WO2017169655A1 - 電源システム、制御システムおよび電源システムの電力制御方法 - Google Patents

電源システム、制御システムおよび電源システムの電力制御方法 Download PDF

Info

Publication number
WO2017169655A1
WO2017169655A1 PCT/JP2017/009698 JP2017009698W WO2017169655A1 WO 2017169655 A1 WO2017169655 A1 WO 2017169655A1 JP 2017009698 W JP2017009698 W JP 2017009698W WO 2017169655 A1 WO2017169655 A1 WO 2017169655A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power supply
unit
supply unit
individual
Prior art date
Application number
PCT/JP2017/009698
Other languages
English (en)
French (fr)
Inventor
透 渡邊
飯田 崇
慎哉 西川
員史 西川
滋之 山北
Original Assignee
三洋電機株式会社
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社, パナソニック株式会社 filed Critical 三洋電機株式会社
Priority to EP17774199.8A priority Critical patent/EP3439132B1/en
Priority to US16/088,271 priority patent/US11862978B2/en
Priority to JP2018508931A priority patent/JP6790072B2/ja
Priority to DK17774199.8T priority patent/DK3439132T3/da
Priority to CN201780021109.5A priority patent/CN109121447B/zh
Publication of WO2017169655A1 publication Critical patent/WO2017169655A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters

Definitions

  • the present invention relates to a power supply system and a power conditioner.
  • a power supply device in which a large number of secondary batteries are connected in series and in parallel is used for the purpose of peak cutting and the like for household use, business use, factory use, etc. for power storage. Or it is also used in power plants.
  • peak cut power is stored in the power supply device in other time zones (for example, late at night) so that power can be supplied during power consumption peak times (for example, around 1 to 4 pm). It is intended to compensate for the peak power by discharging this.
  • the use of natural energy typified by solar power generation and wind power generation has attracted attention. Since the supply power of such natural energy is not stable, the power supply is temporarily installed in power plants and substations. It is also used for the purpose of stable power supply in the grid power network by discharging after storing electric power.
  • the power supply device to which a large number of secondary batteries are connected is modularized, and a power supply system that combines a plurality of power supply units is constructed to increase the power that can be supplied.
  • a power supply system that combines a plurality of power supply units is constructed to increase the power that can be supplied.
  • Management of a plurality of power supply units in such a power supply system is performed by a host controller that collects the plurality of power supply units, and overall power control is performed by a power conditioner.
  • the power conditioner controls power so as to charge / discharge each power supply unit.
  • the power supply system has a problem that power control cannot be performed properly when a power deviation occurs between the power supply units.
  • the exchange between the power conditioner and the power supply unit is 1: 1, so that charge / discharge power control can be performed relatively easily.
  • FIG. 2 shows a power supply system in which the power conditioner 240 controls the charge / discharge power of one power supply unit 210.
  • the power supply unit 210 shown in this figure includes a switch unit 214, a unit control unit (Battery Management Unit: hereinafter referred to as “BMU”) 212, and a battery assembly 211.
  • the switch unit 214 is a member for switching between a connection state in which the power supply unit 210 is connected to the power conditioner 240 and a cut-off state in which the power supply unit 210 is cut off when an abnormality occurs.
  • the BMU 212 is a member that monitors the state of the battery assembly 211. Further, the BMU 212 notifies the power conditioner 240 of the state of the battery assembly.
  • the power conditioner 240 determines charge / discharge power, and instructs the BMU 212 of the power supply unit 210 to perform charge / discharge.
  • the information notified from the power supply unit 210 to the power conditioner 240 includes possible charge / discharge power (State of Power: hereinafter referred to as “SOP”) that is the maximum power that can be charged and discharged by the power supply unit 210 at the time of notification. included.
  • SOP state of Power
  • the charging SOP is maximized when the power supply unit 210 is charged with constant current, and the charging SOP is gradually decreased when charging with constant voltage.
  • the charging SOP When the power supply unit 210 is fully charged, the charging SOP is set to 0 while the discharging SOP is maximized. When the discharge is completed, the discharge SOP is set to 0 and the charge SOP is maximized. Further, when the power supply unit 210 is abnormal or failed, both the discharge SOP and the charge SOP are set to zero. In addition, when the battery assembly 211 is in a constant current (CC) charge / discharge region, both the charge SOP and the discharge SOP are normally maximum.
  • CC constant current
  • the instruction charge / discharge power (Power of Battery: hereinafter referred to as “POB”) is instructed to the power supply unit 210 based on the power command value and SOP from the upper system or from the outside. To do. For this reason, POB ⁇ SOP always holds.
  • each power supply unit 310 includes a unit control unit (BMU) 312, a switch unit 314, and a battery assembly 311.
  • BMU unit control unit
  • the power conditioner 340 receives the SOPs 1 to 4 from the respective power supply units 310 # 1 to 4, and calculates possible charge / discharge power (hereinafter referred to as “total SOP”) of all the power supply units 310 from these.
  • total SOP possible charge / discharge power
  • each power supply unit is not necessarily constant, the degree of deterioration varies, and the disparity tends to increase as the period of use increases.
  • the current ratio of each power supply unit varies depending on the state of the secondary battery cell included in each power supply unit, for example, internal resistance, voltage, SOC, deterioration degree, temperature, wiring characteristics, and other characteristics of the power supply units. Are not equal, and a state in which a deviation occurs in the current between the power supply units is called a power deviation.
  • the charge / discharge control based on the entire SOP in the power conditioner 340 in the configuration of FIG. 3 is based on the assumption that no power deviation occurs between the power supply units 310.
  • power suppression based on the entire SOP may cause a situation where the power supply unit 310 that exceeds the rating or exceeds the SOP occurs.
  • POBn ⁇ SOPn may not be satisfied.
  • the power supply system may be abnormally stopped due to a current abnormality or the like.
  • An object of the present invention is to provide a power supply system and a power conditioner that can appropriately control charging / discharging even if a power deviation occurs between the power supply units in a power supply system using a plurality of power supply units.
  • a power supply system including a plurality of power supply units and a control system in which the plurality of power supply units are connected in parallel.
  • a battery assembly in which secondary battery cells are connected in series and in parallel; a unit controller for acquiring battery information related to chargeable / dischargeable power of the battery assembly and outputting the battery information to the control system; and the power supply unit And a switch unit for switching connection and release between the control system and the control system.
  • the control system is connected in parallel to the plurality of power supply units and connected to an external power system, and power is supplied from the power system.
  • a power conditioner for receiving and charging the plurality of power supply units, and receiving power from the plurality of power supply units and discharging the power to the power system; and A master control unit for collecting battery information output from the unit control unit of the source unit, and a system controller for instructing the power conditioner as a power command for the power required for the power supply system, In determining the implementation overall power POB ⁇ all, which is the sum of the power for charging / discharging each power supply unit, according to the power command from the system controller, the power conditioner receives the battery information from each unit control unit at the master control unit.
  • each power supply unit can be configured to be charged / discharged.
  • the master control unit can be configured to detect a power deviation between the power supply units and send it to the power conditioner. With the above configuration, it is possible to adjust to an appropriate charge / discharge power.
  • the master control unit detects a power deviation between the power supply units at a preset period or a timing at which a power change is detected, and On the basis of this, it is possible to configure the implementation individual power to be always kept below the individual maximum charge / discharge power (SOP). According to the above configuration, it is possible to adjust the charging / discharging power to an appropriate value according to the battery state that varies with time. With the above configuration, by measuring the occurrence state of the power deviation in a timely manner, charge / discharge control according to the power deviation becomes possible, and an unintended system failure can be avoided.
  • the unit control unit determines the possible individual power based on the battery information of the battery assembly connected to the unit control unit. Can be configured.
  • the master control unit implements individual power based on possible individual power sent from each unit control unit connected to the master control unit. Can be configured to determine.
  • the master control unit includes (nth implementation individual power POBn) / (nth of the plurality of power supply units # 1 to #n).
  • the power deviation ratio DOBn of each power supply unit can be calculated assuming that the ratio of the power supply unit #m (1 ⁇ m ⁇ n) that maximizes the possible individual power SOPn) is 1.
  • the master control unit can be configured to determine the possible total power by the following equation.
  • the power conditioner can be configured to turn off the switch section of the power supply unit in which the possible individual power becomes 0 among the power supply units. .
  • the switch unit includes a charge switch unit and a discharge switch unit, and the power conditioner has zero chargeable individual power among the power supply units.
  • the charge switch unit of the power supply unit that has become can be turned off, and the discharge switch unit of the power supply unit that has a dischargeable individual power of 0 can be turned off.
  • control system is a control system for a power supply system configured to control charging / discharging of each power supply unit with a plurality of power supply units connected in parallel. Connected to a plurality of power supply units in parallel and connected to an external power system, receiving power from the power system to charge the plurality of power supply units, and receiving power from the plurality of power supply units to discharge to the power system.
  • the power conditioner is determined based on battery information detected by each power supply unit.
  • Each power supply unit can be configured to be charged / discharged without exceeding the implementation individual power for charging / discharging the unit. With the above configuration, charge / discharge control according to the power deviation is possible, and an unintended system failure can be avoided.
  • a power control method in a power supply system comprising a plurality of power supply units and a control system in which the plurality of power supply units are connected in parallel.
  • the control system can receive power required for the power supply system as a power command, and can charge / discharge a battery assembly included in each power supply unit in which a plurality of secondary battery cells are connected in series or in parallel.
  • the possible total power indicating the chargeable / dischargeable power as a whole and the power deviation indicating the difference between the charge / discharge power between the power supply units are respectively determined.
  • the individual power that can be charged / discharged for each power supply unit can be applied to each power supply unit. And determining a range that does not exceed the individual power. Thereby, charge / discharge control according to the power deviation becomes possible, and an unintended system failure can be avoided.
  • each element constituting the present invention may be configured such that a plurality of elements are constituted by the same member and the plurality of elements are shared by one member, and conversely, the function of one member is constituted by a plurality of members. It can also be realized by sharing.
  • This power storage device temporarily stores electric power generated by solar power generation or wind power generation, and supplies it to the power system ES side.
  • FIG. 1 is a block diagram of a power supply system 1000 according to an embodiment of the present invention.
  • the power supply system 1000 shown in this figure includes a plurality of power supply units 10 and a control system 100 in which these power supply units 10 are connected in parallel.
  • the control system 100 includes a power conditioner 140, a system controller 160, and a master control unit (M-BMU) 120. (Power supply unit 10)
  • Each power supply unit 10 includes a battery assembly 11, a unit control unit (BMU) 12, and a switch unit 14.
  • the battery assembly 11 connects a plurality of battery modules 1 in series or in parallel.
  • Each battery module 1 is further configured by connecting a plurality of secondary battery cells in series or in parallel. (Unit control unit 12)
  • the unit controller 12 is connected to the battery assembly 11 and acquires battery information related to the chargeable / dischargeable power of the battery assembly 11.
  • the unit controller 12 is connected to the master controller 120 and outputs battery information.
  • the battery information refers to the state of the battery aggregate 11 included in each power supply unit 10 (or each battery module and each secondary battery cell constituting the battery assembly 11), for example, internal resistance, voltage, current, SOC, deterioration degree, Temperature. (Switch unit 14)
  • the switch unit 14 is a member for switching connection / release between each power supply unit 10 and the power conditioner 140.
  • the switch unit 14 is disposed between the battery assembly 11 and the power conditioner 140 and can be switched ON / OFF by the unit control unit 12.
  • the switch unit 14 may be configured to be installed separately in the charging direction and the discharging direction.
  • the switch unit includes a charge switch unit and a discharge switch unit. Then, the power conditioner turns off the charge switch part of the power supply unit in which the chargeable individual power becomes 0 and turns off the discharge switch part of the power supply unit in which the dischargeable individual power becomes 0. (Control system 100)
  • control system 100 includes a power conditioner 140, a system controller 160, and a master control unit 120.
  • these members are prepared as individual members as shown in FIG. 1, and arbitrary members can be integrated. (Power conditioner 140)
  • the power conditioner 140 is connected in parallel with the switch unit 14 of each power supply unit 10.
  • the power conditioner 140 is connected to the power system, and receives power from the power system to charge each power supply unit 10, and conversely receives power from each power supply unit 10 and discharges it to the power system. (System controller 160)
  • the system controller 160 is a member for instructing the power conditioner 140 as the power command for charging or discharging power required for the power supply system 1000.
  • the system controller 160 receives a power command value by communicating with, for example, a host system or an external device. Alternatively, the system controller 160 may autonomously generate a power command value. (Master control unit 120)
  • the master control unit 120 is connected to the unit control unit 12 of each power supply unit 10 and collects information (battery information) regarding the battery state of each power supply unit 10. In addition, the master control unit 120 determines the total chargeable / dischargeable total power SOP all based on the collected battery information. Based on the possible total power determined by the master control unit 120, the power conditioner 140 inputs and outputs charge / discharge power to and from each power supply unit 10.
  • the system controller 160 instructs the power conditioner 140 to supply a power command.
  • the master control unit 120 sends the battery information from each unit control unit 12 to the power conditioner 140.
  • the power conditioner 140 determines possible total power SOP all (hereinafter also referred to as “total SOP”) that can be charged / discharged for the entire power supply unit 10 based on the battery information transmitted from the master control unit 120.
  • total SOP possible total power SOP all
  • a power deviation between the power supply units 10 is detected, and based on this power deviation, an implementation total power POB all (hereinafter also referred to as “total POB”), which is the sum of power for charging / discharging each power supply unit 10.
  • determination of possible total power and possible individual power may be performed by the master control unit or the unit control unit in addition to being performed by the power conditioner 140 side.
  • the unit control unit determines the possible individual power of the power supply unit based on the battery information of the battery assembly connected to the unit control unit.
  • the possible individual power SOP1 of the power supply unit 10 # 1 the possible individual power SOP2 of the power supply unit 10 # 2
  • the possible individual power SOP4 of the power supply unit 10 # 4 are The calculation is performed by the unit controller 12 of each power supply unit 10.
  • the possible total power SOP is calculated by the master control unit 120 from the possible individual power of each power supply unit 10 calculated in this way.
  • the current control to each power supply unit in the power supply system according to the background art will be described.
  • the maximum power that can be charged and discharged is calculated for each power supply unit.
  • the total SOP is calculated from SOPn of each power supply unit and notified to the power conditioner. For example, when the number of connected power supply units is n, the total possible power SOP is expressed by the following equation.
  • Equation 1 is properly established when there is no power deviation between the power supply units.
  • the possible individual power of each power supply unit varies depending on the battery state and is not necessarily constant. Therefore, variation in possible individual power, that is, power deviation occurs between the power supply units.
  • the power supply system may stop due to factors such as current abnormality. Therefore, in the present embodiment, charge / discharge control is performed in consideration of such a power deviation.
  • FIG. 4 shows the state of each battery module during power control for charging / discharging each power supply unit 310.
  • the power commands sent from the system controller 160, the battery status of each battery module, the possible individual power, etc. are different for the status numbers 1 to 8.
  • the possible individual power of each power supply unit 310 is 1: 1: 1: 1.
  • the state of each battery module is shown.
  • state numbers 1 to 4 and state numbers 5 to 8 correspond to the power command and the entire SOP, respectively. (Background technology: no power deviation)
  • the possible individual powers SOP 1 to 4 of the power supply units 310 # 1 to # 4 are dischargeable individual power SOP (hereinafter also referred to as “discharge SOP”) that indicates the power that can be discharged, and charging.
  • the implementation total power POB all can be 160 kW equal to the power command, and this power command can be handled.
  • the possible individual powers SOP1 to SOP4 of each power supply unit 310 are 60 kW for both the discharge SOP and the charge SOP as described above, and therefore can correspond to the implemented individual power 40 kW, and POBn ⁇ SOPn is established.
  • the feasible power POB240all is 240 kW
  • the individual implemented power is 60 kW.
  • the possible individual power of each power supply unit 310 is 60 kW for both the discharge SOP and the charge SOP, so that it can correspond to the implemented individual power 60 kW, and POBn ⁇ SOPn is established.
  • the possible individual power SOP of the power supply units 310 # 2 to # 4 is 60 kW for both the charging SOP and the discharging SOP, as in the state numbers 1 and 2.
  • the power supply unit 310 # 1 is in a fully charged state or in a state where charging is prohibited for some reason, the discharging SOP is 60 kW, and the charging SOP is 0.
  • the switch unit 14 is turned OFF and disconnected from the power conditioner 140, and the power supply unit 310 # 1 is not charged.
  • the implementation total power POB all is limited to 180 kW.
  • the possible individual power SOP of the power supply units 310 # 2 to # 4 is 60 kW for both the charge SOP and the discharge SOP as in the state numbers 1 to 3, but the power supply unit 310 # 1 is a constant current charge.
  • the discharge SOP is 60 kW, but the charge SOP is 20 kW.
  • the total implementation power POB all is limited to 80 kW.
  • the possible individual power of each power supply unit 310 is 60 kW for discharge SOP, 20 kW for charge SOP, and 60 kW for power supply units 310 # 2-4, so that each implementation power is 20 kW.
  • POBn ⁇ SOPn is established.
  • charge / discharge power control can be appropriately performed in any of the state numbers 1 to 4.
  • the state numbers 5 to 8 in the case where the power deviation is the current ratio 5: 4: 4: 3 in the power supply units 310 # 1 to # 4 will be considered.
  • the power commands of the state numbers 5 to 8, the entire POB, the discharge SOP, and the charge SOP are associated with the state numbers 1 to 4, respectively.
  • state number 7 as in state number 3, the possible individual power SOP of power supply units 310 # 2 to # 4 is 60 kW for both charging SOP and discharging SOP, but in power supply unit 310 # 1, the fully charged state is Alternatively, charging is prohibited for some reason, and although discharge SOP is 60 kW, charge SOP is 0 and discharge is possible, but the battery is disconnected from the power supply system during charging. For this reason, power supply unit 310 # 1 is not charged.
  • the power command for charging is 240 kW, it exceeds the possible total power SOPall, so the implementation total power POB all is limited to 180 kW.
  • the implementation individual power POB2 and 3 is 65 kW with respect to 60 kW of the possible individual power SOP2 and 3, respectively.
  • POBn ⁇ SOPn is not satisfied, and the rating is exceeded.
  • the possible individual power SOP of the power supply units 310 # 2 to # 4 is 60 kW for both the charging SOP and the discharging SOP, but the power supply unit 310 # 1 is charged by constant voltage charging.
  • the charging power is reduced in comparison with the other power supply units 310 # 2 to # 4 for some reason, and the discharging SOP is 60 kW, but the charging SOP is 20 kW.
  • the power command for charging is 240 kW, it exceeds the total possible power SOP all, and therefore, the total implementation power POB all is limited to 80 kW.
  • the implementation overall power POB all is determined based on the power deviation, and charging / discharging of each power supply unit is controlled based on the implementation individual power. Specifically, the maximum power that can be charged and discharged in each power supply unit is calculated. Thereby, the charge SOPn and discharge SOPn of each power supply unit are calculated. Furthermore, the occurrence status of power deviation is measured in a timely manner. Specifically, POBn / SOPn is measured by timely and continuous voltage and current measurement.
  • SOPn is the possible individual power of the power supply unit n as described above
  • POBn is the implemented individual power of the power supply unit n.
  • the power supply system calculates the total SOP (possible total power SOP) all) from the timely measured power deviation information, SOPn, POBn, and notifies the power conditioner 140 of the total SOP.
  • the following equation 2 is calculated to calculate the total SOP.
  • DOBn represents a normalized power deviation ratio.
  • DOBn indicates the power ratio of each power supply unit and is normalized so that the ratio of the power supply unit #m that maximizes the POBn / SOPn is 1.
  • m m for a power supply unit that maximizes POBn / SOPn.
  • the power conditioner 140 follows the power command and performs power suppression so that the charge / discharge power becomes equal to or less than the total SOP.
  • the possible individual power SOPs of the power supply units 10 # 1 to # 4 are 60 kW for both the charging SOP and the discharging SOP, and the total POB (implemented total power POB all) Is 160 kW.
  • the power deviation ratio dob_n is obtained for each of the power supply units 10 # 1 to # 4.
  • the possible individual powers SOP1 to SOP4 of each power supply unit 10 are 60 kW for both the discharge SOP and the charge SOP as described above, they can correspond to the implemented individual power 40 kW, and POBn ⁇ SOPn is established. As a result, the same result as in state number 1 in FIG. 4 is obtained.
  • the possible individual power amounts SOP1 to SOP4 of the respective power supply units 10 are 60 kW for both the discharge SOP and the charge SOP as described above, they can correspond to the implemented individual power 60 kW, and POBn ⁇ SOPn is established, and as a result The result is the same as the state number 2 in FIG.
  • the total POB is 180 kW
  • the possible individual power SOP of the power supply units 10 # 2 to # 4 is 60 kW for both the charging SOP and the discharging SOP as in the state numbers 1 and 2.
  • Both can be handled with a charging SOP of 60 kW, and POBn ⁇ SOPn is satisfied, and as a result, FIG. The same result as in state number 3 is obtained.
  • the total POB is 80 kW
  • charge / discharge power control can be appropriately performed in any of the state numbers 1 to 4.
  • the state numbers 5 to 8 in the case where the power ratio is 5: 4: 4: 3 in the power supply units 10 # 1 to # 4 are examined.
  • the power commands of the state numbers 5 to 8, the entire POB, the discharge SOP, and the charge SOP are associated with the state numbers 1 to 4, respectively.
  • the possible individual power SOP of the power supply units 10 # 1 to # 4 is 60 kW for both the charging SOP and the discharging SOP, and the total POB is 160 kW.
  • dob_n the power deviation ratio obtained for each of the power supply units 10 # 1 to # 4
  • dob_22 POB2 in the power supply unit 10 # 2.
  • the possible individual powers SOP1 to SOP4 of each power supply unit 10 are 60 kW for both the discharge SOP and the charge SOP as described above, they can correspond to each implementation individual power POBn, and POBn ⁇ SOPn is established.
  • the possible individual power SOPs of power supply units 10 # 1 to # 4 are 60 kW for both charging SOP and discharging SOP, and the total POB is 192 kW.
  • dob_n the power deviation ratio obtained for each of the power supply units 10 # 1 to # 4
  • dob_2 POB2 in the power supply unit 10 # 2.
  • the possible individual powers SOP1 to SOP4 of each power supply unit 10 are 60 kW for both the discharge SOP and the charge SOP as described above. Compared with FIG.
  • the implementation individual power of the power supply unit 10 # 1 is suppressed from 75 kW to 60 kW, and it is possible to avoid the situation where the possible individual power, that is, the maximum rated power is exceeded, and the stable operation of the power supply system. Kept.
  • the possible individual power SOP of the power supply units 10 # 2 to # 4 is 60 kW for both the charge SOP and the discharge SOP, but the power supply unit 10 # 1 is fully charged and the discharge SOP Is 60 kW, the charging SOP is 0, and discharging is possible, but the battery is disconnected from the power supply system during charging.
  • the total POB is 165 kW.
  • the power supply unit 10 with the maximum power deviation ratio dob_n is Power supply units 10 # 2 and # 3 are provided.
  • the possible individual powers SOP2 to SOP4 of each power supply unit 10 are 60 kW for both the discharge SOP and the charge SOP as described above.
  • the individual power consumption of the power supply units 10 # 2 and # 3 is suppressed from 65 kW to 60 kW, so that the situation where the maximum rated power is exceeded can be avoided and the stable operation of the power supply system can be maintained. Be drunk.
  • the possible individual power SOP of the power supply units 10 # 2 to # 4 is 60 kW for both the charging SOP and the discharging SOP, and the power supply unit 10 # 1 is being charged by constant voltage charging.
  • the discharge SOP is 60 kW
  • the charge SOP is 20 kW.
  • the total POB is 64 kW.
  • the power supply unit 10 with the maximum power deviation ratio dob_n is the power supply unit 10 # 1
  • the possible individual powers SOP1 to SOP4 of each power supply unit 10 can correspond to the respective implementation individual powers POB1 to POB4, and POBn ⁇ SOPn is established.
  • the implementation individual power of the power supply unit 10 # 1 is suppressed from 25 kW to 20 kW, and the situation where the maximum rated power is exceeded can be avoided, and the stable operation of the power supply system is maintained.
  • the power deviation can be detected at a constant cycle, and the implemented individual power can be updated based on this. Thereby, it becomes possible to adjust to appropriate charge / discharge electric power according to the battery state which fluctuates every time.
  • the power deviation is preferably detected by the unit-side control unit and sent to the master control unit 120.
  • the timing for detecting the power deviation is not limited to periodic detection, and can be performed at an arbitrary timing. For example, when the occurrence of a case where the power deviation seems to have changed, or when the change in power deviation is small, detection is performed in a long span, and when there is a large change, detection is performed in a short span. It may be variable.
  • the method for measuring the power deviation or the like is not limited to the measurement of voltage or current, and other methods can be used as appropriate.
  • the power deviation is calculated by the master control unit 120 and instructed to the power conditioner 140.
  • the present invention is not limited to this configuration, and the power deviation is calculated by the system controller or the power conditioner. It may be configured.
  • a power deviation calculation function can be provided on the unit control unit side.
  • the unit control unit 12 ′ of the power supply unit 10 # 1 has a function of calculating a power deviation and plays the role of a master control unit. In this case, the master control unit can be dispensed with.
  • the power supply system and power conditioner according to the present invention can be suitably used as a large power storage device used in a power plant or the like or a controller thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

複数の電源ユニットを用いる電源システムにおいて、電源ユニット間で電力偏差が発生しても適切に充放電可能とする。 パワーコンディショナー(140)は、システムコントローラ(160)からの電力指令に従い、各電源ユニット(10)に対する充放電を行う電力の総和である実施全体電力POB allを決定するにあたり、各ユニット制御部(12)からの電池情報をマスタ制御部(120)で収集して、各ユニット制御部(12)で検出された電池情報に基づいて決定された、各電源ユニット(10)の可能個別電力より決定される、電源ユニット全体の充放電可能な可能全体電力と、各電源ユニット間の充放電電力の差を示す電力偏差に基づいて決定された、各電源ユニット(10)の充放電を行う実施個別電力を、各電源ユニット(10)の可能個別電力を超えない範囲に決定し、該演算された実施個別電力を超えることなく、各電源ユニット(10)の充放電を可能にするよう構成している。

Description

[規則37.2に基づきISAが決定した発明の名称] 電源システム、制御システムおよび電源システムの電力制御方法
 本発明は、電源システム及びパワーコンディショナーに関する。
 多数の二次電池を直列、並列に接続した電源装置は、蓄電用途で家庭用、事業所用、工場用等でピークカットなどを目的として用いられている。あるいは発電所等でも用いられている。ピークカットは、電力消費がピークを迎える時間帯(例えば午後1~4時頃)に電力を供給できるように、他の時間帯(例えば深夜)に電源装置に蓄電しておき、ピークの時間帯にこれを放電させることでピーク時の電力を補おうとするものである。特に、近年は太陽光発電や風力発電に代表される自然エネルギーの活用が注目されているところ、このような自然エネルギーは供給電源が安定しないことから、発電所や変電所などにおいて電源装置に一時的に電力を蓄えた上で放電することにより、系統電力網での安定した電力供給を図る目的でも利用されている。
 このような電源装置においては、多くの電力を蓄えるため、多数の二次電池を接続した電源装置をモジュール化し、複数の電源ユニットを組み合わせた電源システムを構築することで、供給可能な電力を高めることが行われている(例えば特許文献1参照)。このような電源システムにおける複数の電源ユニットの管理は、複数の電源ユニットをまとめる上位のコントローラで行い、全体の電力制御は、パワーコンディショナーで行われる。パワーコンディショナーは、各電源ユニットに対して充放電を行うように電力制御する。
特開2010-092841号公報
 しかしながら、背景技術に係る電源システムにおいては、電源ユニット同士の間に電力偏差が発生した場合に、電力制御を適切に行えないという問題があった。例えば、電源ユニットが1台のみの場合は、パワーコンディショナーと電源ユニットとのやりとりは1:1となるので、比較的簡単に充放電の電力制御を行える。
 図2に、パワーコンディショナー240で一台の電源ユニット210の充放電電力を制御する電源システムを示す。この図に示す電源ユニット210は、スイッチ部214と、ユニット制御部(Battery Management Unit:以下「BMU」という。)212と、電池集合体211を備えている。スイッチ部214は、電源ユニット210をパワーコンディショナー240と接続する接続状態と、異常時等に遮断する遮断状態を切り替えるための部材である。またBMU212は、電池集合体211の状態を監視する部材である。またBMU212は、電池集合体の状態をパワーコンディショナー240に対し通知する。これに基づいてパワーコンディショナー240が充放電の電力を決定し、電源ユニット210のBMU212に電力を指示して充放電を実施する。ここで、電源ユニット210からパワーコンディショナー240に通知される情報には、通知時における電源ユニット210で充放電可能な最大電力である可能充放電電力(State of Power:以下「SOP」という。)が含まれる。電源ユニット210からパワーコンディショナー240に通知するSOPの例として、電源ユニット210を定電流充電させる際には充電SOPを最大とし、定電圧充電させる際には充電SOPを徐々に低下させていく。また電源ユニット210が満充電となると、充電SOPを0とする一方で放電SOPを最大とする。そして放電が終了すると放電SOPを0として充電SOPを最大とする。また、電源ユニット210の異常時や故障時には、放電SOPと充電SOPを共に0とする。また、電池集合体211が定電流(CC)充放電領域にある場合は、通常、充電SOP、放電SOP共に最大となる。
 一方、パワーコンディショナー240側では、上位のシステム、あるいは外部からの電力指令値、及びSOPに基づいて、電源ユニット210に対して指示充放電電力(Power of Battery:以下「POB」という。)を指示する。このため、常にPOB≦SOPが成立することとなる。
 以上のようにパワーコンディショナー240に接続される電源ユニット210が1台のみの場合は、電源ユニットとのやりとりは1:1となるので、比較的簡単に充放電の電力制御を行える。これに対して、一のパワーコンディショナーに複数の電源ユニットを接続する場合は、図3に示すような構成となる。この例では、4台の電源ユニット310を1台のパワーコンディショナー340に接続している。各電源ユニット310は、ユニット制御部(BMU)312と、スイッチ部314と、電池集合体311を備える。
 パワーコンディショナー340は各電源ユニット310#1~4からSOP1~4を受け取り、これらからすべての電源ユニット310の可能充放電電力(以下「全体SOP」と呼ぶ。)を演算する。ここで、SOP=0の電源ユニット310は、パワーコンディショナー340より切り離すこととした場合、全体SOPは、以下の式で算出される。
 全体SOP=SOPnの最小SOPx[SOP=0以外の電源ユニット総台数]
 (n=1~N:N=電源ユニット総台数)
 この全体SOPを上限として、パワーコンディショナー340は電力指令値より全体の充放電電力(全体POB)を決定し、これに応じて各電源ユニット310に対して、全体POBの電力での充放電を実施する。このようにしてパワーコンディショナー340は、電力が全体SOP以下になるように電力抑制を行う。これにより、特定の電源ユニットが停止するなどしてSOP=0になった場合でも、適切な電力抑制が可能となる。また特定の電源ユニットがSOPを低下させた場合でも、最小SOP以下に電力を抑制することが可能となる。いいかえると、POBn≦SOPnが成立する。なお、SOP=0の電源ユニット301は、切り離すことを前提しているが、切り離さない場合には、全体SOP=0として、POBn≦SOPnを成立させることができる。
 しかしながら、各電源ユニットの電池状態は必ずしも一定でなく、その劣化度合いなどはばらつきがあり、使用する期間が長くなるほど、このような格差が大きくなる傾向にある。ここで、各電源ユニットに含まれる二次電池セルの状態、例えば内部抵抗や電圧、SOC、劣化度、温度などや、配線抵抗などの電源ユニット間の特性のばらつきにより、各電源ユニットの電流比が均等とならず、電源ユニット間で電流に偏差が発生する状態を電力偏差と呼ぶ。
 上記図3の構成におけるパワーコンディショナー340での全体SOPに基づく充放電制御は、電源ユニット310間で電力偏差が発生していないことを前提としている。いいかえると、電源ユニット310間に電力偏差が発生すると、全体SOPに基づく電力抑制では、定格超過やSOP超過となる電源ユニット310が発生する事態が起こり得る。いいかえると、電力偏差が発生すると、POBn≦SOPnが成立しなくなる場合がある。この結果、電流異常などの要因で電源システムが異常停止となる可能性があった。
 本発明は、このような背景に鑑みてなされたものである。本発明の目的の一は、複数の電源ユニットを用いる電源システムにおいて、電源ユニット間で電力偏差が発生しても適切に充放電を制御可能とした電源システム及びパワーコンディショナーを提供することにある。
課題を解決するための手段及び発明の効果
 本発明の第1の形態に係る電源システムによれば、複数の電源ユニットと、前記複数の電源ユニットを並列に接続した制御システムとを備える電源システムであって、各電源ユニットは、複数の二次電池セルを直列、及び並列に接続した電池集合体と、前記電池集合体の充放電可能な電力に関する電池情報を取得して、前記制御システムに出力するためのユニット制御部と、前記電源ユニットと制御システムとの接続、解除を切り替えるためのスイッチ部とを備えており、前記制御システムは、前記複数の電源ユニットと並列に接続され、かつ外部の電力系統と接続され、電力系統から電力を受けて前記複数の電源ユニットを充電し、かつ前記複数の電源ユニットから電力を受けて電力系統に放電するためのパワーコンディショナーと、各電源ユニットのユニット制御部から出力される電池情報を収集するためのマスタ制御部と、電源システムに要求される電力を電力指令として前記パワーコンディショナーに指示するためのシステムコントローラとを備えており、前記パワーコンディショナーは、前記システムコントローラからの電力指令に従い、各電源ユニットに対する充放電を行う電力の総和である実施全体電力POB allを決定するにあたり、各ユニット制御部からの電池情報を前記マスタ制御部で収集して、各ユニット制御部で検出された電池情報に基づいて決定された、各電源ユニットの可能個別電力より決定される、電源ユニット全体の充放電可能な可能全体電力を、各電源ユニットの可能個別電力を超えない範囲に決定し、該演算された実施個別電力を超えることなく、各電源ユニットの充放電を可能にするよう構成することができる。上記構成により、電力偏差が発生した状況でも、POBn≦SOPnを維持して、システムを停止させることなく充放電運転の継続を可能とできる。これにより、電力偏差に応じた充放電制御が可能となり、意図しないシステム障害を回避できる。
 また、本発明の第2の形態に係る電源システムによれば、前記マスタ制御部は、前記電源ユニット間の電力偏差を検出して、前記パワーコンディショナーに送出するよう構成しできる。上記構成により、適切な充放電電力に調整することが可能となる。
 さらに、本発明の第3の形態に係る電源システムによれば、前記マスタ制御部は、あらかじめ設定された周期、あるいは電力変化を検出したタイミングで前記電源ユニット間の電力偏差を検出し、これに基づいて実施個別電力を常に個別の最大充放電電力(SOP)以下に抑制するよう構成できる。上記構成により、刻々と時間変動する電池状態に合わせて、適切な充放電電力に調整することが可能となる。上記構成により、電力偏差の発生状況を適時計測することで、電力偏差に応じた充放電制御が可能となり、意図しないシステム障害を回避できる。
 さらにまた、本発明の第4の形態に係る電源システムによれば、前記ユニット制御部が、該ユニット制御部に接続された前記電池集合体の電池情報に基づいて、可能個別電力を決定するよう構成できる。
 さらにまた、本発明の第5の形態に係る電源システムによれば、前記マスタ制御部が、該マスタ制御部に接続された各ユニット制御部から送出される可能個別電力に基づいて、実施個別電力を決定するよう構成できる。
 さらにまた、本発明の第6の形態に係る電源システムによれば、前記マスタ制御部は、前記複数の電源ユニット#1~#nの内、(n番目の実施個別電力POBn)/(n番目の可能個別電力SOPn)が最大となる電源ユニット#m(1≦m≦n)の比率を1として、各電源ユニットの電力偏差比率DOBnを算出するよう構成できる。
 さらにまた、本発明の第7の形態に係る電源システムによれば、前記マスタ制御部は、可能全体電力を次式で決定するよう構成できる。
 可能全体電力=SOPm×(実施全体電力)/(m番目の実施個別電力POBm)
 さらにまた、本発明の第8の形態に係る電源システムによれば、前記パワーコンディショナーは、前記電源ユニットの内、可能個別電力が0となった電源ユニットの前記スイッチ部をOFFとするよう構成できる。上記構成により、SOP=0となった電源ユニットをパワーコンディショナーから切り離すことで、過充電や過放電から電源ユニットを保護できる。
 さらにまた、本発明の第9の形態に係る制御システムによれば、前記スイッチ部は、充電スイッチ部と放電スイッチ部を備え、前記パワーコンディショナーは、前記電源ユニットの内、充電可能個別電力が0となった前記電源ユニットの充電スイッチ部をOFFとし、放電可能個別電力が0となった前記電源ユニットの放電スイッチ部をOFFとするように構成できる。
 さらにまた、本発明の第10の形態に係る制御システムによれば、複数の電源ユニットを並列に接続した状態で、各電源ユニットの充放電を制御するよう構成された電源システムの制御システムであって、複数の電源ユニットと並列に接続され、かつ外部の電力系統と接続され、電力系統から電力を受けて複数の電源ユニットを充電し、かつ複数の電源ユニットから電力を受けて電力系統に放電するためのパワーコンディショナーと、各電源ユニットから出力される電池情報を収集するためのマスタ制御部と、電源システムに要求される電力を電力指令として前記パワーコンディショナーに指示するためのシステムコントローラとを備えており、前記パワーコンディショナーは、各電源ユニットで検出された電池情報に基づいて決定された、各電源ユニットの可能個別電力より決定される、電源ユニット全体の充放電可能な可能全体電力に基づいて、各電源ユニット間の充放電電力の差を示す電力偏差に基づいて決定された、各電源ユニットの充放電を行う実施個別電力を超えることなく、各電源ユニットの充放電を可能にするよう構成できる。上記構成により、電力偏差に応じた充放電制御が可能となり、意図しないシステム障害を回避できる。
 さらにまた、本発明の第11の形態に係る電源システムの電力制御方法によれば、複数の電源ユニットと、前記複数の電源ユニットを並列に接続した制御システムとを備える電源システムにおける電力制御方法であって、前記制御システムが、電源システムに要求される電力を電力指令として受け取る工程と、各電源ユニットに含まれる、複数の二次電池セルを直列又は並列に接続した電池集合体の充放電可能な電力に関する電池情報を取得して、前記制御システムに出力する工程と、各電源ユニットの電池情報に基づいて、各電源ユニットを充放電可能な電力を示す可能個別電力と、前記複数の電源ユニットの全体として充放電可能な電力を示す可能全体電力と、各電源ユニット間の充放電電力の差を示す電力偏差を、それぞれ決定する工程と、前記決定された可能個別電力と、可能全体電力と、電力偏差と、電力指令に基づいて、各電源ユニットに対して充放電を行う電力である実施個別電力を、各電源ユニットの可能個別電力を超えない範囲に決定する工程とを含むことができる。これにより、電力偏差に応じた充放電制御が可能となり、意図しないシステム障害を回避できる。
本発明の一実施形態に係る電源システムを示すブロック図である。 一のパワーコンディショナーに一の電源ユニットを接続した電源システムを示すブロック図である。 一のパワーコンディショナーに複数の電源ユニットを接続した電源システムを示すブロック図である。 図3の各電源ユニットの電力制御に際して、各電池モジュールの状態を示す表である。 図1の各電源ユニットの電力制御に際して、各電池モジュールの状態を示す表である。 変形例に係る電源システムを示すブロック図である。
 以下、本発明の実施形態を図面に基づいて説明する。ただし、以下に示す実施形態は、本発明の技術思想を具体化するための例示であって、本発明は以下のものに特定されない。また、本明細書は特許請求の範囲に示される部材を、実施形態の部材に特定するものでは決してない。特に実施形態に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、本発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。なお、各図面が示す部材の大きさや位置関係等は、説明を明確にするため誇張していることがある。さらに以下の説明において、同一の名称、符号については同一若しくは同質の部材を示しており、詳細説明を適宜省略する。さらに、本発明を構成する各要素は、複数の要素を同一の部材で構成して一の部材で複数の要素を兼用する態様としてもよいし、逆に一の部材の機能を複数の部材で分担して実現することもできる。
 本発明の実施形態に係る電源システムの一例として、太陽光発電や風力発電などの自然エネルギー発電所などで用いる大型の蓄電装置に適用した例を、以下説明する。この蓄電装置は、太陽光発電や風力発電によって発電された電力を一旦蓄電して、電力系統ES側に供給する。
 図1は、本発明の一実施形態に係る電源システム1000のブロック図である。この図に示す電源システム1000は、複数の電源ユニット10と、これらの電源ユニット10を並列に接続した制御システム100を備える。制御システム100は、パワーコンディショナー140と、システムコントローラ160と、マスタ制御部(M-BMU)120を備える。
(電源ユニット10)
 各電源ユニット10は、電池集合体11と、ユニット制御部(BMU)12と、スイッチ部14を備える。電池集合体11は、複数の電池モジュール1を直列や並列に接続している。各電池モジュール1はさらに、複数の二次電池セルを直列や並列に接続して構成される。
(ユニット制御部12)
 ユニット制御部12は、電池集合体11と接続され、電池集合体11の充放電可能な電力に関する電池情報を取得する。ユニット制御部12は、マスタ制御部120と接続され、電池情報を出力する。
 ここで電池情報とは、各電源ユニット10に含まれる電池集合体11(あるいはこれを構成する各電池モジュールや各二次電池セル)の状態、例えば内部抵抗や電圧、電流、SOC、劣化度、温度などである。
(スイッチ部14)
 スイッチ部14は、各電源ユニット10とパワーコンディショナー140との接続、解除を切り替えるための部材である。図1の例では、スイッチ部14は電池集合体11とパワーコンディショナー140との間に配置されて、ユニット制御部12によりON/OFFを切り替えられる。スイッチ部14は、充電方向、放電方向に個別に設置された構成でもよい。この場合、スイッチ部は、充電スイッチ部と放電スイッチ部を備える。そしてパワーコンディショナーが、電源ユニットの内、充電可能個別電力が0となった電源ユニットの充電スイッチ部をOFFとし、放電可能個別電力が0となった電源ユニットの放電スイッチ部をOFFとする。
(制御システム100)
 一方制御システム100は、パワーコンディショナー140と、システムコントローラ160と、マスタ制御部120を備える。なお、これらの部材は図1に示すように個別の部材として用意する他、任意の部材を一体的に統合することも可能である。
(パワーコンディショナー140)
 パワーコンディショナー140は、各電源ユニット10のスイッチ部14と並列に接続されている。またパワーコンディショナー140は電力系統と接続されており、電力系統から電力を受けて各電源ユニット10を充電し、逆に各電源ユニット10から電力を受けて電力系統に放電する。
(システムコントローラ160)
 システムコントローラ160は、電源システム1000に対して要求される充電や放電の電力を、電力指令としてパワーコンディショナー140に指示するための部材である。システムコントローラ160は、例えば上位のシステムや外部の機器と通信により、電力指令値を受け取る。あるいは、システムコントローラ160で自律的に電力指令値を生成するよう構成してもよい。
(マスタ制御部120)
 マスタ制御部120は、各電源ユニット10のユニット制御部12と接続され、各電源ユニット10の電池状態に関する情報(電池情報)を収集する。また、マスタ制御部120は、収集された電池情報に基づいて、全体の充放電可能な可能全体電力SOP allを決定する。マスタ制御部120で決定された可能全体電力に基づいて、パワーコンディショナー140は、各電源ユニット10に対して充放電電力を入出力する。
 この制御システム100は、システムコントローラ160が、パワーコンディショナー140に電力指令を指示する。一方でマスタ制御部120は、各ユニット制御部12からの電池情報をパワーコンディショナー140に送出する。これを受けてパワーコンディショナー140は、マスタ制御部120から送出された電池情報に基づいて、電源ユニット10全体の充放電可能な可能全体電力SOP all(以下「全体SOP」ともいう。)を決定する。その一方で、電源ユニット10間の電力偏差を検出して、この電力偏差に基づいて、各電源ユニット10に対する充放電を行う電力の総和である実施全体電力POB all(以下「全体POB」ともいう。)を決定し、この全体POBで各電源ユニット10に対して充放電を実施する。全体POBでの充放電の実施により、各電源ユニット10の個別の充放電電力である実施個別電力POBnが決定される(電力偏差の詳細は後述する)。
 なお、可能全体電力や可能個別電力の決定は、パワーコンディショナー140側で行わせる他、マスタ制御部やユニット制御部で行わせてもよい。例えばユニット制御部が、このユニット制御部に接続された電池集合体の電池情報に基づいて、この電源ユニットの可能個別電力を決定する。図1の例では、電源ユニット10#1の可能個別電力SOP1、電源ユニット10#2の可能個別電力SOP2、電源ユニット10#3の可能個別電力SOP3、電源ユニット10#4の可能個別電力SOP4を、それぞれ各電源ユニット10のユニット制御部12でもって演算する。このようにして演算された各電源ユニット10の可能個別電力から、可能全体電力SOPがマスタ制御部120でもって演算される。またマスタ制御部120やユニット制御部12は、複数台の電源ユニット10の内で、SOP=0のものや、異常が発生したものは、パワーコンディショナー140より切り離すようにスイッチ部14のON/OFFを制御する。このようにすることで、特定の電源ユニット10が停止したり、SOPnが0となった場合でも、適切な電力制御が可能となる。
(背景技術に係る電源システムによる電力制御方法)
 ここで、背景技術に係る電源システムにおける各電源ユニットへの電流制御について説明する。背景技術に係る電源システムでは、各電源ユニット毎に、充放電可能な最大電力を算出していた。そして、各電源ユニットのSOPnから、全体SOPを算出して、パワーコンディショナーに通知していた。例えば電源ユニットの接続数をn台とするとき、可能全体電力SOPは、次式で表される。
 可能全体電力SOP=SOPnの最小SOPx[パワーコンディショナーと接続中の電源ユニットの接続数](式1)
 このようにすることで、特定の電源ユニットの可能個別電力SOPが低下した場合でも、最小SOP以下に電力を抑制することができる。いいかえると、各電源ユニットに着目したとき、POBn≦SOPnが成立する。
(電力偏差)
 式1は、電源ユニット間での電力偏差が発生していない場合には、適切に成立する。しかしながら、実際には各電源ユニットの可能個別電力は、電池状態によって変化し、必ずしも一定とならない。よって電源ユニット同士の間には、可能個別電力のばらつき、すなわち電力偏差が生じる。この結果、上述した全体SOPに基づく電力制御では、特定の電源ユニットにおいてPOBn≦SOPnが成立しない、定格超過や個別SOP超過となることが起こり得る。この場合は、電流異常などの要因で電源システムが停止する懸念がある。そこで本実施の形態においては、このような電力偏差を考慮して充放電制御を行う。
 ここで、電力偏差に起因する問題を示すため、背景技術に係る電源システムとして、図3に示すような4台の電源ユニット310#1~#4を共通のパワーコンディショナー340に接続した電源システムを考える。各電源ユニット310の充放電を行う電力制御に際して、各電池モジュールの状態を図4に示す。この表示において、状態番号1~8で、システムコントローラ160から送られる電力指令や、各電池モジュールの電池状態、可能個別電力等はそれぞれ異なる。また図4の上段(状態番号1~4)では、電源ユニット310#1~#4に電力偏差が生じていない、すなわち各電源ユニット310の可能個別電力が1:1:1:1の場合の、各電池モジュールの状態を示している。一方、図4の下段(状態番号5~8)では、電源ユニット310#1~#4に電力偏差が生じ、各電源ユニット310の電流比が5:4:4:3の場合の、各電池モジュールの状態を示している。なお、状態番号1~4と状態番号5~8は、電力指令と全体SOPを、それぞれ対応させている。
(背景技術:電力偏差なしの場合)
 図4において、例えば状態番号1では、電源ユニット310#1~#4の可能個別電力SOP1~4は、放電可能な電力を示す放電可能個別電力SOP(以下「放電SOP」ともいう。)、充電可能な電力を示す充電可能個別電力SOP(以下「充電SOP」ともいう。)共に60kWである。よって、式1より、SOPnの最小SOPは60kWとなるから、電源ユニット310#1~#4全体の可能全体電力SOP allは、放電、充電共、60kW×4=240kWである。またシステムコントローラ160から送られる電力指令が160kWであり、可能全体電力SOP all以内であるから、実施全体電力POB allは電力指令と等しい160kWとでき、この電力指令に対応できる。また各電源ユニット310の実施個別電力は、160kW×1/4=40kWとなる。ここでは各電源ユニット310の可能個別電力SOP1~4は、上述の通り放電SOP、充電SOP共、60kWであるから、実施個別電力40kWに対応でき、POBn≦SOPnが成立する。
 同様に状態番号2では、可能全体電力SOP allは状態番号1と同様、放電、充電共60kW×4=240kWである。また電力指令が240kWであるから、同様に実施可能電力POB allは240kWとなり、実施個別電力はそれぞれ60kWとなる。ここでは各電源ユニット310の可能個別電力は、放電SOP、充電SOP共、60kWであるから、実施個別電力60kWに対応でき、POBn≦SOPnが成立する。
 一方、状態番号3では、電源ユニット310#2~#4の可能個別電力SOPは、状態番号1、2と同様、充電SOP、放電SOP共、60kWである。そして電源ユニット310#1は満充電状態、あるいは、なんらかの理由により充電を禁止している状態となっており、放電SOPは60kWであり、充電SOPは0である。このため、放電は可能であるものの、充電時はスイッチ部14をOFFしてパワーコンディショナー140から解列され、電源ユニット310#1には充電が行われない。この状態で、充電時の可能全体電力SOP allは60kW×3=180kWである。ここで充電の電力指令が240kWであれば、可能全体電力SOP allを上回ることから、実施全体電力POB allは180kWに制限される。さらに各電源ユニット310を充電する実施個別電力は、電源ユニット310#1は解列されるため対象外となり、電源ユニット310#2~#4の実施個別電力POB2~4は、それぞれ180kW×(1/3)=60kWとなる。
 さらに状態番号4では、電源ユニット310#2~#4の可能個別電力SOPは、状態番号1~3と同じく、充電SOP、放電SOP共60kWであるものの、電源ユニット310#1は定電流充電で充電中、あるいは、なんらかの理由により充電電力を他の電源ユニット310#2~#4と比較して絞り込んでいる状態にある。このため放電SOPは60kWであるものの、充電SOPは20kWである。この状態で、充電時の可能全体電力SOP allは、最小SOPが20kWとなるから、式1から20kw×4=80kWとなる。ここで充電の電力指令が240kWであれば、可能全体電力SOP allを上回ることから、実施全体電力POB allは80kWに制限される。さらに電源ユニット310#1~#4を充電する実施個別電力は、80kW×1/4=20kWとなる。これに対し各電源ユニット310の可能個別電力は、放電SOPがそれぞれ60kW、充電SOPが、電源ユニット310#1で20kW、電源ユニット310#2~4で60kWであるから、いずれも実施個別電力20kWに対応でき、POBn≦SOPnが成立する。なお、電池集合体11が定電流(CC)充放電領域にある場合は、通常、充電SOP、放電SOP共に最大となる。
(背景技術:電力偏差ありの場合)
 このように、電源ユニット310間に電力偏差のない状態では、状態番号1~4のいずれの場合も充放電電力制御を適切に行える。次に電力偏差が、電源ユニット310#1~#4で電流比5:4:4:3の場合の、状態番号5~8について検討する。なお状態番号5~8の電力指令及び全体POB、放電SOP、充電SOPは、状態番号1~4とそれぞれ対応させている。
 まず状態番号5では、状態番号1と同じく電源ユニット310#1~#4の可能個別電力SOPは、充電SOP、放電SOP共、60kWであるから、これらの合計である可能全体電力SOP allは式1から60kW×4=240kWである。また電力指令が160kWであり、可能全体電力SOP all以内であるから、実施全体電力POB allはこれと等しい160kWとでき、この電力指令に対応できる。また各電源ユニット310の実施個別電力は、電力偏差に基づいて実施全体電力POB allを分配することになる。ここでは、電力偏差5:4:4:3であるから、160kWをこの比率で分配すると、電源ユニット310#1の実施個別電力POB1は160kW×(5/16)=50kW、電源ユニット310#2の実施個別電力POB2は160kW×(4/16)=40kW、電源ユニット310#3の実施個別電力POB3は160kW×(4/16)=40kW、電源ユニット310#4の実施個別電力POB4は160kW×(3/16)=30kWとなる。いずれの実施個別電力POBnも、充電SOP、放電SOP以内であるから、POBn≦SOPnが成立し、適切に充放電が行える。
 次に状態番号6においては、状態番号2と同じく電源ユニット310#1~#4の可能個別電力SOPは、状態番号5と同じく充電SOP、放電SOP共、60kWであるから、可能全体電力SOP allは60kW×4=240kWである。また電力指令が240kWであり、可能全体電力SOP all以内であるから、実施全体電力POB allはこれと等しい240kWとなる。しかしながら、各電源ユニット310の実施個別電力を、電力偏差に基づいて分配すると、電源ユニット310#1の実施個別電力POB1は240kW×(5/16)=75kW、電源ユニット310#2の実施個別電力POB2は240kW×(4/16)=60kW、電源ユニット310#3の実施個別電力POB3は240kW×(4/16)=60kW、電源ユニット310#4の実施個別電力POB4は240kW×(3/16)=45kWとなる。この場合、電源ユニット310#2~#4では、POBn≦SOPnが成立するものの、電源ユニット310#1においては、実施個別電力POB1が75kWとなり、可能個別電力SOP1の60kWを上回ってしまい、POBn≦SOPnが成立せず、定格を超過してしまう。
 また状態番号7においては、状態番号3と同じく電源ユニット310#2~#4の可能個別電力SOPは、充電SOP、放電SOP共、60kWであるものの、電源ユニット310#1においては満充電状態、あるいは、なんらかの理由により充電を禁止している状態となっており、放電SOPは60kWであるものの、充電SOPは0となり、放電は可能であるものの、充電時は電源システムから解列される。このため、電源ユニット310#1には充電が行われない。この状態で、充電時の可能全体電力SOP allは60kW×3=180kWである。ここで充電の電力指令が240kWであれば、可能全体電力SOPallを上回ることから、実施全体電力POB allは180kWに制限される。さらに各電源ユニット310を充電する実施個別電力は、電源ユニット310#1は解列のため停止、電源ユニット310#2の実施個別電力POB2は180kW×(4/16)=65kW、電源ユニット310#3の実施個別電力POB3は180kW×(4/16)=65kW、電源ユニット310#4の実施個別電力POB4は180kW×(3/16)=49kWとなる。この場合、電源ユニット310#4では、POBn≦SOPnが成立するものの、電源ユニット310#2、310#3においては、それぞれ可能個別電力SOP2、3の60kWに対して実施個別電力POB2、3が65kWとなり、充電時にはPOBn≦SOPnが成立せず、定格を超過してしまう。
 さらに状態番号8においては、状態番号4と同じく電源ユニット310#2~#4の可能個別電力SOPは、充電SOP、放電SOP共、60kWであるものの、電源ユニット310#1は定電圧充電で充電中、あるいは、なんらかの理由により充電電力を他の電源ユニット310#2~#4と比較して絞り込んでいる状態にあり、放電SOPは60kWであるものの、充電SOPは20kWである。この状態で、充電時の可能全体電力量SOPallは、式1から20kw×4=80kWである。ここで充電の電力指令が240kWであれば、可能全体電力SOP allを上回ることから、実施全体電力POB allは80kWに制限される。さらに各電源ユニット310を充電する実施個別電力は、電源ユニット310#1の実施個別電力POB1は80kW×(5/16)=25kW、電源ユニット310#2の実施個別電力POB2は80kW×(4/16)=20kW、電源ユニット310#3の実施個別電力POB3は80kW×(4/16)=20kW、電源ユニット310#4の実施個別電力POB4は80kW×(3/16)=15kWとなる。この場合、電源ユニット310#2~#4では、POBn≦SOPnが成立するものの、電源ユニット310#1においては、可能個別電力SOP1の20kWに対して実施個別電力POB1が25kWとなり、充電時にはPOBn≦SOPnが成立せず、定格を超過してしまう。
(実施形態に係る電力制御方法)
 このように、電力偏差が存在すると、同じ条件であっても一部の電源ユニットで定格を超過する事態が生じ、電源システムが異常停止するなどの不具合が生じる。そこで、本実施の形態においては、電力偏差に基づいて、実施全体電力POB allを決定し、この実施個別電力に基づいて、各電源ユニットの充放電を制御する。具体的には、各電源ユニットにおいて充放電可能な最大電力を算出する。これによって各電源ユニットの充電SOPn、放電SOPnがそれぞれ算出される。さらに電力偏差の発生状況を適時計測する。具体的には、適時、継続した電圧、電流測定により、POBn/SOPnを測定する。ここで、SOPnは上述の通り電源ユニットnの可能個別電力、POBnは電源ユニットnの実施個別電力である。
 このようにして電源システムは、適時計測した電力偏差情報、SOPn、POBnより、全体SOP(可能全体電力SOP all)を算出して、パワーコンディショナー140に通知する。本実施形態では、次式2を計算して全体SOPを算出している。
 全体SOP=Σ(SOP=0を除く全ての電源ユニット)(SOPm×DOBn)
=SOPm×ΣDOBn=SOPm×Σ(POBn/POBm)
=SOPm×Σ(POBn)/POBm=SOPm×全体POB/POBm (式2)
 上式2において、DOBnは正規化された電力偏差比率を示す。DOBnは、各電源ユニットの電力の比率を示すと共に、上記POBn/SOPnが最大となる電源ユニット#mの比率が1となるように正規化している。またmは、POBn/SOPnが最大となる電源ユニットをn=mとしている。
 なお、上述の通り、SOPn=0となった時点で、その電源ユニット#nを、パワーコンディショナー140より切り離すことを前提としている。切り離さない場合には、全体SOP=0にする必要がある。
 パワーコンディショナー140は、電力指令に従うと共に、充放電電力が全体SOP以下になるように電力抑制を行う。このような構成により、電力偏差が発生した状況において、特定の電源ユニットが停止したり、SOPn=0となった場合でも、適切な電力抑制が可能となる。また、特定の電源ユニットのSOPnが低下した場合でも、特定電源ユニットの電力をSOPn以下にすることが可能となる。いいかえると、POBn≦SOPnの状態に維持できる。この結果、電力偏差が発生した状況でも、システム停止することなく、充放電運転の継続が可能となる。ここで、図4と対応する状態において、本実施形態に係る電力制御方法で、充放電制御を行う例を、図5に基づいて説明する。図5において、状態番号1~8は、図4の状態番号1~8で示した例と、電力指令、放電SOP、充電SOPは一致させている。
(実施形態:電力偏差なしの場合)
 図5においても、状態番号1~4で示した例では、図4の状態番号1~4と同様に、電源ユニット10#1~#4に電力偏差が生じていない、各電源ユニット10の放電SOP、充電SOPが1:1:1:1の場合を示している。
 まず状態番号1では、図4の状態番号1と同じく電源ユニット10#1~#4の可能個別電力SOPは、充電SOP、放電SOP共、60kWであり、また全体POB(実施全体電力POB all)は160kWである。ここで、各電源ユニット10#1~#4について電力偏差比率dob_nを求める。なお電力偏差比率dob_nは、DOBnのように正規化しておらず、Σdob_n=1となる比率である。電源ユニット10#1ではdob_1=POB1/SOP1=40kW/(40+40+40+40)kW=0.25、電源ユニット10#2ではdob_2=POB2/SOP2=40kW/(40+40+40+40)kW=0.25、電源ユニット10#3ではdob_3=POB3/SOP3=40kW/(40+40+40+40)kW=0.25、電源ユニット10#4ではdob_4=POB4/SOP4=40kW/(40+40+40+40)kW=0.25となる。
 よって、電源ユニット10#1~#4の電力偏差比率dob_nが等しいので、電力偏差比率dob_nが最大となる電源ユニット10を、ここでは電源ユニット10#1(m=1)とおく。これより、全体SOP(可能全体電力SOP all)を式2から求めると、全体SOP=SOPm×全体POB/POBm=SOP1×全体POB/POB1=60kW×160kW/40kW=240kWである。また各電源ユニット10の実施個別電力は、電源ユニット10#1の実施個別電力POB1が160kW×dob_1=40kW、電源ユニット10#2の実施個別電力POB2が160kW×dob_2=40kW、電源ユニット10#3の実施個別電力POB3が160kW×dob_3=40kW、電源ユニット10#4の実施個別電力POB4が160kW×dob_4=40kWとなる。ここでは各電源ユニット10の可能個別電力SOP1~4は、上述の通り放電SOP、充電SOP共、60kWであるから、実施個別電力40kWに対応でき、POBn≦SOPnが成立する。結果的には、図4の状態番号1と同じ結果となる。
 同様に状態番号2では、可能全体電力SOP allは状態番号1と同様、放電、充電共60kW×4=240kWであり、また全体POBは240kWである。さらに各電源ユニット10#1~#4の電力偏差比率dob_nが等しいため、電力偏差比率dob_nが最大となる電源ユニット10を、ここでも電源ユニット10#1(m=1)とおく。これより、全体SOP(可能全体電力SOP all)は式2から、全体SOP=SOPm×全体POB/POBm=SOP1×全体POB/POB1=60kW×240kW/60kW=240kWである。また各電源ユニット10の実施個別電力は、電源ユニット10#1の実施個別電力POB1が240kW×dob_1=60kW、電源ユニット10#2の実施個別電力POB2が240kW×dob_2=60kW、電源ユニット10#3の実施個別電力POB3が240kW×dob_3=60kW、電源ユニット10#4の実施個別電力POB4が240kW×dob_4=60kWとなる。ここでは各電源ユニット10の可能個別電力量SOP1~4は、上述の通り放電SOP、充電SOP共、60kWであるから、実施個別電力60kWに対応でき、POBn≦SOPnが成立し、結果的には図4の状態番号2と同じ結果となる。
 一方状態番号3では、全体POBが180kWであり、電源ユニット10#2~#4の可能個別電力SOPは、状態番号1、2と同様、充電SOP、放電SOP共60kWである。また電源ユニット10#1は満充電のため、放電SOPは60kW、充電SOPは0である。このため、放電は可能であるものの、充電時は解列される。なお電源ユニット10#2~#4の電力偏差比率dob_nは等しいため、電力偏差比率dob_nが最大となる電源ユニット10は、ここでは電源ユニット10#2(m=2)とおく。この状態で、充電時の可能全体電力SOP allは式2から、全体SOP=SOPm×全体POB/POBm=SOP2×全体POB/POB2=60kW×180kW/60kW=180kWである。また各電源ユニット10の実施個別電力は、電源ユニット10#1は解列のため対象外、電源ユニット10#2の実施個別電力POB2が180kW×dob_2=60kW、電源ユニット10#3の実施個別電力POB3が180kW×dob_3=60kW、電源ユニット10#4の実施個別電力POB4が180kW×dob_4=60kWとなり、いずれも充電SOPの60kWで対応でき、POBn≦SOPnが成立し、結果的には図4の状態番号3と同じ結果となる。
 さらに状態番号4では、全体POBが80kWであり、電源ユニット10#2~#4の可能個別電力SOPは、状態番号1~3と同じく、充電SOP、放電SOP共60kWであるものの、電源ユニット10#1は定電圧充電で充電中のため、放電SOPは60kW、充電SOPは20kWである。なお各電源ユニット10#1~#4について、充電時の電力偏差比率dob_nが等しいため、電力偏差比率dob_nが最大となる電源ユニット10を、ここでも電源ユニット10#1(m=1)とおく。この状態で、充電時の可能全体電力SOP allは式2から、全体SOP=SOPm×全体POB/POBm=SOP1×全体POB/POB1=20kW×80kW/20kW=80kWである。また各電源ユニット10の実施個別電力は、電源ユニット10#1の実施個別電力POB1が80kW×dob_1=20kW、電源ユニット10#2の実施個別電力POB2が80kW×dob_2=20kW、電源ユニット10#3の実施個別電力POB3が80kW×dob_3=20kW、電源ユニット10#4の実施個別電力POB4が80kW×dob_4=20kWとなり、いずれも充電SOP1~4の20kW、60kWで対応でき、POBn≦SOPnが成立し、結果的には図4の状態番号4と同じ結果となる。
(実施形態:電力偏差ありの場合)
 このように、実施形態に係る電力制御方法によれば、電源ユニット10間に電力偏差のない状態でも、状態番号1~4のいずれの場合も適切に充放電電力制御を行える。次に電力偏差が、図5と同様、電源ユニット10#1~#4で電流比5:4:4:3の場合の、状態番号5~8について検討する。なお状態番号5~8の電力指令及び全体POB、放電SOP、充電SOPは、状態番号1~4とそれぞれ対応させている。
 まず状態番号5では、状態番号1と同じく電源ユニット10#1~#4の可能個別電力SOPは、充電SOP、放電SOP共、60kWであり、全体POBが160kWである。また、各電源ユニット10#1~#4について電力偏差比率dob_nを求めると、電源ユニット10#1ではdob_1=POB1/全体POB=50kW/160kW=0.3125、電源ユニット10#2ではdob_22=POB2/全体POB=40kW/160kW=0.25、電源ユニット10#3ではdob_3=POB3/全体POB=40kW/160kW=0.25、電源ユニット10#4ではdob_4=POB4/全体POB=30kW/160kW=0.1875となる。よって、電力偏差比率dob_nが最大となる電源ユニット10は、電源ユニット10#1(m=1)となる。これより、全体SOP(可能全体電力SOP all)を式2から求めると、全体SOP=SOPm×全体POB/POBm=SOP1×全体POB/POB1=60kW×160kW/50kW=192kWである。また各電源ユニット10の実施個別電力は、電源ユニット10#1の実施個別電力POB1が160kW×dob_1=50kW、電源ユニット10#2の実施個別電力POB2が160kW×dob_2=40kW、電源ユニット10#3の実施個別電力POB3が160kW×dob_3=40kW、電源ユニット10#4の実施個別電力POB4が160kW×dob_4=40kWとなる。ここでは各電源ユニット10の可能個別電力SOP1~4は、上述の通り放電SOP、充電SOP共、60kWであるから、各実施個別電力POBnに対応でき、POBn≦SOPnが成立する。
 次に状態番号6では、状態番号2と同じく電源ユニット10#1~#4の可能個別電力SOPは、充電SOP、放電SOP共、60kWであり、全体POBが192kWである。また、各電源ユニット10#1~#4について電力偏差比率dob_nを求めると、電源ユニット10#1ではdob_1=POB1/全体POB=60kW/192kW=0.3125、電源ユニット10#2ではdob_2=POB2/全体POB=48kW/192kW=0.25、電源ユニット10#3ではdob_3=POB3/全体POB=48kW/192kW=0.25、電源ユニット10#4ではdob_4=POB4/全体POB=36kW/192kW=0.1875となる。よって、電力偏差比率dob_nが最大となる電源ユニット10は、電源ユニット10#1(m=1)となる。これより、全体SOPを式2から求めると、全体SOP=SOPm×全体POB/POBm=SOP1×全体POB/POB1=60kW×192kW/60kW=192kWである。また各電源ユニット10の実施個別電力は、電源ユニット10#1の実施個別電力POB1が192kW×dob_1=60kW、電源ユニット10#2の実施個別電力POB2が192kW×dob_2=48kW、電源ユニット10#3の実施個別電力POB3が192kW×dob_3=48kW、電源ユニット10#4の実施個別電力POB4が192kW×dob_4=36kWとなる。ここでは各電源ユニット10の可能個別電力SOP1~4は、上述の通り放電SOP、充電SOP共、60kWであるから、各実施個別電力POBnに対応でき、POBn≦SOPnが成立する。同じ条件の図4と比較した場合、電源ユニット10#1の実施個別電力が75kWから60kWに抑えられており、可能個別電力すなわち最大定格電力を超過する事態を回避でき、電源システムの安定動作が保たれる。
 さらに状態番号7では、状態番号3と同じく電源ユニット10#2~#4の可能個別電力SOPは、充電SOP、放電SOP共、60kWであるものの、電源ユニット10#1が満充電で、放電SOPが60kW、充電SOPは0となり、放電は可能であるものの、充電時は電源システムから解列される。また全体POBは165kWである。ここで充電時の各電源ユニット10#2~#4について電力偏差比率dob_nを求めると、電源ユニット10#2ではdob_2=POB2/全体POB=60kW/165kW=0.3637、電源ユニット10#3ではdob_3=POB3/全体POB=60kW/165kW=0.3637、電源ユニット10#4ではdob_4=POB4/全体POB=45kW/165kW=0.2728となり、電力偏差比率dob_nが最大となる電源ユニット10は、電源ユニット10#2と#3となる。ここでは電源ユニット10#2(m=2)として、充電時の全体SOPを式2から求めると、全体SOP=SOPm×全体POB/POBm=SOP2×全体POB/POB2=60kW×165kW/60kW=165kWである。また各電源ユニット10の充電時の実施個別電力は、電源ユニット10#2の実施個別電力POB2が165kW×dob_2=60kW、電源ユニット10#3の実施個別電力POB3が165kW×dob_3=60kW、電源ユニット10#4の実施個別電力POB4が165kW×dob_4=45kWとなる。ここでは各電源ユニット10の可能個別電力SOP2~4は、上述の通り放電SOP、充電SOP共、60kWであるから、各実施個別電力POBnに対応でき、POBn≦SOPnが成立する。同じ条件の図4と比較した場合、電源ユニット10#2、#3の実施個別電力が65kWから60kWに抑えられており、最大定格電力を超過する事態を回避でき、電源システムの安定動作が保たれる。
 さらに状態番号8では、状態番号4と同じく電源ユニット10#2~#4の可能個別電力SOPは、充電SOP、放電SOP共、60kWであり、電源ユニット10#1は定電圧充電で充電中であり、放電SOPは60kW、充電SOPは20kWである。また全体POBは64kWである。ここで充電時の各電源ユニット10#1~#4について電力偏差比率dob_nを求めると、電源ユニット10#1ではdob_1=POB1/全体POB=20kW/64kW=0.3125、電源ユニット10#2ではdob_2=POB2/全体POB=16kW/64kW=0.25、電源ユニット10#3ではdob_3=POB3/全体POB=16kW/64kW=0.25、電源ユニット10#4ではdob_4=POB4/全体POB=12kW/64kW=0.1875となり、電力偏差比率dob_nが最大となる電源ユニット10は、電源ユニット10#1となり、m=1として充電時の全体SOPを式2から求めると、全体SOP=SOPm×全体POB/POBm=SOP1×全体POB/POB1=20kW×64kW/20kW=64kWである。また各電源ユニット10の充電時の実施個別電力は、電源ユニット10#1の実施個別電力POB1が64kW×dob_1=20kW、電源ユニット10#2の実施個別電力POB2が64kW×dob_2=16kW、電源ユニット10#3の実施個別電力POB3が64kW×dob_3=16kW、電源ユニット10#4の実施個別電力POB4が64kW×dob_4=12kWとなる。これにより、各電源ユニット10の可能個別電力SOP1~4は、各実施個別電力POB1~4に対応でき、POBn≦SOPnが成立する。同じ条件の図4と比較した場合、電源ユニット10#1の実施個別電力が25kWから20kWに抑えられており、最大定格電力を超過する事態を回避でき、電源システムの安定動作が保たれる。
 このようにして、電力偏差に応じた充放電制御が可能となり、意図しないシステム障害を回避できる。
 なお電力偏差は、一定の周期で検出して、これに基づいて実施個別電力を更新することができる。これにより、刻々と時間変動する電池状態に合わせて、適切な充放電電力に調整することが可能となる。電力偏差の検出は、ユニット側制御部で行い、マスタ制御部120に送出することが好ましい。ただ、本発明は電力偏差を検出するタイミングは周期的な検出に限定するものでなく、任意のタイミングで行うこともできる。例えば、電力偏差が変化したと思われる事案の発生時としたり、また電力偏差の変化が少ないときは長期のスパンで検出を行い、変化が多いときは短期のスパンで検出する等、検出タイミングを可変としてもよい。また電力偏差等の測定方法は、電圧や電流の測定に限られず、他の方法も適宜利用できる。
 また図1の例では、マスタ制御部120で電力偏差を演算して、パワーコンディショナー140に指示する構成としているが、この構成に限られず、電力偏差は、システムコントローラやパワーコンディショナーで演算するように構成してもよい。あるいは、ユニット制御部側に、電力偏差の演算機能を持たせることもできる。例えば図6に示す変形例に係る電源システムでは、電源ユニット10#1のユニット制御部12’が、電力偏差を演算する機能を備えており、マスタ制御部の役目を担っている。この場合は、マスタ制御部を不要とできる。
 本発明に係る電源システム及びパワーコンディショナーは、発電所などで用いる大型の蓄電装置やそのコントローラとして好適に利用できる。
1000…電源システム
1…電池モジュール
10、10#1~#4、210、310、310#1~#4…電源ユニット
11、211、311…電池集合体
12、12’、212、312…ユニット制御部(BMU)
14、214、314…スイッチ部
100…制御システム
120…マスタ制御部(M-BMU)
140、240、340…パワーコンディショナー
160…システムコントローラ
ES…電力系統
 

Claims (11)

  1.  複数の電源ユニットと、
     前記複数の電源ユニットを並列に接続した制御システムと
    を備える電源システムであって、
     各電源ユニットは、
      複数の二次電池セルを直列、及び並列に接続した電池集合体と、
      前記電池集合体の充放電可能な電力に関する電池情報を取得して、前記制御システムに出力するユニット制御部と、
      前記電源ユニットと制御システムとの接続、解除を切り替えるためのスイッチ部と
    を備えており、
     前記制御システムは、
      前記複数の電源ユニットと並列に接続され、かつ外部の電力系統と接続され、電力系統から電力を受けて前記複数の電源ユニットを充電し、かつ前記複数の電源ユニットから電力を受けて電力系統に放電するためのパワーコンディショナーと、
      各電源ユニットのユニット制御部から出力される電池情報を収集するためのマスタ制御部と、
      電源システムに要求される電力を電力指令として前記パワーコンディショナーに指示するためのシステムコントローラと
    を備えており、
     前記パワーコンディショナーは、前記システムコントローラからの電力指令に従い、各電源ユニットに対する充放電を行う電力の総和である実施全体電力POB allを決定するにあたり、各ユニット制御部からの電池情報を前記マスタ制御部で収集して、各ユニット制御部で検出された電池情報に基づいて決定された、各電源ユニットの可能個別電力より決定される、電源ユニット全体の充放電可能な可能全体電力を、各電源ユニットの可能個別電力を超えない範囲に決定し、該演算された実施個別電力を超えることなく各電源ユニットの充放電を可能にするよう構成してなる電源システム。
  2.  請求項1に記載の電源システムであって、
     前記マスタ制御部は、前記電源ユニット間の電力偏差を検出して、前記パワーコンディショナーに送出するよう構成してなる電源システム。
  3.  請求項2に記載の電源システムであって、
     前記マスタ制御部は、あらかじめ設定された周期、あるいは電力変化を検出したタイミングで、前記電源ユニット間の電力偏差を検出し、これに基づいて実施個別電力を常に個別の最大充放電電力以下に抑制するよう構成してなる電源システム。
  4.  請求項1~3のいずれか一項に記載の電源システムであって、
     前記ユニット制御部が、該ユニット制御部に接続された前記電池集合体の電池情報に基づいて、可能個別電力を決定するよう構成されてなる電源システム。
  5.  請求項1~4のいずれか一項に記載の電源システムであって、
     前記マスタ制御部が、該マスタ制御部に接続された各ユニット制御部から送出される可能個別電力に基づいて、実施個別電力を決定するよう構成されてなる電源システム。
  6.  請求項1~5のいずれか一項に記載の電源システムであって、
     前記マスタ制御部は、前記複数の電源ユニット#1~#nの内、(n番目の実施個別電力POBn)/(n番目の可能個別電力SOPn)が最大となる電源ユニット#m(1≦m≦n)の比率を1として、各電源ユニットの電力偏差比率DOBnを算出するよう構成してなる電源システム。
  7.  請求項6に記載の電源システムであって、
     前記マスタ制御部は、可能全体電力を次式で決定するよう構成してなる電源システム。
     可能全体電力=SOPm×(実施全体電力)/(m番目の実施個別電力POBm)
     ただし、
     上式2において、DOBnは電力偏差比率を示す。ここでは、上記POBn/SOPnが最大となる電源ユニット#mの比率を1として、各電源ユニットの電力偏差比率DOBnを算出する。またmは、POBn/SOPnが最大となる電源ユニットをn=mとしている。
  8.  請求項1~7のいずれか一項に記載の電源システムであって、
     前記パワーコンディショナーは、前記電源ユニットの内、可能個別電力が0となった電源ユニットの前記スイッチ部をOFFとするよう構成してなる電源システム。
  9.  請求項1~8のいずれか一項に記載の電源システムであって、
     前記スイッチ部は、充電スイッチ部と放電スイッチ部を備え、
     前記パワーコンディショナーは、前記電源ユニットの内、
      充電可能個別電力が0となった前記電源ユニットの充電スイッチ部をOFFとし、
      放電可能個別電力が0となった前記電源ユニットの放電スイッチ部をOFFとするように構成してなる電源システム。
  10.  複数の電源ユニットを並列に接続した状態で、各電源ユニットの充放電を制御するよう構成された電源システムの制御システムであって、
     複数の電源ユニットと並列に接続され、かつ外部の電力系統と接続され、電力系統から電力を受けて複数の電源ユニットを充電し、かつ複数の電源ユニットから電力を受けて電力系統に放電するためのパワーコンディショナーと、
     各電源ユニットから出力される電池情報を収集するためのマスタ制御部と、
     電源システムに要求される電力を電力指令として前記パワーコンディショナーに指示するためのシステムコントローラと
    を備えており、
     前記パワーコンディショナーは、各電源ユニットで検出された電池情報に基づいて決定された、各電源ユニットの可能個別電力より決定される、電源ユニット全体の充放電可能な可能全体電力に基づいて、各電源ユニット間の充放電電力の差を示す電力偏差に基づいて決定された、各電源ユニットの充放電を行う実施個別電力を超えることなく各電源ユニットの充放電を可能にするよう構成してなる制御システム。
  11.  複数の電源ユニットと、前記複数の電源ユニットを並列に接続した制御システムとを備える電源システムにおける電力制御方法であって、
     前記制御システムが、電源システムに要求される電力を電力指令として受け取る工程と、
     各電源ユニットに含まれる、複数の二次電池セルを直列又は並列に接続した電池集合体の充放電可能な電力に関する電池情報を取得して、前記制御システムに出力する工程と、
     各電源ユニットの電池情報に基づいて、各電源ユニットを充放電可能な電力を示す可能個別電力と、前記複数の電源ユニットの全体として充放電可能な電力を示す可能全体電力と、各電源ユニット間の充放電電力の差を示す電力偏差を、それぞれ決定する工程と、
     前記決定された可能個別電力と、可能全体電力と、電力偏差と、電力指令に基づいて、各電源ユニットに対して充放電を行う電力である実施個別電力を、各電源ユニットの可能個別電力を超えない範囲に決定する工程と、
    を含む電源システムの電力制御方法。
     
PCT/JP2017/009698 2016-03-30 2017-03-10 電源システム、制御システムおよび電源システムの電力制御方法 WO2017169655A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP17774199.8A EP3439132B1 (en) 2016-03-30 2017-03-10 Power supply system, control system and power control method for power supply system
US16/088,271 US11862978B2 (en) 2016-03-30 2017-03-10 Power supply system, control system and power control method for power supply system
JP2018508931A JP6790072B2 (ja) 2016-03-30 2017-03-10 電源システム、制御システムおよび電源システムの電力制御方法
DK17774199.8T DK3439132T3 (da) 2016-03-30 2017-03-10 Strømforsyningssystem, styringssystem og fremgangsmåde til strømregulering for strømforsyningssystem
CN201780021109.5A CN109121447B (zh) 2016-03-30 2017-03-10 电源系统、控制系统以及电源系统的电力控制方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016067790 2016-03-30
JP2016-067790 2016-03-30

Publications (1)

Publication Number Publication Date
WO2017169655A1 true WO2017169655A1 (ja) 2017-10-05

Family

ID=59963110

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/009698 WO2017169655A1 (ja) 2016-03-30 2017-03-10 電源システム、制御システムおよび電源システムの電力制御方法

Country Status (6)

Country Link
US (1) US11862978B2 (ja)
EP (1) EP3439132B1 (ja)
JP (1) JP6790072B2 (ja)
CN (1) CN109121447B (ja)
DK (1) DK3439132T3 (ja)
WO (1) WO2017169655A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108376989A (zh) * 2018-02-13 2018-08-07 中国电力科学研究院有限公司 一种基于多智能体的电池储能电站分区控制方法及系统
WO2018225417A1 (ja) * 2017-06-08 2018-12-13 パナソニックIpマネジメント株式会社 蓄電システム、管理装置
WO2018225416A1 (ja) * 2017-06-08 2018-12-13 パナソニックIpマネジメント株式会社 蓄電システム、管理装置
WO2019208147A1 (ja) * 2018-04-23 2019-10-31 京セラ株式会社 蓄電装置、蓄電装置の制御装置及び蓄電装置の制御方法
CN111559271A (zh) * 2020-06-08 2020-08-21 四川爱创科技有限公司 一种换电柜系统
JPWO2021260936A1 (ja) * 2020-06-26 2021-12-30

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220355700A1 (en) * 2019-07-18 2022-11-10 Panasonic Intellectual Property Management Co., Ltd. Management device and power supply system
WO2022067198A1 (en) * 2020-09-28 2022-03-31 Tae Technologies, Inc. Multi-phase module-based energy system frameworks and methods related thereto
US20220368150A1 (en) * 2021-04-27 2022-11-17 China Energy Investment Corporation Limited Voltage gradient-biased controller, system and method for controlling discharge of heterogeneous battery packs
US11652357B1 (en) * 2021-10-27 2023-05-16 China Energy Investment Corporation Limited Controller, system and method for controlling discharge of heterogeneous battery packs

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009261183A (ja) * 2008-04-18 2009-11-05 Toyota Motor Corp 電源システムおよびそれを備えた車両、ならびに電源システムの制御方法
WO2012043133A1 (ja) * 2010-09-30 2012-04-05 三洋電機株式会社 蓄電池充放電制御装置および蓄電池充放電制御方法
WO2012050004A1 (ja) * 2010-10-15 2012-04-19 三洋電機株式会社 電源システム

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3872758B2 (ja) * 2003-01-08 2007-01-24 株式会社日立製作所 電源制御装置
JP4921407B2 (ja) * 2008-03-27 2012-04-25 大阪瓦斯株式会社 発電・空調システム
US20100028723A1 (en) 2008-07-30 2010-02-04 Chaz Haba Power cell apparatus with three dimensional interconnect
CN102195310B (zh) * 2010-03-12 2014-11-05 株式会社东芝 组合电池单元和车辆
EP2410602B1 (en) * 2010-03-23 2014-11-26 Nec Corporation Charging and discharging method for lithium ion secondary batteries and charging and discharging system for the same
EP2462675A1 (en) * 2010-08-23 2012-06-13 Sanyo Electric Co., Ltd. Power management system
WO2012043134A1 (ja) * 2010-09-30 2012-04-05 三洋電機株式会社 蓄電池充放電制御装置および蓄電池充放電制御方法
JPWO2012050014A1 (ja) * 2010-10-15 2014-02-24 三洋電機株式会社 電力管理システム
CN103081281A (zh) * 2010-10-15 2013-05-01 三洋电机株式会社 电力管理系统
JP5637878B2 (ja) * 2011-01-27 2014-12-10 株式会社日立製作所 二次電池システム
US8901894B2 (en) * 2011-04-18 2014-12-02 Renesas Electronics America Inc. Battery management control method
JP5156112B2 (ja) * 2011-07-28 2013-03-06 三菱重工業株式会社 電池システム
WO2013161370A1 (ja) * 2012-04-26 2013-10-31 積水化学工業株式会社 蓄電システム、及びカートリッジ
CN102848931A (zh) * 2012-09-14 2013-01-02 天津大学 一种电动汽车能量源系统结构
CN105324907B (zh) * 2013-06-20 2018-12-21 沃尔沃卡车集团 用于控制能量存储系统的方法
JP6125948B2 (ja) * 2013-08-12 2017-05-10 本田技研工業株式会社 非接触充電装置
JP6384482B2 (ja) * 2013-09-19 2018-09-05 東芝三菱電機産業システム株式会社 蓄電池システム
JP6419809B2 (ja) * 2014-06-24 2018-11-07 株式会社東芝 蓄電システム及び特性パラメータの推定方法
US10355320B2 (en) * 2015-05-18 2019-07-16 Nissan Motor Co., Ltd. Power storage device for a battery group and connection control of capacitor and switching device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009261183A (ja) * 2008-04-18 2009-11-05 Toyota Motor Corp 電源システムおよびそれを備えた車両、ならびに電源システムの制御方法
WO2012043133A1 (ja) * 2010-09-30 2012-04-05 三洋電機株式会社 蓄電池充放電制御装置および蓄電池充放電制御方法
WO2012050004A1 (ja) * 2010-10-15 2012-04-19 三洋電機株式会社 電源システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3439132A4 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018225417A1 (ja) * 2017-06-08 2018-12-13 パナソニックIpマネジメント株式会社 蓄電システム、管理装置
WO2018225416A1 (ja) * 2017-06-08 2018-12-13 パナソニックIpマネジメント株式会社 蓄電システム、管理装置
JPWO2018225416A1 (ja) * 2017-06-08 2020-04-09 パナソニックIpマネジメント株式会社 蓄電システム、管理装置
JPWO2018225417A1 (ja) * 2017-06-08 2020-04-09 パナソニックIpマネジメント株式会社 蓄電システム、管理装置
JP7033734B2 (ja) 2017-06-08 2022-03-11 パナソニックIpマネジメント株式会社 蓄電システム、管理装置
CN108376989A (zh) * 2018-02-13 2018-08-07 中国电力科学研究院有限公司 一种基于多智能体的电池储能电站分区控制方法及系统
CN108376989B (zh) * 2018-02-13 2022-07-26 中国电力科学研究院有限公司 一种基于多智能体的电池储能电站分区控制方法及系统
WO2019208147A1 (ja) * 2018-04-23 2019-10-31 京セラ株式会社 蓄電装置、蓄電装置の制御装置及び蓄電装置の制御方法
JPWO2019208147A1 (ja) * 2018-04-23 2021-04-01 京セラ株式会社 蓄電装置、蓄電装置の制御装置及び蓄電装置の制御方法
CN111559271A (zh) * 2020-06-08 2020-08-21 四川爱创科技有限公司 一种换电柜系统
JPWO2021260936A1 (ja) * 2020-06-26 2021-12-30
JP7488605B2 (ja) 2020-06-26 2024-05-22 TeraWatt Technology株式会社 電池システム、制御装置及び制御方法

Also Published As

Publication number Publication date
EP3439132A1 (en) 2019-02-06
CN109121447A (zh) 2019-01-01
EP3439132B1 (en) 2021-07-21
DK3439132T3 (da) 2021-08-16
CN109121447B (zh) 2022-04-22
JPWO2017169655A1 (ja) 2019-03-14
US20200303929A1 (en) 2020-09-24
EP3439132A4 (en) 2019-03-13
JP6790072B2 (ja) 2020-11-25
US11862978B2 (en) 2024-01-02

Similar Documents

Publication Publication Date Title
WO2017169655A1 (ja) 電源システム、制御システムおよび電源システムの電力制御方法
KR102479719B1 (ko) 배터리 제어 시스템 및 방법
KR101412742B1 (ko) 독립형 마이크로그리드 제어 시스템 및 그 제어방법
JP6482541B2 (ja) 電気エネルギを電気化学エネルギ蓄積装置に貯蔵する方法及び装置
US9300016B2 (en) Battery system and energy storage system
US10763682B2 (en) Energy storage system and controlling method thereof
US20120153726A1 (en) Energy storage system and method of controlling the same
US9406981B2 (en) Battery system and energy storage system including the same
US9205756B2 (en) Battery system
WO2013011758A1 (ja) 蓄電池システム及びその制御方法
US20140266061A1 (en) Heterogeneous Energy Storage System and Associated Methods
US20130187466A1 (en) Power management system
US11063447B2 (en) Battery pack and energy storage system comprising same
WO2014020644A1 (ja) 電力供給システム、マスタ蓄電システム及びスレーブ蓄電システム
KR102415123B1 (ko) 배터리 팩 및 이를 포함하는 에너지 저장 시스템
US20120249078A1 (en) Battery system and energy storage system including the same
JP2011109901A (ja) 電力管理システム及びこれを備える系統連係型電力保存システム
WO2014020645A1 (ja) 電力供給システム及びスレーブ蓄電システム
JP2011109901A5 (ja)
KR101888410B1 (ko) 마이크로 그리드 운영 시스템
JP2014131369A (ja) 電力制御システム
JP2024511382A (ja) エネルギ貯蔵システム及びバッテリ管理システムの電力供給方法
KR102061308B1 (ko) 배터리 관리를 위한 제어전원 공급시스템과 그 공급방법 및 이를 이용한 에너지저장시스템
US20190280494A1 (en) Method and system for managing electrochemical batteries of a power supply facility in case of battery failure
KR101677835B1 (ko) 에너지 저장 시스템의 배터리 상태 측정 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018508931

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017774199

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017774199

Country of ref document: EP

Effective date: 20181030

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17774199

Country of ref document: EP

Kind code of ref document: A1