JP2013019804A - pH測定装置 - Google Patents

pH測定装置 Download PDF

Info

Publication number
JP2013019804A
JP2013019804A JP2011154107A JP2011154107A JP2013019804A JP 2013019804 A JP2013019804 A JP 2013019804A JP 2011154107 A JP2011154107 A JP 2011154107A JP 2011154107 A JP2011154107 A JP 2011154107A JP 2013019804 A JP2013019804 A JP 2013019804A
Authority
JP
Japan
Prior art keywords
sensitivity
calibration
data
measurement
measurement value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011154107A
Other languages
English (en)
Other versions
JP5896105B2 (ja
Inventor
Takayuki Suzuki
隆之 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2011154107A priority Critical patent/JP5896105B2/ja
Publication of JP2013019804A publication Critical patent/JP2013019804A/ja
Application granted granted Critical
Publication of JP5896105B2 publication Critical patent/JP5896105B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

【課題】従来の感度変化の前方予測機能の偏差をより小さくし、校正回数の大幅な削減、または校正レスを可能とするpH測定装置を実現する。
【解決手段】被測定液のpH測定感度が時間と共に変化するガラス電極型pHセンサの測定値を入力するpH変換演算手段に対して、所定の時間間隔または随時に実行される基準pHの校正液による校正作業で取得される校正感度データを渡して前記pH測定感度を補正させるpH測定装置において、
経過時間、前記pH変換演算手段のpH測定値、前記測定液の温度測定値、前記ガラス電極型pHセンサのインピーダンス測定値を学習データとすると共に、前記校正作業で取得される校正感度データのバックデータを教師データとして入力する感度係数推論手段を備え、
前記感度係数推論手段は、前記の校正感度データの取得から次回の校正感度データの取得までの間における校正感度を予測し、前記pH変換演算手段に校正感度データとして渡す。
【選択図】図1

Description

本発明は、被測定液のpH測定感度が時間と共に変化するガラス電極型pHセンサの測定値を入力するpH変換演算手段に対して、所定の時間間隔または随時に実行される基準pHの校正液による校正作業で取得される校正感度データを渡して前記pH測定感度を補正させるpH測定装置に関するものである。
図6は、従来のpH測定装置の構成例を示す機能ブロック図である。測定装置10において、pHセンサ11による測定液12の測定値Xは、pH変換演算手段13入力され、演算されてpH値に変換される。
pHセンサの測定感度をa、ゼロ点を示すバイアス値をbとしたとき、pH変換演算手段13の出力pHは、pH=aX+bとなる。しかしながら、pHセンサの測定感度aは、稼動時間と共に変化する。
この感度変化を補うために、所定の時間間隔または随時に実施されるpHセンサ11の校正によって取得される校正感度a´(t)により、感度補正手段13aで補正演算した、pH=a´(t)X+bを出力させる処理を必要とする。バイアス値bが時間と共に変動する場合にも校正を必要とするが、説明の簡単のため、ここでは固定定数として説明する。
校正装置20は、pH値が既知の校正液22を備える。所定の時間間隔または随時にpHセンサ11によりこの校正液22を測定した離散的に求められる測定値Xを、pH変換演算手段23に入力して得たpHの変換演算出力pH=a´(t)X+bを、校正感度抽出手段24に渡し、校正感度a´(t)を抽出する。
校正感度抽出手段24で抽出された離散的に得られる過去の校正感度a´(t)は、校正履歴保存手段25に保存される。感度変化曲線予測手段26は、校正履歴保存手段25に保存されるトレンドデータを読み出して、校正実施日とその時点での感度の履歴データから、平均的な時間経過対感度変化近似曲線である感度変化曲線を導く。この感度変化曲線は、実際の感度変化により近い曲線を導くことが目的である。
従って、この曲線は直線であっても次数の多い多次曲線であってもかまわない。近似曲線を導くにあたり、その手法は、直近の2回の校正データを用いて直線近似を行う、あるいは直近の3個以上の校正データにより最小二乗近似法を用いて直線近似を行うなど、演算の手法はいくつか考えられる。
測定装置10のpH演算変換手段13は、感度変化曲線予測手段26により予測される感度変化曲線より連続的に求められる感度補正値a″(t)を入力し、感度補正手段13aにより感度補正した、pH=a″(t)X+bを演算して出力する。
図7は、図6に示した従来のpH測定装置の感度変化曲線を示す特性図である。稼動開始時刻t1での校正感度a1より実際の感度変化曲線を点線F1で示す。時刻t2、t3で実施された校正により取得された校正感度をa2、a3で示す。
校正により得られた感度曲線を実線F2で示す。F2は、時刻t1よりt2までは、t1で取得した校正感度a1を維持し、時刻t2よりt3までは、t2で取得した校正感度a2を維持し、以下同様に校正毎にステップ変化する離散的なデータとなる。
感度変化曲線予測手段26によって予測される感度変化曲線は、太線の実線で示すF3である。図に示す感度変化曲線F3は、時刻t2で得られる校正感度a2と時刻t3で得られる校正感度a3を結んだ直線で近似されている。
予測される感度変化曲線F3と実際の感度変化曲線F1は近接しているので、次の校正タイミング前の時刻t4で発生する感度偏差Δa´は、離散データで示される最大偏差Δaよりも小さくすることができる。
特開平5−164736号公報
従来構成のpH測定装置では、離散的な校正データの補間機能として、蓄積された校正データから近似式を用いて校正データを予測している。この手法では、pHセンサとしてガラス電極型pHセンサを用いた場合、その劣化要因であるインピーダンス変化、測定溶液の温度変化などが考慮されていないために、実際の感度変化曲線と感度予測曲線間の偏差を縮小することに限界がある。即ち、蓄積データによる近似となるため、校正作業自体をなくすことは難しい。
本発明の目的は、従来の感度変化の前方予測機能の偏差をより小さくし、校正回数の大幅な削減、または校正レスを可能とするpH測定装置を実現することにある。
このような課題を達成するために、本発明は次の通りの構成になっている。
(1)被測定液のpH測定感度が時間と共に変化するガラス電極型pHセンサの測定値を入力するpH変換演算手段に対して、所定の時間間隔または随時に実行される基準pHの校正液による校正作業で取得される校正感度データを渡して前記pH測定感度を補正させるpH測定装置において、
経過時間、前記pH変換演算手段のpH測定値、前記測定液の温度測定値、前記ガラス電極型pHセンサのインピーダンス測定値を学習データとすると共に、前記校正作業で取得される校正感度データのバックデータを教師データとして入力する感度係数推論手段を備え、
前記感度係数推論手段は、前記の校正感度データの取得から次回の校正感度データの取得までの間における校正感度を予測し、前記pH変換演算手段に校正感度データとして渡すことを特徴とするpH測定装置。
(2)前記感度係数推論手段は、オフライン状態において前記経過時間、前記pH変換演算手段のpH測定値、前記測定液の温度測定値、前記ガラス電極型pHセンサのインピーダンス測定値を学習データとすると共に、前記校正作業で取得される校正感度データのバックデータを教師データとして入力し、推論のアルゴリズムを学習することを特徴とする(1)に記載のpH測定装置。
(3)前記感度係数推論手段は、オンライン状態において前記経過時間、前記pH変換演算手段のpH測定値、前記測定液の温度測定値、前記ガラス電極型pHセンサのインピーダンス測定値を学習データとすると共に、前記校正作業で取得される校正感度データのバックデータを教師データとして入力し、推論のアルゴリズムを学習することを特徴とする(1)または(2)に記載のpH測定装置。
(4)前記感度係数推論手段は、ニューラルネットワークにより構成されることを特徴とする(1)乃至(3)のいずれかに記載のpH測定装置。
本発明によれば、次のような効果を期待することができる。
(1)pHセンサの劣化要因を学習データとし、校正実績データを教師データとする、ニューラルネットワークなどで実現可能な感度係数推論手段により感度変化の前方予測を行うことで、実際の感度変化との偏差をより小さくすることができる。
(2)また、バックデータの精度が確保できる場合、設置された環境、アプリケーションを覚えるために数回の校正を行えば、その後は校正レスで感度予測していくことが可能である。
本発明を適用したpH測定装置の一実施例を示す機能ブロック図である。 ニューラルネットワークによる学習動作を説明する模式図である。 ニューラルネットワークによる稼動中での予測動作を説明する模式図である。 ガラス電極pHセンサのインピーダンス測定回路図である。 本発明によるpH測定装置の感度変化曲線を示す特性図である。 従来のpH測定装置の構成例を示す機能ブロック図である。 従来のpH測定装置の感度変化曲線を示す特性図である。
以下本発明を、図面を用いて詳細に説明する。図1は、本発明を適用したpH測定装置の一実施例を示す機能ブロック図である。図6で説明した従来構成と同一要素には同一符号を付して説明を省略する。
図6に示した従来構成の測定装置10に追加される本発明の特徴部は、pH変換演算手段13の感度補正手段13aに渡す感度係数a″(t)を前方予測するための感度係数推論手段100を設けた構成にある。
感度係数推論手段100としては周知のニューラルネットワークを採用することが可能であるが、これに限定されるものではなく、多数のプロセス値から直接計測が困難なプロセス性状を予測する、実用化されている周知の多変数モデル予測制御パッケージなどの採用が可能である。以下、ニューラルネットワークを用いた実施例を説明する。
ニューラルネットワークによる感度係数推論手段100は、経過時間t、pH変換演算手段の出力pH値,測定液12の温度測定値T、pHセンサ11のガラス電極インピーダンス測定値Zなどのパラメータを劣化要因の学習データとして入力すると共に、校正履歴保存手段25から得られる感度データのバックデータa´(t)を教師データとして入力し、予測される感度係数a″(t)を出力し、感度補正手段13aに渡す。
ガラス電極インピーダンス測定値Zは、インピーダンス検出手段14により定周期処理で測定される。温度測定値Tは。測定液12に接する温度センサ15を用いた温度検出手段16で測定される。
図2は、ニューラルネットワークによる学習動作を説明する模式図である。ニューラルネットワークによる感度係数推論手段100は、学習データのパラメータとして経過時間t、pH変換演算手段の出力pH値,測定液12の温度測定値T、pHセンサ11のガラス電極インピーダンス測定値Zを入力すると共に、感度データのバックデータa´(t)を教師データとして入力し、推論のアルゴリズムを最適化するための学習をする。
ニューラルネットワークの学習方法としては、開発時にオフライン状態において入力パラメータである経過時間、pH測定値、温度測定値、インピーダンス測定値等に対する感度変化のバックデータを測定し、その感度変化のバックデータを教師データとして学習する。
このバックデータはなるべく多くのデータで学習されることが望ましい。また、オンラインで稼働中もユーザが校正する度にその校正データにより学習させ、そのアプリケーションに特化した環境にも対応できるようにする。
図3は、ニューラルネットワークによる稼動中での予測動作を説明する模式図である。ニューラルネットワークによる感度係数推論手段100への入力データとしては、オフラインでの学習データと同じ経過時間t、pH変換演算手段の出力pH値,測定液12の温度測定値T、pHセンサ11のガラス電極インピーダンス測定値Zをオンラインで入力すると共に、感度データのバックデータa´(t)をオンラインの教師データとして入力し、出力データとして予測感度係数a″(t)をオンラインで算出し、感度補正手段13aに渡す。
図4は、ガラス電極pHセンサのインピーダンス測定回路図である。ガラス電極pHセンサの等価回路は、液アースとガラス電極間に接続された、起電力VgとインピーダンスZの直列回路で表記できる。pH測定の直流の起電力に影響しないようにCPUからの指令で100Hzの方形波信号Vを液アース側に印加し、電極側では、測定したいインピーダンスZと固定抵抗Rの分圧Vinをサンプルホールドした電圧VoをAD変換してCPUに入力する。
図5は、本発明によるpH測定装置の感度変化曲線を示す特性図である。図7に示した従来構成の予測による感度変化曲線F3と、本発明の予測による感度変化曲線F3´との対比で明らかなように、時刻t4における感度偏差Δa´はより小さくなり、予測の精度が向上している。
本発明の手法によれば、実際の感度変化曲線F1に対し、予測感度変化曲線F3´を高精度で近似させることが可能となる。これにより、校正の頻度を従来構成に比較して少なくすることができ、所定期間の学習を実行した後に校正レスの運転に移行することも可能となる。
10 測定装置
11 pHセンサ
12 測定液
13 pH変換演算手段
13a 感度補正手段
14 インピーダンス検出手段
15 温度センサ
16 温度検出手段
20 校正装置
22 校正液
23 pH変換演算手段
24 校正感度抽出手段
25 校正履歴保存手段
100 感度係数推論手段

Claims (4)

  1. 被測定液のpH測定感度が時間と共に変化するガラス電極型pHセンサの測定値を入力するpH変換演算手段に対して、所定の時間間隔または随時に実行される基準pHの校正液による校正作業で取得される校正感度データを渡して前記pH測定感度を補正させるpH測定装置において、
    経過時間、前記pH変換演算手段のpH測定値、前記測定液の温度測定値、前記ガラス電極型pHセンサのインピーダンス測定値を学習データとすると共に、前記校正作業で取得される校正感度データのバックデータを教師データとして入力する感度係数推論手段を備え、
    前記感度係数推論手段は、前記の校正感度データの取得から次回の校正感度データの取得までの間における校正感度を予測し、前記pH変換演算手段に校正感度データとして渡すことを特徴とするpH測定装置。
  2. 前記感度係数推論手段は、オフライン状態において前記経過時間、前記pH変換演算手段のpH測定値、前記測定液の温度測定値、前記ガラス電極型pHセンサのインピーダンス測定値を学習データとすると共に、前記校正作業で取得される校正感度データのバックデータを教師データとして入力し、推論のアルゴリズムを学習することを特徴とする請求項1に記載のpH測定装置。
  3. 前記感度係数推論手段は、オンライン状態において前記経過時間、前記pH変換演算手段のpH測定値、前記測定液の温度測定値、前記ガラス電極型pHセンサのインピーダンス測定値を学習データとすると共に、前記校正作業で取得される校正感度データのバックデータを教師データとして入力し、推論のアルゴリズムを学習することを特徴とする請求項1または2に記載のpH測定装置。
  4. 前記感度係数推論手段は、ニューラルネットワークにより構成されることを特徴とする請求項1乃至3のいずれかに記載のpH測定装置。
JP2011154107A 2011-07-12 2011-07-12 pH測定装置 Active JP5896105B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011154107A JP5896105B2 (ja) 2011-07-12 2011-07-12 pH測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011154107A JP5896105B2 (ja) 2011-07-12 2011-07-12 pH測定装置

Publications (2)

Publication Number Publication Date
JP2013019804A true JP2013019804A (ja) 2013-01-31
JP5896105B2 JP5896105B2 (ja) 2016-03-30

Family

ID=47691380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011154107A Active JP5896105B2 (ja) 2011-07-12 2011-07-12 pH測定装置

Country Status (1)

Country Link
JP (1) JP5896105B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017072346A1 (en) * 2015-10-30 2017-05-04 F. Hoffmann-La Roche Ag Identification of calibration deviations of ph-measuring devices
KR20190112935A (ko) 2018-03-27 2019-10-08 재단법인 대구경북첨단의료산업진흥재단 pH 감지 마이크로 구조체 스티커 및 그 제조방법
DE102018218045A1 (de) * 2018-10-22 2020-04-23 Robert Bosch Gmbh Fortgeschrittene potentiometrie für einen rekalibrierungsfreien ionenselektiven elektrodensensor
CN111289597A (zh) * 2020-03-25 2020-06-16 上海博取环境技术有限公司 一种ph传感器校准参数的传递方法
DE102019107625A1 (de) * 2018-12-20 2020-06-25 Endress+Hauser Conducta Gmbh+Co. Kg Verfahren zur In-Prozess-Justage eines potentiometrischen Sensors einer Messanordnung

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106596887A (zh) * 2016-12-06 2017-04-26 中国地质调查局水文地质环境地质调查中心 深部含水层多参数原位监测仪器及其方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04132948A (ja) * 1990-09-26 1992-05-07 Yokogawa Electric Corp 寿命予測表示付pH計
JPH04131764U (ja) * 1991-05-27 1992-12-04 電気化学計器株式会社 イオン濃度測定装置
JPH0676854U (ja) * 1993-04-02 1994-10-28 電気化学計器株式会社 イオン濃度測定装置
JPH1014402A (ja) * 1996-06-28 1998-01-20 Sanyo Electric Works Ltd 土壌養分計測器
JP2008525772A (ja) * 2004-12-23 2008-07-17 エンドレス ウント ハウザー コンダクタ ゲゼルシャフト フューア メス‐ ウント レーゲルテヒニック エムベーハー ウント コンパニー コマンディートゲゼルシャフト センサー機能の監視方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04132948A (ja) * 1990-09-26 1992-05-07 Yokogawa Electric Corp 寿命予測表示付pH計
JPH04131764U (ja) * 1991-05-27 1992-12-04 電気化学計器株式会社 イオン濃度測定装置
JPH0676854U (ja) * 1993-04-02 1994-10-28 電気化学計器株式会社 イオン濃度測定装置
JPH1014402A (ja) * 1996-06-28 1998-01-20 Sanyo Electric Works Ltd 土壌養分計測器
JP2008525772A (ja) * 2004-12-23 2008-07-17 エンドレス ウント ハウザー コンダクタ ゲゼルシャフト フューア メス‐ ウント レーゲルテヒニック エムベーハー ウント コンパニー コマンディートゲゼルシャフト センサー機能の監視方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017072346A1 (en) * 2015-10-30 2017-05-04 F. Hoffmann-La Roche Ag Identification of calibration deviations of ph-measuring devices
KR20180077161A (ko) * 2015-10-30 2018-07-06 에프. 호프만-라 로슈 아게 Ph-측정 디바이스들의 교정 편차들의 식별
EP3786278A1 (en) * 2015-10-30 2021-03-03 F. Hoffmann-La Roche AG Identification of calibration deviations of ph-measuring devices
US11371006B2 (en) 2015-10-30 2022-06-28 Hoffman-La Roche, Inc. Identification of calibration deviations of pH-measuring devices
KR102612135B1 (ko) 2015-10-30 2023-12-08 에프. 호프만-라 로슈 아게 Ph-측정 디바이스들의 교정 편차들의 식별
US11866686B2 (en) 2015-10-30 2024-01-09 Hoffmann-La Roche, Inc. Identification of calibration deviations of pH-measuring devices
KR20190112935A (ko) 2018-03-27 2019-10-08 재단법인 대구경북첨단의료산업진흥재단 pH 감지 마이크로 구조체 스티커 및 그 제조방법
DE102018218045A1 (de) * 2018-10-22 2020-04-23 Robert Bosch Gmbh Fortgeschrittene potentiometrie für einen rekalibrierungsfreien ionenselektiven elektrodensensor
DE102019107625A1 (de) * 2018-12-20 2020-06-25 Endress+Hauser Conducta Gmbh+Co. Kg Verfahren zur In-Prozess-Justage eines potentiometrischen Sensors einer Messanordnung
CN111289597A (zh) * 2020-03-25 2020-06-16 上海博取环境技术有限公司 一种ph传感器校准参数的传递方法

Also Published As

Publication number Publication date
JP5896105B2 (ja) 2016-03-30

Similar Documents

Publication Publication Date Title
JP5896105B2 (ja) pH測定装置
CN108629419B (zh) 机器学习装置以及热位移修正装置
JP7282184B2 (ja) 工業プロセスで使用されるコンポーネントから発生する信号の異常を検出及び測定するためのシステムと方法
KR20200063338A (ko) 학습을 통한 파라미터 개선 기반의 예측 시스템 및 방법
US9581980B2 (en) Method and system for updating a model in a model predictive controller
CN107797446B (zh) 模型预测控制装置、控制方法及记录介质
US20060155511A1 (en) Method for monitoring sensor function
CN110109441B (zh) 一种激光惯组故障预测方法和系统
JP2009181392A (ja) モデル予測制御方法およびモデル予測制御装置
Chen et al. Soft sensor model maintenance: A case study in industrial processes
EP3879266A1 (en) Gas sensing device and method for operating a gas sensing device
JP2011237354A (ja) 化学センサの校正装置
Omitaomu et al. Online support vector regression with varying parameters for time-dependent data
JP7182059B2 (ja) 測定値予測モジュール、測定値予測プログラム及び測定値予測方法
WO2015145265A2 (en) Interference free gas measurement
Ni et al. Recursive GPR for nonlinear dynamic process modeling
CN110441669A (zh) 不确定混杂电路系统的渐变故障诊断和寿命预测方法
KR20220117311A (ko) 가스 센서의 작동을 위한 방법 및 장치
JP2009254104A (ja) 受配電設備用導体監視装置
WO2023213417A1 (en) Time-series anomaly detection
US20180088570A1 (en) Method for monitoring the function of a sensor arrangement
Zhang et al. A reinforcement learning based fault diagnosis for autoregressive-moving-average model
Bedoui et al. ARMAX time delay systems identification based on least square approach
Abusnina et al. Adaptive soft sensor based on moving gaussian process window
US20220413480A1 (en) Time series data processing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160216

R150 Certificate of patent or registration of utility model

Ref document number: 5896105

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150