JP2013020930A - 二次電池 - Google Patents

二次電池 Download PDF

Info

Publication number
JP2013020930A
JP2013020930A JP2011234259A JP2011234259A JP2013020930A JP 2013020930 A JP2013020930 A JP 2013020930A JP 2011234259 A JP2011234259 A JP 2011234259A JP 2011234259 A JP2011234259 A JP 2011234259A JP 2013020930 A JP2013020930 A JP 2013020930A
Authority
JP
Japan
Prior art keywords
gas
secondary battery
generating material
adsorbent
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011234259A
Other languages
English (en)
Inventor
Kenta Ishii
健太 石井
Ryuji Oide
竜二 大井手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2011234259A priority Critical patent/JP2013020930A/ja
Publication of JP2013020930A publication Critical patent/JP2013020930A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

【課題】所定の条件下で電池ケースの内圧を上昇させるガス発生材を備え、かつ該ガス発生材による電池性能への影響が抑えられた二次電池を提供する。
【解決手段】本発明に係る二次電池は、正極及び負極を備える電極体80と、電極体80を収容する電池ケースと、電池ケースの内部に配置され、温度上昇に伴いガスを発生させるガス発生材60と、電池ケースの内圧がガス発生材60からのガス発生により上昇した場合に作動する電流遮断機構とを備える。ガス発生材60は、電池反応に関与する部位を避けて配置されている。
【選択図】図4

Description

本発明は二次電池に関し、特に電流遮断機構を備えた二次電池に関する。
近年、リチウム二次電池、ニッケル水素電池その他の二次電池(蓄電池)は、車両搭載用電源、或いはパソコンおよび携帯端末の電源として重要性が高まっている。特に、軽量で高エネルギー密度が得られるリチウム二次電池は、車両搭載用高出力電源として好ましく用いられている。このようなリチウム二次電池の典型的な構造の一つとして、電極体及び電解質が収容された電池ケースを密閉して成る密閉構造のリチウム二次電池(密閉型電池)が挙げられる。
ところで、この種のリチウム二次電池を充電処理する際、電池に通常以上の電流が供給されて過充電となることがあり得る。かかる過充電の進行を停止するために、電池内部のガス圧力(電池ケースの内圧)が所定値以上になると充電電流を遮断する電流遮断機構を備えた電池が提案されている。一般に、電池が過充電状態になると、電解液の非水溶媒等が電気分解されてガス及び熱が発生する。上記電流遮断機構は、このガスを検知して電池の充電経路を切断することで、それ以上の過充電を防止し得るようになっている。また、特許文献1には、電解液の非水溶媒よりも酸化電位の低い化合物(例えばシクロヘキシルベンゼン)を、該電解液に添加物として加えることが提案されている。かかる添加物は、電池が過充電になると、正極において速やかに酸化分解されてガスを発生する。この発生したガスで電池の内圧上昇を生みだすことにより、電流遮断機構をより早く作動させることができる。
特開2003−257479号公報
上述したシクロヘキシルベンゼン(CHB)等の添加物は、過充電時に正極(典型的には正極活物質の表面)において酸化分解されることでガスを発生するため、少なくとも正極または該正極に接触する部位に配置しておくことが効果的である。しかしながら、CHB等の添加物は電池反応の抵抗成分として働くため、かかる添加物を正極のように電池反応に関与する部位に配置すると電池性能が低下する(例えば抵抗が増大する、耐久性が低下する)という問題があった。そこで本発明は、所定の条件下で電池ケースの内圧を上昇させるガス発生材を備え、かつ該ガス発生材による電池性能への影響が抑えられた二次電池の提供を目的とする。
本発明に係る二次電池は、正極及び負極を備える電極体と、上記電極体を収容する電池ケースとを備えた二次電池である。かかる二次電池は、上記電池ケースの内部に配置され、温度上昇に伴いガスを発生させるガス発生材と、上記電池ケースの内圧が上記ガス発生材からのガス発生により上昇した場合に作動する電流遮断機構とを備える。そして、上記ガス発生材は、電池反応に関与する部位を避けて配置されている。
ここで、本明細書において「電池反応に関与する部位」とは、充放電のときに電荷担体(例えばリチウム二次電池の場合、リチウムイオン)が実質的に移動する領域をいい、典型的には充放電のときに正極活物質と負極活物質との間を行き来する電荷担体の通り道となる領域をいう。したがって、「ガス発生材が電池反応に関与する部位を避けて配置されている」とは、ガス発生材が上記電荷担体の通り道となる領域以外の部位に配置されていることを意味し、例えば、電池ケースの内壁と電極体との間のスペースに配置したり、捲回電極体(シート状の正極とシート状の負極とを重ね合わせて捲回したもの)の捲回中心部に配置したりすることがその典型例である。
本発明の構成では、温度上昇に伴いガスを発生させるガス発生材が、電池反応に関与する部位(即ち充放電のときに正極活物質と負極活物質との間を行き来する電荷担体の通り道となる領域、例えば正極、負極、正負極間に介在するセパレータ)を避けて配置されている。このため、上記ガス発生材が、正極活物質から負極活物質、負極活物質から正極活物質へと動いていく電荷担体の移動の妨げとならず、電池性能を良好に保つことができる。したがって、本発明によると、ガス発生材による電池性能への影響(例えば抵抗増大、耐久性低下)を抑えつつ、該ガス発生材を利用して過充電時に上記電流遮断機構を的確に作動させ得る二次電池を提供することができる。
ここで開示される二次電池のある好適な一態様において、上記電極体は、シート状の上記正極とシート状の上記負極とが積層されて捲回されてなる捲回電極体である。そして、上記ガス発生材の少なくとも一部は、上記捲回電極体の捲回中心部に配置されている。捲回電極体の捲回中心部は、正極と負極とが対向していないので電池反応には関与せず、かつ周囲の部分(例えば捲回電極体の外周部)に比べて熱が籠りやすいので温度が上昇しやすい。そのため、温度上昇によりガスを発生させるガス発生材を配置するのに好適である。
ここで開示される二次電池のある好適な一態様において、上記ガス発生材の少なくとも一部は、上記電池ケースの内壁と上記電極体との間に配置されている。かかる構成によれば、ガス発生材を電池反応に関与する部位を避けて配置するという本発明の構成を容易に実現できる。
ここで開示される二次電池のある好適な一態様において、上記ガス発生材は、予め上記ガスを構成するガス分子が吸着された吸着材(典型的には固体)である。かかる構成によると、吸着材にガス分子を予め吸着させるという簡易な構成によって本発明の目的に適したガス発生材を実現できる。
上記吸着材に吸着させるガス分子としては、吸着材から温度上昇に伴い脱着可能なガス種の分子であれば特に制限なく使用することができる。過充電時に電池反応に関与しないガス種の分子が好ましい。好ましい一態様では、上記ガス発生材が、予め難燃性ガスもしくは不燃性ガスの分子を吸着させた吸着材である。上記不燃性ガスの一好適例として二酸化炭素(CO)が挙げられる。例えば、実質的にCO分子のみを吸着させた吸着材を好ましく使用し得る。
ここで開示されるガス発生材に用いられる吸着材としては、いったん吸着したガス分子を温度上昇に伴い脱着可能なものであれば特に制限なく使用することができる。例えば、物理吸着作用を有する吸着材(即ち、ガス分子をファンデルワールス力で保持する吸着材)を好ましく採用し得る。物理吸着は化学吸着に比べて吸着力が弱いため、いったん吸着したガス分子を温度上昇に伴い容易に脱着できる点で好ましい。かかる物理吸着に好適な吸着材として、ゼオライトおよび活性炭が例示される。本技術における吸着材としては、特にゼオライトが好適である。
ここで開示される二次電池における吸着材としては、該吸着材の上記ガス分子吸着能力が、該ガス圧0.1MPaにおいて、温度25℃では50cm/g以上であり、かつ、温度100℃では25cm/g以下であるものを好ましく使用し得る。このように、温度変化による吸着量の増減が激しい吸着材を用いることにより、過充電時にガスを効率よく発生させ、上記電流作動機構を的確に作動させることができる。なお、上記ガス分子の吸着量は、標準状態(0℃、1気圧)における体積に換算した値を示すものとする。
また、吸着材は粉末状であることが好ましい。かかる吸着材粉末(例えばゼオライト粉末)を構成する粉体の平均粒径は、10μm以下(例えば1〜10μm、好ましくは1〜5μm)であることが好ましい。吸着材粉末の平均粒径が大きすぎると、該吸着材の比表面積が低下して、ガス分子の脱着量が低下することがある。
ここで開示される二次電池のある好適な一態様では、上記吸着材は、上記ガス分子を吸着するサイトを複数備えた構造の物質から構成されている。そして、上記吸着材は、上記ガス分子が吸着されていない空のサイトであって、通常使用時(すなわち電池を通常の使用形態で充放電する場合)に電池内で発生する電池内発生ガス分子を吸着可能な空サイトを残存している状態で配置されている。換言すると、上記吸着材は、該吸着材における既吸着ガス分子(すなわち、吸着材に予め吸着されているガス分子)の吸着量が、該吸着材に対する既吸着ガス分子の飽和吸着量(すなわち、吸着反応が平衡に達したときの平衡吸着量)より低くなるように調整されている。かかる構成によると、通常使用時に電池内で発生する電池内発生ガス分子(例えば、電解液の分解反応により発生するCO、CO、C、C等のガス分子)が吸着材の空サイトに吸着されるため、過充電時以外の内圧上昇が有効に抑えられ、電流遮断機構の誤作動を防止することができる。また、それにより過充電時にのみガス発生を促し、電流遮断機構の作動能を高めることができる。
ここで開示される二次電池のある好適な一態様において、上記ガス発生材は、フィルムで密封された状態で配置されている。このようにガス発生材をフィルムで密封された状態で配置することにより、電池が通常の充放電範囲で使用されている間は該ガス発生材と電解液との接触を回避し、該ガス発生材と電解液とが接触することによる不都合(例えばガス発生材が電解液中に分散したり、吸着材に吸着されたガス分子が脱着(desorption)したりする不都合)を解消することができる。
ここで開示される二次電池のある好適な一態様において、上記電極体の正極及び負極には、それぞれ正極端子及び負極端子が電気的に接続されている。上記電流遮断機構は、上記正極及び負極の少なくとも一方の電極端子から上記電極体に至る導電経路を構成する導通部材を含み、上記ガス発生材からのガス発生により上記電池ケースの内圧が上昇した場合に上記導通部材が変形して上記導電経路を切断するように構成されている。このような導通部材の変形を伴う導電経路の切断により、充電電流を適切に遮断することができる。
ここで開示されるいずれかの二次電池は、電池性能を良好に保ちつつ過充電時にガスを発生して電流遮断機構を適切に作動できることから、車両に搭載される二次電池(例えばリチウム二次電池)として適した性能を備える。したがって本発明によると、ここに開示される二次電池を備える車両が提供される。特に、該二次電池を動力源(典型的には、ハイブリッド車両または電気車両の動力源)として備える車両(例えば自動車)が提供される。
本発明の一実施形態に係るリチウム二次電池の構造の一例を示す模式図である。 本発明の一実施形態に係るリチウム二次電池の捲回電極体を示す模式図である。 図2中のIII−III断面を示す模式図である。 本発明の一実施形態に係る捲回電極体を模式的に示す(a)側面図、および(b)正面図である。 本発明の他の実施形態に係るリチウム二次電池の構造の一例を示す模式図である。 本発明の一実施形態に係る電池を搭載した車両を示す側面図である。
以下、図面を参照しながら、本発明による実施の形態を説明する。なお、各図における寸法関係(長さ、幅、厚さ等)は実際の寸法関係を反映するものではない。また、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄(例えば、正極活物質や負極活物質の構成および製法、セパレータや電解質の構成および製法、二次電池の構築に係る一般的技術等)は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。
<第1実施形態>
特に限定することを意図したものではないが、以下では扁平に捲回された電極体(捲回電極体)と非水電解液とを扁平な箱型(直方体形状)の容器に収容した形態のリチウム二次電池を例として本発明を詳細に説明する。また、以下の図面においては、同じ作用を奏する部材・部位には同じ符号を付し、重複する説明は省略または簡略化することがある。
なお、本明細書において「リチウム二次電池」とは、電解質イオンとしてリチウムイオンを利用し、正負極間におけるリチウムイオンに伴う電荷の移動により充放電が実現される二次電池をいう。一般にリチウムイオン二次電池と称される電池は、本明細書におけるリチウム二次電池に包含される典型例である。
本発明の一実施形態に係るリチウム二次電池の概略構成を図1〜3に示す。図1に示すように、リチウム二次電池100は、長尺状の正極シート10と長尺状の負極シート20とが長尺状のセパレータシート40A、40Bを介して扁平に捲回された形態の電極体(捲回電極体)80が、図示しない非水電解液とともに、該捲回電極体80を収容し得る形状(扁平な箱型)の電池ケース50に収容された構成を有する。
≪電池ケース≫
電池ケース50は、上端が開放された扁平な直方体状のケース本体52と、その開口部を塞ぐ蓋体54とを備える。電池ケース50を構成する材質としては、アルミニウム、スチール等の金属材料が好ましく用いられる(本実施形態ではアルミニウム)。あるいは、ポリフェニレンサルファイド(PPS)、ポリイミド樹脂等の樹脂材料を成形してなる電池ケース50であってもよい。電池ケース50の上面(すなわち蓋体54)には、捲回電極体80の正極10と電気的に接続する正極端子70と、該電極体80の負極20と電気的に接続する負極端子72とが設けられている。
≪電流遮断機構≫
電池ケース50の内部には、電池ケースの内圧上昇により作動する電流遮断機構30が設けられている。電流遮断機構30は、電池ケース50の内圧が後述するガス発生材からのガス発生により上昇した場合に、少なくとも一方の電極端子から電極体80に至る導電経路を切断することで充電電流を遮断し得るように構成されている。この実施形態では、電流遮断機構30は、蓋体54に固定した正極端子70と電極体80との間に設けられ、電池ケース50の内圧が上昇した場合に正極端子70から電極体80に至る導電経路を切断するように構成されている。
上記電流遮断機構30は、例えば導通部材32、34を含み得る。この実施形態では、導通部材32、34は、第一部材32と第二部材34とを備えている。そして、電池ケース50の内圧が上昇した場合に第一部材32および第二部材34の少なくとも一方(ここでは第一部材32)が変形して他方から離隔することにより上記導電経路を切断するように構成されている。この実施形態では、第一部材32は変形金属板32であり、第二部材34は上記変形金属板32に接合された接続金属板34である。変形金属板(第一部材)32は、中央部分が下方へ湾曲したアーチ形状を有し、その周縁部分が集電リード端子35を介して正極端子70の下面と接続されている。また、変形金属板32の湾曲部分33の先端が接続金属板34の上面と接合されている。接続金属板34の下面(裏面)には正極集電板74が接合され、かかる正極集電板74が電極体80の正極シート10に接続されている。このようにして、正極端子70から電極体80に至る導電経路が形成されている。
また、電流遮断機構30は、プラスチック等により形成された絶縁ケース38を備えている。絶縁ケース38は、変形金属板32を囲むように設けられ、変形金属板32の上面を気密に密閉している。この気密に密閉された湾曲部分33の上面には、電池ケース50の内圧が作用しない。また、絶縁ケース38は、変形金属板32の湾曲部分33を嵌入する開口部を有しており、該開口部から湾曲部分33の下面を電池ケース50の内部に露出させている。この電池ケース50の内部に露出した湾曲部分33の下面には、電池ケース50の内圧が作用する。
かかる構成の電流遮断機構30において、電池ケース50の内圧が高まると、該内圧が変形金属板32の湾曲部分33の下面に作用し、下方へ湾曲した湾曲部分33が上方へ押し上げられる。この湾曲部分33の上方への押し上げ力は、電池ケース50の内圧が上昇するに従い増大する。そして、電池ケース50の内圧が設定圧力を超えると、湾曲部分33が上下反転し、上方へ湾曲するように変形する。かかる湾曲部分33の変形によって、変形金属板32と接続金属板34との接合点36が切断される。このことにより、正極端子70から電極体80に至る導電経路が切断され、充電電流が遮断されるようになっている。なお、この実施形態では、内圧上昇時に変形する導通部材32、34が、第一部材32と第二部材34とに分けて構成されている場合を例示したが、これに限定されない。例えば、導通部材が1つの部材であってもよい。また、電流遮断機構30は正極端子70側に限らず、負極端子72側に設けてもよい。また、電流遮断機構30は、上述した変形金属板32の変形を伴う機械的な切断に限定されない。例えば、電池ケース50の内圧をセンサで検知し、該センサで検知した内圧が設定圧力を超えると充電電流を遮断するような外部回路を電流遮断機構として設けることもできる。
電池ケース50の内部には、扁平形状の捲回電極体80が図示しない非水電解液とともに収容される。本実施形態に係る捲回電極体80の構成は、後述するように温度上昇に伴いガスを発生させるガス発生材60(図4)が捲回電極体80の捲回中心部85(図4)に配置されている点を除いては通常のリチウム二次電池の捲回電極体と同様であり、図2に示すように、捲回電極体80を組み立てる前段階において長尺状(帯状)のシート構造(シート状電極体)を有している。
≪正極シート≫
正極シート10は、長尺状の金属箔からなる正極集電体(以下「正極集電箔」と称する)12の両面に、正極活物質を含む正極活物質層14が保持された構造を有している。ただし、正極活物質層14は正極シート10の幅方向の端辺に沿う一方の側縁(図では左側の側縁部分)には付着されず、正極集電体12を一定の幅にて露出させた正極活物質層非形成部16が形成されている。正極集電体12にはアルミニウム箔その他の正極に適する金属箔が好適に使用される。
≪正極活物質≫
正極活物質としては、従来からリチウム二次電池に用いられる物質の一種または二種以上を特に限定することなく使用することができる。ここに開示される技術の好ましい適用対象として、リチウムニッケル酸化物(例えばLiNiO)、リチウムコバルト酸化物(例えばLiCoO)、リチウムマンガン酸化物(例えばLiMn)等の、リチウムと遷移金属元素とを構成金属元素として含む酸化物(リチウム遷移金属酸化物)を主成分とする正極活物質が挙げられる。中でも、リチウムニッケルコバルトマンガン複合酸化物(例えばLiNi1/3Co1/3Mn1/3)を主成分とする正極活物質(典型的には、実質的にリチウムニッケルコバルトマンガン複合酸化物からなる正極活物質)への適用が好ましい。
ここで、リチウムニッケルコバルトマンガン複合酸化物とは、Li,Ni,Co及びMnのみを構成金属元素とする酸化物のほか、Li,Ni,Co及びMn以外に他の少なくとも一種の金属元素(すなわち、Li,Ni,Co及びMn以外の遷移金属元素および/または典型金属元素)を含む酸化物をも包含する意味である。かかる金属元素は、例えば、Al,Cr,Fe,V,Mg,Ti,Zr,Nb,Mo,W,Cu,Zn,Ga,In,Sn,LaおよびCeからなる群から選択される一種または二種以上の元素であり得る。リチウムニッケル酸化物、リチウムコバルト酸化物、及びリチウムマンガン酸化物についても同様である。このようなリチウム遷移金属酸化物(典型的には粒子状)としては、例えば、従来公知の方法で調製されるリチウム遷移金属酸化物粉末をそのまま使用することができる。例えば、平均粒径が凡そ1μm〜25μmの範囲にある二次粒子によって実質的に構成されたリチウム遷移金属酸化物粉末を正極活物質として好ましく用いることができる。
正極活物質層14は、正極活物質のほか、一般的なリチウム二次電池において正極活物質層の構成成分として使用され得る一種または二種以上の材料を必要に応じて含有することができる。そのような材料の例として、導電材が挙げられる。該導電材としては、カーボン粉末やカーボンファイバー等のカーボン材料が好ましく用いられる。あるいは、ニッケル粉末等の導電性金属粉末等を用いてもよい。その他、正極活物質層の成分として使用され得る材料としては、正極活物質の結着剤(バインダ)として機能し得る各種のポリマー材料(例えば、ポリフッ化ビニリデン(PVDF))が挙げられる。
上記正極活物質層14の形成方法としては、正極活物質(典型的には粒状)その他の正極活物質層形成成分を適当な溶媒(例えば、N−メチルピロリドン(NMP)等の非水溶媒)に分散した正極活物質層形成用ペーストを、正極集電体12の片面または両面(ここでは両面)に帯状に塗布して乾燥させる方法を好ましく採用することができる。正極活物質層形成用ペーストの乾燥後、適当なプレス処理(例えば、ロールプレス法、平板プレス法等の従来公知の各種プレス方法を採用することができる。)を施すことによって、正極活物質層14の厚みや密度を調整することができる。
≪負極シート≫
負極シート20も正極シート10と同様に、長尺状の金属箔からなる負極集電体(以下「負極集電箔」と称する)22の両面に、負極活物質を含む負極活物質層24が保持された構造を有している。ただし、負極活物質層24は負極シート20の幅方向の端辺に沿う一方の側縁(図では右側の側縁部分)には付着されず、負極集電体22を一定の幅にて露出させた負極活物質層非形成部26が形成されている。負極集電体22には銅箔その他の負極に適する金属箔が好適に使用される。
≪負極活物質≫
負極活物質としては、従来からリチウム二次電池に用いられる物質の一種または二種以上を特に限定することなく使用することができる。好適例として、少なくとも一部にグラファイト構造(層状構造)を含む粒子状の炭素材料(カーボン粒子)が挙げられる。より具体的には、いわゆる黒鉛質のもの(グラファイト)、難黒鉛化炭素質のもの(ハードカーボン)、易黒鉛化炭素質のもの(ソフトカーボン)、これらを組み合わせた構造を有するもの等の、各種の炭素材料を用いることができる。例えば、天然黒鉛のような黒鉛粒子を使用することができる。
負極活物質層24は、負極活物質のほか、一般的なリチウム二次電池において負極活物質層の構成成分として使用され得る一種または二種以上の材料を必要に応じて含有することができる。そのような材料の例として、負極活物質の結着剤(バインダ)として機能し得るポリマー材料(例えばスチレンブタジエンゴム(SBR))、負極活物質層形成用ペーストの増粘剤として機能し得るポリマー材料(例えばカルボキシメチルセルロース(CMC))等が挙げられる。
特に限定するものではないが、負極活物質層全体に占める負極活物質の割合は凡そ80質量%以上(例えば80〜99質量%)とすることができ、凡そ90質量%以上(例えば90〜99質量%、より好ましくは95〜99質量%)であることが好ましい。バインダを使用する組成では、負極活物質層全体に占めるバインダの割合を、例えば、凡そ0.5〜10質量%とすることができ、通常は凡そ1〜5質量%とすることが好ましい。
負極活物質層24の形成方法としては、負極活物質(典型的には粒状)その他の負極活物質層形成成分を適当な溶媒(例えば水系溶媒)に分散した負極活物質層形成用ペーストを負極集電体22の片面または両面(ここでは両面)に帯状に塗布して乾燥させる方法を好ましく採用することができる。負極活物質層形成用ペーストの乾燥後、適当なプレス処理(例えば、ロールプレス法、平板プレス法等の従来公知の各種プレス方法を採用することができる。)を施すことによって、負極活物質層24の厚みや密度を調整することができる。
≪セパレータシート≫
正負極シート10、20間に配置されるセパレータシート40A、40Bとしては、捲回電極体を備える一般的なリチウム二次電池のセパレータと同様の各種多孔質シートを用いることができる。好適例として、ポリエチレン(PE)、ポリプロピレン(PP)等のポリオレフィン系樹脂から成る多孔質樹脂シート(フィルム、不織布等)が挙げられる。かかる多孔質樹脂シートは、単層構造であってもよく、二層以上の複数構造(例えば、PP層の両面にPE層が積層された三層構造)であってもよい。特に限定されるものではないが、セパレータ基材として用いられる好ましい多孔質シート(典型的には多孔質樹脂シート)の性状として、平均孔径が0.001μm〜30μm程度であり、厚みが5μm〜100μm(より好ましくは10μm〜30μm)程度である多孔質樹脂シートが例示される。該多孔質シートの気効率(空隙率)は、例えば凡そ20〜90体積%(好ましくは30〜80体積%)程度であり得る。
≪捲回電極体≫
捲回電極体80を作製するに際しては、正極シート10と負極シート20とがセパレータシート40A、40Bを介して積層される。このとき、正極シート10の正極活物質層非形成部16と負極シート20の負極活物質層非形成部26とがセパレータシート40A、40Bの幅方向の両側からそれぞれはみ出すように、正極シート10と負極シート20とを幅方向にややずらして重ね合わせる。このように重ね合わせた積層体を捲回することにより捲回体を形成し、次いで得られた捲回体を側面方向から押しつぶして拉げさせることによって扁平状の捲回電極体80が作製され得る。
捲回電極体80の捲回軸方向における中央部分には、捲回コア部分82(即ち正極シート10の正極活物質層14と負極シート20の負極活物質層24とセパレータシート40A、40Bとが密に積層された部分)が形成される。また、捲回電極体80の捲回軸方向の両端部では、正極シート10および負極シート20の電極活物質層非形成部16、26の一部がそれぞれ捲回コア部分82から外方にはみ出ている。かかる正極側はみ出し部分84および負極側はみ出し部分86には、正極集電板74(図1)および負極集電板76(図1)がそれぞれ付設されており、上述の正極端子70および負極端子72とそれぞれ電気的に接続される。
続いて、図4(a)及び(b)を加えて、本実施形態に係るリチウム二次電池100について詳細に説明する。図4(a)は本実施形態に係る捲回電極体80を側面から見た模式図であり、図4(b)はその正面図である。
≪ガス発生材≫
電池ケース50の内部には、温度上昇に伴いガスを発生させるガス発生材60が配置されている。ガス発生材60としては、温度上昇に伴いガスを発生し得るものであれば特に限定なく使用することができる。例えば、ガス発生材60は、該ガス発生材の温度が80℃以上(好ましくは100℃以上)に上昇するとガスを多量に発生し得るものであることが好ましい。また、ガス発生材60は、過充電時に電池反応に関与しないガスを発生し得るものであることが好ましい。この実施形態では、ガス発生材60は、予め上記ガスを構成する分子が吸着された吸着材(例えばゼオライト)64である。ゼオライト等の吸着材64は、温度が低いほどガス分子の吸着量が増大し、温度が高いほどガス分子の吸着量が減少する傾向にある。このような温度増減による吸着量の差を利用することで、温度上昇に伴いガスを発生させるガス発生材60とすることができる。
≪吸着材≫
上記ガス発生材に用いられる吸着材64(典型的には固体)は、いったん吸着したガス分子を温度上昇に伴い脱着可能なものであれば特に制限なく使用することができる。例えば、物理吸着作用を有する吸着材(即ち、気体分子をファンデルワールス力で保持する吸着材)を好ましく採用し得る。物理吸着は化学吸着に比べて吸着力が弱いため、いったん吸着したガス分子を温度上昇に伴い迅速かつ容易に脱着できる点で好ましい。また、一般に吸着材64に吸着されたガス分子が脱着するときは周囲から熱を奪うので、電池の高温部分を冷却する効果も実現され得る。かかる吸着材の好適例として、ゼオライト、活性炭、アルミナ、等の多孔質材料が挙げられる。特に本技術における吸着材としてはゼオライトが好適である。
ここでゼオライトとは、結晶性のアミノケイ酸塩の総称を指す。ゼオライトとしては、従来公知のゼオライトの中から適宜選択して使用することができる。例えば、A型ゼオライト、Y型ゼオライト、T型ゼオライト、ZSM−5型ゼオライト、モルデナイト、フォージサイト、ゼオライトA、ゼオライトL等が挙げられ、これらの二種以上併用してもよい。また、ゼオライトは、分子サイズの細孔径の細孔を有することが好ましく、ゼオライトに含まれる細孔の細孔径が3nm以下(例えば0.1〜3nm)、さらには1nm以下(例えば0.1〜1nm)、さらには0.5nm以下(例えば0.1〜0.5nm)であることが好ましい。特に本技術における好適なゼオライトとして、NaO−Al−SiO−HO系からなり、Alに対するSiOのモル比が1〜1.5の範囲のNa−A型ゼオライトが例示される。ここに開示される技術に好ましく使用し得るゼオライトの市販品として、巴工業株式会社製のモレキュラーシーブ(商標)が例示される。例えば、Na12[(AlO12(SiO12]・27HOで示されるモレキュラーシーブ4Aを好ましく使用し得る。ナトリウムイオンを他の金属カチオン(例えばカルシウムイオン)とイオン交換したものを用いてもよい。
上記ゼオライトの形状(外形)は特に制限されない。例えば、粉末状、球状、長柱状のゼオライトを好ましく使用し得る。なかでも、バインダを実質的に含まない粉末状のゼオライト(ゼオライト粉末)の使用が好ましい。例えば、平均粒径が10μm以下(例えば1〜10μm、好ましくは1〜5μm)のゼオライト粉末を好ましく使用し得る。ゼオライト粉末の平均粒径が大きすぎると、該ゼオライト粉末の比表面積が小さくなるためガス分子の脱着量が減少することがある。一方、ゼオライト粉末の平均粒径が小さすぎると、吸着サイトが減少してガス分子の吸着量が減少傾向となることがあるため、通常は平均粒径が凡そ1μm以上(例えば5μm以上)のゼオライト粉末を用いることが好ましい。なお、ガス発生材(吸着材)として用いられる粒状物質の平均粒径は当該分野で公知の方法、例えばレーザ回折散乱法に基づく測定、或いは電子顕微鏡観察によって求めることができる。
≪ガス≫
上記吸着材には、温度上昇により該吸着材から脱着可能なガス分子が吸着されている。吸着材に吸着させるガス分子としては、吸着材から脱着可能なガス種の分子であれば特に制限なく使用することができる。かつ過充電時に電池反応に関与しないガス種の分子が好ましい。かかるガスは、難燃性ガスもしくは不燃性ガスであることが好ましい。ここでいう難燃性ガスもしくは不燃性ガスとは、電池が高温になっても燃焼しないガス全般を指す。本構成で利用可能な難燃性ガスもしくは不燃性ガスの例として、ヘリウム(He)、ネオン(Ne)、アルゴン(Ar)、クリプトン(Kr)、キセノン(Xe)、窒素(N)、二酸化炭素(CO)などが挙げられる。あるいは、フロン類(例えば、三フッ化メタン、四フッ化メタン)などのような有機難燃性もしくは不燃性ガスであってもよい。本構成における不燃性ガスとしては、COが特に好適である。例えば、実質的にCOのみからなる不燃性ガスを好ましく使用することができる。このような難燃性ガスもしくは不燃性ガスの分子を吸着材に吸着させる方法自体は特に制限されない。例えば、吸着材を高温(例えば150℃程度)で真空乾燥した後、上記難燃性ガスもしくは不燃性ガスを充満させたチャンバー内に移し、その後、所定時間放置して吸着材に難燃性ガス分子もしくは不燃性ガス分子を吸着させるとよい。
ここで開示される吸着材の好適例として、該吸着材の上記ガス分子吸着能力が、該ガス圧0.1MPa(約1気圧)で吸着させた場合において、温度25℃では50cm(標準状態における体積をいう。以下同じ。)/g以上であり、かつ、温度100℃では25cm/g以下であるもの、温度25℃では55cm/g以上であり、かつ、温度100℃では20cm/g以下であるもの、温度25℃では60cm/g以上であり、かつ、温度100℃では15cm/g以下であるもの、温度25℃では65cm/g以上であり、かつ、温度100℃では10cm/g以下であるもの、等が挙げられる。このような温度増減による吸着量の変化が激しい吸着材を用いることにより、過充電時に(温度上昇に伴い)ガスを効率よく発生させることができる。好ましい一態様では、上記ガス分子吸着能力が、該ガス圧0.1MPaにおいて、温度100℃でのガス分子吸着量V100℃と、温度25℃でのガス分子吸着量V25℃との関係が、概ね0<V100℃/V25℃≦1/2であり、好ましくは0<V100℃/V25℃≦1/3であり、特に好ましくは0<V100℃/V25℃≦1/4である。また、ここに開示される技術におけるガス発生材としては、25℃から100℃まで温度上昇することにより25cm/g以上(典型的には35cm/g以上、より好ましくは45cm/g以上)のガス分子を脱着し得るように該ガス(例えばCO)分子を吸着させた吸着材を好ましく使用し得る。
≪ガス発生材の配置場所≫
本実施形態に係るリチウム二次電池は、上述した温度上昇に伴いガスを発生させるガス発生材60(ここでは予めガス分子が吸着された吸着材64)が、電池反応に関与する部位を避けて配置(換言すれば、電池反応非関与部位に配置)されていることにより特徴付けられる。ここで、従来のリチウム二次電池で用いられるCHB等のガス発生材は、過充電時に正極(典型的には正極活物質の表面)において酸化分解されることでガスを発生する。したがって、この種のガス発生材を効果的に機能させるためには、該ガス発生材を少なくとも正極または該正極に接触する部位に配置しておくことが必要である。これに対し、本実施形態に係るガス発生材60は、温度上昇によりガスを発生し、ガス発生のために電子の授受を必要としない。したがって、電池反応に関与する部位を避けて配置することが許容される。
本実施形態において「電池反応に関与する部位」とは、充放電のときにリチウムイオンが実質的に移動する領域をいい、典型的には充放電のときに正極活物質と負極活物質との間を行き来するリチウムイオンの通り道となる領域をいう。したがって、「ガス発生材が電池反応に関与する部位を避けて配置されている」とは、ガス発生材がリチウムイオンの通り道となる領域以外の部位に選択的に配置されていることを意味する。例えば、電池ケース50の内壁と電極体80との間のスペースにガス発生材60を配置したり、捲回電極体80の捲回中心部85にガス発生材60を配置したりすることがその典型例である。
この実施形態では、図4(a)に示すように、温度上昇に伴いガスを発生させるガス発生材60が、捲回電極体80の捲回中心部85に配置された構成を有する。捲回電極体80の捲回中心部85は、充放電のときに正極シート10と負極シート20の間を行き来するリチウムイオンの通り道から外れた領域であり、かつ過充電時に熱が籠りやすく周囲の部分に比べて温度が上昇しやすい。そのため、該捲回中心部85にガス発生材60を配置することにより、過充電時にガス発生材60をより早く機能させる(典型的には、過充電初期の段階でより多くのガスを発生させる)ことができ、このことによって上記電流遮断機構を的確に作動させ得る点で好ましい。特に好ましい構成例として、該ガス発生材60が捲回電極体80の捲回中心部85に配置され、かつ捲回電極体80の軸方向中央部に配置された構成が挙げられる。捲回電極体80の軸方向両端部に比べて中央部の温度が大きく上昇しやすいためである。
なお、上記ガス発生材60を配置する部位は、上述した捲回電極体80の捲回中心部85に限定されない。ガス発生材60は、電池ケース50の内部において電池反応に実質的に関与しない任意の部位に配置することができる。例えば、ガス発生材60は、図5に示すように、捲回電極体80と電池ケース50の内壁との間に形成されたスペース90に配置することができる。好ましい一態様では、ガス発生材60が捲回電極体80と電池ケース50の内壁との間に配置され、かつ電池ケース50の内壁に固定された構成を有する。かかる構成によれば、電池ケース50の内壁と捲回電極体80との間に形成されたスペース90を有効に活用して、電池100の体積エネルギー密度を低下させることなくガス発生材60を配置することができる。また、電池反応に関与する部位を避けてガス発生材60を配置するという本発明の構成を簡易(製造容易)に実現できる。
≪フィルム≫
ここで開示される好ましい構成例として、図4(a)に示すように、ガス発生材60が、フィルム62により密封された状態で配置された構成が挙げられる。フィルム62を構成し得る材料としては、通常使用時の電池内部の発熱に耐え得る材質のものであれば特に制限されない。例えば、加熱により軟化する熱可塑性樹脂から構成されたフィルム62を好ましく使用し得る。熱可塑性樹脂の好適例として、ポリエチレン(PE)、ポリプロピレン(PP)、等のポリオレフィン系樹脂が挙げられる。かかるフィルムでガス発生材60を密封する方法自体は特に制限されない。例えば、袋状または容器状に加工したフィルム62にガス発生材60(典型的には粉末状)を充填、収容した後、該フィルムの開口部をヒートシール等の適当な溶接手段により溶接して封口すればよい。このようにガス発生材60をフィルム62で密封した状態で配置することにより、該ガス発生材60と非水電解液との直接接触を回避して該吸着材64と非水電解液とが接触することによる不都合(例えば、粉末状のガス発生材60が電解液に混入したり、吸着材64に吸着されたガス分子が脱着したりする不都合)を解消することができる。
≪非水電解液≫
かかる構成の捲回電極体80をケース本体52に収容し、そのケース本体52内に適当な非水電解液を配置(注液)する。非水電解液としては、従来のリチウム二次電池に用いられる非水電解液と同様のものを特に限定なく使用することができる。かかる非水電解液は、典型的には、適当な非水溶媒に支持塩を含有させた組成を有する。上記非水溶媒としては、例えば、エチレンカーボネート(EC)、エチルメチルカーボネート(EMC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)等を用いることができる。また、上記支持塩としては、例えば、LiPF、LiBF、LiAsF、LiCFSO等のリチウム塩を好ましく用いることができる。例えば、ECとEMCとDMCとを3:4:3の体積比で含む混合溶媒に支持塩としてのLiPFを約1mol/リットルの濃度で含有させた非水電解液を好ましく用いることができる。
本実施形態において、過充電時にガス発生材60からのガス発生に寄与する温度上昇をもたらす要因としては、電解液の酸化分解による発熱を利用することができる。あるいは、他の発熱剤(過充電により熱を発生し得る材料)を積極的に使用してもよい。そのような発熱剤の例として、上記電解液の非水溶媒よりも酸化電位の低い化合物が挙げられる。上記化合物の好適例としては、シクロアルキルベンゼン誘導体、アルキルベンゼン誘導体などの芳香族化合物が挙げられる。シクロアルキルベンゼン誘導体としては、シクロヘキシルベンゼン(CHB)、シクロペンチルベンゼン、等が例示される。アルキルベンゼン誘導体としては、クメン、1,3−ジイソプロピルベンゼン、1,4−ジイソプロピルベンゼン、1−メチルプロピルベンゼン、1,3−ビス(1−メチルプロピル)ベンゼン、1,4−ビス(1−メチルプロピル)ベンゼン、等が例示される。なかでもCHBの使用が好ましい。これらの化合物を上記電解液に添加物として加えるとよい。
かかるCHB等の添加物(発熱剤)は、リチウム二次電池の電解液に使用される一般的な非水溶媒に比べて酸化電位が低いため、該非水溶媒よりも早期に(より過充電初期の段階で)酸化分解されて熱を発生する。この熱を利用してガス発生材60を加熱することにより、ガス発生材60から十分量のガスを速やかに発生させて、電流遮断機構を的確に作動させることができる。該添加物の電解液中の濃度は特に限定されないが、ガス発生材60からのガス発生促進に役立つ熱を有効に発生させる観点からは、凡そ0.1質量%以上が適当であり、好ましくは0.5質量%以上である。ただし、上記添加物は電池反応の抵抗成分となり得るため、該添加物の濃度を凡そ5質量%以下、好ましくは2質量%以下に抑えることが適当である。例えば、0.1質量%〜5質量%(特には0.5質量%〜5質量%)が適当であり、特には0.1質量%〜2質量%(特には0.5質量%〜2質量%)が好適である。本実施態様に係る電池100は、温度上昇によりガスを発生するガス発生材60を主に利用して電流遮断機構を作動させ得るように構成されており、上記添加物は、ガス発生材60からのガス発生を促進する目的で用いられる。したがって、本実施態様によると、上記添加物の酸化分解により発生するガスを主に利用して電流遮断機構を作動させる構成に比べて、該添加物の使用量を明らかに少なくすることができる。このように、温度上昇によりガスを発生するガス発生材60と上記添加物(発熱剤)とを組み合わせて使用することにより、該添加物の使用量を抑えて電池性能の低下を抑えつつ、該添加物の酸化分解に伴う熱を利用してガス発生材60からのガス発生を促進し、電流遮断機構を的確に作動させることができる。なお、ここに開示される技術は、かかる発熱剤を実質的に用いない態様でも好ましく実施され得る。
上記非水電解液を捲回電極体80とともにケース本体52に収容し、ケース本体52の開口部を蓋体54との溶接等により封止することにより、本実施形態に係るリチウム二次電池100の構築(組み立て)が完成する。なお、ケース本体52の封止プロセスや電解液の配置(注液)プロセスは、従来のリチウムイオン電池の製造で行われている手法と同様にして行うことができる。その後、該電池のコンディショニング(初期充放電)を行う。必要に応じてガス抜きや品質検査等の工程を行ってもよい。
本実施形態に係るリチウム二次電池100の機能につき説明する。図4(a)に示すように、電池ケースの内部には、温度上昇に伴いガスを発生させるガス発生材60が設けられている。この実施形態では、ガス発生材60として、予めガス分子を吸着した吸着材64(例えば、難燃性ガス分子もしくは不燃性ガス分子を吸着させたゼオライト粉末)を備えている。そして、ガス分子を吸着した吸着材64を備えたガス発生材60は、フィルム62により密封された状態で、捲回電極体80の捲回中心部85に配置されている。
かかる構成のリチウム二次電池100が過充電状態になると、電池ケース内の温度が上昇し、吸着材64に吸着されているガス分子が脱着する。そして、吸着材64を密封しているフィルム62が脱着ガスによる内圧上昇(典型的には、さらに、温度上昇による軟化)に耐えきれずに破れると、吸着材64から放出されたガスが電池ケース内に一気に放出され、電池ケースの内圧が上昇する。これにより電流遮断機構30(図1)を適切に作動させることができる。
本実施形態の構成によれば、温度上昇に伴いガスを発生させるガス発生材60(予めガス分子が吸着された吸着材64)が電池反応に関与する部位を避けて配置されているので、ガス発生材60によって電荷担体の移動が妨げられることなく、電池性能を良好に保つことができる。したがって、本実施形態によると、電池性能への影響(例えば抵抗増大、耐久性低下)を抑えつつ、過充電時に電池ケースの内圧を上昇させて電流遮断機構を適切に作動させる機能を備えたリチウム二次電池を提供することができる。
なお、上記実施形態では、粉末状の吸着材64にガス分子を吸着させた粉末状のガス発生材60をフィルム62に包んで電池ケース内に配置した構成のリチウム二次電池100について説明したが、ガス発生材60の形状はこれに限定されない。例えば、粉末状の吸着材64をシート状(板状)に加工し、このシート状吸着材にガス分子を吸着させた形態のガス発生材(ガス発生材シート)60であってもよい。かかる形態のガス発生材60を用いることによって、該ガス発生材60の取扱性が向上するとともに、該ガス発生材60を捲回電極体80の捲回中心部85へ挿入する作業(工程)が容易になる。ただし、吸着効率等の観点からは、上記実施形態の如く粉末状の吸着材64にガス分子を吸着させたガス発生材60の使用が好ましい。
上述のように温度上昇に伴いガスを発生させるガス発生材を備えた構成が採用される限りにおいて、二次電池の形状(外形やサイズ)には特に制限はない。例えば電池ケースが円筒形状であって、円筒形状の捲回電極体を備えた電池であってもよい。かかる円筒形状の捲回電極体は、捲回中心部に巻芯が配置された構成(典型的には、正極シート、負極シートおよび2枚のセパレータシートが巻心の周囲に巻き付けられた構成)であり得る。この場合、上記巻芯として中空形状(典型的には円筒形状)のものを使用し、該巻心の内部に、温度上昇に伴いガスを発生させるガス発生材(例えば予めガス分子が吸着された吸着材)を配置することができる。
<第2実施形態>
この実施形態では、吸着材は、ガス分子を吸着するサイトを複数備えた構造の物質から構成されている。そして、上記吸着材は、上記ガス分子が吸着されていない空のサイトであって、通常使用時に電池内で発生する電池内発生ガス分子を吸着可能な空サイトを残存している状態で配置されている。換言すると、上記吸着材は、該吸着材における既吸着ガス分子(すなわち、吸着材に予め吸着されているガス分子)の吸着量が、該吸着材に対する既吸着ガス分子の飽和吸着量(すなわち、吸着反応が平衡に達したときの平衡吸着量)より低くなるように調整されている。かかる構成によると、通常使用時に電池内で発生する電池内発生ガス分子(例えば、電解液の分解反応により発生するCO、CO、C、C等のガス分子)が吸着材の空サイトに吸着されるため、過充電時以外の内圧上昇が有効に抑えられ、電流遮断機構の誤作動を防止することができる。また、それにより過充電時にのみガス発生を促し、電流遮断機構の作動能を高めることができる。なお、通常使用時に発生した電池内発生ガス分子であって上記空サイトに吸着されたガス分子は、過充電時の発熱により再び脱着され得る。
かかる吸着材としては、通常使用時に電池内で発生する電池内発生ガス(例えば、CO、CO、C,C)分子に対して高い吸着能を示す吸着材であることが好ましい。また、過充電時にCHB等の添加剤の酸化分解により発生するガス(例えばH)分子を吸着しない吸着材を用いることが好ましい。さらに、一旦吸着したガス分子を過充電時の発熱で容易に脱着できる吸着材であることが好ましい。このような条件を満たす吸着材を特に制限なく用いることができる。かかる吸着材の好適例として、ゼオライト、活性炭、アルミナ等の多孔質材料が挙げられる。このうち、特に好適なものについては第1実施形態と同等であるため、その詳細な説明は省略する。
上記吸着材における既吸着ガス分子(すなわち、吸着材に予め吸着されているガス分子)の吸着量としては、該吸着材に対する既吸着ガス分子の飽和吸着量より低ければよいが、通常使用時に電池内で発生する電池内発生ガスを不足なく吸着し得るように適宜調整することが好ましい。例えば、電池の想定される使用期間(例えば25年程度)において、通常使用時に発生する電池内発生ガス量を予め見積もっておき、その電池内発生ガス量を不足なく吸着し得るように上記既吸着ガス分子の吸着量を適宜選択するとよい。
特に限定されるものではないが、上記吸着材における既吸着ガス分子(すなわち、吸着材に予め吸着されているガス分子)の吸着量は、該吸着材に対する既吸着ガス分子の飽和吸着量の凡そ60%〜90%(好ましくは60%〜80%、特に好ましくは60%〜70%)に相当する量である。かかる構成によると、既吸着ガス分子が吸着されたサイトと、既吸着ガス分子が吸着されていない空サイトとの比率が適切なバランスにあるので、空サイトを残存させることによる電池性能向上効果(通常使用時に発生する電池内発生ガスを吸着して内圧上昇を抑える効果)を適切に発揮しつつ、過充電時にのみガス発生を促し、電流遮断機構を的確に作動させることができる。上記の範囲を満たす既吸着ガス分子の吸着量は、例えば、既吸着ガス分子を吸着させた吸着材(典型的には吸着反応が平衡に達するまで既吸着ガス分子を飽和吸着させた吸着材)と、既吸着ガス分子を吸着させていない吸着材とを混合し、それらの混合比を調節することにより調整することができる。あるいは、既吸着ガス分子を吸着させるときの吸着条件(時間、ガス圧等)を制御することにより調整してもよい。
以下、本発明を実施例に基づいてさらに詳細に説明する。
(1)試験例1
試験例1として以下の試験を行った。
(実施例1)
吸着材としてのゼオライト粉末(レーザ回折散乱法に基づく平均粒径10μm以下、巴工業株式会社製、モレキュラーシーブ4Aを使用した。)10gを150℃にて真空乾燥して水分等を十分に脱気した後、1.1気圧のCOで充満させたドラフトチャンバー内に移し、ゼオライト粉末にCO分子を吸着させて、粉末状のガス発生材を作製した。吸着前後のゼオライト粉末の質量を測定し、「吸着によるゼオライト粉末の質量増加分/COの分子量」×22400/10により上記ゼオライト粉末1g当たりのガス吸着量(標準状態換算)を算出したところ、450cmであった。上記ガス発生材(CO分子を吸着させたゼオライト粉末)を袋状のポリエチレン製フィルムに充填、収容した後、該フィルムの開口部をヒートシールで気密に封口してガス発生材パックを作製した。このガス発生材パックを電池ケース内に配置して、試験用リチウム二次電池を作製した。試験用リチウム二次電池の作製は、以下のようにして行った。
<正極シート>
正極活物質としてのLiNi1/3Co1/3Mn1/3粉末と、アセチレンブラック(導電材)と、PVDFとを、これらの材料の質量比が87:10:3となり且つ固形分濃度が約50質量%となるようにN−メチルピロリドン(NMP)と混合して、正極活物質層形成用ペーストを調製した。この正極活物質層形成用ペーストを長尺状のアルミニウム箔(正極集電体12)の両面に帯状に塗布して乾燥することにより、正極集電体12の両面に正極活物質層14が設けられた正極シート10を作製した。正極活物質層用ペーストの塗布量は、両面合わせて約10mg/cm(固形分基準)となるように調節した。
<負極シート>
負極活物質としてのグラファイト粉末と、SBRと、CMCとを、これらの材料の質量比が98:1:1となるように水に分散させて負極活物質層形成用ペーストを調製した。この負極活物質層形成用ペーストを長尺状の銅箔(負極集電体22)の両面に塗布して乾燥することにより、負極集電体22の両面に負極活物質層24が設けられた負極シート20を作製した。
<リチウム二次電池>
正極シート10及び負極シート20を2枚のセパレータシート(多孔質ポリエチレン製の単層構造のものを使用した。)40を介して積層して捲回し、その捲回体を側面方向から押しつぶして拉げさせることによって扁平状の捲回電極体80を作製した。次いで、捲回電極体80の捲回中心部85(即ち電池反応に実質的に関与しない部位)に、上記で作製したガス発生材パックを配置した。このガス発生材パック内蔵捲回電極体80を非水電解液とともに箱型の電池ケース50に収容し、電池ケース50の開口部を気密に封口した。非水電解液としては、ECとEMCとDMCとを3:4:3の体積比で含む混合溶媒に、支持塩としてのLiPFを約1mol/リットルの濃度で含有させ、さらにシクロヘキシルベンゼン(CHB)を約2質量%の濃度で含有させた非水電解液を使用した。正極端子70と捲回電極体80との間には、図1に示す電流遮断機構30を設置した。このようにしてリチウム二次電池100を組み立てた。その後、常法により初期充放電処理(コンディショニング)を行って、試験用リチウム二次電池を得た。
(実施例2)
ガス発生材60に用いられる吸着材として、ゼオライト粉末に代えて、該ゼオライト粉末10gをシート状に成形したゼオライトシートを用いた。このゼオライトシートを150℃にて真空乾燥して水分等を十分に脱気した後、実施例1と同様にCOを吸着させて、ガス吸着材シートを作製した(ガス吸着量400cm)。
(比較例1)
捲回電極体80の捲回中心部85にガス発生材60を配置しなかったこと以外は実施例1と同様にして試験用リチウム二次電池を作製した。
(比較例2)
捲回電極体80の捲回中心部85にガス発生材60を配置しなかったこと、および、非水電解液に添加されるCHBの濃度を約6質量%に増加したこと以外は実施例1と同様にして、試験用リチウム二次電池を作製した。
<過充電試験>
実施例1、2及び比較例1、2に係るリチウム二次電池のそれぞれに対し、過充電試験を行った。過充電試験は、室温(約25℃)環境雰囲気下において、3Cの電流値にて10Vに達するまで充電した。そして、電流遮断機構30の作動を調べた。その結果を表1に示す。
<IV抵抗試験>
また、実施例1、2及び比較例1、2に係るリチウム二次電池を別途用意し、それぞれの電池に対し、IV抵抗試験を行った。具体的には、室温(約25℃)環境雰囲気下において、1Cの定電流で3.5VまでCC充電した後、同電圧で合計時間が2時間になるまでCV充電した。その後、25℃にて、10Cの電流値で10秒間の放電を行い、放電開始から10秒後の電圧降下量からIV抵抗を算出した。その結果を表1に示す。
<充放電サイクル試験>
さらに、実施例1、2及び比較例1、2に係るリチウム二次電池を別途用意し、それぞれの電池に対し、充放電サイクル試験を行った。具体的には、室温(約25℃)環境雰囲気下において、1/10Cの定電流で4.1VまでCC充電した後、同電圧で合計時間が14時間になるまでCV充電を行い、次いで、1/3Cで3.0VまでCC放電を行い、10分間休止するという充放電サイクルを2回連続して繰り返した。そして、充放電サイクル試験後の放電容量と充放電サイクル試験前の放電容量とから容量維持率(「充放電サイクル試験後の放電容量/充放電サイクル試験前の放電容量」×100)を算出した。その結果を表1に示す。
Figure 2013020930
表1に示すように、捲回電極体の捲回中心部にガス発生材を配置した実施例1、2に係る電池では、上記過充電試験において、10Vに到達する前に電流遮断機構が作動して充電電流が遮断されたので、ここで過充電試験を終了した。すなわち、これらの電池では、過充電の進行に伴い、ゼオライト粉末から放出されたCOにより、電池ケースの内圧が上昇し、電流遮断機構が作動した。また、これら実施例1、2に係る電池のIV抵抗値は、捲回中心部にガス発生材を配置しなかった比較例1と同程度に小さく、充放電サイクル試験後における容量維持率も比較例1と同等の85%以上という高い値を達成できた。
一方、電池ケース内にガス発生材を配置しなかった比較例1に係る電池は、上記過充電試験において、電流遮断機構が作動することなく電圧が10Vに到達したので、ここで過充電試験を終了した。該過充電試験終了直後の比較例1に係る電池の温度は、実施例1、2に係る電池の電流遮断機構作動直後に比べて高くなっていた。また、電解液中に添加されるCHBの濃度を実施例1、2の3倍に増大した比較例2に係る電池では、CHBの濃度が増加したため、上記過充電試験において10Vに到達する前に電流遮断機構が作動したものの、IV抵抗値および容量維持率は実施例1、2に係る電池に比べて大きく悪化した。以上の結果から、捲回電極体80の捲回中心部85にガス発生材60を配置することにより、該ガス発生材60による電池性能への影響(抵抗増大、耐久性低下)を抑えつつ、過充電時にガスを有効に発生し得るリチウム二次電池を実現できることが確認できた。
(2)試験例2
さらに、試験例2として以下の試験を行った。
(実施例3)
吸着材としてのゼオライト粉末(レーザ回折散乱法に基づく平均粒径10μm以下、巴工業株式会社製、モレキュラーシーブ4Aを使用した。)10gを150℃にて真空乾燥して水分等を十分に脱気した後、1.1気圧のCOで充満させたドラフトチャンバー内に移し、25℃の温度雰囲気下、ゼオライト粉末にCO分子を5時間吸着させて、粉末状のガス発生材を作製した。吸着前後のゼオライト粉末の質量を測定し、「吸着によるゼオライト粉末の質量増加分/COの分子量」×22400/10により上記ゼオライト粉末1g当たりのガス吸着量(標準状態換算)を算出した。さらに、COガスを吸着させていないゼオライト粉末を用意し、上記CO分子を吸着させたゼオライト粉末と混合した。そして、両者の混合比を調節することで、既存吸着ガス量と吸着可能ガス量とを算出した。本例では、既存吸着ガス量は350cm/gであり、吸着可能ガス量は200cm/gである。
上記ゼオライト粉末を袋状ポリエチレン製フィルムに収容した後、該フィルムの開口部を封口せずにガス発生材パックを作製した。このガス発生材パックを電池ケースの内壁と捲回電極体との隙間に配置して、試験用リチウム二次電池を作製した。試験用リチウム二次電池の作製は、以下のようにして行った。
<正極シート>
正極活物質としてのLiCoO粉末と、アセチレンブラック(導電材)と、PVDFとを、これらの材料の質量比が90:4:3となるようにNMPと混合して、正極活物質層形成用ペーストを調製した。この正極活物質層形成用ペーストを長尺状のアルミニウム箔(正極集電体12)の両面に帯状に塗布して乾燥することにより、正極集電体12の両面に正極活物質層14が設けられた正極シート10を作製した。
<負極シート>
負極活物質としての球形化黒鉛粉末と、SBRと、CMCとを、これらの材料の質量比が98:1:1となるように水に分散させて負極活物質層形成用ペーストを調製した。この負極活物質層形成用ペーストを長尺状の銅箔(負極集電体22)の両面に塗布して乾燥することにより、負極集電体22の両面に負極活物質層24が設けられた負極シート20を作製した。
<リチウム二次電池>
正極シート10及び負極シート20を2枚のセパレータシート(多孔質ポリエチレン製の単層構造のものを使用した。)40を介して積層して捲回し、その捲回体を側面方向から押しつぶして拉げさせることによって扁平状の捲回電極体80を作製した。次いで、捲回電極体80の捲回中心部85に、上記で作製したガス発生材パックを配置した。このガス発生材パック内蔵捲回電極体80を非水電解液とともに箱型の電池ケース50に収容し、電池ケース50の開口部を気密に封口した。非水電解液としては、ECとEMCとDMCとを3:4:3の体積比で含む混合溶媒に、支持塩としてのLiPFを約1mol/リットルの濃度で含有させ、さらにシクロヘキシルベンゼン(CHB)を約3質量%の濃度で含有させた非水電解液を使用した。正極端子70と捲回電極体80との間には、図1に示す電流遮断機構30を設置した。このようにしてリチウム二次電池100を組み立てた。
(実施例4)
既存吸着ガス量を500cm/gとし、吸着可能ガス量を50cm/gとしたこと以外は、実施例3と同様にして試験用リチウム二次電池を作製した。
(比較例3)
捲回電極体80の捲回中心部85にガス発生材及び第2の吸着材を配置しなかったこと以外は実施例3と同様にして試験用リチウム二次電池を作製した。
<高温エージング処理>
実施例3、4及び比較例3に係るリチウム二次電池のそれぞれに対し、室温(約25℃)下において、0.3Cの定電流で4.1VまでCC充電した後、同電圧で合計時間が2時間になるまでCV充電を行い、次いで、0.3Cで3.0VまでCC放電を行い、10分間休止するという充放電サイクルを2回連続して繰り返した。そして、各電池を定格容量の凡そ100%の充電状態(SOC100%)に調整した後、60℃の恒温槽に入れ、24時間放置した。
<過充電試験>
上記高温エージング処理後の各リチウム二次電池のそれぞれに対し、過充電試験を行った。過充電試験は、室温(約25℃)下において、1Cの電流値にて10Vに達するまで充電した。そして、電流遮断機構30の作動を調べた。その結果を表2に示す。
<高温保存耐久試験>
さらに、上記高温エージング処理後の各リチウム二次電池を別途用意し、それぞれの電池に対し、高温保存耐久試験を行った。具体的には、各電池をSOC100%に調整した後、60℃の恒温槽に入れ、200日間保存した。そして、耐久試験前における電池内圧と、耐久試験後における電池内圧とから、内圧上昇の値を算出した。結果を表2に示す。
Figure 2013020930
表2に示すように、比較例3に係る電池では、上記過充電試験において、ガス発生材(COガスを吸着させた吸着材)による内圧上昇のアシストがなく、電流遮断機構が適切に作動しなかった。また、耐久試験後における内圧上昇の値も大きく、電流遮断機構の誤作動の観点から好ましくない。
一方、実施例3、4に係る電池では、上記過充電試験において、10Vに到達する前に電流遮断機構が作動して充電電流が遮断されたので、ここで過充電試験を終了した。すなわち、これらの電池では、過充電の進行に伴い、ガス発生材(COガスを吸着させた吸着材)から放出されたCOにより、電池ケースの内圧が上昇し、電流遮断機構が作動した。また、実施例3、4に係る電池の耐久試験後における内圧上昇は、比較例3に比べて抑制されていた。すなわち、実施例3、4に係る電池では、上記耐久試験時に発生したガスを吸着材の空サイトで吸着することにより、耐久試験後における内圧上昇を効果的に抑制することができた。さらに、実施例3と実施例4との比較から、吸着可能ガス量が増大するに従い、耐久試験後における内圧上昇が低下傾向になることが確認された。
以上、本発明を好適な実施形態により説明してきたが、こうした記述は限定事項ではなく、勿論、種々の改変が可能である。
例えば、上記の実施形態は、二次電池の典型例として、リチウム二次電池について説明したが、この形態の二次電池に限定されない。例えば、リチウムイオン以外の金属イオン(例えばナトリウムイオン)を電荷担体とする二次電池や、リチウムイオンキャパシタ等の電気二重層キャパシタ(物理電池)であってもよい。
本発明に係る二次電池100は、上記のとおりガス発生材による電池性能への影響を抑えつつ、過充電時にガスを有効に発生して電流遮断機構を作動できることから、特に自動車等の車両に搭載されるモーター(電動機)用電源として好適に使用し得る。したがって本発明は、図6に模式的に示すように、かかる二次電池(特にリチウム二次電池)100(典型的には複数直列接続してなる組電池)を電源として備える車両(典型的には自動車、特にハイブリッド自動車、電気自動車、燃料電池自動車のような電動機を備える自動車)1を提供する。
10 正極シート
12 正極集電体
14 正極活物質層
16 正極活物質層非形成部
20 負極シート
22 負極集電体
24 負極活物質層
26 負極活物質層非形成部
30 電流遮断機構
32 変形金属板(導通部材;第一部材)
33 湾曲部分
34 接続金属板(導通部材;第二部材)
35 集電リード端子
36 接合点
38 絶縁ケース
40A、40B セパレータシート
50 電池ケース
52 ケース本体
54 蓋体
60 ガス発生材
62 フィルム
64 吸着材
70 正極端子
72 負極端子
74 正極集電板
76 負極集電板
80 捲回電極体
82 捲回コア部分
85 捲回中心部
100 リチウム二次電池

Claims (12)

  1. 正極及び負極を備える電極体と、
    前記電極体を収容する電池ケースと
    を備えた二次電池であって、
    前記電池ケースの内部に配置され、温度上昇に伴いガスを発生させるガス発生材と、
    前記電池ケースの内圧が前記ガス発生材からのガス発生により上昇した場合に作動する電流遮断機構と
    を備え、
    ここで、前記ガス発生材は、電池反応に関与する部位を避けて配置されている、二次電池。
  2. 前記電極体は、シート状の前記正極とシート状の前記負極とが積層されて捲回されてなる捲回電極体であり、
    前記ガス発生材の少なくとも一部は、前記捲回電極体の捲回中心部に配置されている、請求項1に記載の二次電池。
  3. 前記ガス発生材の少なくとも一部は、前記電池ケースの内壁と前記電極体との間に配置されている、請求項1または2に記載の二次電池。
  4. 前記ガス発生材は、予め前記ガスを構成するガス分子が吸着された吸着材である、請求項1〜3の何れか一つに記載の二次電池。
  5. 前記吸着材は、前記ガス分子を吸着するサイトを複数備えた構造の物質から構成されている、請求項4に記載の二次電池。
  6. 前記ガス発生材は、予め難燃性ガスもしくは不燃性ガスの分子が吸着された吸着材である、請求項4または5に記載の二次電池。
  7. 前記吸着材として、ゼオライトまたは活性炭を備える、請求項4〜6の何れか一つに記載の二次電池。
  8. 前記吸着材の前記ガス分子吸着能力が、該ガス圧0.1MPaにおいて、温度25℃では50cm/g以上であり、かつ、温度100℃では25cm/g以下である、請求項4〜7の何れか一つに記載の二次電池。
  9. 前記吸着材は粉末状であり、該吸着材粉末の平均粒径が10μm以下である、請求項4〜8の何れか一つに記載の二次電池。
  10. 前記吸着材は、前記ガス分子が吸着されていない空のサイトであって、通常使用時に電池内で発生する電池内発生ガス分子を吸着可能な空サイトを残存している状態で配置されている、請求項5に記載の二次電池。
  11. 前記ガス発生材は、フィルムで密封された状態で配置されている、請求項4〜9の何れか一つに記載の二次電池。
  12. 前記電極体の正極及び負極には、それぞれ正極端子及び負極端子が電気的に接続されており、
    前記電流遮断機構は、前記正極及び負極の少なくとも一方の電極端子から前記電極体に至る導電経路を構成する導通部材を含み、前記ガス発生材からのガス発生により前記電池ケースの内圧が上昇した場合に前記導通部材が変形して前記導電経路を切断するように構成されている、請求項1〜11の何れか一つに記載の二次電池。
JP2011234259A 2011-06-16 2011-10-25 二次電池 Pending JP2013020930A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011234259A JP2013020930A (ja) 2011-06-16 2011-10-25 二次電池

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011134193 2011-06-16
JP2011134193 2011-06-16
JP2011234259A JP2013020930A (ja) 2011-06-16 2011-10-25 二次電池

Publications (1)

Publication Number Publication Date
JP2013020930A true JP2013020930A (ja) 2013-01-31

Family

ID=47692148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011234259A Pending JP2013020930A (ja) 2011-06-16 2011-10-25 二次電池

Country Status (1)

Country Link
JP (1) JP2013020930A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014123120A1 (ja) 2013-02-05 2014-08-14 旭硝子株式会社 ヒートポンプ用作動媒体およびヒートポンプシステム
WO2015001718A1 (ja) * 2013-07-01 2015-01-08 三洋電機株式会社 非水電解質二次電池
KR20150037405A (ko) * 2013-09-30 2015-04-08 주식회사 엘지화학 캡 조립체 및 이를 포함하는 이차전지
CN107611472A (zh) * 2017-10-23 2018-01-19 广东欧珀移动通信有限公司 一种聚合物电池的电芯、聚合物电池及电子设备
WO2022230850A1 (ja) * 2021-04-28 2022-11-03 オルガノ株式会社 金属イオン含有非水溶媒製造材料および金属イオン含有非水溶媒の製造方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014123120A1 (ja) 2013-02-05 2014-08-14 旭硝子株式会社 ヒートポンプ用作動媒体およびヒートポンプシステム
WO2015001718A1 (ja) * 2013-07-01 2015-01-08 三洋電機株式会社 非水電解質二次電池
CN105324881A (zh) * 2013-07-01 2016-02-10 三洋电机株式会社 非水电解质二次电池
JPWO2015001718A1 (ja) * 2013-07-01 2017-02-23 三洋電機株式会社 非水電解質二次電池
JP2017228542A (ja) * 2013-07-01 2017-12-28 三洋電機株式会社 非水電解質二次電池
US10109889B2 (en) 2013-07-01 2018-10-23 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary battery
KR20150037405A (ko) * 2013-09-30 2015-04-08 주식회사 엘지화학 캡 조립체 및 이를 포함하는 이차전지
KR101651988B1 (ko) 2013-09-30 2016-08-29 주식회사 엘지화학 캡 조립체 및 이를 포함하는 이차전지
CN107611472A (zh) * 2017-10-23 2018-01-19 广东欧珀移动通信有限公司 一种聚合物电池的电芯、聚合物电池及电子设备
CN107611472B (zh) * 2017-10-23 2023-10-13 Oppo广东移动通信有限公司 一种聚合物电池的电芯、聚合物电池及电子设备
WO2022230850A1 (ja) * 2021-04-28 2022-11-03 オルガノ株式会社 金属イオン含有非水溶媒製造材料および金属イオン含有非水溶媒の製造方法

Similar Documents

Publication Publication Date Title
JP5822089B2 (ja) 密閉型リチウム二次電池
CN101682078B (zh) 包含用于吸收有害物质的装置的可再充电锂电池
US20160064715A1 (en) Non-aqueous electrolyte secondary battery
JP6112367B2 (ja) リチウムイオン二次電池およびその製造方法
JP6024990B2 (ja) 非水電解液二次電池の製造方法
CN107148688B (zh) 非水电解质二次电池、用于非水电解质二次电池的电极体和制造电极体的方法
JP6185289B2 (ja) 非水電解液二次電池
WO2013094004A1 (ja) リチウム二次電池
JP2009211956A (ja) リチウムイオン電池
JP2010086728A (ja) リチウムイオン電池
JP2013235653A (ja) 密閉型非水電解質二次電池
JP2013004305A (ja) 二次電池
JP6016018B2 (ja) 非水電解液二次電池
US9917296B2 (en) Nonaqueous electrolyte secondary battery
JP7096979B2 (ja) リチウムイオン二次電池
JP2014036010A (ja) 非水電解液二次電池
JP2017037766A (ja) リチウム二次電池用正極材料及びその製造方法
JP2013020930A (ja) 二次電池
EP3866223A1 (en) Negative electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery using same
JP2014154279A (ja) 非水電解液二次電池
WO2011024251A1 (ja) 非水電解液型リチウムイオン二次電池
JP5835617B2 (ja) 密閉型リチウム二次電池
JP2012238461A (ja) 二次電池及びその製造方法
JP5618156B2 (ja) 密閉型リチウム二次電池の製造方法
KR101833597B1 (ko) 리튬 이온 2차 전지의 제조 방법