荷状态两者来平衡多个电池组的放电或充电的技术。每个电池组可以被不同地充电或放电。
本发明实施例中提供的控制器、系统和方法适用于不同的电池组。电池组可具有相同或不同的化学性质、相同或不同的性能或退化、相同或不同的物理和/或电性能。在一些实施例中,电池组是异构电池组。
在一些实施例中,本发明实施例提供了一种基于单独的电池组电压和单独的电池组SOC来平衡储能系统中的不同组的电池组的方法。该方法依赖于在瞬间测量单独的电池组电压和SOC,并将调度电力从每个电池组分割成单独的部分。该分割基于瞬时电池组电压与电压预算的差(Vmax-Vmin)和SOC与电池组期望的基本SOC的差。针对充电和放电两者调节分割,使得在一段时间内所有电池组达到平衡状态,其中所有电池组的电压和SOC处于紧密范围内。
在图1-2中,相同的项由相同的附图标记表示,并且为了简洁,不再重复以上参照前面的附图提供的结构的描述。参考图1-2中描述的示例性结构来描述图4-5中的方法。
参考图1,示例性系统100包括一个或多个电力变换器10、多个电池组20和控制器60。图1中的每个部件的数量和配置仅用于说明。该系统可以具有任何合适数量的任何合适组合或配置的每个部件。
每个电力变换器10与多个电池组20中的至少一个电池组耦合,并且被配置为将来自电池组的直流(DC)变换为交流(AC)或反之亦然。电力变换器10也可以称为电力转换系统(PCS)或逆变器。
控制器60耦合到多个电池组20和一个或多个电力变换器10。在一些实施例中,系统还可以包括多于一个的控制器60,并且每个控制器60耦合到多个电池组20。
控制器60可以直接或间接地耦合到多个电池组20。例如,在一些实施例中,示例性系统100可以可选地进一步包括一个或多个电池电源管理单元(BPMU),其也可以被称为电池管理单元(BMU)。每个BPMU 30可与一个或多个电池组20连接,并被配置成监视一个或多个电池组20,并将一个或多个电池组20的特性数据提供给控制器60。在一些实施例中,控制器60被配置成从每个电池组20读取数据。这可通过与每个电池组连接的每个相应BPMU 30来完成。
多个电池组20是异构电池组,其可以选自新电池、梯次利用电动车辆(EV)电池或其组合。多个电池组20并联连接、串联连接或以其组合连接。在一些实施例中,多个电池组20并联连接。电池组之间没有串联连接消除了循环电流和损耗。
如图1所示,多个电池组20以并联配置连接。在一些实施例中,多个电池组20是梯次利用(即,使用过的)电动车辆(EV)电池。所使用的EV电池可直接在系统中利用,而无需预先选择或拆卸。每个电池组20包括一个或多个电池。每个电池组20可以包括内部电池管理单元(BMU)和内部逆变器。EV电池组20从车辆移除并且不被拆卸成模块。可以对这些EV电池组20进行简单的测试以验证它们的SOH。
在一些实施例中,示例性系统100是电能存储系统。控制器60被配置成接收从上层能量管理系统(EMS)110提供的总电力需求,或者基于从EMS接收的输入数据来计算总电力需求。在一些实施例中,控制器60被配置成以直流电将电力从多个电池组20放电到交流电的电网或负载85,或反之亦然。示例性系统100可用于将电力从电池组20放电到电网85,或用于从电网85充电到电池组20。可使用电线连接12。图1中的虚线13示出了替代的电力电缆。在变换器10 和电池组20之间可以存在多个电力电缆拓扑。系统100直接使用具有尺寸扩展灵活性的并网AC/DC变换器10。并网应用不需要额外的功率变换系统。
在一些实施例中,电网85是可选的。电力可以被释放到需要电力的其他部件。
控制器60可以以有线或无线模式与其他部件连接。在图1所示的示例性系统100中,控制器60可经由数据电缆或无线连接22与诸如变换器10、BPMU30和EMS 110的其他部件连接。BPMU 30还可经由数据电缆或无线连接22与电池组20连接,控制器60可在基于云的模式下工作。
每个电池组20可通过一组自动DC断路器(未示出)连接到电力变换器10(或变换器10上的独立DC端口),该组自动DC断路器激活和控制电池组20和变换器10之间的连接。变换器10通过遵循来自控制器60的指令控制是否对单个EV电池组20充电或放电。
参考图2,控制器60包括一个或多个处理器62和编码有一个或多个程序的至少一个有形的非暂时性机器可读介质,所述程序被配置为执行用于控制具有多个电池组的系统的放电过程的步骤。控制器60、处理器62和/或程序74可以是变换器10的外部设备,或者是变换器10内部的内部设备。
(一个或多个)处理器62可包括中央控制器64,其包括参数输入模块66、模型模块68、参数控制模块70以及信息和指令模块72。参数输入模块66与电池组20协调,并且可选地与BPMU 30和HMI或EMS 110协调,以从电池组20读取数据并从HMI或EMS 110读取电力需求。参数输入模块66还与每个电力变换器10协调。参数控制模块70与每个电力变换器10和每个电池组20协调,并且可选地与BPMU 30和HMI或EMS 110协调以控制放电过程。与一个或多个程序74一起,模型模块68被配置成基于输入参数执行模拟,以向参数控制模块70和信息和指令模块72提供信息和指令。处理器62可以可选地与一个或多个显示器76连接,以用于显示来自模块72的信息和指令,并显示给操作者。
具有程序74的控制器60和处理器62被配置成执行如本文所述的放电或充电步骤。如图4中所述,在一些实施例中,控制器60被配置成执行本文所述的步骤。这些步骤包括:收集每个电池组20的特性数据,并且接收或计算在第一时间间隔内需要从系统100调度或向系统100充电的总电力需求(D)。每个电 池组20的特性数据包括但不限于当前电压(V i)、电荷状态(SOC i)、每个电池组中的电池数量(N c)、电池的最大电压(V c max)和最小电压(V c min)。电池组的数量表示为“n”,“下标“i”表示从1到n的电池组。
总电力需求(D)可以是千瓦。每个电池组20可具有最大电压(V max)和放电用最小电压(V min),其可从每个电池组20的电压对电荷的曲线(例如,图3)导出。每个电池可以具有最大电压(V c max)和最小电压(V c min)。电池组的最大电压(V max)和放电用最小电压(V min)是电池组中的单电池(cell)数量乘以(time)单电池的最大电压(V c max)和最小电压(V c min)。在一些实施例中,不同的电池具有相同的V c max和V c min的集合。有时使用不同电池的平均值。例如,在示例中,所使用的电池的最大电压(V c max)和最小电压(V c min)分别为4.2伏和3.5伏。
所述步骤还包括分别基于每个电池组的电压和电荷状态分配第一加权因子(a)和第二加权因子(b)以用于电力分配。因子a和b中的每一个在0和1之间,例如在0.01至0.99的范围内。a和b之和为1,如等式(1)所示:
a+b=1        (1)
所述步骤还包括基于当前电压(V i)、电荷状态(SOC i)、每个电池组中的电池数量(N ci)、电池的最大电压(V c max)和最小电压(V c min)、第一加权因子(a)、第二加权因子(b)以及总电力需求(D)来确定每个电池组的相应放电或充电功率。
在一些实施例中,控制器60被配置为如下确定每个电池组的相应放电或充电功率。
使用等式(2)定义和计算相应电池组中的电池(或平均电池)的电压分布参数(V i'):
V i’=(V i/N ci–V c min)/(V c max–V c min)     (2)
为多个电池组中的每一个设置基线SOC(SOC b)。使用本文描述的条件和方程定义和计算每个电池组的电荷状态的变化(SOC i')。对于放电(D<0):当SOC i>SOC b时,SOC i’=SOC i-SOC b(等式3);或者,当SOC i≤SOC b时,SOC i'=0。对于充电(D>0):当SOC i<SOC b,SOC i’=SOC b–SOC i(等式4);或者当SOC i≥SOC b,SOC i’=0。本文使用的术语“当……时”与术语“如果”可互换。
所述步骤还包括计算每个电池组的电压-电荷组合因子(C i)。C i是使用等式(5)定义及计算:
C i=a*V i’+b*SOC i’       (5)
然后计算每个电池组的相应放电或充电功率(d i)。使用等式(6),基于每个电池组的总电力需求(D)和电压-电荷组合因子(C i)来计算每个电池组的相应放电或充电功率(d i):
d i=D*C i/Sum(C i)       (6)
Sum(C i)是多个电池组中的每一个的电压-电荷组合因子(C i)的和。用于相应电池组的放电或充电的功率份额(以百分比计)由C i/Sum(C i)的比率表示。当某一电池组的相应放电或充电功率为零时,特定电池组保持空闲而不放电或充电。
控制器60被配置为向多个电池组20和一个或多个电力变换器提供具有指令的信号,以基于每个电池组的相应的放电或充电功率从多个电池组20放电或向其充电和/或保持特定电池组空闲。
控制器60还被配置为重复一些或所有步骤,以在第一时间间隔结束之后的第二时间间隔中重新确定每个电池组的相应放电或充电功率。
时间间隔可以在任何合适的范围内。第一和第二时间间隔可以相同或不同。控制器60可被配置为通过随时间瞬时更新每个电池组的相应放电或充电功率来动态地控制多个电池组的放电或充电。
本发明实施例提供了一种如本文所述的控制器60,用于控制包括多个电池组20的系统100的放电。控制器60被配置为控制例如电能存储系统中的异构电池组20的放电或充电。控制器60被配置成将电力从多个电池组20放电到电网或负载85,或者将电力充电到多个电池组20。
控制器60被配置为向多个电池组20和一个或多个电力变换器10提供具有指令的信号,以基于每个电池组的相应放电功率从多个电池组放电(或向多个电池组充电)和/或保持特定电池组空闲。控制器60被配置用于控制例如电能存储系统中的异构电池组20的放电或充电。在一些实施例中,控制器60被配置成将电力从多个电池组放电到电网或负载,或将电力从电网或负载充电到多个电池组。
本发明实施例还提供了一种用于通过其中的控制器60控制包括多个电池组20的系统100的放电或充电的方法200,如本文所述。
不同的电池组,尤其是二次寿命或梯次利用的电池或具有不同容量和额定值的电池,具有变化的电压-电荷特性。参考图3,示出了在放电过程期间示例性 电池组20的电压与电荷流的示例性曲线。输入参数可以包括电压、电流和时间。从电流和经过的时间计算电荷或电荷流(Q)。电压具有伏特(v)的单位,并且电荷流具有安培数小时(Ah)或库仑的单位。如图3所示,Vmax是当这样的电池组被完全充电或处于其最大允许充电电平时该电池组的电压。Vmin是当这样的电池组耗尽电荷或达到其最小允许充电电平时该电池组的电压。
电压对电荷的曲线可以在恒定放电电平下经验性地生成,同时在放电时段内监视电流,直到电压下降超过用户定义的最小限制(Vmin),如图3中的垂直虚线所示。电流和电压随着充电时间的增加而遵循相同或类似的趋势。在一些实施例中,电压对电荷的曲线是在恒定放电电平下经验性地生成的,同时在放电时段内监视电流,直到电压下降超过用户定义的最小限制,如由虚线垂直线与来自y轴的水平线的交点所示。
不同的放电速率可产生用于相同电池组的不同电压放电曲线。可以为每个相应的电池组20提供不同放电速率的曲线族,并且可以用于跟踪给定调度场景(episode)的电池组的电压轨迹。在一些实施例中,使用诸如外插、内插或平均之类的技术来获得代表性曲线。在一条曲线中,当电压在放电期间降低超过Vmin时,这种电池组显示出明显更高的电压梯度并且更快地耗尽。该下限点也可以被称为电压崩溃。在一些实施例中,Vmax和Vmin是由制造商指定的开路电压或者是从预定电压-电荷曲线导出的开路电压。从Vmin到Vmax的范围可在从400伏到1000伏的范围内。
将具有当前电压(V)的电池组20的电压分布参数V*定义为(V-Vmin)/(Vmax-Vmin)。使用等式(2)定义和计算相应电池组中的电池的电压分布参数(V i'):
V i’=(V i/N ci–V c min)/(V c max–V c min)      (2)
将电池组20的电压分布参数V*和电池的电压分布参数(V i')可以在任何合适的范围内,例如,在一些实施例中,在从50%到95%的范围内。
图4示出了根据一些实施例的用于控制或管理系统100中的多个电池组20的放电或充电的示例性方法200。多个电池组20是选自新电池、梯次利用电动车辆(EV)电池或其组合的异构电池组。多个电池组20并联连接、串联连接或以其组合连接。多个电池组20优选并联连接。
参照图4,在步骤202,收集每个电池组20的特性数据。每个电池组20的特性数据包括当前电压(V i)、电荷状态(SOC i)、每个电池组中的电池数量(N c)、电池的最大电压(V c max)和最小电压(V c min)。
可以根据各个电池组中的电池的数量和电池所布置的配置来计算每个电池组20的最小和最大电压。例如,如果每个电池的最大和最小电压分别为4.2V和3.5V,并且电池组包括144个电池,则该电池组的Vmax为4.2×144V,并且这种电池组的Vmin为3.5×144V。
在步骤204,控制器60接收需要在第一时间间隔内从系统100调度或向系统充电的总电力需求(D)。如本文所述,可从EMS 110接收总电力需求。第一时间间隔内的总电力需求(D)也可由控制器60基于来自EMS 110的信息计算。
在步骤206,分别基于每个电池组的电压和电荷状态分配第一加权因子(a)和第二加权因子(b)以用于电力分配。如等式(1)所示,a和b的和等于1。加权参数a和b是可调节的。例如,当电池组相对较新时,b的值可以接近1,并且a的值可以接近0。当这样的电池老化时,b的值将被调整为减小,并且a的值开始相应地增加。
在步骤210,确定每个电池组的相应的放电或充电功率(d i)。在一些实施例中,基于当前电压(V i)、电荷状态(SOC i)、每个电池组中的电池数量(N ci)、电池的最大电压(V c max)和最小电压(V c min)、第一加权因子(a)、第二加权因子(b)以及总电力需求(D)来计算相应的放电和充电功率。例如,通过包括图5所示的步骤212-220的步骤来确定每个电池组的相应放电或充电功率(d i)。
在步骤212,使用等式(2)计算相应电池组中的电池的相应电压分布参数(V i'):
V i’=(V i/N ci–V c min)/(V c max–V c min)      (2)
在一些实施例中,一个电池组中的电池是相同的,并且共享相同的V i'。或者,一个电池组中的电池被平均以提供一个V i值。
在步骤214,为多个电池组中的每一个设置或选择基线SOC(SOC b)。多个电池组中的每一个的基线SOC(SOC b)可以是任何合适的范围,例如,从10%到90%、从20%到80%、从30%到70%、从20%到60%或从40%到60%(例如,25%、 30%、35%、40%、45%、50%、55%、60%)。建立基线SOC以确保每个电池组在放电或充电过程期间具有最小电荷,从而保护电池组20。
在步骤216,使用如本文所述的条件和等式计算每个电池组的电荷状态的变化(SOC i')。对于放电(D<0),如果SOC i>SOC b,则使用等式(3)来计算SOC i':
SOC i'=SOC i-SOC b      (3)
如果在放电过程期间SOC i≤SOC b,则SOC i'=0。
对于充电(D>0),如果SOC i<SOC b,则使用等式(4)计算SOC i':
SOC i'=SOC b-SOC i      (4)
否则,SOC i'=0。
在步骤218,使用等式(5)计算相应电池组20的电压-电荷组合因子(Ci):
C i=a*V i’+b*SOC i’      (5)
可以对从1到n(系统中的总电池的数量)的每个电池组执行上述计算。
在步骤220,然后基于每个电池组的总电力需求(D)和电压-电荷组合因子(C i),使用等式(6)计算每个电池组的相应放电或充电功率(d i):
d i=D*C i/Sum(Ci)      (6)
Sum(C i)是包括从1到n的多个电池组中的每一个的电压-电荷组合因子(C i)的和。用于相应电池组的放电或充电的功率份额(以百分比计)由C i/Sum(Ci)的比率表示。当某一电池组的相应放电或充电功率为零时,特定电池组保持空闲而不放电或充电。
在一些实施例中,即使多个电池组放电以满足电力需求(D)的要求,也可能需要对一个或多个电池组充电。这在示例中说明。或者,即使多个电池组被充电以接受来自EMS的电力需求(D),也可能需要对一个或多个电池组充电。
返回参照图4,控制器60向多个电池组20和一个或多个电力变换器提供具有指令的信号,以基于每个电池组的相应的放电或充电功率从多个电池组20放电或向其充电和/或保持特定电池组空闲。发生放电或充电过程。
根据指令,来自多个电池组20的电力被放电或者电力将被充电到电池组20。在每个过程之后,对于每个电池组,可以生成电压对电荷的交替曲线。有时,每个电池组的特性数据可以是相同的。
在步骤240,在第一时间间隔结束之后,可以重复上述一些或所有步骤,以重新确定每个电池组在第二时间间隔中的相应放电或充电功率。时间间隔可以在任何合适的范围内。第一和第二时间间隔可以相同或不同。第一和第二时间间隔在任何范围内,例如,10秒至2小时,1分钟至1小时,并且可以相同或不同。该间隔可以由用户定义。例如,每个时间间隔可以是1分钟、2分钟、5分钟、10分钟、15分钟、20分钟、25分钟、30分钟、35分钟、60分钟或任何合适的时间段。控制器60可被配置为通过随时间瞬时更新每个电池组的相应放电或充电功率来动态地控制多个电池组的放电或充电。
在步骤240之后,控制器60通过重复包括步骤202、204、206、210(包括步骤212、214、216、218和220)和230的步骤中的一些或全部,将在时间间隔结束之后,针对多个电池组20重新分配放电或充电功率。在一些实施例中,重复的过程返回到步骤202并从其开始。在一些实施例中,重复的过程返回到步骤204并从其开始。有时,当一个电池组发生电压崩溃或电池需要更换时,该过程可停止,并且重复循环可在准备就绪时重新开始。多个电池组的放电或充电过程也可以通过随时间瞬时更新每个电池组的各自的放电或充电功率来动态地控制。时间间隔可以非常短或最小。
总之,本发明实施例提供的方法利用多个异构电池组来提供一致的和长期的调度分布曲线,以满足EMS放电或充电的调度要求。管理的吞吐量导致储能系统的改进的寿命和性能。
在一些实施例中,系统100包括与连接到电网或微电网85的双向变换器(或逆变器)10集成的异构电池组20,其可以使用在本地或基于云的控制器60中运行的智能算法来远程或本地调度。在一些实施例中,该算法需要电压-电荷曲线的先验知识,其可以在调试期间获取并且随后随着电池组由于使用/不使用而老化或磨损而更新。
本发明实施例中提供的系统、控制器和方法提供了许多优点。例如,可以使用具有不同质量的各种电池组,例如使用过的EV电池组。不需要预先选择或拆除电池组。该系统、控制器和方法延长了一些或所有电池组的寿命,并且它们还在维护和升级系统方面提供了灵活性。
示例
示例性储能系统100包括9个电池组,每个电池组与单个逆变器连接。电池组在0.5C放电最大,以及在0.5C充电。电池组的容量和电压特性不同,因此它们的推荐/允许最大充电和放电功率不同。假定电池组具有如表1所示的特性数据。
表1
电池组编号 最大功率(kW) 容量(kWh) V i SOC i
1 3.16 6.32 455.31 0.58
2 6.66 13.31 446.62 0.20
3 6.95 13.90 544.81 0.17
4 7.72 15.45 568.90 0.61
5 8.47 16.94 477.01 0.48
6 8.73 17.45 468.12 0.43
7 10.55 21.10 475.60 0.02
8 13.66 27.31 501.14 0.83
9 14.10 28.20 540.58 0.26
电压V i和SOC i是瞬时测量的各个电池组的电压和电荷状态。假设每个电池组由144个单独的电池构成。希望每个电池在4.2V和3V的范围内工作。因此,电池的最大电压(V c max)和最小电压(V c min)分别为4.2V和3V。
仅为了说明,假设储能系统在例如15分钟的时间间隔内需要-17.56kW的调度电力(D)。调度电力的负号意味着需要放电。
表2示出了在该方法中计算的参数,包括电池的电压分布参数(V i')、电荷状态的变化(SOC i')、每个电池组的电压-电荷组合因子(C i)以及每个电池组的相应放电或充电功率(d i)。
表2
电池组编号 V i SOC i C i d i
1 0.13 0.33 0.24 -1.86
2 0.08 -0.05 0.01 -0.08
3 0.65 -0.08 0.25 -1.93
4 0.79 0.36 0.56 -4.31
5 0.26 0.23 0.25 -1.90
6 0.21 0.18 0.19 -1.50
7 0.25 -0.23 -0.01 0.09
8 0.40 0.58 0.50 -3.84
9 0.63 0.01 0.29 -2.24
电池的电压分布参数(V i')由控制器根据V i’=(((V i/144)-3)/(4.2-3))来计算。SOC b是算法的输入参数,其中它是每个电池组的期望的基线SOC。为了说明的 目的,选择25%。该过程是对多个电池组放电,并且每个电池组具有高于SOC b的SOC i。因此SOC i'=SOCi-SOC b
第一加权因子(a)和第二加权因子(b)分别基于每个电池组的电压和电荷状态而用于电力分配。这两个加权因子也是输入参数,其组合权重为1。为了说明的目的,针对电压的第一加权因子(a)被选择为0.45。针对SOC的第二加权因子(b)被选择为0.55。使用等式C i=a*V i’+b*SOC i’来计算每个电池组的电压-电荷组合因子(C i)。
如表2所示,7号电池组的C i的符号与其他电池组的C i的符号不同。这意味着,如果所需的总调度以所需的电平放电,则在该特定示例中,一个电池组将被充电。如表2所示,7号电池组的放电或充电(d i)的符号为正(意味着已充电),而其他电池组放电。如表2所示,总的电力调度是-17.56kW。在该时间间隔中,以0.09kW对除了7号电池组之外的所有放电的电池组充电。
该过程持续15分钟。在15分钟结束时,EMS将给出总的所需调度功率(D)的新命令。控制器将具有每个电池组的瞬时电压和SOC的新的测量值。然后,控制器根据上述计算再次计算来自电池组的单独的调度功率。
在另一方面,本发明实施例还包括编码有如本文所述的一个或多个程序的至少一个有形的非暂时性机器可读介质。
本文描述的方法和系统可以至少部分地以计算机实现的过程和用于实践这些过程的装置的形式来体现。所公开的方法还可以至少部分地以用计算机程序代码编码的有形非暂时性机器可读存储介质的形式来体现。介质可以包括例如RAM、ROM、CD-ROM、DVD-ROM、BD-ROM、硬盘驱动器、闪存或任何其它非暂时性机器可读存储介质或这些介质的任何组合,其中,当计算机程序代码被加载到计算机中并由计算机执行时,计算机成为用于实践该方法的装置。所述方法还可以至少部分地以计算机的形式来体现,计算机程序代码被加载到所述计算机中和/或在所述计算机中被执行,使得所述计算机成为用于实践所述方法的装置。当在通用处理器上实现时,计算机程序代码段配置处理器以创建特定的逻辑电路。所述方法可以可选地至少部分地在由用于执行所述方法的专用集成电路形成的数字信号处理器中体现。计算机或控制单元可以使用基于云的系统远程地操作。
尽管已经根据示例性实施例描述了本主题,但是本主题不限于此。相反,所附权利要求应当被宽泛地解释为包括本领域技术人员可以做出的其他变型和实施例。

Claims (20)

  1. 一种系统,包括:
    多个电池组;
    一个或多个电力变换器,每个电力变换器与所述多个电池组中的至少一个耦合并且被配置为将来自一个电池组的直流(DC)转换为交流(AC)或反之亦然;以及
    控制器,所述控制器耦合到所述多个电池组和所述一个或多个电力变换器,所述控制器包括一个或多个处理器和编码有一个或多个程序的至少一个有形的非暂时性机器可读介质,所述一个或多个程序被配置为执行包括以下各项的步骤:
    收集每个电池组的特性数据,所述特性数据包括当前电压(V i)、电荷状态(SOC i)、每个电池组中的电池数量(N c)、电池的最大电压(V c max)和最小电压(V c min);
    接收第一时间间隔内需要从所述系统调度或向所述系统充电的总电力需求(D);
    分别基于每个电池组的电压和电荷状态分配第一加权因子(a)和第二加权因子(b)以用于电力分配,其中a+b=1;
    基于当前电压(V i)、电荷状态(SOC i)、每个电池组中的电池数量(N c)、电池的最大电压(V c max)和最小电压(V c min)、第一加权因子(a)、第二加权因子(b)以及总电力需求(D)来确定每个电池组的相应放电或充电功率;以及
    向所述多个电池组和所述一个或多个电力变换器提供具有指令的信号,以基于每个电池组的相应的放电或充电功率从所述多个电池组放电或向所述多个电池组充电和/或保持特定电池组空闲。
  2. 根据权利要求1所述的系统,其中确定每个电池组的相应放电或充电功率的步骤包括:
    计算相应电池组中的每个电池的电压分布参数(V i'),其中:
    V i'=(V i/N ci-V c min)/(V c max-V c min);
    设定所述多个电池组中的每一个的基线SOC(SOC b);
    通过使用条件和方程计算每个电池组的电荷状态的变化(SOC i'),所述条件 和方程包括:
    对于放电(D<0),当SOC i>SOC b时,SOC i'=SOC i-SOC b,并且当SOC i≤SOC b时,SOC i'=0;或者
    对于充电(D>0),当SOC i<SOC b时,SOC i'=SOC b-SOC i,并且当SOC i≥SOC b时,SOC i'=0;
    计算各电池组的电压-电荷组合因子C i,其中C i定义为C i=a*V i'+b*SOC i';以及
    基于每个电池组的所述总电力需求(D)和所述电压-电荷组合因子(C i)来计算每个电池组的相应的放电或充电功率(d i),其中d i=D*C i/Sum(Ci),并且Sum(Ci)是所述多个电池组中的每个电池组的所述电压-电荷组合因子(C i)的总和。
  3. 根据权利要求1所述的系统,其中所述控制器被配置成重复所述步骤以在所述第一时间间隔结束之后的第二时间间隔中重新确定每个电池组的相应放电或充电功率。
  4. 根据权利要求1所述的系统,其中所述多个电池组是选自新电池、梯次利用电动车辆(EV)电池或其组合的异构电池组。
  5. 根据权利要求1所述的系统,还包括一个或多个电池电源管理单元(BPMU),每个BPMU与一个或多个电池组连接并且被配置为监视所述一个或多个电池组并且将所述一个或多个电池组的特性数据提供给所述控制器。
  6. 根据权利要求1所述的系统,其中所述系统是电能存储系统,并且所述总电力需求是从上层能量管理系统提供的。
  7. 一种用于控制包括多个电池组的系统的放电或充电的控制器,包括一个或多个处理器和编码有一个或多个程序的至少一个有形的非暂时性机器可读介质,所述一个或多个程序被配置为执行以下步骤:
    收集每个电池组的特性数据,所述特性数据包括当前电压(V i)、电荷状态 (SOC i)、每个电池组中的电池数量(N c)、电池的最大电压(V c max)和最小电压(V min);
    接收第一时间间隔内需要从系统调度或向系统充电的总电力需求(D);
    分别基于每个电池组的电压和电荷状态分配第一加权因子(a)和第二加权因子(b)以用于电力分配,其中a+b=1;
    基于当前电压(V i)、电荷状态(SOC i)、每个电池组中的电池数量(N ci)、电池的最大电压(V c max)和最小电压(V c min)、第一加权因子(a)、第二加权因子(b)以及总电力需求(D)来确定每个电池组的相应放电或充电功率;以及
    向所述多个电池组和所述一个或多个电力变换器提供具有指令的信号,以基于每个电池组的相应的放电或充电功率从所述多个电池组放电或向所述多个电池组充电和/或保持特定电池组空闲。
  8. 根据权利要求7所述的控制器,其中所述控制器被配置为通过包括以下步骤的步骤来确定每个电池组的相应放电或充电功率:
    计算相应电池组中的每个电池的电压分布参数(Vi'),其中:
    V i'=(V i/N ci-V c min)/(V c max-V c min);
    设定所述多个电池组中的每一个的基线SOC(SOC b);
    通过使用条件和方程计算每个电池组的电荷状态的变化(SOC i'),所述条件和方程包括:
    对于放电(D<0),当SOC i>SOC b时,SOC i'=SOCi-SOCb,并且当SOC i≤SOC b时,SOC i'=0;或
    对于充电(D>0),当SOC i<SOC b时,SOC i'=SOC b-SOC i,并且当SOC i≥SOC b时,SOC i'=0;
    计算各电池组的电压-电荷组合因子C i,C i定义为C i=a*V i’+b*SOC i’;以及
    基于每个电池组的所述总电力需求(D)和所述电压-电荷组合因子(C i)来计算每个电池组的相应的放电或充电功率(d i),其中d i=D*C i/Sum(Ci),并且Sum(Ci)是所述多个电池组中的每个电池组的所述电压-电荷组合因子(C i)的总和。
  9. 根据权利要求7所述的控制器,其中所述控制器被配置成重复所述步骤以在所述第一时间间隔结束之后的第二时间间隔中重新确定每个电池组的相应放电或充电功率。
  10. 根据权利要求7所述的控制器,其中所述控制器被配置为将电力从所述多个电池组放电到电网或负载,或者将电力从所述电网或负载充电到所述多个电池组。
  11. 一种用于通过其中的控制器来控制包括多个电池组的系统的放电或充电的方法,包括:
    收集每个电池组的特性数据,所述特性数据包括当前电压(V i)、电荷状态(SOC i)、每个电池组中的电池数量(N c)、电池的最大电压(V c max)和最小电压(V c min);
    接收第一时间间隔内需要从系统调度或向系统充电的总电力需求(D);
    分别基于每个电池组的电压和电荷状态分配第一加权因子(a)和第二加权因子(b)以用于电力分配,其中a+b=1;
    基于当前电压(V i)、电荷状态(SOC i)、每个电池组中的电池数量(N ci)、电池的最大电压(V c max)和最小电压(V c min)、第一加权因子(a)、第二加权因子(b)以及总电力需求(D)来确定每个电池组的相应放电或充电功率;以及
    向所述多个电池组和所述一个或多个电力变换器提供具有指令的信号,以基于每个电池组的相应的放电或充电功率从所述多个电池组放电或向所述多个电池组充电和/或保持特定电池组空闲。
  12. 根据权利要求11所述的方法,其中确定每个电池组的相应放电或充电功率包括:
    计算相应电池组中的每个电池的电压分布参数(V i'),其中:
    V i'=(V i/N ci-V c min)/(V c max-V c min);
    设定所述多个电池组中的每一个的基线SOC(SOC b);
    通过使用条件和方程计算每个电池组的电荷状态的变化(SOC i'),所述条件和方程包括:
    对于放电(D<0),当SOC i>SOC b时,SOC i'=SOC i-SOC b,并且当SOC i≤SOC b时,SOC i'=0;或者
    对于充电(D>0),当SOC i<SOC b时,SOC i'=SOC b-SOC i,并且当SOC i≥SOC b时,SOC i'=0;
    计算各电池组的电压-电荷组合因子C i,C i定义为C i=a*V i’+b*SOC i’;以及
    基于每个电池组的所述总电力需求(D)和所述电压-电荷组合因子(C i)来计算每个电池组的相应的放电或充电功率(d i),其中d i=D*C i/Sum(C i),并且Sum(C i)是所述多个电池组中的每个电池组的所述电压-电荷组合因子(C i)的总和。
  13. 根据权利要求11所述的方法,其中所述多个电池组是选自新电池、梯次利用电动车辆(EV)电池或其组合的异构电池组。
  14. 根据权利要求11所述的方法,其中所述系统是电能存储系统,并且所述总电力需求是从上级能量管理系统提供的。
  15. 根据权利要求11所述的方法,其中电力从所述多个电池组放电到电网或负载,或者电力从所述电网或负载充电到所述多个电池组。
  16. 根据权利要求12所述的方法,其中所述多个电池组中的每一个的基线SOC(SOC b)在从10%至90%的范围中。
  17. 根据权利要求12所述的方法,其中所述多个电池组中的每一个的基线SOC(SOC b)在从20%至60%的范围内。
  18. 根据权利要求18所述的方法,其中当相应的放电和充电功率被分配为零时,特定电池组保持空闲。
  19. 根据权利要求11所述的方法,还包括:在所述第一时间间隔结束之后 的第二时间间隔中重复所述步骤以重新确定每个电池组的相应放电或充电功率。
  20. 根据权利要求11所述的方法,其中所述第一时间间隔和所述第二时间间隔中的每一个在1分钟至一小时的范围内。
PCT/CN2022/080200 2021-10-20 2022-03-10 用于平衡储能系统中电池组放电或充电的控制器和方法 WO2023065588A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22882213.6A EP4422014A1 (en) 2021-10-20 2022-03-10 Controller and method for balancing discharge or charge of battery pack in energy storage system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17/506,153 2021-10-20
US17/506,153 US20230117104A1 (en) 2021-10-20 2021-10-20 Controller and method for balancing discharge or charge of battery packs in energy storage system

Publications (1)

Publication Number Publication Date
WO2023065588A1 true WO2023065588A1 (zh) 2023-04-27

Family

ID=85982540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/080200 WO2023065588A1 (zh) 2021-10-20 2022-03-10 用于平衡储能系统中电池组放电或充电的控制器和方法

Country Status (4)

Country Link
US (1) US20230117104A1 (zh)
EP (1) EP4422014A1 (zh)
CN (1) CN115995861A (zh)
WO (1) WO2023065588A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220302724A1 (en) * 2021-03-16 2022-09-22 China Energy Investment Corporation Limited Battery management unit, energy storage system comprising the same, and methods of using the same
US20230305064A1 (en) * 2022-03-28 2023-09-28 Ratnesh Kumar Sharma Systems and methods for managing diverse batteries
CN116961177B (zh) * 2023-07-20 2024-03-08 安徽大学 一种基于调度场算法的电池组最大可用容量利用方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102549871A (zh) * 2010-08-23 2012-07-04 三洋电机株式会社 功率管理系统
CN103762624A (zh) * 2013-12-28 2014-04-30 华为技术有限公司 一种电池管理方法及装置
US20160134117A1 (en) * 2013-05-23 2016-05-12 Caterva Gmbh System for Providing a Primary Control Power for a Power Grid
CN106256637A (zh) * 2015-06-19 2016-12-28 现代自动车株式会社 用于混合动力车辆的驾驶模式控制的系统和方法
CN108365632A (zh) * 2018-04-08 2018-08-03 华中科技大学 一种基于储能电池的电力系统及运行方法
US20200164763A1 (en) * 2017-07-21 2020-05-28 Quantumscape Corporation Predictive model for estimating battery states

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5704156B2 (ja) * 2012-12-25 2015-04-22 株式会社デンソー 蓄電池システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102549871A (zh) * 2010-08-23 2012-07-04 三洋电机株式会社 功率管理系统
US20160134117A1 (en) * 2013-05-23 2016-05-12 Caterva Gmbh System for Providing a Primary Control Power for a Power Grid
CN103762624A (zh) * 2013-12-28 2014-04-30 华为技术有限公司 一种电池管理方法及装置
CN106256637A (zh) * 2015-06-19 2016-12-28 现代自动车株式会社 用于混合动力车辆的驾驶模式控制的系统和方法
US20200164763A1 (en) * 2017-07-21 2020-05-28 Quantumscape Corporation Predictive model for estimating battery states
CN108365632A (zh) * 2018-04-08 2018-08-03 华中科技大学 一种基于储能电池的电力系统及运行方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YE, JILEI; XUE, JIN-HUA; WU, FU-BAO; YANG, BO; LIU, HAO-MING: "Economic optimization dispatching strategic of battery energy storage station", CHINESE JOURNAL OF POWER SOURCES, JIXIE DIANZI GONGYEBU DIANYUAN QINGBAOWANG , TIANJIN, CN, vol. 40, no. 02, 20 February 2016 (2016-02-20), CN , pages 366 - 369, XP009545511, ISSN: 1002-087X *

Also Published As

Publication number Publication date
US20230117104A1 (en) 2023-04-20
CN115995861A (zh) 2023-04-21
EP4422014A1 (en) 2024-08-28

Similar Documents

Publication Publication Date Title
WO2023065588A1 (zh) 用于平衡储能系统中电池组放电或充电的控制器和方法
KR101725701B1 (ko) 복수 전지를 갖는 이차 전지 시스템 및 충방전 전력 또는 전류의 배분 방법
US9118191B2 (en) Cell balancing method, cell balancing device, and energy storage system including the cell balancing device
US9948119B2 (en) Control of parallel battery utilization
US9088164B2 (en) Battery system, controlling method of the same, and power storage system including the battery pack
EP4054051A1 (en) Energy storage system and battery management method
US10491010B2 (en) Control apparatus for controlling the charging and discharging of storage batteries through a power converter
JP6430775B2 (ja) 蓄電池装置
WO2023065587A1 (zh) 一种管理异构电池组的充电或放电的控制器、系统及方法
JP2012249500A (ja) 電力系統管理システム及び電力系統の管理方法
CN115250000A (zh) 用于控制电池组放电的系统、方法、控制器及介质
US11652357B1 (en) Controller, system and method for controlling discharge of heterogeneous battery packs
CN115250001A (zh) 用于控制电池组放电的系统、方法、控制器及介质
CN112310990A (zh) 一种基于荷电状态的直流微电网多储能系统均衡控制方法
JP5303024B2 (ja) 電池システム
JP5861063B2 (ja) 蓄電装置及び電力供給システム
US20240201277A1 (en) Energy storage system
KR20150135843A (ko) 하이브리드 에너지 저장 시스템 및 그 제어 방법
KR101677835B1 (ko) 에너지 저장 시스템의 배터리 상태 측정 방법
KR102133558B1 (ko) 팬을 이용한 셀 밸런싱 장치 및 방법
JP2010263755A (ja) 充電制御方法
Díaz et al. Equalization algorithm for distributed energy storage systems in islanded ac microgrids
JP2020120493A (ja) 制御システム、プログラム
CN111354991B (zh) 一种电池养护系统、方法及能在线养护电池的微电网系统
US20230023119A1 (en) Charge/discharge control method of storage system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22882213

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022882213

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022882213

Country of ref document: EP

Effective date: 20240521