WO2018225416A1 - 蓄電システム、管理装置 - Google Patents

蓄電システム、管理装置 Download PDF

Info

Publication number
WO2018225416A1
WO2018225416A1 PCT/JP2018/016898 JP2018016898W WO2018225416A1 WO 2018225416 A1 WO2018225416 A1 WO 2018225416A1 JP 2018016898 W JP2018016898 W JP 2018016898W WO 2018225416 A1 WO2018225416 A1 WO 2018225416A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power storage
value
sop
current
Prior art date
Application number
PCT/JP2018/016898
Other languages
English (en)
French (fr)
Inventor
慎哉 西川
員史 西川
透 渡邊
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201880036824.0A priority Critical patent/CN110710075B/zh
Priority to US16/617,556 priority patent/US11043821B2/en
Priority to JP2019523395A priority patent/JP7033734B2/ja
Publication of WO2018225416A1 publication Critical patent/WO2018225416A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00304Overcurrent protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0024Parallel/serial switching of connection of batteries to charge or load circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a power storage system and a management device in which a plurality of power storage blocks are connected in parallel.
  • a large-scale power storage system is constructed by connecting, for example, a plurality of power storage blocks configured by connecting a plurality of power storage modules in series.
  • a power storage rack configured by stacking a plurality of power storage modules is assumed as the power storage block.
  • the accuracy of the above control depends on the estimation accuracy of the internal resistance, and increasing the estimation accuracy of the internal resistance increases the calculation cost and the memory cost.
  • the charge / discharge power may change suddenly and an excessive current may flow through some of the storage racks. .
  • the present invention has been made in view of such a situation, and an object of the present invention is to provide a technology for suppressing an excessive current from flowing to some of the storage blocks during operation of the storage system in which a plurality of storage blocks are connected in parallel. There is to do.
  • a power storage system includes a plurality of power storage blocks connected in parallel, and direct-current power discharged from the plurality of power storage blocks is converted into alternating-current power.
  • a power conversion unit that converts AC power input from the power system into DC power and charges the plurality of power storage blocks, and is interposed between the plurality of power storage blocks and the power conversion unit, respectively And calculating the SOP of the plurality of power storage blocks based on a single SOP (State of Of Power) of each of the plurality of power storage blocks, and charging and discharging the calculated total SOP to the power conversion unit
  • a management unit that sets the upper limit value of at least one of the power or current.
  • the at least one switch When at least one of the plurality of switches is turned off and at least one of the plurality of storage blocks is disconnected, the at least one switch is turned on and the at least one storage block returns to parallel connection.
  • the SOP of the entire power storage block after the return of the power storage block is calculated based on the current variation of each single unit of the power storage block after the return, and the upper limit value of the power or current flowing through the power conversion unit is set.
  • the present invention it is possible to suppress an excessive current from flowing through some of the power storage blocks during operation of the power storage system in which a plurality of power storage blocks are connected in parallel.
  • FIG. 1 is a diagram showing a configuration of a power storage system 1 according to an embodiment of the present invention.
  • a load 3 is connected to a distribution line between the power storage system 1 and the power system 2.
  • the power storage system 1 includes a plurality of power storage racks connected in parallel, a power conversion device 60, and a master management device 50m.
  • FIG. 1 illustrates an example in which three power storage racks (first power storage rack 10, second power storage rack 20, and third power storage rack 30) are connected in parallel to the power conversion device 60.
  • the power conversion device 60 converts DC power discharged from the plurality of power storage racks 10-30 into AC power and outputs the AC power to the power system 2 or the load 3, and converts AC power input from the power system 2 into DC power. Thus, the plurality of power storage racks 10-30 connected in parallel are charged.
  • the power conversion device 60 can be configured by a general power conditioner, includes a bidirectional inverter and a control circuit, and includes a bidirectional DC-DC converter as necessary. In the following description, it is assumed that the power conversion device 60 includes a bidirectional DC-DC converter.
  • the bidirectional DC-DC converter can control the current / voltage of DC power charged to or discharged from the plurality of storage racks 10-30, for example, CC / CV charging, CC / CV discharge is possible.
  • the bidirectional inverter performs conversion from DC power to AC power, or conversion from AC power to DC power.
  • the control circuit controls the bidirectional DC-DC converter and the bidirectional inverter in accordance with an instruction from the master management device 50m.
  • the first power storage rack 10 includes a plurality of power storage modules 11-1n connected in series, a first rack management unit 50a, and a first switch unit 40a.
  • Each power storage module 11-1n includes a plurality of cells connected in series or series-parallel and a monitoring circuit.
  • a lithium ion battery cell a nickel metal hydride battery cell, an electric double layer capacitor cell, a lithium ion capacitor cell, or the like can be used.
  • an example in which a lithium ion battery cell is used is assumed.
  • the monitoring circuit of each power storage module 11-1n detects the voltage, current, and temperature of a plurality of cells in each power storage module 11-1n.
  • the monitoring circuit transmits the detected voltage, current, and temperature of the cell to the first rack management unit 50a via the in-rack communication line 90a.
  • serial communication based on the RS-485 standard can be used for communication between each monitoring circuit and the first rack management unit 50a.
  • Each monitoring circuit and the first rack management unit 50a may be connected by wireless communication or may be connected by power line communication.
  • the first switch unit 40a is interposed between the power line 70 connected to the power conversion device 60 and the plurality of power storage modules 11-1n connected in series.
  • the first switch unit 40a includes a first main relay S1, a first precharge relay Sp1, and a first precharge resistor Rp1.
  • the first precharge relay Sp1 and the first precharge resistor Rp1 are connected in series to form a precharge circuit, and the precharge circuit and the first main relay S1 are connected in parallel to form a parallel circuit.
  • the first precharge relay Sp1 is turned on to precharge the load-side capacitance component with a current limited by the first precharge resistor Rp1, and then the first main relay S1 is turned on to enter the load. Current can be suppressed. After the first main relay S1 is turned on, the first precharge relay Sp1 is turned off to eliminate the power consumption of the first precharge resistor Rp1.
  • the electromagnetic relay is a switch that controls ON / OFF of a contact by passing a current through a coil.
  • a semiconductor switch may be used for at least one of the first main relay S1 and the first precharge relay Sp1.
  • the first rack management unit 50a is realized by cooperation of hardware resources and software resources. As hardware resources, microcomputers, DSPs, FPGAs, other LSIs, and analog elements can be used. Firmware and other programs can be used as software resources.
  • the first rack management unit 50a receives the voltage, current, and temperature of each cell from the monitoring circuit of each power storage module 11-1n via the in-rack communication line 90a.
  • the first rack management unit 50a estimates the SOC (State Of Charge) and SOH (State Of Health) of the cell based on the received voltage, current, and temperature of the cell.
  • the SOC and SOH may be estimated by the monitoring circuit of each power storage module 11-1n.
  • the SOC can be estimated by the current integration method or the OCV (Open Circuit Voltage) method.
  • SOH is defined by the ratio of the current full charge capacity to the initial full charge capacity, and the lower the value, the more the deterioration is progressing.
  • the SOH may be obtained by capacity measurement by complete charge / discharge, or may be estimated by referring to a table in which the relationship between the internal resistance and the SOH obtained in advance by experiments or simulations is described.
  • the internal resistance can be estimated by dividing a voltage drop generated when a constant current is passed through the battery for a predetermined time by the constant current.
  • the internal resistance has a relationship that decreases as the temperature increases, and increases as the deterioration of the battery proceeds.
  • the first rack management unit 50a estimates SOP (State Of Power) for charging and discharging the first power storage rack 10 respectively.
  • SOP of the first power storage rack 10 indicates the maximum power that can be charged / discharged with respect to the first power storage rack 10.
  • the SOPc at the time of charging can be obtained by multiplying the maximum charging current Ic not exceeding the upper limit voltage (full charge voltage) Vmax of the first power storage rack 10 by the terminal voltage V of the first power storage rack 10 (the following equation) 1 and 2).
  • the SOPd at the time of discharging can be obtained by multiplying the maximum discharge current Id not lower than the lower limit voltage (discharge end voltage) Vmin of the first power storage rack 10 by the terminal voltage V of the first power storage rack 10 ( (See the following formulas 3 and 4).
  • SOPc IcV (Formula 1)
  • Ic (Vmax ⁇ E) / R (Formula 2)
  • SOPd IdV (Formula 3)
  • Id (E ⁇ Vmin) / R (Formula 4)
  • E electromotive force
  • R internal resistance.
  • the electromotive force E depends on the SOC, and is higher as the SOC is higher.
  • the SOPc at the time of charging becomes zero when the first power storage rack 10 reaches the upper limit voltage Vmax, and the SOPd at the time of discharging becomes zero when the first power storage rack 10 reaches the lower limit voltage Vmin.
  • the first rack management unit 50a may estimate by referring to a table in which the relationship between the SOC and the SOP obtained in advance through experiments and simulations is described. Note that the SOP calculated by the above formulas 1 and 3 decreases as the SOH decreases. Therefore, the current SOP can be estimated by multiplying the current SOH by the initial SOP specified by the table reference.
  • the SOP (rack SOP) of the power storage rack alone is not limited to that defined by the above formulas 1 and 3, and may be equal to the maximum rated power of the rack.
  • the charging method is pseudo CC / CV, the charging SOP may be reduced from the maximum rated power of the rack to a smaller value.
  • the first rack management unit 50a is connected to the master management device 50m, the second rack management unit 50b of the second power storage rack 20, and the third rack management unit 50c of the third power storage rack 30 via the inter-rack communication line 80.
  • the inter-rack communication line 80 a communication method compliant with standards such as RS-485, Ethernet (registered trademark), CAN (Controller-Area-Network) can be used.
  • the first rack management unit 50a transmits the monitoring data of the first power storage rack 10 to the master management device 50m via the inter-rack communication line 80.
  • at least the value of the current flowing through the first power storage rack 10 and the SOP of the first power storage rack 10 are transmitted to the master management device 50m as monitoring data.
  • the master management device 50m is realized by cooperation of hardware resources and software resources. As hardware resources, microcomputers, DSPs, FPGAs, other LSIs, and analog elements can be used. Firmware and other programs can be used as software resources.
  • the master management device 50m manages the plurality of power storage racks 10-30 by communicating with the rack management units 50a-50c via the inter-rack communication line 80.
  • the master management device 50m notifies the control signal to the control circuit of the power conversion device 60.
  • the master management device 50m may be configured to be capable of external communication with a system operator management device and / or a system operator management device (not shown).
  • the master management device 50m calculates the SOP (hereinafter referred to as system SOP) of the plurality of power storage racks 10-30 connected in parallel.
  • the system SOP can be calculated by the following (formula 5).
  • System SOP minimum rack SOP * (total rack current / maximum rack current) (Formula 5)
  • the minimum rack SOP is the minimum value among the SOPs of the plurality of power storage racks 10-30.
  • the total rack current is the total value of the currents flowing through the plurality of power storage racks 10-30.
  • the rack maximum current is the maximum value of each current flowing through each of the plurality of power storage racks 10-30. If the SOP and current values of the plurality of power storage racks 10-30 are ideally the same, the system SOP has a value obtained by multiplying the rack SOP by the number of parallel connections (3 in the example of FIG. 1). On the other hand, the system SOP decreases as the current deviation between the plurality of power storage racks 10-30 increases.
  • Equation 5 instead of [Minimum Rack SOP], [(Rack Current / Rack SOP) Rack SOP with the Minimum Value] may be used. Further, when the current of the power storage rack is zero or small, the system SOP can be estimated from various parameters (internal resistance, wiring resistance, etc.) that determine the ratio of current deviation.
  • the bidirectional DC-DC converter of the power converter 60 can be controlled using the system SOP. Moreover, it can also control using the suppression electric power value mentioned later.
  • the master management device 50m When the power storage system 1 is charged, the master management device 50m notifies the calculated system SOPc to the control circuit of the power conversion device 60 as the upper limit value of the charging power.
  • the control circuit of the power conversion device 60 controls charging of the bidirectional DC-DC converter using a value obtained by dividing the system SOPc acquired from the master management device 50m by the system voltage as an upper limit current value.
  • the master management device 50m notifies the calculated system SOPd to the control circuit of the power conversion device 60 as the upper limit value of the discharge power.
  • the control circuit of the power conversion device 60 controls the discharge of the bidirectional DC-DC converter by using a value obtained by dividing the system SOPd acquired from the master management device 50m by the system voltage as an upper limit current value.
  • the control circuit of the power conversion device 60 obtains a value obtained by dividing the system SOPc or the system SOPd acquired from the master management device 50m by the system voltage. As a value, charge control or discharge control of the bidirectional inverter is performed.
  • the circuit configuration is such that no DC-DC converter is interposed between the power conversion device 60 and each power storage rack 10-30, the current flowing through each power storage rack 10-30 cannot be individually controlled. .
  • a current obtained by dividing the charge / discharge current of the power conversion device 60 flows through each power storage rack 10-30.
  • the rack management unit 50 of the power storage rack immediately notifies the master management device 50m of a disconnection request signal without turning off the switch unit 40.
  • FIG. 1 General-purpose electromagnetic relays have polarity, and there are directions in which current is likely to be interrupted and directions that are difficult to interrupt. If a large current flows in a direction that is difficult to cut off, it may cause a failure such as welding. Bipolar relays exist, but the cost is high.
  • the master management device 50m When the master management device 50m receives the disconnection request signal from the rack management unit 50 of a specific power storage rack, the upper limit value of the charging power or the discharging power of the power conversion device 60 is set in the system when the power reduction can be allowed depending on the operation state of the system.
  • the SOP is reduced to a predetermined suppression power value.
  • the suppression power value is not a fixed value but a variable value, and the master management device 50m determines the suppression power value based on at least one of the operation mode, the disconnection history, and the manual setting of the power storage system 1. If the power reduction cannot be allowed due to the operating status of the system, the switch unit 40 is turned off without reducing the power. In the case of a minor abnormality, the switch unit 40 is not turned off until the power reduction can be allowed. It is preferable to turn off the switch unit 40 when the state is continued and the power reduction can be allowed.
  • the mechanical durability of the electromagnetic relay decreases as the number of interruptions increases, and the electrical durability decreases as a large current flows through the contact.
  • the overall durability of the electromagnetic relay is defined by an endurance curve defined by the contact current and the number of interruptions. The smaller the contact current at the time of interruption, the greater the upper limit of use. This endurance curve is defined for each polarity.
  • the master management device 50m determines the suppression power value to a value at which the current flowing through one electromagnetic relay becomes 10 A or less, for example. Even in the case of a high-voltage, high-capacity electromagnetic relay, if the contact current is about 10 A or less, the influence on electrical durability is reduced. It is also conceivable to set the contact current to 0A. In that case, it is necessary to flow a new current for calculating the system SOP after the electromagnetic relay included in the switch unit 40 is turned off. If a current of 10 A or less ( ⁇ 0 A) is allowed to flow when the electromagnetic relay is turned off, the switching of the current value can be reduced by one time.
  • the master management device 50m may determine the suppression power value to a value at which the current flowing through the electromagnetic relay becomes lower when the number of times the electromagnetic relay is cut off is approaching the upper limit of use. Thereby, the possibility that the electromagnetic relay becomes unusable due to its life before reaching the upper limit of use can be reduced.
  • the master management device 50m does not change the upper limit value of the discharge power of the power conversion device 60 when the operation mode of the power storage system 1 is the self-sustaining mode and the load 3 is an important load. That is, the discharge power of the power converter 60 is not reduced.
  • the power storage system 1 is used as a backup power source for a load that does not allow an instantaneous power failure that is installed in a medical facility, a communication facility, a data center, or the like when a power failure occurs in the power system 2, the discharged power of the power conversion device 60 Does not decrease.
  • the operation mode of the power storage system 1 is the grid connection mode
  • the charging power or discharging power of the power conversion device 60 is reduced to the suppression power value.
  • the operation mode of the power storage system 1 is the self-sustained mode
  • the load 3 is a load that can tolerate an instantaneous power failure
  • the discharge power of the power conversion device 60 is reduced to the suppression power value.
  • the master management device 50m can determine the suppression power value as a setting value manually set by the administrator or the user. If a manually set value exists, the set value basically takes precedence.
  • the master management device 50m notifies the determined suppression power value to the control circuit of the power conversion device 60 as the upper limit value of the charge / discharge power.
  • the control circuit of the power conversion device 60 performs charge / discharge control of the bidirectional DC-DC converter using a value obtained by dividing the suppression power value acquired from the master management device 50m by the system voltage as an upper limit current value.
  • the master management device 50m transmits a disconnection instruction signal to the rack management unit 50 that has transmitted the disconnection request signal after the charge / discharge power of the power conversion device 60 has decreased to the suppressed power value.
  • the rack management unit 50 receives the release instruction signal, the rack management unit 50 turns off the switch unit 40 of its own storage rack.
  • the master management device 50m acquires the rack SOP and the current value from the rack management unit 50 of the power storage racks remaining in the power storage system 1, and recalculates the system SOP.
  • the master management device 50m notifies the recalculated system SOP to the control circuit of the power conversion device 60 as the upper limit value of the charging / discharging power.
  • the control circuit of the power conversion device 60 performs charge / discharge control of the bidirectional DC-DC converter using a value obtained by dividing the system SOP acquired from the master management device 50m by the system voltage as an upper limit current value.
  • the disconnected storage rack is returned to the storage system 1 during charging / discharging of the storage system 1 during charging / discharging of the storage system 1
  • the remaining power of the power storage rack scheduled to be connected is required to be close to the average remaining power of the connected power storage racks being charged / discharged.
  • the difference in remaining amount between the two is large, a large current flows between the two.
  • FIG. 2 is a flowchart showing the operation of the power storage system 1 according to the embodiment of the present invention when the disconnected power storage rack returns.
  • the master management device 50m receives the connection request signal from the rack management unit 50 of the storage rack to be connected in the disconnected state, the master management device 50m acquires the SOC of the storage rack from the rack management unit 50 of the storage rack, The SOC of each power storage rack is acquired from each management unit 50 of the power storage rack.
  • the master management device 50m calculates the difference between the average SOC of each connected power storage rack and the SOC of the power storage rack to be connected (S10). In addition, when there are many connected electrical storage racks, you may use the median value of SOC instead of the average value of SOC.
  • the master management device 50m compares the calculated SOC difference with the first threshold value (S11).
  • the first threshold value is a threshold value for determining whether the storage rack in the disconnected state can be allowed to be restored as seen from the SOC, and a value derived in advance by experiment or simulation is used.
  • the master management device 50m reduces the upper limit value of the charging power or discharging power of the power conversion device 60 from the system SOP to a predetermined suppression power value (S12).
  • the suppression power value the same value as the suppression power value used at the time of disconnection described above may be used, or a different value may be used at the time of return and disconnection.
  • the master management device 50m acquires the measurement voltage of the storage rack from the rack management unit 50 of the storage rack to be connected, and acquires the measurement voltage of each storage rack from each management unit 50 of the connected storage rack.
  • the measurement voltage of the storage rack to be connected is OCV.
  • the suppression power value is zero
  • the measurement voltage of the connected power storage rack is also OCV.
  • the suppression power value is not zero, the closer the value is to zero, the closer the IR component is to zero, and thus the measured voltage of the connected power storage rack becomes a value close to OCV.
  • the master management device 50m calculates the difference between the average measured voltage of each connected power storage rack and the measured voltage of the power storage rack to be connected (S13).
  • the median value of the measurement voltage may be used instead of the average value of the measurement voltage.
  • the measurement voltage of each single unit of the connected power storage rack is ideally the same, any one measurement voltage of the connected power storage rack may be used.
  • the master management device 50m compares the calculated voltage difference with the second threshold value (S14).
  • the second threshold value is a threshold value for determining whether the storage rack in the disconnected state is allowed to be restored as viewed from the OCV, and a value derived in advance by experiment or simulation is used.
  • the master management device 50m updates the first threshold to a stricter value (S15).
  • the SOC difference is less than the first threshold, the measurement voltage difference should be less than the second threshold.
  • the measurement voltage difference may be greater than or equal to the second threshold.
  • the first threshold value is updated to a value that compensates for the SOC estimation error by adding a value equal to or greater than the difference between the SOC difference and the first threshold value to the first threshold value.
  • the master management device 50m When the measured voltage difference is less than the second threshold (Y in S14), the master management device 50m, based on the difference between the average measured voltage of each connected storage rack and the measured voltage of the storage rack scheduled to be connected, An assumed value of the current flowing through the precharge relay Sp connected to the storage rack to be connected is calculated (S16).
  • the master management device 50m transmits a connection instruction signal to the rack management unit 50 of the storage rack to be connected.
  • the rack management unit 50 receives the connection instruction signal, the rack management unit 50 turns on the precharge relay Sp of its own storage rack (S17).
  • the master management device 50m acquires the measured value of the current flowing through the precharge relay Sp from the rack management unit 50 of the storage rack to be connected, and compares the measured value of the precharge current with the estimated value (S18). When the measured value of the precharge current is larger than the assumed value (N in S18), the master management device 50m transmits a disconnection instruction signal to the rack management unit 50 of the newly connected power storage rack. When the rack management unit 50 receives the release instruction signal, the rack management unit 50 turns off the precharge relay Sp of its own storage rack (S19).
  • the master management device 50m transmits the above-mentioned release instruction signal and updates the first threshold value to a stricter value (S15).
  • S15 a stricter value
  • the measured value of the precharge current should originally be less than the assumed value, but there is an error in the SOC estimation and voltage measurement.
  • the measured value of the precharge current may be larger than the expected value.
  • the first threshold value is updated to a value that compensates for the SOC estimation and the voltage measurement error by adding a value equal to or larger than the difference between the SOC difference corresponding to the measured voltage difference and the first threshold value to the first threshold value.
  • step S18 if the measured value of the precharge current is equal to or less than the expected value (Y in S18), the main relay of the own storage rack is turned on (S20), and then the precharge relay Sp is turned off (S21).
  • Master management device 50m calculates system SOP of power storage system 1 including the newly connected power storage rack.
  • the master management device 50m sets the calculated new system SOP in the power conversion device 60 and updates the system SOP (S22).
  • the power converter 60 cancels suppression of charging / discharging power after updating the system SOP (S23).
  • FIG. 3 is a circuit diagram for explaining an operation example of the power storage system 1 according to the embodiment of the present invention.
  • FIG. 4 is a timing chart for explaining an operation example of the power storage system 1 according to the embodiment of the present invention.
  • FIG. 3 consider a situation in which the second power storage rack 20 is connected to the power line 70 and returned to the power storage system 1 from the connected state of the first power storage rack 10 and the disconnected state of the second power storage rack 20.
  • the master management device 50m performs connection determination processing for the second power storage rack 20.
  • the second rack management unit 50b turns on the second precharge relay Sp2, and connects the second power storage rack 20 to the power storage system 1. If there is an ideal state where there is no current deviation between the first power storage rack 10 and the second power storage rack 20, the system SOP of the power storage system 1 is the sum of the SOP of the first power storage rack 10 and the SOP of the second power storage rack 20. become.
  • the master management device 50m After the second power storage rack 20 is connected, the master management device 50m measures the current deviation between the first power storage rack 10 and the second power storage rack 20 while the charge / discharge power of the power conversion device 60 is being suppressed. The system SOP of the system 1 is calculated. At time t3, the master management device 50m updates the system SOP and sets the system SOP in the power conversion device 60, and cancels the suppression of the charge / discharge power of the power conversion device 60.
  • the current deviation between the storage rack to be connected and the storage rack in the connected state is measured in a state where the charge / discharge power of the power conversion device 60 is suppressed, and the current The system SOP is updated based on the deviation, and the suppression of the charge / discharge power is released.
  • the system SOP is calculated by taking into account not only the number of connected storage racks but also the decrease due to current deviation. Thereby, it is possible to prevent an excessive current from flowing in some of the power storage racks during charging / discharging of the plurality of power storage racks connected in parallel. Even when a current deviation occurs after connection, charging / discharging can be continued without each storage rack exceeding the SOP of each storage rack alone. Further, in calculating the system SOP, it is not necessary to estimate the internal resistance of each power storage rack, so that the calculation cost and memory cost can be reduced.
  • the life of the electromagnetic relay can be extended by adaptively determining the suppression power value based on the operation history of the electromagnetic relay.
  • the power storage system 1 can continue to charge and discharge safely without inrush current flowing into the power storage rack to be connected.
  • the SOC difference between the storage racks to be connected and the connected storage racks is determined in steps S10 and S11, and the measured voltage difference between them is determined in steps S13 and S14.
  • the measured voltage difference between them may be determined also in steps S10 and S11, and the measured voltage difference between them may be determined also in steps S13 and S14. Since the currents flowing through the connected power storage racks are different between steps S10 and S11 and steps S13 and S14, the significance of double check also exists in this case.
  • the master management device 50m is provided outside the rack management units 50a-50c, but may be provided in any one of the rack management units 50a-50c.
  • the AC power input from the power system (2) is A power conversion unit (60) for converting into direct current power and charging the plurality of power storage blocks (10-30);
  • the SOP of the plurality of power storage blocks (10-30) is calculated based on each single SOP (State Of Power) of the plurality of power storage blocks (10-30), and the calculated total SOP is used as the power conversion unit.
  • the management unit (50m) calculates a ratio obtained by dividing the total value of the currents flowing through the restored storage block (10-30) by the maximum value of the respective currents to determine the restored storage block ( The power storage system (1) according to item 1, wherein the SOP of the entire power storage block (10-30) after the return is calculated by multiplying the minimum value of the individual SOPs of 10-30) . According to this, it is possible to calculate the SOP of the entire storage block (10-30) after return, reflecting the current variation of each single unit of the storage block (10-30) after return.
  • the management unit (50m) removes at least one power storage block (10) from the state where at least one of the plurality of power storage blocks (10-30) is disconnected (10, 30). Before returning to the parallel connection, the upper limit value of the power or current flowing through the power conversion unit (60) is reduced to a predetermined power value or current value, and then the at least one switch (40a) is turned on. 3.
  • the power storage according to item 1 or 2 wherein the SOP of the plurality of power storage blocks (10-30) after the return is calculated in a state where the upper limit value is reduced to a predetermined power value or current value.
  • the management unit (50m) has a state of charge (SOC) value of at least one storage block (10) in a state where at least one of the storage blocks (10-30) is disconnected. And at least one switch (40a) is not turned on when the difference between the average value or the median value of the SOCs of the remaining power storage blocks (20, 30) exceeds a predetermined first threshold value.
  • the electrical storage system (1) in any one of 1-3. According to this, it is possible to prevent an excessive current from being generated by turning on at least one switch (40a).
  • the management unit (50m) measures the measured voltage of the at least one power storage block (10) after the upper limit value of power or current flowing through the power conversion unit (60) is reduced to a predetermined power value or current value. And the difference between the average value or the median of the measured voltages of the remaining power storage blocks (20, 30) or the measured voltage of any one of the remaining power storage blocks exceeds a predetermined second threshold value, The power storage system according to any one of claims 1 to 4, wherein the turn-on of the at least one switch (40a) is stopped. According to this, by determining whether or not to connect the storage block (10) to be connected based on the voltage difference measured in a state where the upper limit value of the power conversion device (60) is lowered, The determination accuracy can be improved.
  • the switch (40a) A main switch (S1); A precharge switch (Sp1) connected in parallel with the main switch (S1) and a precharge circuit in which a resistor (Rp1) is connected in series;
  • the management unit (50m) reduces the upper limit value of power or current flowing to the power conversion unit (60) to a predetermined power value or current value, and then turns on the main switch (S1). 6.
  • the power storage system (1) according to any one of items 1 to 5, wherein a precharge switch (Sp1) is turned on. According to this, generation
  • a plurality of power storage blocks (10-30) connected in parallel and DC power discharged from the plurality of power storage blocks (10-30) are converted into AC power and output to the power system (2) or the load (3)
  • the management device (50m) The SOP of the plurality of power storage blocks (10-30) is calculated based on each single SOP (State Of Power) of the plurality of power storage blocks (10-30), and the calculated total SOP is used as the power conversion unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Protection Of Static Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

蓄電システム(1)において、管理部(50m)は、並列接続された複数の蓄電ブロック(10-30)の各単体のSOP(State Of Power)に基づいて複数の蓄電ブロック(10-30)全体のSOPを算出する。管理部(50m)は、複数の蓄電ブロック(10-30)の少なくとも1つ(10)が解列した状態から、当該少なくとも1つのスイッチ(40a)がターンオンして当該少なくとも1つの蓄電ブロック(10)が並列接続に復帰するとき、当該蓄電ブロック(10)の復帰後の蓄電ブロック(10-30)全体のSOPを復帰後の蓄電ブロック(10-30)の各単体の電流バラツキに基づいて算出し、電力変換部(60)に流す電力または電流の上限値を設定する。

Description

蓄電システム、管理装置
 本発明は、複数の蓄電ブロックが並列接続された蓄電システム、管理装置に関する。
 近年、蓄電システムが普及してきており、ピークシフト、バックアップ、FR(Frequency Regulation)等に使用される。大規模な蓄電システムは、例えば複数の蓄電モジュールが直列接続されて構成された蓄電ブロックが、複数並列に接続されて構築される。以下本明細書では蓄電ブロックとして、複数の蓄電モジュールが積層されて構成される蓄電ラックを想定する。
 蓄電システムの充放電中に、解列していた蓄電ラックを復帰させる際の蓄電ラック間の電流ばらつきを抑制するために、各蓄電ラックの内部抵抗を推定して、復帰後の電流平均値を一定にするように制御する方法が提案されている(例えば、特許文献1参照)。
国際公開第2014/128941号
 上述の制御の精度は内部抵抗の推定精度に依存しており、内部抵抗の推定精度を高めると計算コストやメモリコストが大きくなる。また解列していた蓄電ラックの復帰直後は電流が揃っていたとしても、その後に電流ばらつきが発生した場合、充放電電力が急変し、一部の蓄電ラックに過大電流が流れる可能性がある。
 本発明はこうした状況に鑑みなされたものであり、その目的は、複数の蓄電ブロックが並列接続された蓄電システムの運転中に、一部の蓄電ブロックに過大電流が流れることを抑制する技術を提供することにある。
 上記課題を解決するために、本発明のある態様の蓄電システムは、並列接続された複数の蓄電ブロックと、前記複数の蓄電ブロックから放電される直流電力を交流電力に変換して電力系統または負荷に出力し、前記電力系統から入力される交流電力を直流電力に変換して前記複数の蓄電ブロックに充電する電力変換部と、前記複数の蓄電ブロックと、前記電力変換部との間にそれぞれ介在する複数のスイッチと、前記複数の蓄電ブロックの各単体のSOP(State Of Power)に基づいて前記複数の蓄電ブロック全体のSOPを算出し、算出した全体のSOPを前記電力変換部の充電および放電の少なくとも一方の電力または電流の上限値に設定する管理部と、を備える。前記複数のスイッチの少なくとも1つがターンオフして前記複数の蓄電ブロックの少なくとも1つが解列した状態から、当該少なくとも1つのスイッチがターンオンして当該少なくとも1つの蓄電ブロックが並列接続に復帰するとき、当該蓄電ブロックの復帰後の蓄電ブロック全体のSOPを前記復帰後の蓄電ブロックの各単体の電流バラツキに基づいて算出し、前記電力変換部に流す電力または電流の上限値を設定する。
 本発明によれば、複数の蓄電ブロックが並列接続された蓄電システムの運転中に、一部の蓄電ブロックに過大電流が流れることを抑制することができる。
本発明の実施の形態に係る蓄電システムの構成を示す図である。 本発明の実施の形態に係る蓄電システムの、解列された蓄電ラックが復帰する際の動作を示すフローチャートである。 本発明の実施の形態に係る蓄電システムの動作例を説明するための回路図である。 本発明の実施の形態に係る蓄電システムの動作例を説明するためのタイミングチャートである。
 図1は、本発明の実施の形態に係る蓄電システム1の構成を示す図である。蓄電システム1と電力系統2間の配電線に負荷3が接続される。蓄電システム1は、並列接続された複数の蓄電ラック、電力変換装置60、マスタ管理装置50mを備える。図1では3つの蓄電ラック(第1蓄電ラック10、第2蓄電ラック20、第3蓄電ラック30)が電力変換装置60に対して並列に接続される例を示している。
 電力変換装置60は、複数の蓄電ラック10-30から放電された直流電力を交流電力に変換して電力系統2または負荷3に出力し、電力系統2から入力される交流電力を直流電力に変換して並列接続された複数の蓄電ラック10-30に充電する。電力変換装置60は、一般的なパワーコンディショナで構成することができ、双方向インバータ、及び制御回路を備え、必要に応じて双方向DC-DCコンバータを備える。以下の説明では、電力変換装置60が双方向DC-DCコンバータを備える例を想定する。
 双方向DC-DCコンバータは、複数の蓄電ラック10-30に充電される又は複数の蓄電ラック10-30から放電される直流電力の電流/電圧を制御可能であり、例えば、CC/CV充電、CC/CV放電が可能である。双方向インバータは直流電力から交流電力への変換、又は交流電力から直流電力への変換を実行する。制御回路は、マスタ管理装置50mからの指示に従い、双方向DC-DCコンバータ及び双方向インバータを制御する。
 第1蓄電ラック10は、直列接続された複数の蓄電モジュール11-1n、第1ラック管理部50a、第1スイッチ部40aを備える。各蓄電モジュール11-1nは、直列または直並列接続された複数のセル及び監視回路を含む。セルには、リチウムイオン電池セル、ニッケル水素電池セル、電気二重層キャパシタセル、リチウムイオンキャパシタセル等を用いることができる。以下、リチウムイオン電池セルを使用する例を想定する。
 各蓄電モジュール11-1nの監視回路は、各蓄電モジュール11-1n内の複数のセルの電圧、電流、温度を検出する。監視回路は、検出したセルの電圧、電流、温度をラック内通信線90aを介して第1ラック管理部50aに送信する。各監視回路と第1ラック管理部50a間の通信には例えば、RS-485規格に準拠したシリアル通信を使用することができる。なお、各監視回路と第1ラック管理部50a間は無線通信で接続されてもよいし、電力線通信で接続されてもよい。
 第1スイッチ部40aは、電力変換装置60に繋がる電力線70と、直列接続された複数の蓄電モジュール11-1nとの間に介在する。第1スイッチ部40aは第1メインリレーS1、第1プリチャージリレーSp1及び第1プリチャージ抵抗Rp1を含む。第1プリチャージリレーSp1と第1プリチャージ抵抗Rp1は直列接続されてプリチャージ回路を構成し、当該プリチャージ回路と第1メインリレーS1が並列接続されて並列回路を構成する。
 先に第1プリチャージリレーSp1をターンオンすることにより負荷側の容量成分に第1プリチャージ抵抗Rp1で制限された電流でプリチャージし、後に第1メインリレーS1をターンオンすることにより負荷への突入電流を抑制することができる。第1メインリレーS1のターンオン後は第1プリチャージリレーSp1をターンオフして、第1プリチャージ抵抗Rp1の消費電力を解消する。
 本明細書では、第1メインリレーS1及び第1プリチャージリレーSp1に汎用的な電磁リレーを使用する例を想定する。電磁リレーは、コイルに電流を流すことにより接点のオン/オフを制御するスイッチである。なお第1メインリレーS1及び第1プリチャージリレーSp1の少なくとも一方に半導体スイッチを使用してもよい。
 第1ラック管理部50aは、ハードウェア資源とソフトウェア資源の協働により実現される。ハードウェア資源として、マイクロコンピュータ、DSP、FPGA、その他のLSI、アナログ素子を利用できる。ソフトウェア資源としてファームウェア等のプログラムを利用できる。第1ラック管理部50aは、各蓄電モジュール11-1nの監視回路からラック内通信線90aを介して各セルの電圧、電流、温度を受信する。
 第1ラック管理部50aは、受信したセルの電圧、電流、温度をもとに、セルのSOC(State Of Charge)及びSOH(State Of Health)を推定する。なおSOC及びSOHの推定は、各蓄電モジュール11-1nの監視回路で行ってもよい。
 SOCは、電流積算法またはOCV(Open Circuit Voltage)法により推定することができる。SOHは、初期の満充電容量に対する現在の満充電容量の比率で規定され、数値が低いほど劣化が進行していることを示す。SOHは、完全充放電による容量計測により求めてもよいし、予め実験やシミュレーションにより得られた内部抵抗とSOHとの関係が記述されたテーブルを参照して推定されてもよい。内部抵抗は、電池に定電流を所定時間流した際に発生する電圧降下を、当該定電流で割ることにより推定することができる。内部抵抗は温度が上がるほど低下する関係にあり、電池の劣化が進行するほど増加する関係にある。
 第1ラック管理部50aは、第1蓄電ラック10の充電および放電のSOP(State Of Power)をそれぞれ推定する。第1蓄電ラック10のSOPは、第1蓄電ラック10に対して充放電可能な最大の電力を示す。充電時のSOPcは、第1蓄電ラック10の上限電圧(満充電電圧)Vmaxを上回らない最大の充電電流Icに、第1蓄電ラック10の端子電圧Vを掛けることにより求めることができる(下記式1、2参照)。一方、放電時のSOPdは、第1蓄電ラック10の下限電圧(放電終止電圧)Vminを下回らない最大の放電電流Idに、第1蓄電ラック10の端子電圧Vを掛けることにより求めることができる(下記式3、4参照)。
 SOPc=IcV ・・・(式1)
 Ic=(Vmax-E)/R ・・・(式2)
 SOPd=IdV ・・・(式3)
 Id=(E-Vmin)/R ・・・(式4)
 Eは起電力、Rは内部抵抗。
 起電力EはSOCに依存し、SOCが高くなるほど高くなる関係にある。充電時のSOPcは、第1蓄電ラック10が上限電圧Vmaxに到達するとゼロになり、放電時のSOPdは、第1蓄電ラック10が下限電圧Vminに到達するとゼロになる。
 第1ラック管理部50aは、予め実験やシミュレーションにより得られたSOCとSOPとの関係が記述されたテーブルを参照して推定してもよい。なお、上記式1,3により算出されるSOPは、SOHの低下に従い減少する。従って、テーブル参照により特定した初期状態のSOPに現在のSOHを掛けることにより現在のSOPを推定することができる。ところで、蓄電ラック単体のSOP(ラックSOP)は、上記式1,3により定義されるものに限定されず、ラックの最大定格電力と等しくすることもある。この場合、蓄電ラック単体において放電終止時(SOC=0%)の放電ラックSOP=0とし、例えばSOC=2%となった時点で、放電SOPをラックの最大定格電力と等しい値に復帰させ、満充電時(SOC=100%)の充電ラックSOP=0とし、例えばSOC=98%となった時点で、充電SOPをラックの最大定格電力と等しい値に復帰させる。また、充電方式が疑似CC/CVの場合、充電SOPをラックの最大定格電力から小さい値に絞っていく場合もある。
 第1ラック管理部50aは、ラック間通信線80を介してマスタ管理装置50m、第2蓄電ラック20の第2ラック管理部50b、及び第3蓄電ラック30の第3ラック管理部50cと接続される。ラック間通信線80を介した通信には、RS-485、イーサネット(登録商標)、CAN(Controller Area Network)等の規格に準拠した通信方式を使用することができる。
 第1ラック管理部50aはラック間通信線80を介して、第1蓄電ラック10の監視データをマスタ管理装置50mに送信する。本実施の形態では監視データとして少なくとも、第1蓄電ラック10に流れる電流の値、第1蓄電ラック10のSOPをマスタ管理装置50mに送信する。
 第2蓄電ラック20及び第3蓄電ラック30の構成および動作は、第1蓄電ラック10の構成および動作と同様であるため、説明を省略する。
 マスタ管理装置50mは、ハードウェア資源とソフトウェア資源の協働により実現される。ハードウェア資源として、マイクロコンピュータ、DSP、FPGA、その他のLSI、アナログ素子を利用できる。ソフトウェア資源としてファームウェア等のプログラムを利用できる。マスタ管理装置50mは、ラック間通信線80を介してラック管理部50a-50cと通信することにより、複数の蓄電ラック10-30を管理する。またマスタ管理装置50mは、電力変換装置60の制御回路に制御信号を通知する。なお、マスタ管理装置50mは、図示しないシステム運用者の管理装置および/または系統運用者の管理装置と外部通信することが可能な構成であってもよい。
 マスタ管理装置50mは、並列接続された複数の蓄電ラック10-30全体のSOP(以下、システムSOPという)を算出する。システムSOPは下記(式5)により算出することができる。
 システムSOP=最小ラックSOP*(ラック電流合計/ラック最大電流) ・・・(式5)
 最小ラックSOPは、複数の蓄電ラック10-30のSOPの内の最小値である。ラック電流合計は、複数の蓄電ラック10-30にそれぞれ流れる各電流の合計値である。ラック最大電流は、複数の蓄電ラック10-30にそれぞれ流れる各電流の最大値である。複数の蓄電ラック10-30のSOPと電流値が理想的に同じであれば、システムSOPはラックSOPに並列接続数(図1の例では3)を掛けた値になる。これに対して、複数の蓄電ラック10-30間の電流偏差が大きくなるほど、システムSOPは低下する。なお上記式5において、[最小ラックSOP]の代わりに、[(ラック電流/ラックSOP)が最小値となるラックのSOP]を使用してもよい。また、蓄電ラックの電流がゼロ、または小さい場合には、電流偏差の比率を決定する各種パラメータ(内部抵抗、配線抵抗など)よりシステムSOPを推定することもできる。
 電力変換装置60の双方向DC-DCコンバータは、システムSOPを使用して制御することができる。また後述する抑制電力値を使用して制御することもできる。マスタ管理装置50mは蓄電システム1の充電時、算出したシステムSOPcを電力変換装置60の制御回路に充電電力の上限値として通知する。電力変換装置60の制御回路は、マスタ管理装置50mから取得したシステムSOPcを系統電圧で割った値を上限電流値として双方向DC-DCコンバータを充電制御する。またマスタ管理装置50mは蓄電システム1の放電時、算出したシステムSOPdを電力変換装置60の制御回路に放電電力の上限値として通知する。電力変換装置60の制御回路は、マスタ管理装置50mから取得したシステムSOPdを系統電圧で割った値を上限電流値として双方向DC-DCコンバータを放電制御する。なお、電力変換装置60が双方向DC-DCコンバータを備えていない場合、電力変換装置60の制御回路は、マスタ管理装置50mから取得したシステムSOPcあるいはシステムSOPdを系統電圧で割った値を上限電流値として双方向インバータを充電制御あるいは放電制御する。
 本実施の形態では、電力変換装置60と各蓄電ラック10-30の間にDC-DCコンバータが介在しない回路構成であるため、各蓄電ラック10-30に流れる電流を個別に制御することはできない。各蓄電ラック10-30の抵抗成分に応じて、電力変換装置60の充放電電流が按分された電流が各蓄電ラック10-30に流れる。
 以上の構成において、蓄電システム1の充放電中に、少なくとも1つの蓄電ラックを解列させる必要が発生する場合がある。例えば、特定の蓄電ラックに異常が検出されたときである。具体的には特定の蓄電ラックに通信エラーが発生したり、特定の蓄電ラック内のセルに緊急性が無いと判断された過電流、過電圧、過小電圧、高温異常、低温異常が発生した場合である。また、特定の蓄電ラックの充電電力がラックSOPcを超えた場合、特定の蓄電ラックの放電電力がラックSOPdを超えた場合、あるいは新たに算出されたシステムSOPに電力変換装置60が対応できない状態になると、当該特定の蓄電ラックを解列させる必要がある。当該蓄電ラックのラック管理部50は、これらの事象が発生すると、直ぐにスイッチ部40をターンオフさせずに、解列要求信号をマスタ管理装置50mに通知する。
 蓄電システム1の充放電中に特定の蓄電ラックを解列する場合、電流が流れた状態で当該蓄電ラックのスイッチ部40をターンオフする必要があり、電流が流れた状態でスイッチ部40をターンオフすると、スイッチ部40を構成する電磁リレーを劣化させる要因となる。また汎用的な電磁リレーは極性を持っており、電流を遮断しやすい方向と遮断しにくい方向がある。遮断しにくい方向に大きな電流が流れると、溶着等の故障を発生させる要因となる。なお両極性のリレーも存在するが、コスト高となる。
 マスタ管理装置50mは特定の蓄電ラックのラック管理部50から解列要求信号を受信すると、システムの動作状況により電力低下を許容できる場合、電力変換装置60の充電電力または放電電力の上限値をシステムSOPから、所定の抑制電力値に低下させる。抑制電力値は固定値ではなく可変値であり、マスタ管理装置50mは、蓄電システム1の運転モード、解列履歴、及びマニュアル設定の少なくとも1つをもとに抑制電力値を決定する。システムの動作状況により電力低下を許容できない場合、電力を低下させずにスイッチ部40をターンオフし、また、軽微な異常の場合、電力低下を許容できる状態までスイッチ部40をターンオフせずにそのままの状態を継続し、電力低下を許容できる時点でスイッチ部40をターンオフすることが好ましい。
 電磁リレーは遮断回数が多くなるほど機械的な耐久性が低下し、接点に大きな電流が流れるほど電気的な耐久性が低下する。電磁リレーの総合的な耐久性は、接点電流と遮断回数で規定される耐久曲線により定義され、遮断時の接点電流が小さいほど使用上限回数が多くなる。この耐久曲線は極性ごとに定義される。
 マスタ管理装置50mは抑制電力値を、例えば1つの電磁リレーに流れる電流が10A以下になる値に決定する。高電圧、高容量の電磁リレーであっても、接点電流が10A以下程度であれば、電気的な耐久性に与える影響は小さくなる。なお接点電流を0Aにすることも考えられる。その場合はスイッチ部40に含まれる電磁リレーのターンオフ後に、新たなシステムSOP算出用の電流を流す必要がある。電磁リレーをターンオフする際に10A以下の電流(≠0A)を流しておけば、電流値の切り替えを1回分、減らすことができる。
 マスタ管理装置50mは電磁リレーの遮断回数が使用上限回数に近づいている場合、抑制電力値を、当該電磁リレーに流れる電流がより低くなる値に決定してもよい。これにより、使用上限回数に到達する前に電磁リレーが寿命により使用不能になる可能性を低減させることができる。
 マスタ管理装置50mは、蓄電システム1の運転モードが自立モードであり、負荷3が重要負荷である場合、電力変換装置60の放電電力の上限値を変更しない。即ち、電力変換装置60の放電電力を低下させない。例えば、蓄電システム1が電力系統2の停電時において、医療施設、通信施設、データセンタ等に設置された瞬時停電が許容されない負荷のバックアップ電源として使用されている場合、電力変換装置60の放電電力を低下させない。
 これに対して、蓄電システム1の運転モードが系統連系モードの場合、電力変換装置60の充電電力または放電電力を抑制電力値まで低下させる。また蓄電システム1の運転モードが自立モードの場合であっても、負荷3が瞬時停電を許容できる負荷であれば、電力変換装置60の放電電力を抑制電力値まで低下させる。
 マスタ管理装置50mは抑制電力値を、管理者またはユーザによりマニュアル設定された設定値に決定することができる。マニュアル設定された設定値が存在する場合、基本的に当該設定値が優先する。
 マスタ管理装置50mは決定した抑制電力値を電力変換装置60の制御回路に充電/放電電力の上限値として通知する。電力変換装置60の制御回路は、マスタ管理装置50mから取得した抑制電力値を系統電圧で割った値を上限電流値として双方向DC-DCコンバータを充電/放電制御する。
 マスタ管理装置50mは、電力変換装置60の充電/放電電力が抑制電力値に低下した後、解列要求信号を送信してきたラック管理部50に解列指示信号を送信する。ラック管理部50は当該解列指示信号を受信すると、自己の蓄電ラックのスイッチ部40をターンオフする。
 マスタ管理装置50mは、蓄電システム1に残った蓄電ラックのラック管理部50からラックSOPと電流値を取得し、システムSOPを再計算する。マスタ管理装置50mは再計算したシステムSOPを電力変換装置60の制御回路に充電/放電電力の上限値として通知する。電力変換装置60の制御回路は、マスタ管理装置50mから取得したシステムSOPを系統電圧で割った値を上限電流値として双方向DC-DCコンバータを充電/放電制御する。
 以下、蓄電システム1の充放電中に、解列された蓄電ラックを蓄電システム1に復帰させる場合を考える。解列状態にある接続予定の蓄電ラックを蓄電システム1を再接続する際、接続予定の蓄電ラックの残量が、充放電中の接続済みの蓄電ラックの平均残量に近いことが求められる。両者の間の残量差が大きい場合、両者の間に大きな電流が流れてしまう。
 図2は、本発明の実施の形態に係る蓄電システム1の、解列された蓄電ラックが復帰する際の動作を示すフローチャートである。マスタ管理装置50mは、解列状態にある接続予定の蓄電ラックのラック管理部50から接続要求信号を受信すると、当該蓄電ラックのラック管理部50から当該蓄電ラックのSOCを取得し、接続済みの蓄電ラックの各管理部50から各蓄電ラックのSOCを取得する。マスタ管理装置50mは、接続済みの各蓄電ラックの平均SOCと、接続予定の蓄電ラックのSOCとの差分を算出する(S10)。なお、接続済みの蓄電ラック数が多い場合、SOCの平均値の代わりにSOCの中央値を用いてもよい。
 マスタ管理装置50mは、算出したSOC差と第1閾値とを比較する(S11)。なお第1閾値はSOCでみた、解列状態にある蓄電ラックの復帰を許容できる状態にあることを判定するための閾値であり、実験やシミュレーションにより予め導出した値が使用される。SOC差が第1閾値より小さい場合(S11のY)、マスタ管理装置50mは、電力変換装置60の充電電力または放電電力の上限値をシステムSOPから、所定の抑制電力値に低下させる(S12)。当該抑制電力値は、上述した解列時に使用した抑制電力値と同じ値を使用してもよいし、復帰時と解列時とで異なる値を使用してもよい。
 マスタ管理装置50mは、接続予定の蓄電ラックのラック管理部50から当該蓄電ラックの計測電圧を取得し、接続済みの蓄電ラックの各管理部50から各蓄電ラックの計測電圧を取得する。接続予定の蓄電ラックの計測電圧はOCVである。上記抑制電力値がゼロの場合、接続済みの蓄電ラックの計測電圧もOCVになる。なお上記抑制電力値がゼロでない場合、ゼロに近い値である程、IR成分がゼロに近づくため、接続済みの蓄電ラックの計測電圧はOCVに近い値になる。マスタ管理装置50mは、接続済みの各蓄電ラックの平均計測電圧と、接続予定の蓄電ラックの計測電圧との差分を算出する(S13)。なお、接続済みの蓄電ラック数が多い場合、計測電圧の平均値の代わりに計測電圧の中央値を用いてもよい。また、接続済みの蓄電ラックの各単体の計測電圧は理想的には同一であるので、接続済みの蓄電ラックのいずれか1つの計測電圧を用いてもよい。
 マスタ管理装置50mは、算出した電圧差と第2閾値とを比較する(S14)。なお第2閾値はOCVでみた、解列状態にある蓄電ラックの復帰を許容できる状態にあることを判定するための閾値であり、実験やシミュレーションにより予め導出した値が使用される。計測電圧差が第2閾値以上の場合(S14のN)、マスタ管理装置50mは、第1閾値をより厳格な値に更新する(S15)。SOC差が第1閾値未満の場合、本来、計測電圧差も第2閾値未満になるはずであるが、SOC推定に誤差がある場合、計測電圧差が第2閾値以上になる場合がある。その場合、SOC差と第1閾値との差分以上の値を、第1閾値に加算することにより、SOC推定誤差を補償した値に第1閾値を更新する。
 計測電圧差が第2閾値未満の場合(S14のY)、マスタ管理装置50mは、接続済みの各蓄電ラックの平均計測電圧と、接続予定の蓄電ラックの計測電圧との差分をもとに、接続予定の蓄電ラックに接続されたプリチャージリレーSpに流れる電流の想定値を算出する(S16)。マスタ管理装置50mは、接続予定の蓄電ラックのラック管理部50に接続指示信号を送信する。ラック管理部50は当該接続指示信号を受信すると、自己の蓄電ラックのプリチャージリレーSpをターンオンする(S17)。
 マスタ管理装置50mは、接続予定の蓄電ラックのラック管理部50からプリチャージリレーSpに流れる電流の計測値を取得し、プリチャージ電流の計測値と上記想定値を比較する(S18)。プリチャージ電流の計測値が想定値より大きい場合(S18のN)、マスタ管理装置50mは、新たに接続された蓄電ラックのラック管理部50に解列指示信号を送信する。ラック管理部50は当該解列指示信号を受信すると、自己の蓄電ラックのプリチャージリレーSpをターンオフする(S19)。
 またマスタ管理装置50mは上記解列指示信号を送信するとともに、第1閾値をより厳格な値に更新する(S15)。SOC差が第1閾値未満であり、計測電圧差も第2閾値未満である場合、本来、プリチャージ電流の計測値が想定値以下になるはずであるが、SOC推定および電圧計測に誤差がある場合、プリチャージ電流の計測値が想定値より大きくなる場合がある。その場合、計測電圧差に対応するSOC差と、第1閾値との差分以上の値を、第1閾値に加算することにより、SOC推定および電圧計測誤差を補償した値に第1閾値を更新する。
 上記ステップS18において、プリチャージ電流の計測値が想定値以下の場合(S18のY)、自己の蓄電ラックのメインリレーをターンオンし(S20)、その後にプリチャージリレーSpをターンオフする(S21)。マスタ管理装置50mは、新たに接続された蓄電ラックを含む蓄電システム1のシステムSOPを算出する。マスタ管理装置50mは、算出した新たなシステムSOPを電力変換装置60に設定してシステムSOPを更新する(S22)。電力変換装置60はシステムSOPの更新後、充放電電力の抑制を解除する(S23)。
 なおシステムSOPの更新と抑制解除の順番を逆にした場合、抑制解除後の充放電電力が新たなシステムSOPを超えてしまうリスクがある。また解列状態にある蓄電ラックを接続する際に電力変換装置60の充放電電力を抑制していないと、当該蓄電ラックを接続した瞬間に、電力変換装置60の充放電電力が新たな3並列のシステムSOPを超えてしまうリスクがある。
 以下、具体的な動作例を挙げて説明する。当該動作例では単純化のため、2つの蓄電ラック10、20が並列接続された蓄電システム1とする。
 図3は、本発明の実施の形態に係る蓄電システム1の動作例を説明するための回路図である。図4は、本発明の実施の形態に係る蓄電システム1の動作例を説明するためのタイミングチャートである。図3に示すように第1蓄電ラック10が接続状態および第2蓄電ラック20が解列状態から、第2蓄電ラック20を電力線70に接続して蓄電システム1に復帰させる場面を考える。
 図4の時刻t1において、マスタ管理装置50mは第2蓄電ラック20の接続判定処理を行う。図4では、第2蓄電ラック20が接続可能と判定され、電力変換装置60の充放電電力が抑制される。これに伴い、第1蓄電ラック10の充放電電力が低下する。時刻t2において、第2ラック管理部50bは第2プリチャージリレーSp2をターンオンし、第2蓄電ラック20を蓄電システム1に接続する。第1蓄電ラック10と第2蓄電ラック20間に電流偏差がない理想的な状態であれば、蓄電システム1のシステムSOPは、第1蓄電ラック10のSOPと第2蓄電ラック20のSOPの合計になる。
 マスタ管理装置50mは、第2蓄電ラック20が接続された後、電力変換装置60の充放電電力の抑制中に、第1蓄電ラック10と第2蓄電ラック20との電流偏差を計測して蓄電システム1のシステムSOPを算出する。時刻t3においてマスタ管理装置50mは、システムSOPを更新して電力変換装置60に設定し、電力変換装置60の充放電電力の抑制を解除する。
 以上説明したように本実施の形態によれば、電力変換装置60の充放電電力を抑制させた状態で、接続予定の蓄電ラックと、接続状態の蓄電ラックとの電流偏差を測定し、当該電流偏差に基づきシステムSOPを更新し、上記充放電電力の抑制を解除する。その際、システムSOPを蓄電ラックの接続数だけでなく、電流偏差による低下分も加味して算出する。これにより、並列接続された複数の蓄電ラックの充放電中に、一部の蓄電ラックに過大電流が流れることを未然に防止することができる。接続後に電流偏差が発生した場合でも、各蓄電ラックが各蓄電ラック単体のSOPを超えることなく、充放電を継続することができる。またシステムSOPの算出において、各蓄電ラックの内部抵抗を推定する必要がないため、計算コスト及びメモリコストを小さくすることができる。
 また、電力変換装置60の充放電電力が低下することにより、計測電圧がOCVに近似することになり、蓄電ラックの残量推定の精度が向上する。また電磁リレーの寿命を延ばすことにもつながる。また電磁リレーの動作履歴などをもとに、抑制電力値を適応的に決定することにより、電磁リレーの寿命を延ばすことができる。
 またプリチャージリレーを設け、想定値を超えるプリチャージ電流が流れた場合にプリチャージリレーをターンオフすることにより、過大電流の発生を防止することができる。また接続シーケンス直前に、他の蓄電ラックが解列して電力線70(例えば、バスバー)の電圧がゼロになっても、突入電流を発生させることなく、解列状態の蓄電ラックを接続することができる。ソフトウェアによる接続判断完了後に、他の蓄電ラックが異常解列した場合でも、接続予定の蓄電ラックに突入電流が流れ込むことなく、蓄電システム1は安全に充放電を継続することができる。
 以上、本発明を実施の形態をもとに説明した。実施の形態は例示であり、それらの各構成要素や各処理プロセスの組み合わせにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。
 上記図2では、ステップS10、S11で接続予定の蓄電ラックと接続済みの蓄電ラック間のSOC差を判定し、ステップS13、S14で両者の計測電圧差を判定した。この点、ステップS10、S11でも両者の計測電圧差を判定し、ステップS13、S14でも両者の計測電圧差を判定してもよい。ステップS10、S11と、ステップS13、S14とで接続済みの蓄電ラックに流れる電流が異なるため、この場合もダブルチェックの意義が存在する。
 上述の実施の形態では、マスタ管理装置50mをラック管理部50a-50cの外に設けたが、ラック管理部50a-50cのいずれかの中に設けてもよい。
 なお、実施の形態は、以下の項目によって特定されてもよい。
[項目1]
 並列接続された複数の蓄電ブロック(10-30)と、
 前記複数の蓄電ブロック(10-30)から放電される直流電力を交流電力に変換して電力系統(2)または負荷(3)に出力し、前記電力系統(2)から入力される交流電力を直流電力に変換して前記複数の蓄電ブロック(10-30)に充電する電力変換部(60)と、
 前記複数の蓄電ブロック(10-30)と、前記電力変換部(60)との間にそれぞれ介在する複数のスイッチ(40a-40c)と、
 前記複数の蓄電ブロック(10-30)の各単体のSOP(State Of Power)に基づいて前記複数の蓄電ブロック(10-30)全体のSOPを算出し、算出した全体のSOPを前記電力変換部(60)の充電および放電の少なくとも一方の電力または電流の上限値に設定する管理部(50m)と、を備え、
 前記複数のスイッチ(40a-40c)の少なくとも1つ(40a)がターンオフして前記複数の蓄電ブロック(10-30)の少なくとも1つ(10)が解列した状態から、当該少なくとも1つのスイッチ(40a)がターンオンして当該少なくとも1つの蓄電ブロック(10)が並列接続に復帰するとき、当該蓄電ブロック(10)の復帰後の蓄電ブロック(10-30)全体のSOPを前記復帰後の蓄電ブロック(10-30)の各単体の電流バラツキに基づいて算出し、前記電力変換部(60)に流す電力または電流の上限値を設定することを特徴とする蓄電システム(1)。
 これによれば、並列接続された複数の蓄電ブロック(10-30)の少なくとも1つ(30)が解列または解列から復帰しても、安定的に運転を継続することができる。
[項目2]
 前記管理部(50m)は、前記復帰後の蓄電ブロック(10-30)をそれぞれ流れる各電流の合計値を、当該各電流の最大値で割って求めた比率を、前記復帰後の蓄電ブロック(10-30)の各単体のSOPの内の最小値に掛けて、前記復帰後の蓄電ブロック(10-30)全体のSOPを算出することを特徴とする項目1に記載の蓄電システム(1)。
 これによれば、復帰後の蓄電ブロック(10-30)の各単体の電流バラツキを反映させた、復帰後の蓄電ブロック(10-30)全体のSOPを算出することができる。
[項目3]
 前記管理部(50m)は、前記複数の蓄電ブロック(10-30)の少なくとも1つ(10)が解列した状態から、当該少なくとも1つの蓄電ブロック(10)を前記蓄電ブロック(20、30)の並列接続に復帰させる前に、前記電力変換部(60)に流す電力または電流の上限値を所定の電力値または電流値に低下させた後、前記少なくとも1つのスイッチ(40a)をターンオンさせ、前記上限値が所定の電力値または電流値に低下された状態で、前記復帰後の複数の蓄電ブロック(10-30)全体のSOPを算出することを特徴とする項目1または2に記載の蓄電システム(1)。
 これによれば、過大電流の発生を抑制するとともに、スイッチ(40a)にかかるストレスを軽減し、スイッチ(40a)の寿命を延ばすことができる。
[項目4]
 前記管理部(50m)は、前記複数の蓄電ブロック(10-30)の少なくとも1つ(10)が解列した状態において、当該少なくとも1つの蓄電ブロック(10)のSOC(State Of Charge)の値と、残りの蓄電ブロック(20、30)のSOCの平均値または中央値との差が、所定の第1閾値を超える場合、前記少なくとも1つのスイッチ(40a)をターンオンしないことを特徴とする項目1から3のいずれかに記載の蓄電システム(1)。
 これによれば、少なくとも1つのスイッチ(40a)のターンオンにより、過大電流が発生することを防止することができる。
[項目5]
 前記管理部(50m)は、前記電力変換部(60)に流す電力または電流の上限値を所定の電力値または電流値に低下させた後の、前記少なくとも1つの蓄電ブロック(10)の計測電圧と、残りの蓄電ブロック(20、30)の計測電圧の平均値または中央値との差、あるいは残りの蓄電ブロックのいずれか1つの計測電圧との差が、所定の第2閾値を超える場合、前記少なくとも1つのスイッチ(40a)のターンオンを中止することを特徴とする請求項1から4のいずれかに記載の蓄電システム。
 これによれば、電力変換装置(60)の上限値を低下させた状態で計測された電圧差をもとに、接続予定の蓄電ブロック(10)を接続するか否か判定することにより、その判定精度を向上させることができる。
[項目6]
 前記スイッチ(40a)は、
 メインスイッチ(S1)と、
 前記メインスイッチ(S1)と並列接続された、プリチャージ用のスイッチ(Sp1)と抵抗(Rp1)が直列接続されたプリチャージ回路と、を含み、
 前記管理部(50m)は、前記電力変換部(60)に流す電力または電流の上限値を所定の電力値または電流値に低下させた後、前記メインスイッチ(S1)をターンオンさせる前に、前記プリチャージ用のスイッチ(Sp1)をターンオンさせることを特徴とする項目1から5のいずれかに記載の蓄電システム(1)。
 これによれば、突入電流の発生を防止することができる。
[項目7]
 並列接続された複数の蓄電ブロック(10-30)と、前記複数の蓄電ブロック(10-30)から放電される直流電力を交流電力に変換して電力系統(2)または負荷(3)に出力し、前記電力系統(2)から入力される交流電力を直流電力に変換して前記複数の蓄電ブロック(10-30)に充電する電力変換部(60)と、前記複数の蓄電ブロック(10-30)と、前記電力変換部(60)との間にそれぞれ介在する複数のスイッチ(40a-40c)と、を備える蓄電システム(1)に接続される管理装置(50m)であって、
 前記管理装置(50m)は、
 前記複数の蓄電ブロック(10-30)の各単体のSOP(State Of Power)に基づいて前記複数の蓄電ブロック(10-30)全体のSOPを算出し、算出した全体のSOPを前記電力変換部(60)の充電および放電の少なくとも一方の電力または電流の上限値に設定し、
 前記複数のスイッチ(40a-40c)の少なくとも1つ(40a)がターンオフして前記複数の蓄電ブロック(10-30)の少なくとも1つ(10)が解列した状態から、当該少なくとも1つのスイッチ(40a)がターンオンして当該少なくとも1つの蓄電ブロック(10)が並列接続に復帰するとき、当該蓄電ブロック(10)の復帰後の蓄電ブロック(10-30)全体のSOPを前記復帰後の蓄電ブロック(10-30)の各単体の電流バラツキに基づいて算出し、前記電力変換部(60)に流す電力または電流の上限値を設定することを特徴とする管理装置(50m)。
 これによれば、並列接続された複数の蓄電ブロック(10-30)の少なくとも1つ(30)が解列または解列から復帰しても、安定的に運転を継続することができる。
 1 蓄電システム、 11,12,1n 蓄電モジュール、 S1 第1メインリレー、 Sp1 第1プリチャージリレー、 Rp1 第1プリチャージ抵抗、 2 電力系統、 S2 第2メインリレー、 Sp2 第2プリチャージリレー、 Rp2 第2プリチャージ抵抗、 3 負荷、 S3 第3メインリレー、 Sp3 第3プリチャージリレー、 Rp3 第3プリチャージ抵抗、 10 第1蓄電ラック、 20 第2蓄電ラック、 30 第3蓄電ラック、 40a 第1スイッチ部、 40b 第2スイッチ部、 40c 第3スイッチ部、 50a 第1ラック管理部、 50b 第2ラック管理部、 50c 第3ラック管理部、 50m マスタ管理装置、 60 電力変換装置、 70 電力線、 80 ラック間通信線、 90 ラック内通信線。

Claims (7)

  1.  並列接続された複数の蓄電ブロックと、
     前記複数の蓄電ブロックから放電される直流電力を交流電力に変換して電力系統または負荷に出力し、前記電力系統から入力される交流電力を直流電力に変換して前記複数の蓄電ブロックに充電する電力変換部と、
     前記複数の蓄電ブロックと、前記電力変換部との間にそれぞれ介在する複数のスイッチと、
     前記複数の蓄電ブロックの各単体のSOP(State Of Power)に基づいて前記複数の蓄電ブロック全体のSOPを算出し、算出した全体のSOPを前記電力変換部の充電および放電の少なくとも一方の電力または電流の上限値に設定する管理部と、を備え、
     前記複数のスイッチの少なくとも1つがターンオフして前記複数の蓄電ブロックの少なくとも1つが解列した状態から、当該少なくとも1つのスイッチがターンオンして当該少なくとも1つの蓄電ブロックが並列接続に復帰するとき、当該蓄電ブロックの復帰後の蓄電ブロック全体のSOPを前記復帰後の蓄電ブロックの各単体の電流バラツキに基づいて算出し、前記電力変換部に流す電力または電流の上限値を設定することを特徴とする蓄電システム。
  2.  前記管理部は、前記復帰後の蓄電ブロックをそれぞれ流れる各電流の合計値を、当該各電流の最大値で割って求めた比率を、前記復帰後の蓄電ブロックの各単体のSOPの内の最小値に掛けて、前記復帰後の蓄電ブロック全体のSOPを算出することを特徴とする請求項1に記載の蓄電システム。
  3.  前記管理部は、前記複数の蓄電ブロックの少なくとも1つが解列した状態から、当該少なくとも1つの蓄電ブロックを前記蓄電ブロックの並列接続に復帰させる前に、前記電力変換部に流す電力または電流の上限値を所定の電力値または電流値に低下させた後、前記少なくとも1つのスイッチをターンオンさせ、前記上限値が所定の電力値または電流値に低下された状態で、前記復帰後の複数の蓄電ブロック全体のSOPを算出することを特徴とする請求項1または2に記載の蓄電システム。
  4.  前記管理部は、前記複数の蓄電ブロックの少なくとも1つが解列した状態において、当該少なくとも1つの蓄電ブロックのSOC(State Of Charge)の値と、残りの蓄電ブロックのSOCの平均値または中央値との差が、所定の第1閾値を超える場合、前記少なくとも1つのスイッチをターンオンしないことを特徴とする請求項1から3のいずれかに記載の蓄電システム。
  5.  前記管理部は、前記電力変換部に流す電力または電流の上限値を所定の電力値または電流値に低下させた後の、前記少なくとも1つの蓄電ブロックの計測電圧と、残りの蓄電ブロックの計測電圧の平均値または中央値との差、あるいは残りの蓄電ブロックのいずれか1つの計測電圧との差が、所定の第2閾値を超える場合、前記少なくとも1つのスイッチのターンオンを中止することを特徴とする請求項1から4のいずれかに記載の蓄電システム。
  6.  前記スイッチは、
     メインスイッチと、
     前記メインスイッチと並列接続された、プリチャージ用のスイッチと抵抗が直列接続されたプリチャージ回路と、を含み、
     前記管理部は、前記電力変換部に流す電力または電流の上限値を所定の電力値または電流値に低下させた後、前記メインスイッチをターンオンさせる前に、前記プリチャージ用のスイッチをターンオンさせることを特徴とする請求項1から5のいずれかに記載の蓄電システム。
  7.  並列接続された複数の蓄電ブロックと、前記複数の蓄電ブロックから放電される直流電力を交流電力に変換して電力系統または負荷に出力し、前記電力系統から入力される交流電力を直流電力に変換して前記複数の蓄電ブロックに充電する電力変換部と、前記複数の蓄電ブロックと、前記電力変換部との間にそれぞれ介在する複数のスイッチと、を備える蓄電システムに接続される管理装置であって、
     前記管理装置は、
     前記複数の蓄電ブロックの各単体のSOP(State Of Power)に基づいて前記複数の蓄電ブロック全体のSOPを算出し、算出した全体のSOPを前記電力変換部の充電および放電の少なくとも一方の電力または電流の上限値に設定し、
     前記複数のスイッチの少なくとも1つがターンオフして前記複数の蓄電ブロックの少なくとも1つが解列した状態から、当該少なくとも1つのスイッチがオーンオンして当該少なくとも1つの蓄電ブロックが並列接続に復帰するとき、当該蓄電ブロックの復帰後の蓄電ブロック全体のSOPを前記復帰後の蓄電ブロックの各単体の電流バラツキに基づいて算出し、前記電力変換部に流す電力または電流の上限値を設定することを特徴とする管理装置。
PCT/JP2018/016898 2017-06-08 2018-04-26 蓄電システム、管理装置 WO2018225416A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880036824.0A CN110710075B (zh) 2017-06-08 2018-04-26 蓄电系统、管理装置
US16/617,556 US11043821B2 (en) 2017-06-08 2018-04-26 Electricity storage system and management device
JP2019523395A JP7033734B2 (ja) 2017-06-08 2018-04-26 蓄電システム、管理装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017113751 2017-06-08
JP2017-113751 2017-06-08

Publications (1)

Publication Number Publication Date
WO2018225416A1 true WO2018225416A1 (ja) 2018-12-13

Family

ID=64567360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/016898 WO2018225416A1 (ja) 2017-06-08 2018-04-26 蓄電システム、管理装置

Country Status (4)

Country Link
US (1) US11043821B2 (ja)
JP (1) JP7033734B2 (ja)
CN (1) CN110710075B (ja)
WO (1) WO2018225416A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018225417A1 (ja) * 2017-06-08 2020-04-09 パナソニックIpマネジメント株式会社 蓄電システム、管理装置
WO2021261360A1 (ja) * 2020-06-26 2021-12-30 パナソニックIpマネジメント株式会社 管理装置、及び電源システム
WO2022024836A1 (ja) * 2020-07-28 2022-02-03 パナソニックIpマネジメント株式会社 管理装置、電源システム、電動移動体、及び管理方法
WO2022070716A1 (ja) * 2020-09-29 2022-04-07 パナソニックIpマネジメント株式会社 管理装置、及び電源システム
WO2022191233A1 (ja) * 2021-03-10 2022-09-15 本田技研工業株式会社 電力装置及びその制御方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11342760B2 (en) * 2017-01-26 2022-05-24 Sony Interactive Entertainment Inc. Electrical device for parallel connected batteries
US11329327B2 (en) * 2017-09-11 2022-05-10 Panasonic Intellectual Property Management Co., Ltd. Electricity storage system and management device
WO2019069390A1 (ja) * 2017-10-04 2019-04-11 日産自動車株式会社 バッテリパックの検査方法および検査装置
TWI744721B (zh) * 2019-11-19 2021-11-01 廣達電腦股份有限公司 電池裝置及其控制方法
JP7191873B2 (ja) * 2020-01-17 2022-12-19 株式会社東芝 充放電制御装置、充放電システム、充放電制御方法及び充放電制御プログラム
US10992149B1 (en) 2020-10-08 2021-04-27 Element Energy, Inc. Safe battery energy management systems, battery management system nodes, and methods
US11791642B2 (en) 2020-10-08 2023-10-17 Element Energy, Inc. Safe battery energy management systems, battery management system nodes, and methods
WO2022114871A1 (ko) * 2020-11-27 2022-06-02 주식회사 엘지에너지솔루션 배터리 진단 장치, 배터리 진단 방법, 배터리 팩 및 자동차
US20220393484A1 (en) * 2021-06-04 2022-12-08 Hewlett-Packard Development Company, L.P. Battery cell rebalancing
WO2023004712A1 (zh) * 2021-07-29 2023-02-02 宁德时代新能源科技股份有限公司 充放电装置、电池充电的方法和充放电系统
US11699909B1 (en) * 2022-02-09 2023-07-11 Element Energy, Inc. Controllers for managing a plurality of stacks of electrochemical cells, and associated methods

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013018693A1 (ja) * 2011-07-29 2013-02-07 三洋電機株式会社 蓄電池集合体の充放電制御システム
WO2014128941A1 (ja) * 2013-02-25 2014-08-28 株式会社 日立製作所 並列接続蓄電システム
JP2015006027A (ja) * 2013-06-19 2015-01-08 三菱重工業株式会社 蓄電池システム及び蓄電池システムの制御方法
WO2017169655A1 (ja) * 2016-03-30 2017-10-05 三洋電機株式会社 電源システム、制御システムおよび電源システムの電力制御方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3363583B2 (ja) * 1994-05-25 2003-01-08 キヤノン株式会社 2次電池のローバッテリー検出装置及びその方法
JP5935046B2 (ja) * 2011-07-12 2016-06-15 パナソニックIpマネジメント株式会社 蓄電池集合体制御システム
CN106654415B (zh) * 2016-12-30 2018-12-11 深圳市国创动力系统有限公司 基于混合动力系统的钛酸锂电池bms的sop控制系统及方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013018693A1 (ja) * 2011-07-29 2013-02-07 三洋電機株式会社 蓄電池集合体の充放電制御システム
WO2014128941A1 (ja) * 2013-02-25 2014-08-28 株式会社 日立製作所 並列接続蓄電システム
JP2015006027A (ja) * 2013-06-19 2015-01-08 三菱重工業株式会社 蓄電池システム及び蓄電池システムの制御方法
WO2017169655A1 (ja) * 2016-03-30 2017-10-05 三洋電機株式会社 電源システム、制御システムおよび電源システムの電力制御方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018225417A1 (ja) * 2017-06-08 2020-04-09 パナソニックIpマネジメント株式会社 蓄電システム、管理装置
WO2021261360A1 (ja) * 2020-06-26 2021-12-30 パナソニックIpマネジメント株式会社 管理装置、及び電源システム
WO2022024836A1 (ja) * 2020-07-28 2022-02-03 パナソニックIpマネジメント株式会社 管理装置、電源システム、電動移動体、及び管理方法
WO2022070716A1 (ja) * 2020-09-29 2022-04-07 パナソニックIpマネジメント株式会社 管理装置、及び電源システム
WO2022191233A1 (ja) * 2021-03-10 2022-09-15 本田技研工業株式会社 電力装置及びその制御方法

Also Published As

Publication number Publication date
CN110710075A (zh) 2020-01-17
JPWO2018225416A1 (ja) 2020-04-09
US11043821B2 (en) 2021-06-22
CN110710075B (zh) 2023-04-04
US20200161875A1 (en) 2020-05-21
JP7033734B2 (ja) 2022-03-11

Similar Documents

Publication Publication Date Title
WO2018225416A1 (ja) 蓄電システム、管理装置
KR101483129B1 (ko) 배터리 시스템 및 에너지 저장 시스템
KR102415122B1 (ko) 배터리 시스템
US9401616B2 (en) Battery pack, energy storage system including battery pack, and method of charging battery pack
US11329327B2 (en) Electricity storage system and management device
US20120176095A1 (en) Electric power management system
JP6982834B2 (ja) 蓄電システム、管理装置
KR101835584B1 (ko) 배터리 관리 장치 및 에너지 저장 시스템
US20160134160A1 (en) Systems and methods for battery management
EP3148037A1 (en) Energy storage system
KR20150081731A (ko) 배터리 팩, 배터리 팩을 포함하는 에너지 저장 시스템, 배터리 팩의 작동 방법
EP2629388A1 (en) Power management system
US11056886B2 (en) Power storage system
US11909246B2 (en) Method and system for an AC battery
KR20130062894A (ko) 에너지 저장 시스템 및 그 제어방법
US11158888B2 (en) Management device and power storage system
KR20150115560A (ko) 에너지 저장 시스템 및 그의 구동방법
KR20180009569A (ko) 배터리 시스템
JP2024511382A (ja) エネルギ貯蔵システム及びバッテリ管理システムの電力供給方法
KR101856628B1 (ko) 에너지 저장 시스템의 비상 제어 장치 및 그 방법
KR101782223B1 (ko) 배터리 조절 시스템 진단 장치 및 이를 포함하는 에너지 저장 시스템
RU2766312C1 (ru) Самодиагностируемая система обеспечения бесперебойного питания бортовой аппаратуры

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18813125

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019523395

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18813125

Country of ref document: EP

Kind code of ref document: A1