WO2019069390A1 - バッテリパックの検査方法および検査装置 - Google Patents

バッテリパックの検査方法および検査装置 Download PDF

Info

Publication number
WO2019069390A1
WO2019069390A1 PCT/JP2017/036115 JP2017036115W WO2019069390A1 WO 2019069390 A1 WO2019069390 A1 WO 2019069390A1 JP 2017036115 W JP2017036115 W JP 2017036115W WO 2019069390 A1 WO2019069390 A1 WO 2019069390A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
deviation
voltages
battery pack
voltage
Prior art date
Application number
PCT/JP2017/036115
Other languages
English (en)
French (fr)
Inventor
米倉 史朗
絵里子 栗林
伸浩 高本
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to CN201780095329.2A priority Critical patent/CN111149269B/zh
Priority to US16/651,057 priority patent/US11462777B2/en
Priority to JP2019546457A priority patent/JP7001700B2/ja
Priority to PCT/JP2017/036115 priority patent/WO2019069390A1/ja
Publication of WO2019069390A1 publication Critical patent/WO2019069390A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • G01R31/3865Arrangements for measuring battery or accumulator variables related to manufacture, e.g. testing after manufacture
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4285Testing apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • H02J7/007184Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage in response to battery voltage gradient
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/005Detection of state of health [SOH]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery pack in which a plurality of unit cells of a secondary battery are accommodated in a pack case, and more particularly to a method and apparatus for testing a relatively large capacity battery pack used as a drive source of an electric vehicle.
  • a large capacity, high voltage battery pack is required for an electric vehicle, a plurality of cells formed of lithium ion batteries etc. are connected in parallel, and a plurality of parallel connected cell groups are connected in series.
  • a configuration is often adopted in which the battery case that performs charge / discharge control and voltage monitoring is housed in the pack case.
  • four cells connected in two parallels in two series are configured as one battery module having positive and negative output terminals and an intermediate voltage terminal, and the battery modules are accommodated in a plurality of pack cases. ing.
  • the output terminals of these battery modules are connected in series, for example, by bus bars.
  • the cells assembled as a battery pack in this way have already been subjected to various tests in the manufacturing process of the individual cells, and only normal cells including voltage characteristics etc. are used for the battery module. Also in the stage of being assembled as a battery module, various tests are performed, and basically only a normal battery module will be used for assembling a battery pack. Therefore, after the battery pack is assembled, it is basically unnecessary to check whether individual cells are normal.
  • connection defects between the battery modules for example, loosening of screw-type terminals of the battery module connected to the bus bars, peeling of terminal welds between cells inside the battery module, In some cases, a final inspection after completion as a battery pack has been requested.
  • Patent Document 1 basic data such as a battery voltage measured when charging and discharging a non-degraded normal secondary battery under various temperatures and various currents is obtained in advance
  • a test method of a battery is disclosed in which a short circuit of the secondary battery, an increase in internal resistance, and the like are determined by comparing measured values detected for the secondary battery actually used with the basic data. It is done.
  • the present invention relates to an inspection method or apparatus for inspecting a battery pack in which a plurality of chargeable / dischargeable cells are connected in parallel and a plurality of parallel connected cell groups are connected in series.
  • the battery pack is charged with a constant current, and individual voltages of the cell group at the beginning of charging start are acquired as a first cell voltage, The individual voltages of the cell group at the stage when charging has progressed to a predetermined level are acquired as a second cell voltage, Comparing the individual first cell voltages with the average value of the first cell voltages for the plurality of cell groups to obtain a first deviation; Comparing the individual second cell voltages with the average value of the second cell voltages for the plurality of cell groups to obtain a second deviation; The connection abnormality of each cell is detected based on these two deviations.
  • the first cell voltage at the initial charge start is the other cell group
  • the second cell voltage becomes higher.
  • both the first cell voltage and the second cell voltage rise with the increase in resistance.
  • connection abnormality is similarly performed.
  • Configuration explanatory drawing which shows one Example of the test
  • the flowchart of the inspection which an inspection unit performs.
  • the flowchart following FIG. The flowchart following FIG.
  • the characteristic view which shows the characteristic of the cell voltage at the time of constant current charge.
  • the characteristic view which shows the characteristic of the cell voltage at the time of constant current discharge.
  • FIG. 1 shows the configuration of a battery pack inspection apparatus according to the present invention.
  • This inspection apparatus is an apparatus for performing final inspection of the completed battery pack 1 for an electric vehicle in an assembly line (not shown), particularly inspection of connection abnormality between cells inside the pack case.
  • the inspection apparatus includes a charger 2 connected to a commercial power supply (for example, three-phase 200 V alternating current) through a power supply cable 8, and an inspection unit 3 interposed between the charger 2 and the battery pack 1; It is comprised including.
  • the inspection unit 3 includes a charge line 4 connected to the charge terminal of the battery pack 1 via a charge cable, and a signal line 5 connected to the signal terminal of the battery pack 1 via a signal cable including a connector. Is equipped.
  • the signal terminal is connected to a battery controller (not shown) inside the battery pack 1 and is connected to a connector of a vehicle network so as to communicate with a controller on the vehicle side when the vehicle is mounted.
  • the battery controller performs voltage monitoring and charge / discharge control of each cell, and by being connected to the inspection unit 3 via the signal line 5, it is possible to control, for example, each cell according to a request from the inspection unit 3.
  • Voltage data is supplied from the battery controller to the inspection unit 3.
  • the inspection unit 3 and the charger 2 are similarly connected to each other via the charging line 6 and the signal line 7, and the battery pack 1 can be charged by the charger 2 under the control of the inspection unit 3.
  • the battery pack 1 uses a flat lithium ion battery whose exterior body is a laminate film as a cell (secondary battery), and a flat box-shaped module in which four cells are one module. It is housed in the case, and further, a plurality of modules (in one example, 48 modules) are housed in the pack case.
  • FIG. 2 shows the circuit configuration of one module M. Two cells C are connected in parallel to each other, and two cell groups C 'connected in parallel are connected in series. Each module M includes positive and negative output terminals OUT1 and OUT2, and an intermediate output terminal OUT3 connected to an intermediate connection point. These three output terminals OUT1 to OUT3 are provided, for example, as screw terminals on the side surface of the module case.
  • the terminals (so-called electrode tabs) of the cells C are connected to each other by, for example, laser welding to form a circuit as shown in FIG.
  • a plurality of modules M for example, 48 modules M accommodated in the pack case are connected to each other via the bus bar so that all the modules M are connected in series. That is, the output terminal OUT1 of a certain module M is sequentially connected to the output terminal OUT2 of the next module M via a bus bar.
  • the potentials of the three output terminals OUT1 to OUT3 including the intermediate output terminal OUT3 are simultaneously input to the battery controller, whereby the battery controller controls the voltage (cell voltage of each of the 96 cell groups C ' ) Is monitoring.
  • the inspection unit 3 At the time of inspection of the battery pack 1, first, as shown as step 1, the inspection unit 3 outputs a charge start signal to the charger 2 to start charging of the battery pack 1.
  • the cell C used for the battery pack 1 has already been subjected to various tests in the manufacturing process of the individual cells C, and after the initial charge and charge / discharge for testing, the battery pack 1 is empty at the assembly completion stage.
  • the SOC state of charge is adjusted to, for example, 5% SOC.
  • step 2 it is determined whether or not the current charge is constant current charge. If constant current, the process proceeds to step 3 and subsequent steps, and if not constant current, the process proceeds to step 25 and subsequent steps.
  • Charging by the charger 2 is basically started by constant current charging, and when reaching a certain level of SOC near full charge, is controlled to a current value according to the SOC. The test of the present invention is performed under constant current charging.
  • step 3 the voltage of each cell group C 'immediately after the charge start, that is, at the initial charge start, is acquired via the battery controller.
  • the voltage of the cell group C 'at the beginning of the charging start is referred to as a "first cell voltage".
  • first cell voltage the voltage of the cell group C 'at the beginning of the charging start.
  • data of the 96 first cell voltages V1 are obtained.
  • an average value Vav1 of the 96 first cell voltages V1 is calculated.
  • step 6 it is determined whether the deviation DV1 is less than or equal to a predetermined threshold value DVth1.
  • the threshold DVth1 is, for example, 0.18V. The process of step 6 is performed for all cell groups C '.
  • step 7 or 14 constant current charging is continued until the SOC reaches a certain level.
  • This charge level may be a relatively low value, for example 20% SOC.
  • the SOC value needs to be within the range in which constant current charging is continued.
  • a fixed charging time may be kept waiting. The waiting time is preset, for example, to correspond to the time required to reach 20% SOC.
  • the voltage of each cell group C ' is obtained through the battery controller in step 8 or step 15.
  • the voltage of the cell group C 'at this predetermined charging progress stage is referred to as a "second cell voltage".
  • a second cell voltage since there are 96 cell groups C ', data of 96 second cell voltages V2 are obtained.
  • an average value Vav2 of the 96 second cell voltages V2 is calculated.
  • the deviation DV2 may be determined for all cell groups C ', or in step 6, for the cell group C' in which the deviation DV1 of the first cell voltage V1 is less than or equal to the threshold DVth1. Only the deviation DV2 may be obtained.
  • deviation DV2 may be determined for all cell groups C ', or in cell group C' in which deviation DV1 of first cell voltage V1 is larger than threshold DVth1 in step 6. Only the deviation DV2 may be obtained.
  • step 11 it is determined whether or not the deviation DV2 of the cell group C ′ is less than or equal to a predetermined threshold value DVth2a for the cell group C ′ in which the deviation DV1 of the first cell voltage V1 is less than or equal to the threshold value DVth1 in step S6.
  • the threshold value DVth2a is the same as the threshold value DVth1 in step 6, and is, for example, 0.18V.
  • the threshold value DVth2a basically the same value or an approximate value as the threshold value DVth1 can be used.
  • step 11 The determination in step 11 is performed on all cell groups C 'in which the deviation DV1 of the first cell voltage V1 is less than or equal to the threshold value DVth1 in step 6. Then, if the deviation DV2 is less than or equal to the threshold value DVth2a for all the cell groups C ', the process proceeds to step 12, where it is determined that the connection state of all the cells C is normal, and the inspection is ended.
  • step 11 if the deviation DV2 of any one of the cell groups C 'is larger than the threshold value DVth2a, the process proceeds to step 13, and it is determined that the cell group C' is in parallel connection abnormality. That is, if there is a cell group C 'in which the deviation DV1 of the first cell voltage V1 is less than or equal to the threshold DVth1 and the deviation DV2 of the second cell voltage V2 is larger than the threshold DVth2a, the cell group C' is connected in parallel It is determined that there is an abnormality. For example, in the cell group C ′ in which a pair of cells C are connected in parallel as shown in FIG. 2, the parallel connection abnormality corresponds to a state in which one of the cells C is separated from the circuit due to peeling of a weld or the like. Do.
  • the threshold value DVth2b is the same as the threshold value DVth2a in step 11 and the threshold value DVth1 in step 6, and is, for example, 0.18V.
  • the threshold value DVth2b basically the same value or a value approximate to the threshold value DVth1 and the threshold value DVth2a can be used.
  • step 18 The determination in step 18 is performed in step 6 for all cell groups C 'where the deviation DV1 of the first cell voltage V1 is larger than the threshold value DVth1. Then, if the deviation DV2 of any cell group C 'is equal to or less than the threshold value DVth2b, the process proceeds to step 19, where it is determined that the connection of the cell group C' is unstable, and retesting is performed. .
  • the process proceeds from step 20 to step 21 and it is determined that the cell group C 'is in the serial connection abnormality. That is, when the deviation DV1 for the first cell voltage V1 and the deviation DV2 for the second cell voltage V2 are respectively larger than the thresholds DVth1 and DVth3 and the two deviations DV1 and DV2 are equal to each other, the cell group C Suppose that 'is a serial connection error. In the series connection abnormality, in the series circuit as shown in FIG.
  • the fact that the deviations DV1 and DV2 are “equal to each other” includes an appropriate range, and for example, the deviation DV2 is within the range of “DV1 ⁇ ⁇ ” ( ⁇ is an appropriate small amount) For example, let both be equal to each other.
  • step 22 If the deviation DV2 is larger than the deviation DV1, the process proceeds from step 22 to step 23, and it is determined that the cell group C 'has an abnormality of both series connection and parallel connection. That is, this corresponds to the case where the deviation DV1 at the initial stage of charging start is large, and the deviation DV1 increases with the progress of charging.
  • step 22 the process proceeds from step 22 to step 24, where it is determined that the connection of the cell group C 'is unstable, and retesting is performed.
  • Steps 25 to 30 in FIG. 5 show preliminary processing when it is determined in step 2 that the constant current charging is not performed.
  • this inspection apparatus it is basically controlled to constant current charging.
  • step 25 the voltage of each cell group C 'being charged (this will be referred to as a third cell voltage V3) as in step 3 is acquired via the battery controller.
  • a third cell voltage V3 the voltage of each cell group C 'being charged (this will be referred to as a third cell voltage V3) as in step 3 is acquired via the battery controller.
  • data of the 96 third cell voltage V3 is obtained.
  • an average value Vav3 of the 96 third cell voltages V3 is calculated.
  • step 28 it is determined whether the deviation DV3 is less than or equal to a predetermined threshold value DVth3.
  • the threshold value DVth3 is the same as the threshold value DVth1 and is, for example, 0.18V. The process of step 28 is performed for all cell groups C '.
  • step 29 If the deviation DV3 of all the cell groups C 'is equal to or less than the threshold value DVth3, the process proceeds to step 29, where it is determined that the connection state of all the cells C is normal, and the inspection is ended. If the deviation DV3 of any one of the cell groups C 'is larger than the threshold value DVth3, the process proceeds to step 30, where it is determined that there is an abnormality in the cell voltage in the cell group C' although the cause can not be identified.
  • FIG. 6 shows the charging current and the cell voltage (voltage between the output terminals across one cell group C ') when the battery pack 1 is charged.
  • the cell voltage that is, the first cell voltage V1 immediately after the start of charging, that is, at the initial stage of start of charging is acquired. Charging is performed at a constant current (e.g. 120 A) as shown. Then, the cell voltage (that is, the second cell voltage V2) is acquired at time t2 when the SOC reaches, for example, 20%.
  • each cell voltage of each cell group C changes as shown by line S1. That is, it rises stepwise with the start of charging, and then gradually rises with the progress of charging. As described above, at the start of charging, the SOC of each cell C is approximately 5%.
  • the characteristic (S3) at the time of the serial connection abnormality is a line substantially parallel to the normal characteristic (S1). This characteristic (S3) corresponds to step 21 of the flowchart of FIG. 4 described above.
  • the cell voltage of the cell group C ′ is lower than that of the normal cell group C ′.
  • the deviation DV1 for the first cell voltage V1 and the deviation DV2 for the second cell voltage V2 both have relatively large negative values. Therefore, in the flowcharts of FIG. 3 to FIG. 5, the process finally proceeds to step 21 and it is diagnosed that the serial connection is abnormal. It is also possible to distinguish the short circuit of the cell C from the other mode of the series connection abnormality by determining whether the deviations DV1 and DV2 are positive or negative.
  • the abnormality in the connection between the modules M and the connection in the modules M An abnormality or the like can be detected, and the quality of the battery pack 1 shipped as a product can be further improved.
  • the module M and the cell group C ′ having an abnormality can be easily identified, and the type of abnormality (parallel connection abnormality, series connection abnormality, and both abnormalities) can be distinguished, so that the response after abnormality detection is easy. It is. For example, many of the series connection abnormalities can be eliminated by retightening the screw terminals of the module M connected to the bus bars. Further, if there is a parallel connection abnormality inside the module M, it can be promptly dealt with by replacing the module M.
  • FIG. 7 shows the characteristics of the cell voltage in the constant current discharge.
  • the voltage of the normal cell group C ′ is stepped at the start of the discharge as shown by the line S5. After falling, it rises moderately.
  • the line S6 shows the characteristic of the cell voltage in the case of the parallel connection abnormality, and the voltage rise is quicker than the characteristic (S5) of the normal cell group C '.
  • line S7 shows the cell voltage characteristic in the case of the serial connection abnormality, and the cell voltage is lower by the resistance included in the cell group C ′ than the characteristic (S5) of the normal cell group C ′. It becomes.
  • the cell voltage (first cell voltage V1) at the initial stage of discharge start and the cell voltage (second cell voltage V2) at time t2 when the discharge progresses to the predetermined SOC are obtained.
  • the cell voltage (first cell voltage V1) at the initial stage of discharge start and the cell voltage (second cell voltage V2) at time t2 when the discharge progresses to the predetermined SOC are obtained.
  • the inspection of the battery pack 1 of the present invention can also be performed in a state where the battery pack 1 is mounted on a vehicle.
  • the present invention is applicable even when three or more cells C are connected in parallel.
  • the average value of all the cell groups C ' is used as a target to which each cell voltage is compared, the average value of an appropriate number of cell groups C' may be used.

Abstract

検査装置は、充電器(2)と検査ユニット(3)を含み、定電流充電の開始初期における第1のセル電圧(V1)と充電の進行した段階での第2のセル電圧(V2)を取得して、全セル群(C')の平均値との偏差(DV1,DV2)を求めることで、接続異常を検出する。第1のセル電圧(V1)の偏差(DV1)が小さく、かつ第2のセル電圧(V2)の偏差(DV2)が大きいセル群(C')は、並列接続異常であると判定する(ステップ13)。偏差(DV1,DV2)がいずれも大きく、かつ互いに等しければ直列接続異常であると判定する(ステップ21)。

Description

バッテリパックの検査方法および検査装置
 この発明は、二次電池の単セルをパックケース内に複数個収容したバッテリパック、特に電気自動車の駆動源等として用いられる比較的大容量のバッテリパックの検査方法および検査装置に関する。
 例えば電気自動車には大容量でかつ高い電圧のバッテリパックが必要であることから、リチウムイオン電池等からなるセルを複数個並列に接続した上で、この並列接続したセル群を複数直列に接続し、充放電制御や電圧監視を行うバッテリコントローラとともにパックケース内に収容した構成が多く採用されている。例えば、1つの例では、2並列2直列に接続した4個のセルが正負の出力端子ならびに中間電圧端子を具備した1つのバッテリモジュールとして構成され、このバッテリモジュールが複数個パックケース内に収容されている。そして、これらバッテリモジュールの出力端子は、例えばバスバーによって直列に接続されている。
 このようにバッテリパックとして組み立てられるセルは、個々のセルの製造工程において既に種々の検査を経たものであり、電圧特性等も含めて正常なセルのみがバッテリモジュールに用いられる。またバッテリモジュールとして組み立てられた段階においても、種々の検査がなされており、基本的に正常なバッテリモジュールのみがバッテリパックの組み立てに用いられることとなる。そのため、バッテリパックとして組み立てられた後は、個々のセルが正常かどうか等の検査は基本的に不要である。
 しかしながら、バッテリパックとして組み立てる段階において、各バッテリモジュールの間での接続不良、例えばバスバーに接続されるバッテリモジュールのねじ式の端子の緩みや、バッテリモジュール内部でのセル間の端子溶接部の剥離、等が生じることもあり、近年、バッテリパックとして完成した後の最終的な検査が要請されていた。
 このような検査の手法として、例えば、特許文献1には、劣化していない正常な二次電池を各種温度下ならびに各種電流で充放電したときに計測される電池電圧等の基礎データを予め取得しておき、実際に使用している二次電池について検出した計測値を上記基礎データと対比することで、二次電池の短絡や内部抵抗増加等を判定するようにした電池の検査方法が開示されている。
 しかし、このような検査方法では、セルの温度によって特性が変化することから、異常と判別するための閾値の設定が困難である。また、温度を考慮した異常判定を行うためには、セルの個々の温度を実際に温度センサで検出する必要があり、多数のセルが既にパックケース内に収容されているバッテリパックの検査に適用することは現実的ではない。
特開2002-50410号公報
 この発明は、充放電可能なセルが複数個並列に接続されるとともに、この並列接続したセル群が複数直列に接続されてなるバッテリパックを検査する検査方法ないし検査装置に関する。
 この発明においては、上記バッテリパックを定電流で充電するとともに、充電開始初期におけるセル群の個々の電圧を第1のセル電圧として取得し、
 所定レベルまで充電が進行した段階でのセル群の個々の電圧を第2のセル電圧として取得し、
 個々の第1のセル電圧を複数のセル群についての当該第1のセル電圧の平均値と比較して第1の偏差を求め、
 個々の第2のセル電圧を複数のセル群についての当該第2のセル電圧の平均値と比較して第2の偏差を求め、
 これら2つの偏差に基づいて、各セルの接続異常の検出を行う。
 例えば、複数のセルが並列接続されているセル群において、並列接続の接続異常(例えば一つのセルの端子溶接部の剥離)があれば、充電開始初期における第1のセル電圧は他のセル群の第1のセル電圧と同等であるが、充電の進行に伴う電圧上昇が他のセル群に比較して早くなり、第2のセル電圧は高くなる。
 あるいは、あるセル群において、直列接続の接続異常(例えばねじ式端子の緩み)があれば、抵抗の増加に伴い、第1のセル電圧および第2のセル電圧の双方が上昇する。
 従って、上記の2つの偏差に基づいて、これらの並列接続異常や直列接続異常を容易に検出することができる。
 本発明の他の態様では、バッテリパックを定電流で放電する間に、同様に接続異常の検出を行う。
バッテリパックの検査装置の一実施例を示す構成説明図。 1つのモジュールMの回路図。 検査ユニットが実行する検査のフローチャート。 図3に続くフローチャート。 図3に続くフローチャート。 定電流充電時のセル電圧の特性を示す特性図。 定電流放電時のセル電圧の特性を示す特性図。
 図1は、この発明に係るバッテリパックの検査装置の構成を示している。この検査装置は、図外の組立ラインにおいて完成した電気自動車用バッテリパック1の最終的な検査とりわけパックケース内部でのセル間の接続異常の検査を行う装置である。検査装置は、電源ケーブル8を介して商用電源(例えば三相200V交流)に接続される充電器2と、この充電器2とバッテリパック1との間に介在する形となる検査ユニット3と、を含んで構成される。検査ユニット3は、バッテリパック1の充電端子に充電ケーブルを介して接続される充電ライン4と、バッテリパック1の信号端子に、コネクタを備えた信号ケーブルを介して接続される信号ライン5と、を備えている。上記信号端子は、バッテリパック1内部のバッテリコントローラ(図示せず)に接続されており、車載時には車両側のコントローラと通信を行うように車両用ネットワークのコネクタに接続される。バッテリコントローラは、個々のセルの電圧監視や充放電制御を行うものであり、上記検査ユニット3と信号ライン5を介して接続されることで、検査ユニット3からの要求に応じて例えば各セルの電圧データがバッテリコントローラから検査ユニット3へと供給される。検査ユニット3と充電器2は、同様に充電ライン6および信号ライン7を介して互いに接続されており、検査ユニット3による制御下で充電器2によるバッテリパック1の充電が可能となっている。
 バッテリパック1は、一実施例では、セル(二次電池)として、ラミネートフィルムを外装体とする扁平なリチウムイオン電池を用いたもので、4つのセルが1つのモジュールとして扁平な箱状のモジュールケース内に収容され、さらに複数のモジュール(一例では48個のモジュール)がパックケース内に収容されて構成されている。図2は、1つのモジュールMの回路構成を示しており、2つのセルCが互いに並列に接続されているとともに、この並列接続したセル群C’が2つ直列に接続されている。そして、各モジュールMは、正負の出力端子OUT1,OUT2と、中間接続点に接続された中間出力端子OUT3と、を備えている。これら3個の出力端子OUT1~OUT3は、モジュールケースの側面に例えばねじ式端子として設けられている。なお、モジュールMの内部においては、各セルCの端子(いわゆる電極タブ)が例えばレーザ溶接によって互いに接続され、図2に示すような回路を構成している。
 パックケース内に収容された複数のモジュールM例えば48個のモジュールMは、全てのモジュールMが直列に接続されるように、バスバーを介して互いに接続されている。すなわち、あるモジュールMの出力端子OUT1が次のモジュールMの出力端子OUT2にバスバーを介して順次に接続されている。また、中間出力端子OUT3を含む3個の出力端子OUT1~OUT3の電位は、同時にバッテリコントローラに入力されており、これにより、バッテリコントローラは、96個のセル群C’の各々の電圧(セル電圧)を監視している。
 次に、図3~図5のフローチャートに従って上記検査ユニット3が行う検査について説明する。
 バッテリパック1の検査時には、まず、ステップ1として示すように、検査ユニット3が充電器2に充電開始信号を出力し、バッテリパック1の充電を開始する。なお、バッテリパック1に用いられるセルCは、個々のセルCの製造工程において既に種々の検査がなされており、初充電ならびに試験用の充電・放電を経て、バッテリパック1の組立完成段階では空に近い一定のSOC(ステート・オブ・チャージ)例えば5%のSOCに調製されている。
 ステップ2では、現在の充電が定電流充電であるか否かを判別し、定電流であればステップ3以降の処理へ進み、定電流でなければステップ25以降の処理へ進む。充電器2による充電は、基本的に定電流充電で開始され、満充電に近いあるレベルのSOCに達したらSOCに応じた電流値に制御する。本発明の検査は、定電流充電の下で行われる。
 ステップ3では、充電開始直後つまり充電開始初期における各セル群C’の電圧をバッテリコントローラを介して取得する。この充電開始初期におけるセル群C’の電圧を「第1のセル電圧」と呼ぶこととする。一例では、96個のセル群C’が存在するので、96個の第1のセル電圧V1のデータが取得される。ステップ4では、この96個の第1のセル電圧V1の平均値Vav1を算出する。そして、ステップ5では、個々のセル群C’について、当該セル群C’の第1のセル電圧V1と平均値Vav1との差として第1のセル電圧の偏差DV1を求める。つまり、DV1=V1-Vav1として、全てのセル群C’について偏差DV1を求める。
 ステップ6では、偏差DV1が所定の閾値DVth1以下であるか否かを判定する。一つの実施例においては、閾値DVth1は、例えば0.18Vである。このステップ6の処理は、全てのセル群C’について行う。
 次に、ステップ7もしくはステップ14において、SOCがあるレベルに達するまで定電流充電を継続する。この充電レベルは、比較的に低い値でよく、例えばSOCが20%である。勿論、定電流充電が継続される範囲内のSOC値である必要がある。なお、SOCの値に代えて、一定の充電時間待機するようにしてもよい。待機時間は、例えば、20%のSOCに達するのに要する時間に相当するものとして予め設定される。
 このように所定のレベルまで充電が進行した段階で、ステップ8もしくはステップ15において、各セル群C’の電圧をバッテリコントローラを介して取得する。この所定の充電進行段階でのセル群C’の電圧を「第2のセル電圧」と呼ぶこととする。一例では、96個のセル群C’が存在するので、96個の第2のセル電圧V2のデータが取得される。ステップ9もしくはステップ16では、この96個の第2のセル電圧V2の平均値Vav2を算出する。
 そして、ステップ10もしくはステップ17では、個々のセル群C’について、当該セル群C’の第2のセル電圧V2と平均値Vav2との差として第2のセル電圧の偏差DV2を求める。つまり、DV2=V2-Vav2として偏差DV2を求める。
 ここで、ステップ10では、全てのセル群C’について偏差DV2を求めるようにしてもよく、あるいは、ステップ6において第1のセル電圧V1の偏差DV1が閾値DVth1以下であったセル群C’についてのみ偏差DV2を求めるようにしてもよい。同様に、ステップ17では、全てのセル群C’について偏差DV2を求めるようにしてもよく、あるいは、ステップ6において第1のセル電圧V1の偏差DV1が閾値DVth1よりも大きかったセル群C’についてのみ偏差DV2を求めるようにしてもよい。
 ステップ11では、ステップ6において第1のセル電圧V1の偏差DV1が閾値DVth1以下であったセル群C’について、当該セル群C’の偏差DV2が所定の閾値DVth2a以下であるか否かを判定する。一つの実施例においては、閾値DVth2aは、ステップ6における閾値DVth1と同じ値が用いられ、例えば0.18Vである。閾値DVth2aは、閾値DVth1と基本的に同じ値あるいは近似した値が用いられ得る。
 ステップ11の判定は、ステップ6において第1のセル電圧V1の偏差DV1が閾値DVth1以下であった全てのセル群C’について行う。そして、全てのセル群C’について偏差DV2が閾値DVth2a以下であったならば、ステップ12へ進み、全てのセルCの接続状態が正常であると判定して検査を終了する。
 ステップ11において、いずれかのセル群C’の偏差DV2が閾値DVth2aよりも大きければ、ステップ13へ進み、当該セル群C’が並列接続異常であると判定する。すなわち、第1のセル電圧V1についての偏差DV1が閾値DVth1以下でかつ第2のセル電圧V2についての偏差DV2が閾値DVth2aよりも大きいセル群C’があれば、当該セル群C’に並列接続異常があるものと判定する。並列接続異常とは、例えば、図2のように一対のセルCが並列接続されたセル群C’において、いずれか一方のセルCが溶接部の剥離等により回路から分離されている状態に相当する。
 一方、ステップ18では、ステップ6において第1のセル電圧V1の偏差DV1が閾値DVth1よりも大きかったセル群C’について、当該セル群C’の偏差DV2が所定の閾値DVth2b以下であるか否かを判定する。一つの実施例においては、閾値DVth2bは、ステップ11における閾値DVth2aおよびステップ6における閾値DVth1と同じ値が用いられ、例えば0.18Vである。閾値DVth2bは、閾値DVth1および閾値DVth2aと基本的に同じ値あるいは近似した値が用いられ得る。
 ステップ18の判定は、ステップ6において第1のセル電圧V1の偏差DV1が閾値DVth1よりも大きかった全てのセル群C’について行う。そして、いずれかのセル群C’の偏差DV2が閾値DVth2b以下であったならば、ステップ19へ進み、当該セル群C’の接続が不安定なものと判定し、再試験を行うものとする。つまり、第1のセル電圧V1についての偏差DV1が閾値DVth1よりも大きくかつ第2のセル電圧V2についての偏差DV2が閾値DVth2b以下であるセル群C’があれば、何らかのエラーあるいは端子等の接続状態が振動等で変化している可能性が高いため、再試験を行う。換言すれば、最終的な診断が保留される。
 ステップ18でいずれかのセル群C’の偏差DV2が閾値DVth2bよりも大きかった場合は、ステップ20およびステップ22により、2つの偏差DV1,DV2を大小比較する。2つの偏差DV1,DV2が互いに等しい場合は、ステップ20からステップ21へ進み、当該セル群C’が直列接続異常であると判定する。すなわち、第1のセル電圧V1についての偏差DV1および第2のセル電圧V2についての偏差DV2がそれぞれ閾値DVth1,DVth3よりも大きく、かつ2つの偏差DV1,DV2が互いに等しい場合は、当該セル群C’が直列接続異常であるとする。直列接続異常とは、図2のような直列回路の中で、例えば、隣接する2つのモジュールM間を接続するバスバーと端子との接続部における端子の緩みや、同接続部における異物の噛み込み、あるいは、1つのモジュールM内部での2つのセル群C’の間の端子溶接部の接合不良、等が相当する。なお、ここで、偏差DV1,DV2が「互いに等しい」とは、適当なある範囲を含むものであり、例えば、偏差DV2が「DV1±α」(αは適当な微小量)の範囲内にあれば、両者が互いに等しいものとする。
 偏差DV2が偏差DV1よりも大であれば、ステップ22からステップ23へ進み、当該セル群C’が直列接続および並列接続の双方の異常を有するものと判定する。つまり、これは、充電開始初期における偏差DV1が大であり、かつこの偏差DV1が充電の進行に伴って拡大する場合に相当する。
 逆に偏差DV1が偏差DV2よりも大であれば、ステップ22からステップ24へ進み、当該セル群C’の接続が不安定なものと判定し、再試験を行うものとする。つまり、これは、充電開始初期における偏差DV1が大であり、かつこの偏差DV1が充電の進行に伴って縮小したことを意味しており、何らかのエラーあるいは端子等の接続状態が振動等で変化している可能性が高いため、再試験を行う。換言すれば、最終的な診断が保留される。
 図5のステップ25~ステップ30は、ステップ2において定電流充電でないと判定されたときの予備的な処理を示している。前述したように、この検査装置を用いた検査の際は基本的に定電流充電に制御される。なお、定電流充電でない場合には何ら処理を行わないように構成してもよい。
 ステップ25では、ステップ3と同じく充電中の各セル群C’の電圧(これを第3のセル電圧V3と呼ぶこととする)をバッテリコントローラを介して取得する。一例では、96個のセル群C’が存在するので、96個の第3のセル電圧V3のデータが取得される。ステップ26では、この96個の第3のセル電圧V3の平均値Vav3を算出する。そして、ステップ27では、個々のセル群C’について、当該セル群C’の第3のセル電圧V3と平均値Vav3との差として第3のセル電圧V3の偏差DV3を求める。つまり、DV3=V3-Vav3として、全てのセル群C’について偏差DV3を求める。
 ステップ28では、偏差DV3が所定の閾値DVth3以下であるか否かを判定する。一つの実施例においては、閾値DVth3は、閾値DVth1と変わりがなく、例えば0.18Vである。ステップ28の処理は、全てのセル群C’について行う。
 全てのセル群C’の偏差DV3が閾値DVth3以下であれば、ステップ29へ進み、全てのセルCの接続状態が正常であると判定して検査を終了する。いずれかのセル群C’の偏差DV3が閾値DVth3よりも大きければ、ステップ30へ進み、原因は特定できないものの当該セル群C’にセル電圧の異常があると判定する。
 図6は、バッテリパック1の充電時における充電電流およびセル電圧(1つのセル群C’の両端の出力端子間の電圧)を示している。
 時間t1において充電器2による充電が開始される。そして、充電開始直後つまり充電開始初期におけるセル電圧(つまり第1のセル電圧V1)を取得する。充電は、図示するように定電流(例えば120A)で行われる。そして、SOCが例えば20%に達する時間t2においてセル電圧(つまり第2のセル電圧V2)を取得する。
 モジュールMの内部やモジュールM間の接続が正常であれば、各セル群C’のセル電圧は、線S1で示すように変化する。つまり、充電開始に伴ってステップ的に上昇し、その後、充電の進行に伴って緩やかに上昇する。なお、前述したように、この充電開始時点では、各セルCのSOCは5%程度に揃っている。
 このような正常な特性(S1)に比較して、並列接続異常つまりセル群C’の中の一方のセルCが回路から分離している状態では、当該セル群C’の電極面積が他のセル群C’に比較して半分となるので、充電に伴う電圧上昇が早くなる。つまり、線S2で示すように、充電開始初期のセル電圧(第1のセル電圧V1)は正常なセル群C’のものと大差がなく、充電の進行に伴い、正常なセル群C’のセル電圧よりも電圧が高くなる特性を示す。この特性(S2)は、前述した図3のフローチャートのステップ13に相当する。
 また、直列接続異常つまり直列に接続されている箇所での端子の緩みや異物の噛み込みあるいは溶接不良等により局部的に抵抗が増大している状態では、この抵抗を含むこととなるセル群C’の充電中のセル電圧が、抵抗の存在によって高くなる。定電流充電であることから、抵抗の存在に伴う電圧上昇分は基本的に一定である。従って、線S3で示すように、充電開始初期から正常なセル群C’のセル電圧よりも電圧が高くなり、かつ充電の進行に伴い、正常なセル群C’と同様に緩やかに上昇する特性を示す。換言すれば、直列接続異常時の特性(S3)は、正常な特性(S1)と概ね平行な線となる。この特性(S3)は、前述した図4のフローチャートのステップ21に相当する。
 また、直列接続および並列接続の双方が異常であると、例えば線S4で示すように、充電開始初期のセル電圧(第1のセル電圧V1)が正常なセル群C’のセル電圧よりも高く、かつ充電の進行に伴う電圧上昇が正常なセル群C’の電圧上昇よりも早くなる特性を示す。この特性(S4)は、前述した図4のフローチャートのステップ23に相当する。
 なお、1つのセル群C’あるいはセル群C’を構成する一方のセルCが短絡している場合には、当該セル群C’のセル電圧が正常なセル群C’に比較して低くなり、第1のセル電圧V1についての偏差DV1および第2のセル電圧V2についての偏差DV2がいずれも負の比較的大きな値となる。従って、図3~図5のフローチャートにおいては、最終的にステップ21へ進み、直列接続異常であると診断される。偏差DV1,DV2の正負を判定すれば、さらにセルCの短絡を直列接続異常の他の態様と区別することも可能である。
 以上のように、上記実施例の検査装置ないし検査方法によれば、バッテリパック1が完成した後に、定電流充電を行う中で、モジュールM間の接続の異常やモジュールMの内部での接続の異常等を検出することができ、製品として出荷されるバッテリパック1の品質をより向上させることができる。また、異常のあるモジュールMおよびセル群C’を容易に特定することができるとともに、異常の種別(並列接続異常、直列接続異常および双方の異常)を分別できるので、異常検出後の対応が容易である。例えば、直列接続異常の多くはバスバーに接続されているモジュールMのねじ式端子の再度の締付によって解消できる。また、モジュールM内部での並列接続異常であれば、モジュールMの交換によって速やかに対応することができる。
 以上、この発明を定電流充電の下で検査を行う実施例について説明したが、同様に定電流放電の下で検査を行うことも可能である。
 図7は、定電流放電におけるセル電圧の特性を示したものであり、時間t1において放電が開始すると、正常なセル群C’の電圧は、線S5で示すように、放電開始時にステップ的に低下した後、緩やかに上昇する。
 これに対し、線S6は、並列接続異常の場合のセル電圧の特性を示しており、正常なセル群C’の特性(S5)に比較して電圧上昇が早くなる。
 また線S7は、直列接続異常の場合のセル電圧の特性を示しており、正常なセル群C’の特性(S5)に比較して、セル群C’が含む抵抗分だけセル電圧が低い特性となる。
 従って、上記実施例と同様に、放電開始初期のセル電圧(第1のセル電圧V1)および所定のSOCまで放電が進行した時間t2におけるセル電圧(第2のセル電圧V2)を取得し、これらを全セル群C’の平均値と比較することで、接続異常のセル群C’の特定ならびに異常の種別の分別が可能である。
 なお、本発明のバッテリパック1の検査は、バッテリパック1が車両に搭載された状態において行うことも可能である。
 上記実施例では、2つのセルCが並列接続されて1つのセル群を構成しているが、3つ以上のセルCを並列接続している場合でも、本発明は適用が可能である。また、上記実施例では、各セル電圧を比較する対象として全てのセル群C’の平均値を用いているが、適当な個数のセル群C’の平均値であってもよい。

Claims (7)

  1.  充放電可能なセルが複数個並列に接続されるとともに、この並列接続したセル群が複数直列に接続されてなるバッテリパックの検査方法であって、
     上記バッテリパックを定電流で充電するとともに、充電開始初期におけるセル群の個々の電圧を第1のセル電圧として取得し、
     所定レベルまで充電が進行した段階でのセル群の個々の電圧を第2のセル電圧として取得し、
     個々の第1のセル電圧を複数のセル群についての当該第1のセル電圧の平均値と比較して第1の偏差を求め、
     個々の第2のセル電圧を複数のセル群についての当該第2のセル電圧の平均値と比較して第2の偏差を求め、
     これら2つの偏差に基づいて、各セルの接続異常の検出を行うバッテリパックの検査方法。
  2.  上記第1のセル電圧の平均値もしくは第2のセル電圧の平均値として、直列接続されている全てのセル群のセル電圧の平均値を求める、請求項1に記載のバッテリパックの検査方法。
  3.  あるセル群について、上記第1の偏差が所定値以下であり、かつ上記第2の偏差が所定値よりも大きいときに、当該セル群の並列接続異常であると判定する、請求項1または2に記載のバッテリパックの検査方法。
  4.  あるセル群について、上記第1の偏差および上記第2の偏差がいずれも所定値より大きく、かつ上記第1の偏差と上記第2の偏差とが等しいレベルであるときに、当該セル群の直列接続異常であると判定する、請求項1~3のいずれかに記載のバッテリパックの検査方法。
  5.  あるセル群について、上記第1の偏差および上記第2の偏差がいずれも所定値より大きく、かつ上記第2の偏差が上記第1の偏差よりも大きいときに、当該セル群の直列並列接続異常であると判定する、請求項1~4のいずれかに記載のバッテリパックの検査方法。
  6.  充放電可能なセルが複数個並列に接続されるとともに、この並列接続したセル群が複数直列に接続されてなるバッテリパックの検査方法であって、
     上記バッテリパックを定電流で放電するとともに、放電開始初期におけるセル群の個々の電圧を第1のセル電圧として取得し、
     所定レベルまで放電が進行した段階でのセル群の個々の電圧を第2のセル電圧として取得し、
     個々の第1のセル電圧を複数のセル群についての当該第1のセル電圧の平均値と比較して第1の偏差を求め、
     個々の第2のセル電圧を複数のセル群についての当該第2のセル電圧の平均値と比較して第2の偏差を求め、
     これら2つの偏差に基づいて、各セルの接続異常の検出を行うバッテリパックの検査方法。
  7.  充放電可能なセルが複数個並列に接続されるとともに、この並列接続したセル群が複数直列に接続されてなり、かつ個々のセル群の電圧を監視するバッテリコントローラを内蔵したバッテリパックの検査装置であって、
     上記バッテリパックのセルに充電ラインが接続されるとともに、上記バッテリコントローラに信号ラインが接続される検査ユニットと、
     商用電源に接続され、上記検査ユニットを介して上記バッテリパックの定電流での充電が可能な充電器と、
     を含んで構成され、
     上記検査ユニットは、上記充電器により定電流での充電を行うとともに、
     充電開始初期におけるセル群の個々の電圧を上記バッテリコントローラから第1のセル電圧として取得し、
     所定レベルまで充電が進行したときにセル群の個々の電圧を上記バッテリコントローラから第2のセル電圧として取得し、
     個々の第1のセル電圧を複数のセル群についての当該第1のセル電圧の平均値と比較して第1の偏差を求め、
     個々の第2のセル電圧を複数のセル群についての当該第2のセル電圧の平均値と比較して第2の偏差を求め、
     これら2つの偏差に基づいて、各セルの接続異常の検出を行うバッテリパックの検査装置。
PCT/JP2017/036115 2017-10-04 2017-10-04 バッテリパックの検査方法および検査装置 WO2019069390A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780095329.2A CN111149269B (zh) 2017-10-04 2017-10-04 蓄电池包的检查方法及检查装置
US16/651,057 US11462777B2 (en) 2017-10-04 2017-10-04 Battery pack inspection method and inspection device for anomaly detection via voltage comparison over time
JP2019546457A JP7001700B2 (ja) 2017-10-04 2017-10-04 バッテリパックの検査方法および検査装置
PCT/JP2017/036115 WO2019069390A1 (ja) 2017-10-04 2017-10-04 バッテリパックの検査方法および検査装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/036115 WO2019069390A1 (ja) 2017-10-04 2017-10-04 バッテリパックの検査方法および検査装置

Publications (1)

Publication Number Publication Date
WO2019069390A1 true WO2019069390A1 (ja) 2019-04-11

Family

ID=65994465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/036115 WO2019069390A1 (ja) 2017-10-04 2017-10-04 バッテリパックの検査方法および検査装置

Country Status (4)

Country Link
US (1) US11462777B2 (ja)
JP (1) JP7001700B2 (ja)
CN (1) CN111149269B (ja)
WO (1) WO2019069390A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111413629A (zh) * 2020-02-24 2020-07-14 上海蔚来汽车有限公司 动力电池内单体电池的短路监测方法、系统以及装置
EP3940406A1 (en) * 2020-07-14 2022-01-19 Hioki E.E. Corporation Measuring apparatus and testing apparatus
EP3958006A4 (en) * 2019-09-11 2022-06-01 LG Energy Solution, Ltd. BATTERY DIAGNOSTIC APPARATUS AND METHOD
JP7467803B2 (ja) 2021-01-21 2024-04-16 エルジー エナジー ソリューション リミテッド バスバー診断装置、バッテリパック、エネルギー貯蔵システム及びバスバー診断方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4152021A4 (en) * 2020-11-27 2024-01-03 Lg Energy Solution Ltd BATTERY DIAGNOSTIC DEVICE, BATTERY DIAGNOSTIC METHOD, BATTERY PACK AND VEHICLE
CN112666476B (zh) * 2020-12-09 2024-02-23 北京车和家信息技术有限公司 电池连接件连接状态检测方法、装置及设备
CN113671402B (zh) * 2021-08-18 2024-02-09 上海卫星工程研究所 深空探测器锂离子蓄电池组故障检测方法
CN113466721B (zh) * 2021-08-31 2021-12-21 蜂巢能源科技有限公司 锂离子电池的失效识别方法、装置、电子设备及介质
JP7368429B2 (ja) * 2021-09-17 2023-10-24 プライムプラネットエナジー&ソリューションズ株式会社 組電池の検査方法
SE2250802A1 (en) * 2022-06-29 2023-12-30 Northvolt Systems Ab Method for identifying battery groups having one or more defective cells or cell connections

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09117072A (ja) * 1995-10-17 1997-05-02 Toshiba Battery Co Ltd 二次電池の保護回路
JP2004031120A (ja) * 2002-06-26 2004-01-29 Nissan Motor Co Ltd 組電池の異常診断装置および方法
JP2006337155A (ja) * 2005-06-01 2006-12-14 Matsushita Electric Ind Co Ltd 電池監視装置
JP2009216448A (ja) * 2008-03-07 2009-09-24 Nissan Motor Co Ltd 組電池の異常検出装置

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE515398C2 (sv) * 1996-04-29 2001-07-30 Emerson Energy Systems Ab Batterikapacitetsmätare
FR2776139B1 (fr) * 1998-03-13 2002-03-08 Denso Corp Dispositif d'equilibrage des tensions dans une batterie composee
EP0982830A3 (en) * 1998-08-21 2001-03-21 Sony Corporation Battery pack
JP3300309B2 (ja) * 1999-10-19 2002-07-08 本田技研工業株式会社 電池電圧測定装置
JP4009416B2 (ja) * 1999-10-25 2007-11-14 松下電器産業株式会社 組電池制御装置
TW535308B (en) 2000-05-23 2003-06-01 Canon Kk Detecting method for detecting internal state of a rechargeable battery, detecting device for practicing said detecting method, and instrument provided with said
JP5074648B2 (ja) 2000-05-23 2012-11-14 キヤノン株式会社 二次電池の内部状態検知方法、検知装置、該検知装置を備えた機器、内部状態検知プログラム、および該プログラムを収めた媒体
JP2007311065A (ja) * 2006-05-16 2007-11-29 Toyota Motor Corp 電池装置、これを搭載した車両、および電池装置の異常判定方法
JP4872496B2 (ja) * 2006-07-06 2012-02-08 日産自動車株式会社 組電池のバラツキ検知装置
US8463562B2 (en) * 2007-02-08 2013-06-11 Panasonic Ev Energy Co., Ltd. Device and method for detecting abnormality of electric storage device
US7719134B2 (en) * 2007-06-12 2010-05-18 Mitsubishi Electric Corporation In-vehicle mount electronic controller
JP4816743B2 (ja) * 2009-02-17 2011-11-16 ソニー株式会社 電池パックおよび検出方法
US20110169450A1 (en) * 2009-07-14 2011-07-14 Hudnall Coy A Battery control apparatus
US9246337B2 (en) * 2010-04-23 2016-01-26 Hitachi, Ltd. Battery pack and battery pack controller
JP5583781B2 (ja) * 2010-10-15 2014-09-03 三洋電機株式会社 電力管理システム
EP2472278A1 (en) * 2010-10-15 2012-07-04 Sanyo Electric Co., Ltd. Power management system
JP5670212B2 (ja) * 2011-01-28 2015-02-18 日立マクセル株式会社 電池ユニット
FR2976405B1 (fr) * 2011-06-08 2014-04-04 Commissariat Energie Atomique Dispositif de generation d'energie photovoltaique avec gestion individuelle des cellules
US20130015875A1 (en) * 2011-07-13 2013-01-17 United Solar Ovonic Llc Failure detection system for photovoltaic array
US10036780B2 (en) * 2011-09-05 2018-07-31 Kabushiki Kaisha Nihon Micronics Evaluation apparatus and evaluation method of sheet type cell
JP5945405B2 (ja) * 2011-12-05 2016-07-05 オートモーティブエナジーサプライ株式会社 リチウムイオン二次電池の製造方法
JP2013096752A (ja) * 2011-10-28 2013-05-20 Sanyo Electric Co Ltd パック電池の異常判定方法及びパック電池
CN104145399B (zh) * 2012-02-29 2016-11-02 Nec能源元器件株式会社 电池控制系统和电池组
KR101775547B1 (ko) * 2013-01-16 2017-09-06 삼성에스디아이 주식회사 이종 셀을 포함하는 배터리 팩 및 이를 포함하는 전력 장치
KR20150132129A (ko) * 2013-03-14 2015-11-25 오토모티브 에너지 서플라이 가부시키가이샤 이상 진단 장치
US10008862B2 (en) * 2013-03-28 2018-06-26 Murata Manufacturing Co., Ltd. Power storage device, power storage system, and control method of power storage device
JP6232222B2 (ja) * 2013-07-18 2017-11-15 オートモーティブエナジーサプライ株式会社 電池の製造方法
US9812732B2 (en) * 2013-08-16 2017-11-07 Johnson Controls Technology Company Dual storage system and method with lithium ion and lead acid battery cells
WO2015029832A1 (ja) * 2013-08-30 2015-03-05 日本碍子株式会社 二次電池システムの異常発生部位を特定する装置、方法及びプログラム
US9912017B1 (en) * 2014-09-03 2018-03-06 Ho-Hsun David Kuo Apparatus and method for intelligent battery optimization and equalization management system
KR101648893B1 (ko) * 2015-02-03 2016-08-17 삼성에스디아이 주식회사 배터리 팩 및 이의 제어방법
GB2541352B (en) * 2015-04-30 2022-02-16 Porsche Ag Apparatus and method for an electric power supply
JP7004650B2 (ja) * 2016-07-12 2022-01-21 株式会社エンビジョンAescジャパン 情報処理装置、制御方法、及びプログラム
JPWO2018155270A1 (ja) * 2017-02-22 2019-12-12 株式会社エンビジョンAescエナジーデバイス 充電システム、電池パック、及び保護装置
JP6831281B2 (ja) * 2017-03-27 2021-02-17 株式会社デンソーテン 電池監視システムおよび電池監視装置
JP7033734B2 (ja) * 2017-06-08 2022-03-11 パナソニックIpマネジメント株式会社 蓄電システム、管理装置
US10804712B2 (en) * 2017-10-26 2020-10-13 Sunfield Semiconductor, Inc. Wireless management system for energy storage systems
JP6963358B2 (ja) * 2018-03-26 2021-11-10 株式会社エンビジョンAescジャパン 電源装置
WO2020021889A1 (ja) * 2018-07-25 2020-01-30 パナソニックIpマネジメント株式会社 管理装置、及び電源システム
WO2020021888A1 (ja) * 2018-07-25 2020-01-30 パナソニックIpマネジメント株式会社 管理装置、及び電源システム
US10919408B2 (en) * 2018-12-10 2021-02-16 GM Global Technology Operations LLC Controlling operation of device with rechargeable energy storage pack based on propulsion loss assessment
KR102267785B1 (ko) * 2019-10-10 2021-06-21 삼성에스디아이 주식회사 배터리 시스템 및 배터리 시스템의 제어 방법
US20220077514A1 (en) * 2020-09-07 2022-03-10 Hyundai Motor Company Battery management apparatus and energy storage system having the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09117072A (ja) * 1995-10-17 1997-05-02 Toshiba Battery Co Ltd 二次電池の保護回路
JP2004031120A (ja) * 2002-06-26 2004-01-29 Nissan Motor Co Ltd 組電池の異常診断装置および方法
JP2006337155A (ja) * 2005-06-01 2006-12-14 Matsushita Electric Ind Co Ltd 電池監視装置
JP2009216448A (ja) * 2008-03-07 2009-09-24 Nissan Motor Co Ltd 組電池の異常検出装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3958006A4 (en) * 2019-09-11 2022-06-01 LG Energy Solution, Ltd. BATTERY DIAGNOSTIC APPARATUS AND METHOD
US11965936B2 (en) 2019-09-11 2024-04-23 Lg Energy Solution, Ltd. Battery diagnosis apparatus and method
CN111413629A (zh) * 2020-02-24 2020-07-14 上海蔚来汽车有限公司 动力电池内单体电池的短路监测方法、系统以及装置
WO2021169487A1 (zh) * 2020-02-24 2021-09-02 上海蔚来汽车有限公司 动力电池内单体电池的短路监测方法、系统以及装置
TWI761083B (zh) * 2020-02-24 2022-04-11 大陸商上海蔚來汽車有限公司 動力電池內單體電池的短路監測方法、系統以及裝置
CN111413629B (zh) * 2020-02-24 2024-02-02 上海蔚来汽车有限公司 动力电池内单体电池的短路监测方法、系统以及装置
EP3940406A1 (en) * 2020-07-14 2022-01-19 Hioki E.E. Corporation Measuring apparatus and testing apparatus
US11796604B2 (en) 2020-07-14 2023-10-24 Hioki E.E. Corporation Measuring apparatus and testing apparatus
JP7467803B2 (ja) 2021-01-21 2024-04-16 エルジー エナジー ソリューション リミテッド バスバー診断装置、バッテリパック、エネルギー貯蔵システム及びバスバー診断方法

Also Published As

Publication number Publication date
US11462777B2 (en) 2022-10-04
CN111149269A (zh) 2020-05-12
JP7001700B2 (ja) 2022-01-20
US20200287251A1 (en) 2020-09-10
CN111149269B (zh) 2024-03-29
JPWO2019069390A1 (ja) 2020-12-17

Similar Documents

Publication Publication Date Title
WO2019069390A1 (ja) バッテリパックの検査方法および検査装置
JP5349810B2 (ja) 蓄電装置の異常検出装置及び方法並びにプログラム
US11545839B2 (en) System for charging a series of connected batteries
US9933489B2 (en) Battery monitoring apparatus
US20190154763A1 (en) High capacity battery balancer
CN105190330B (zh) 电池状态判定装置
US10444294B2 (en) Electricity storage device production method and structure body inspection device
US20220146583A1 (en) System and method for diagnosing battery
JP6382453B2 (ja) 電池監視装置
CN111527644B (zh) 可充电电池异常检测装置及可充电电池异常检测方法
US20220050142A1 (en) High capacity battery balancer
WO2016157721A1 (ja) 故障検出装置
US10393823B2 (en) Battery system monitoring apparatus
WO2018101005A1 (ja) 電池制御装置
JP2013242324A (ja) 電池監視装置
JP6787705B2 (ja) 異常検出装置、および組電池システム
US8502541B2 (en) Battery testing dynamic delta voltage measurement
JP2022105409A (ja) 電池状態判定方法及び電池状態判定装置
JP2014134488A (ja) 電池監視装置
JP5843518B2 (ja) 断線検出装置
EP4286869A1 (en) Battery diagnosis method and battery system adopting same
US20240133965A1 (en) Battery diagnosis method and battery system applying the same
JP2023105474A (ja) 検査装置、電池監視装置の検査方法
KR20230041622A (ko) 조전지의 검사 방법
KR20220147950A (ko) 병렬 단위 셀이 직렬로 연결된 배터리시스템에서 단셀 불량 검출 시스템 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17927882

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019546457

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17927882

Country of ref document: EP

Kind code of ref document: A1