JP2013007335A - 脱硝装置 - Google Patents

脱硝装置 Download PDF

Info

Publication number
JP2013007335A
JP2013007335A JP2011140839A JP2011140839A JP2013007335A JP 2013007335 A JP2013007335 A JP 2013007335A JP 2011140839 A JP2011140839 A JP 2011140839A JP 2011140839 A JP2011140839 A JP 2011140839A JP 2013007335 A JP2013007335 A JP 2013007335A
Authority
JP
Japan
Prior art keywords
turbine
exhaust gas
bypass pipe
exhaust
denitration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011140839A
Other languages
English (en)
Inventor
Noriyuki Yamada
敬之 山田
Isato Nakajima
勇人 中島
Hiroaki Ohara
宏明 大原
Yoshinori Izumi
良範 泉
Hiroyuki Kamata
博之 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2011140839A priority Critical patent/JP2013007335A/ja
Publication of JP2013007335A publication Critical patent/JP2013007335A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

【課題】別途の加熱装置を利用せずとも、尿素水を気化、分解してアンモニアを生成させ、脱硝触媒にアンモニアを供給する。
【解決手段】脱硝装置200は、エンジンの排気路に設けられたタービンの回転を利用してエンジンに空気を導入する過給機のタービンを通過した排気ガス中の窒素酸化物を還元する脱硝触媒214と、タービンの上流において排気路から分岐され、タービンの上流の排気ガスをタービンの下流における排気路にバイパスする第1バイパス管210と、排気路における第1バイパス管への分岐点から排気路への合流点の間で、第1バイパス管に還元剤を導入する還元剤導入部(第1還元剤導入部212)とを備える。
【選択図】図1

Description

本発明は、エンジンの排ガス中に含まれる窒素酸化物を、還元剤を用いて窒素に還元する脱硝装置に関する。
船舶や、車両等のエンジンにおいて、化石燃料を燃焼させると、燃焼排ガス(排気ガス)が生じるが、この排気ガスには、窒素酸化物(以下、単にNOxと称する)が含まれている。NOxは、大気汚染物質であるため、用途によって、国際的な機関、国、地方自治体により排出濃度や排出量の規制が行われている。したがって、エンジンから排出される排気ガスに含まれるNOx濃度が所定の規制値以上である場合には、NOxを除去するための脱硝装置に排気ガスを通過させる必要がある。
脱硝装置としては、NOxの還元を促進する脱硝触媒と、NOxを還元するための還元剤とを含んで構成される選択式触媒還元(Selective Catalytic Reduction)脱硝装置が普及している。脱硝装置を利用して、NOxを分解する場合、排気ガスと還元剤とを混合しておき、その混合気体を脱硝触媒に流通させることにより、還元剤が排気ガス中のNOxを還元(分解)する。この還元剤としてアンモニア(NH)が考えられるが、アンモニアは、毒性が強いためアンモニアの前駆物質として尿素水が広く利用されている。したがって、脱硝触媒にアンモニアを供給するために、尿素水の導入口は、脱硝触媒の上流側に設置される。しかし、排気ガス中で尿素水を気化、分解してアンモニアを生成させるためには、尿素水を所定温度(例えば、270℃程度)以上の排気ガス雰囲気中に、所定時間(例えば、1秒程度)滞留させておく必要がある。
脱硝装置において尿素水を十分に気化、分解してアンモニアを生成させる技術として、エンジンの排気ガスを導く排気煙道を流れる排気ガスの一部をDPF(Diesel Particulate Filter)の下流で分流し、分流された分流排気ガスの流路に噴射弁から噴射された尿素水を気化、分解するために、分流排気ガスの流路にヒータを配置する技術が提案されている(例えば、特許文献1)。
一方、脱硝触媒は、所定温度(例えば、270℃程度)以下であるとNOxの還元効率が低下してしまうという問題がある。また、排気ガスに含まれる硫黄とアンモニアとで生成される硫酸アンモニウム(以下、単に硫安と称する)が脱硝触媒を被毒してしまうおそれもあるため、脱硝触媒を硫安の分解温度以上にしておく必要がある。脱硝触媒には、排気ガスを流通させるため、排気ガスの温度が、NOxを十分に還元できる温度(以下、単に活性温度と称する)、および、硫安の分解温度(以下、単に、硫安分解温度と称する)に到達していれば、脱硝触媒を加温する必要はない。
しかし、エンジンの排気路に過給機のタービンを備える構成を採る場合、排気ガスの熱がタービンで消費されるため、タービンの下流の排気ガスの温度が、脱硝触媒の活性温度、および、硫安分解温度に到達しないことがある。そこで、脱硝触媒を活性温度および硫安分解温度に維持しておくための技術として、過給機のタービンの上流の排気ガスを分流し、分流した分流排気ガスを脱硝触媒に導入することで、脱硝触媒の温度を高温にし、硫安の生成を防止する技術が開示されている(例えば、特許文献2)。
特許第4430524号 特許第2915687号
しかし、特許文献1の技術を利用すると、尿素水を気化、分解してアンモニアを生成させるために、ヒータ等の別途の加熱装置が必要となり、無駄な電力を消費することとなっていた。また、特許文献2の技術では、脱硝触媒を加温することはできるが、還元剤について言及されていない。例えば、排気ガスの温度が高いタービンの上流に尿素水を導入したとしても、その排気ガスの温度が尿素の分解温度に達しない場合、尿素がタービンに析出してしまったり、尿素の分解温度に達していたとしてもタービンの上流で発生したアンモニアと、排気ガスに含まれる硫黄とが結合して、タービンに硫安が析出してしまうおそれがある。
本発明は、このような課題に鑑み、別途の加熱装置を利用せずとも、尿素水を気化、分解してアンモニアを生成させ、脱硝触媒にアンモニアを供給することが可能な脱硝装置を提供することを目的としている。
上記課題を解決するために、本発明の脱硝装置は、エンジンの排気路に設けられたタービンの回転を利用してエンジンに空気を導入する過給機のタービンを通過した排気ガス中の窒素酸化物を還元する脱硝触媒と、タービンの上流において排気路から分岐され、タービンの上流の排気ガスをタービンの下流における排気路にバイパスする第1バイパス管と、排気路における第1バイパス管への分岐点から排気路への合流点の間で、第1バイパス管に還元剤を導入する還元剤導入部とを備えることを特徴とする。
排気路における第1バイパス管への分岐点から排気路への合流点の間で、第1バイパス管に導入する排気ガスの流量を調整する第1バルブをさらに備え、還元剤導入部は、第1バルブの下流側に還元剤を導入してもよい。
脱硝触媒の入口の温度を検出する温度検出部と、温度検出部が検出した温度に基づいて、第1バルブの開度を調整するバルブ調整部とをさらに備えてもよい。
脱硝触媒の上流において排気路から分岐され、脱硝触媒の上流の排気ガスを脱硝触媒の下流における排気路にバイパスする第2バイパス管と、排気ガスの送出先を、脱硝触媒を通過する排気路と第2バイパス管とで切り換える流路切換部とをさらに備え、流路切換部が、排気ガスの送出先を、脱硝触媒を通過する排気路から第2バイパス管に切り換えると、バルブ調整部は、第1バルブを閉にしてもよい。
タービンの上流における排気ガス中の窒素酸化物の濃度を検出するNOx検出部と、NOx検出部が検出した窒素酸化物の濃度に基づいて、還元剤導入部が導入する還元剤の量を調整する還元剤調整部とをさらに備えてもよい。
排気路におけるタービンと脱硝触媒との間に設けられ、タービンを通過した排気ガス中の粒子状物質を捕集するダスト除去器をさらに備え、第1バイパス管は、タービンの上流において排気路から分岐され、タービンの上流の排気ガスを、タービンの下流かつダスト除去器の上流における排気路にバイパスしてもよい。
排気路におけるタービンと脱硝触媒との間に設けられ、タービンを通過した排気ガス中の粒子状物質を捕集するダスト除去器をさらに備え、第1バイパス管は、タービンの上流において排気路から分岐され、タービンの上流の排気ガスを、ダスト除去器の下流かつ脱硝触媒の上流における排気路にバイパスしてもよい。
本発明は、別途の加熱装置を利用せずとも、尿素水を気化、分解してアンモニアを生成させ、脱硝触媒にアンモニアを供給することが可能となる。
第1の実施形態にかかる脱硝システムを説明するための説明図である。 2ストロークエンジンにおけるエンジン負荷と排気ガスの温度との関係を説明するための説明図である。 第1の実施形態にかかる脱硝装置を用いた脱硝方法の処理の流れを説明するためのフローチャートである。 第2の実施形態にかかる脱硝システムを説明するための説明図である。 第2の実施形態にかかる脱硝システムの変形例を説明するための説明図である。
以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。かかる実施形態に示す寸法、材料、その他具体的な数値等は、発明の理解を容易とするための例示にすぎず、特に断る場合を除き、本発明を限定するものではない。なお、本明細書及び図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略し、また本発明に直接関係のない要素は図示を省略する。
コンテナ船やタンカー等の大型船舶では、熱効率がよく、低質燃料油(重油)が使用できるためコスト面で有利である、ユニフロー型の2サイクルエンジン(2ストロークエンジン)が広く使用されている。このようなエンジンにおいて、化石燃料、例えば、ガソリン、軽油、重油、液化天然ガス(LNG:Liquefied Natural Gas)、および液化石油ガス(LPG:Liquefied Petroleum Gas)等の燃料を燃焼させると、その結果生じる排気ガスには、NOxが含まれる。
そこで、近年、国際海事機関(IMO:International Maritime Organization)が、船舶から排出される排気ガス中のNOx(窒素酸化物)を削減する規制を制定しており、一般海域においてNOxの排出量を所定値までに制限し(2次規制)、大気汚染物質放出規制海域(ECA:Emission Control Area、以下、ECAと称する)においては、NOxの排出量を、2次規制より低い値を上限として制限している(3次規制)。
このように国際海事機関が制定した規制を遵守すべく、船舶には、排気ガスに含まれるNOxを還元するための脱硝装置を備えておく必要がある。以下、エンジンから排出される排気ガス中のNOxを還元する脱硝システム100について説明する。なお、以下の実施形態において、脱硝システム100に用いるエンジンとしてユニフロー型の2ストロークエンジンを例に挙げて説明するが、他の形式の2ストロークエンジン等に脱硝システム100を採用することもできる。
(第1の実施形態:脱硝システム100)
図1は、本実施形態にかかる脱硝システム100を説明するための説明図である。図1に示すように、脱硝システム100は、エンジン110と、過給機120と、脱硝装置200とを含んで構成される。図1中、物質(排気ガス、還元剤)の流れを実線で示し、信号の流れを破線で示す。
エンジン110は、シリンダ110aと、ピストン110bと、排気弁110cと、排気集合管112とを含んで構成される。エンジン110は、掃気、圧縮、燃焼、排気といった行程を通じて、クロスヘッド(図示せず)に連結されたピストン110bがシリンダ110a内を摺動自在に、図1中白抜き矢印に示す方向に往復移動する。このようなクロスヘッド型のピストン110bでは、シリンダ110a内でのストロークを比較的長く形成することができ、ピストン110bに作用する側圧をクロスヘッドが受けるため、2ストロークエンジンの高出力化を図ることができる。さらに、シリンダ110aとクロスヘッドが収まるクランク室とが隔離されるので、低質燃料油を用いる場合においても汚損劣化を防止することができる。排気集合管112は、エンジン110に設けられた複数の排気弁110cそれぞれを通じてシリンダ110aと連通する複数の排気路を集約する。
過給機120は、タービン122と、タービン122と同軸の圧縮機124とを含んで構成される。タービン122は、エンジン110から排出された排気ガスX1によって回転し、圧縮機124は、タービン122の回転を利用し、外部から導入される活性ガス(酸素、オゾン等の酸化剤、または、その混合気(例えば空気))を圧縮してエンジン110への掃気圧を高める。こうすることで、エンジン110の出力を向上させることができる。
脱硝装置200は、排気ガスX1にアンモニアを作用させることで、排気ガスX1中に含まれるNOxを窒素に還元する。
このように、エンジン110から排出された排気ガスX1は、脱硝装置200に導入され、NOxが還元されて、排気ガスX2として外部に排出される。
上述したように、大型船舶では、ユニフロー型の2ストロークエンジンが広く採用されているが、2ストロークエンジンは、4ストロークエンジンと比較して、高効率であり燃料に対する空気の割合が高いので排気ガスの温度が低い場合が多い。したがって、エンジン110としてユニフロー型の2ストロークエンジンを採用する場合、タービン122の下流の排気ガスの温度が、脱硝装置200に導入される還元剤(尿素水)の気化、分解温度に満たず、脱硝装置200においてNOxを十分に還元できないおそれがあった。
そこで、本実施形態では、別途の加熱装置を利用せずとも、尿素水を気化、分解してアンモニアを生成させ、脱硝触媒にアンモニアを供給することができ、また、タービン122への硫安の析出を防止することが可能な脱硝装置200を提供することを目的とする。以下、脱硝装置200の具体的な構成について説明する。
(脱硝装置200)
本実施形態にかかる脱硝装置200では、排気ガスX1に還元剤を導入し、還元剤の導入位置の下流にある、脱硝触媒で、排気ガスX1中に含まれるNOxを還元して窒素を生成する選択式触媒還元方式を採用している。
図1に示すように、脱硝装置200は、第1バイパス管210と、第1還元剤導入部212と、脱硝触媒214と、NOx検出部216と、還元剤調整部218と、第1バルブ220と、第2還元剤導入部222と、温度検出部224と、バルブ調整部226と、第2バイパス管228と、流路切換部230とを含んで構成される。
第1バイパス管210は、過給機120のタービン122の上流において排気路202aから分岐され、タービン122の上流の排気ガスX1をタービン122の下流における排気路202bにバイパスする。
第1還元剤導入部212は、二流体ノズルや一流体ノズルを含んで構成され、排気路202aから第1バイパス管210への分岐点Pから排気路202bへの合流点Qの間で、第1バイパス管210に還元剤(尿素水)を導入(噴霧)する。本実施形態において第1還元剤導入部212は、第1バイパス管210における、後述する第1バルブ220の下流側に尿素水を導入する。
なお、第1還元剤導入部212による尿素水の導入位置および第1バルブ220の位置は、第1バイパス管210において、可能な限り上流であることが好ましい。例えば、タービン122の上流の排気ガスX1の温度が270℃であって、270℃で尿素水を気化、分解するためには1秒を要し、排気ガスX1の流速が、10m/秒であるとすると、尿素水を気化、分解するためには、10mの流路が必要となる。したがって、第1還元剤導入部212による尿素水の導入位置および第1バルブ220の位置を、第1バイパス管210における可能な限り上流にすることにより、尿素水を気化、分解するための時間(配管の長さ)を稼ぐことができ、脱硝装置200までの配管の長さを無駄に長くする必要がなくなる。
脱硝触媒214は、バナジウム、タングステン、モリブデン等の金属またはその酸化物と酸化チタン等で構成され、過給機120のタービン122を通過した排気ガスX1中のNOxを還元する。
図2は、2ストロークエンジンにおけるエンジン負荷と排気ガスX1の温度との関係を説明するための説明図である。図2中、タービン122の入口の排気ガスX1の温度を実線で、タービン122の出口の排気ガスX1の温度を破線で示す。
NOxの排出量が厳しく制限されるECA内を航行する場合、エンジン110から排出される排気ガスX1は脱硝触媒214を通過させる必要がある。図2に示すように、エンジン負荷が高いと、タービン122の仕事量が増加し、すなわち、タービン122において排気ガスX1の熱が消費されてしまうため、タービン122の出口の排気ガスX1の温度が低下する。例えば、エンジン負荷が25%から75%と上昇するにつれて、タービン122の仕事量が増加するため、タービン122出口の排気ガスX1の温度は徐々に低下して250℃程度となり、75%を超えても、250℃程度に留まる。したがって、エンジン負荷が67%を超えると、尿素水の気化、分解に必要な温度である270℃を下回ってしまう。
ここで、タービン122の出口と脱硝触媒214とは、距離が近いため、タービン122の出口(下流)の排気ガスX1の温度を、脱硝触媒214の入口の温度とみなすことができる。したがって、タービン122の下流の排気ガスX1の温度が低下し、すなわち、脱硝触媒214の温度が低下し、活性温度、および、硫安分解温度(例えば、270℃程度)に達していないと、脱硝触媒214がNOxを十分に還元できない。
本実施形態では、第1バイパス管210を設け、タービン122の上流の温度の高い排気ガスX1を脱硝触媒214の直前にバイパスさせることにより、脱硝触媒214の温度を上昇させることができる。したがって、第1バイパス管210の配管径や、第1バイパス管210でバイパスさせる排気ガスX1の流量を適切に調整することで、脱硝触媒214の温度を、活性温度、および、硫安分解温度に到達させることができ、排気ガスX1中に含まれるNOxを確実に還元することが可能となる。
また、第1還元剤導入部212が、高温の排気ガスX1が通過する第1バイパス管210に還元剤としての尿素水を導入することで、別途の加熱装置を利用せずとも、尿素水を気化、分解してアンモニアを生成させ、脱硝触媒214に確実にアンモニアを供給することができる。
NOx検出部216は、タービン122の上流における排気ガスX1のNOxの濃度を検出する。ここで、NOx濃度は、エンジン負荷(エンジン出力)や、エンジンへの燃料投入量と相関があるので、NOx検出部216は、実際のNOx濃度を測定せずとも、エンジン負荷や、エンジン110への燃料投入量からNOx濃度を推定してもよい。また、NOx検出部216を分析計で構成しておき、タービン122の上流における排気ガスX1のNOxの濃度を直接測定してもよい。
還元剤調整部218は、NOx検出部216が検出したNOxの濃度、エンジン110から排気される排気ガスX1の流量、後述するバルブ調整部226による第1バルブ220の開度(流量)、および、後述する流路切換部230による排気ガスX1の送出先の切り換えに基づいて、第1還元剤導入部212が導入する尿素水の量および第2還元剤導入部222が導入する尿素水の量を調整する。
NOx検出部216および還元剤調整部218を備える構成により、排気ガスX1中のNOxが少ないときに無駄に尿素水を導入してしまい、脱硝触媒214においてアンモニアが酸化されずに、外部に排出してしまう事態を回避することができ、NOxが多いときにそのNOxを還元するために必要な量の尿素水を導入することが可能となる。
例えば、NOx検出部216が検出したNOxの濃度が1000ppmであって、エンジン110から排気される排気ガスX1の流量が1000Nm/時間であり、脱硝触媒214におけるNOxの還元率が80%であるとすると、還元剤調整部218は、30wt%の尿素水を52.4kg/時間で導入することになる。
第1バルブ220は、バタフライ弁やゲート弁等の流量調整弁を含んで構成され、排気路202aにおける第1バイパス管210への分岐点Pから排気路202bへの合流点Qの間に配置される。第1バルブ220の開度は、バルブ調整部226によって調整され、バルブ調整部226は、第1バイパス管210に導入する排気ガスX1の流量を調整する。
例えば、タービン122の上流の排気ガスX1の温度が350℃であり、第1バイパス管210における尿素水の滞留時間が0.1秒であるとすると、第1バイパス管210の温度を300℃以上にする必要があるため、バルブ調整部226は、第1バルブ220の開度を調整して、第1バイパス管210に導入する排気ガスX1の流量を0.2Nm/時間以上にする。
なお、タービン122の上流の排気ガスX1の圧力は、タービン122の下流の排気ガスX1の圧力よりも高いため、送風機等の別途の装置を用いずとも、第1バルブ220の開度を調整するだけで、第1バイパス管210における排気ガスX1の流量を調整することができる。
第2還元剤導入部222は、二流体ノズルや一流体ノズルを含んで構成され、第1バイパス管210の排気路202bにおける合流点Qの下流に尿素水を導入(噴霧)する。本実施形態において、第2還元剤導入部222は、バルブ調整部226による制御に応じて、第1バルブ220が閉となっている期間、すなわち、排気ガスX1全量がタービン122を通過している期間のみ合流点Qの下流に尿素水を導入する。
温度検出部224は、脱硝触媒214の入口の温度を検出する。図2を参照して理解できるように、タービン122の出口の排気ガスX1の温度とエンジン負荷には相関性があるため、温度検出部224は、実際の脱硝触媒214の入口の温度を測定せずとも、エンジン負荷、例えば、エンジン負荷が67%以上であると、脱硝触媒214の入口の温度が270℃を下回る等、エンジン負荷から温度を推定してもよい。
表1は、エンジン負荷とクランクの回転数との関係を示す表である。表1に示すように、エンジン負荷とクランクの回転数との間には相関関係があるため、温度検出部224は、実際の脱硝触媒214の入口の温度を測定せずとも、クランクの回転数からエンジン負荷を推定し、推定したエンジン負荷から温度を推定してもよい。すなわち、クランクの回転数から脱硝触媒214の入口の温度を一意に求めることができる。
Figure 2013007335
バルブ調整部226は、温度検出部224が検出した温度に基づいて、第1バルブ220の開度を調整する。
NOxの排出量が厳しく制限されるECA内を航行する場合、排気ガスX1は脱硝触媒214を通過させる必要がある。ここで、エンジン負荷が高く、タービン122の下流の排気ガスX1の温度が低下し、脱硝触媒214の入口の温度が、活性温度、および、硫安分解温度に達していない場合には、第1バイパス管210を介して、タービン122の上流の高温の排気ガスX1をバイパスさせて、脱硝触媒214を加温する必要がある。
そこで、バルブ調整部226は、温度検出部224が検出した温度が、脱硝触媒214の活性温度未満、かつ、硫安分解温度未満であると判定したときに、第1バルブ220の開度を調整して、バイパスさせる高温の排気ガスX1の流量を調整する。これにより、脱硝触媒214の温度を、活性温度、および、硫安分解温度に到達させることができ、排気ガスX1中に含まれるNOxを確実に還元することが可能となる。
一方、エンジン負荷が低く、タービン122の下流の排気ガスX1の温度が低下せず、脱硝触媒214の入口の温度が、活性温度、および、硫安分解温度に達していれば、タービン122の上流の排気ガスX1をバイパスさせる必要はない。
そこで、バルブ調整部226は、温度検出部224が検出した温度が、第1バイパス管210を介して高温の排気ガスX1をバイパスさせずとも、脱硝触媒214の活性温度以上となるとみなせる温度(例えば、270℃よりも100℃高い370℃)であると判定したときに、第1バルブ220を閉にして、タービン122の上流の高温の排気ガスX1をバイパスさせない。
これにより、エンジン負荷が低い場合に、排気ガスX1を不要にバイパスさせることで、タービン122を通過する排気ガスX1の流量が低下し、圧縮機124の出力が低下してしまい、エンジン110が高温になってしまう事態を回避することが可能となる。
また、バルブ調整部226は、温度検出部224が検出した温度が、アンモニアを分解してしまうような高温である場合、第1バルブ220を閉にして、タービン122の上流の高温の排気ガスX1をバイパスさせない。
これにより、タービン122の上流の排気ガスX1があまりにも高温であり、この排気ガスX1をバイパスさせることで、脱硝触媒214の温度が上昇しすぎて、アンモニアが分解されてしまい、NOxの還元効率が低下してしまう事態を回避することができる。
なお、バルブ調整部226が第1バルブ220を閉にしている間、還元剤調整部218は、第1還元剤導入部212に尿素水の導入を停止させ、NOx検出部216が検出したNOxの濃度に基づいて、第2還元剤導入部222が導入する尿素水の量を調整する。
また、バルブ調整部226は、後述する流路切換部230による、脱硝触媒214と後述する第2バイパス管228との排気ガスX1の送出先の切り換え処理に応じて、第1バルブ220の開度を調整する。流路切換部230による送出先の切り換え処理に応じたバルブ調整部226の制御については、後に詳述する。
第2バイパス管228は、脱硝触媒214の上流において排気路202bから分岐され、脱硝触媒214の上流の排気ガスX1を脱硝触媒214の下流における排気路202dにバイパスさせる。したがって、この場合、排気ガスX2は排気ガスX1そのものとなる。
流路切換部230は、脱硝システム100を搭載した船舶がECA以外の一般海域内を航行している間、排気ガスX1の送出先を、脱硝触媒214を通過する排気路202cから第2バイパス管228に切り換える。そして、バルブ調整部226は第1バルブ220を閉にする。
NOxの排出量が厳しく制限されていない一般海域内を航行する場合、排気ガスX1を脱硝触媒214に通過させる必要がない。そこで、一般海域内を航行する間、流路切換部230が排気ガスX1の送出先を第2バイパス管228に切り換えて、排気ガスX1を脱硝触媒214に通過させないことで、脱硝触媒214の劣化を防止することが可能となる。また、一般海域内を航行する間、第1バイパス管210によるタービン122の上流の排気ガスX1のバイパスも不要となるので、バルブ調整部226は、第1バルブ220を閉にし、還元剤調整部218は、第1還元剤導入部212および第2還元剤導入部222に尿素水の導入を停止させる。
以上説明したように、本実施形態にかかる脱硝装置200によれば、別途の加熱装置を利用せずとも、尿素水を気化、分解してアンモニアを生成させ、脱硝触媒214にアンモニアを供給することが可能となる。また、流通する排気ガスX1の温度が高い第1バイパス管210に尿素水を導入することにより、尿素水を気化、分解する時間を短縮することができ、すなわち、尿素水を気化、分解するために必要な配管長を短くすることが可能となる。したがって、脱硝装置200をコンパクトに構成することができ、脱硝装置200の搭載性を向上させることが可能となる。
(脱硝方法)
図3は、本実施形態にかかる脱硝装置200を用いた脱硝方法の処理の流れを説明するためのフローチャートである。図3に示すように、流路切換部230は、脱硝システム100が搭載されている船舶が現在航行している海域が、ECAであるか否かを判定し(S300)、ECAである場合(S300におけるYES)、排気ガスX1の現在の送出先が脱硝触媒214を通過する排気路202cであるか否かを判定し(S302)、現在の送出先が脱硝触媒214を通過する排気路202cでない場合(S302におけるNO)、排気ガスX1の送出先を、脱硝触媒214を通過する排気路202cに切り換える(S304)。
そして、バルブ調整部226は、温度検出部224による脱硝触媒214の入口の温度の検出結果が、アンモニア(NH)の分解温度未満であるか否かを判定し(S306)、分解温度未満であれば(S306におけるYES)、さらにその温度が、第1バイパス管210で高温の排気ガスX1をバイパスさせずとも、脱硝触媒214の活性温度および硫安分解温度以上であるとみなせる温度(例えば、370℃)以上であるか否かを判定する(S308)。なお、流路判定ステップS302において、排気ガスX1の現在の送出先が脱硝触媒214を通過させる排気路202cである場合(S302におけるYES)は、その後、温度判定ステップS306の処理を遂行する。
脱硝触媒214の入口の温度が、370℃未満である場合(S308におけるNO)、バルブ調整部226は、第1バルブ220の開度を調整し(S310)、還元剤調整部218は、NOx検出部216が検出したNOxの濃度に基づいて、第1還元剤導入部212が導入する尿素水の量を調整し(S312)、第2還元剤導入部222が尿素水を導入していれば(S314におけるYES)、第2還元剤導入部222による尿素水の導入を停止する(S316)。
脱硝触媒214の入口の温度が、アンモニアの分解温度以上である(S306におけるNO)、または、370℃未満である(S308におけるYES)場合、第1バルブ220が閉であるか否かを判定し(S318)、第1バルブ220が閉でなければ(S318におけるNO)、バルブ調整部226は、第1バルブ220を閉にし(S320)、還元剤調整部218は、第1還元剤導入部212が尿素水を導入しているか否かを判定し(S324)、第1還元剤導入部212が尿素水を導入していれば(S324におけるYES)、第1還元剤導入部212による尿素水の導入を停止し(S322)、NOx検出部216が検出したNOxの濃度に基づいて、第2還元剤導入部222が導入する尿素水の量を調整する(S326)。
一方、流路切換部230が、脱硝システム100が搭載されている船舶が現在航行している海域が、ECAでないと判定すると(S300におけるNO)、流路切換部230は、排気ガスX1の現在の送出先が第2バイパス管228であるか否かを判定し(S330)、現在の送出先が第2バイパス管228でないと(S330におけるNO)、送出先を第2バイパス管228に切り換える(S332)。そして、バルブ調整部226は、第1バルブ220を閉とし(S334)、還元剤調整部218は、第1還元剤導入部212および第2還元剤導入部222による尿素水の導入を停止する(S336)。
以上説明したように、本実施形態にかかる脱硝方法によれば、ECAを航行している間は、排気ガスX1を脱硝触媒214に通過させる。そして、脱硝触媒214の温度に応じて、タービン122の上流の高温の排気ガスX1を、第1バイパス管210を通じてバイパスさせることで、脱硝触媒214の温度を確実に活性温度、および、硫安分解温度に到達させることができる。また、バイパスさせている間、尿素水を高温の排気ガスX1が流通する第1バイパス管210に導入することで、尿素水を確実に気化、分解することができるため、脱硝触媒214によるNOx還元の効率を向上させることが可能となる。
また、ECAを航行していない間、排気ガスX1は、脱硝触媒214を回避して、第2バイパス管228を通過するため、脱硝が不要な場所で脱硝を行うことによる、脱硝触媒214の劣化を防止することが可能となる。
(第2の実施形態:脱硝システム400)
図4は、本実施形態にかかる脱硝システム400を説明するための説明図である。図4に示すように、脱硝システム400は、エンジン110と、過給機120と、脱硝装置450とを含んで構成される。エンジン110は、シリンダ110aと、ピストン110bと、排気弁110cと、排気集合管112とを含んで構成される。過給機120は、タービン122と、タービン122と同軸の圧縮機124とを含んで構成される。脱硝システム400は、第1バイパス管210と、第1還元剤導入部212と、脱硝触媒214と、NOx検出部216と、還元剤調整部218と、第1バルブ220と、第2還元剤導入部222と、温度検出部224と、バルブ調整部226と、第2バイパス管228と、流路切換部230と、ダスト除去器460を含んで構成される。
なお、上述した第1の実施形態における、エンジン110、シリンダ110a、ピストン110b、排気弁110c、排気集合管112、過給機120、タービン122、圧縮機124、第1バイパス管210、第1還元剤導入部212、脱硝触媒214、NOx検出部216、還元剤調整部218、第1バルブ220、第2還元剤導入部222、温度検出部224、バルブ調整部226、第2バイパス管228、流路切換部230は、実質的に機能が等しいので、同一の符号を付して重複説明を省略し、ここでは、ダスト除去器460について説明する。
ダスト除去器460は、DPF(Diesel Particulate Filter)とも呼ばれ、タービン122を通過した排気ガスX1中の粒子状物質を捕集する。図4に示すように、本実施形態において、ダスト除去器460は、タービン122と脱硝触媒214との間に配された排気路に設けられる。
また、本実施形態において、第1バイパス管210は、タービン122の上流において排気路202aから分岐され、タービン122の上流の排気ガスX1を、タービン122の下流かつダスト除去器460の上流における排気路202bにバイパスする。
2ストロークエンジンの排気ガスには、凝縮性炭化水素分が含まれており、かかる凝縮性炭化水素分は、凝縮点が250℃以下(物質によっては、凝縮点が300℃以下)である。したがって、ダスト除去器460の温度が凝縮点である250℃から300℃の温度範囲以下になってしまうと、凝縮性炭化水素分が凝縮してダスト除去器460を閉塞してしまうおそれがある。
そこで、第1バイパス管210を設け、タービン122の上流の温度の高い排気ガスX1をダスト除去器460の直前にバイパスさせることにより、ダスト除去器460の温度を上昇させることができる。したがって、第1バイパス管210の配管径や、第1バイパス管210でバイパスさせる排気ガスX1の流量を適切に調整することで、ダスト除去器460の温度を、凝縮性炭化水素分の凝縮点(凝縮温度)以上に到達させることができ、ダスト除去器460において凝縮性炭化水素分が凝縮してダスト除去器460を閉塞してしまう事態を回避することが可能となる。
(変形例)
図5は、脱硝システム400の変形例を説明するための説明図である。図5に示す変形例では、第1バイパス管210によるバイパス位置が、図4に示す第1バイパス管210によるバイパス位置と異なる。
具体的に説明すると、図5に示すように、変形例において、第1バイパス管210は、タービン122の上流において排気路202aから分岐され、タービン122の上流の排気ガスX1を、ダスト除去器460の下流かつ脱硝触媒214の上流における排気路にバイパスする。
例えば、タービン122下流の排気ガスX1の温度が凝縮性炭化水素分の凝縮点を上回る場合、図4に示す脱硝装置450のように第1バイパス管210がタービン122の上流の温度の高い排気ガスX1をダスト除去器460にバイパスさせずとも、ダスト除去器460において凝縮性炭化水素分が凝縮することはない。しかし、この場合、ダスト除去器460において、排気ガスX1の温度が低下して、脱硝触媒214の温度が活性温度以下になってしまったり、硫安分解温度以下になってしまうおそれがある。
そこで、タービン122下流の排気ガスX1の温度が凝縮性炭化水素分の凝縮点を十分に上回る場合、第1バイパス管210が、タービン122の上流の温度の高い排気ガスX1をダスト除去器460の下流にバイパスさせることにより、ダスト除去器460によって脱硝触媒214の温度が活性温度以下になってしまったり、硫安分解温度以下になってしまったりする事態を回避することが可能となる。
以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明はかかる実施形態に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。
例えば、上述した実施形態において。第1還元剤導入部212は、第1バイパス管210における第1バルブ220の下流に還元剤を導入する構成について説明したが、第1バイパス管210に還元剤を導入すればよく、第1バルブ220の上流に還元剤を導入してもよい。
また、上述した実施形態において、タービン122を迂回する管を第1バイパス管210、脱硝触媒214を迂回する管を第2バイパス管228として表現したが、タービン122や脱硝触媒214があることを前提にしているものではない。例えば、第2バイパス管228(この場合、厳密にはバイパスしていない)があることを前提として、第2バイパス管228の上流の排気ガスX1を分岐して脱硝触媒214を通過させ、排気路に戻したりする場合も本発明の実施形態の範囲に含まれる。すなわち、2つの系統(流路)のいずれを主系統(メイン)または副系統(サブ)とするかは任意に設定することができる。
なお、本明細書の脱硝方法の各工程は、必ずしもフローチャートとして記載された順序に沿って時系列に処理する必要はなく、並列的あるいはサブルーチンによる処理を含んでもよい。
本発明は、エンジンの排ガス中に含まれる窒素酸化物を、還元剤を用いて窒素に還元する脱硝装置に利用することができる。
110 …エンジン
112 …排気集合管
120 …過給機
122 …タービン
200、450 …脱硝装置
210 …第1バイパス管
212 …第1還元剤導入部
214 …脱硝触媒
216 …NOx検出部
218 …還元剤調整部
220 …第1バルブ
222 …第2還元剤導入部
224 …温度検出部
226 …バルブ調整部
228 …第2バイパス管
230 …流路切換部
460 …ダスト除去器

Claims (7)

  1. エンジンの排気路に設けられたタービンの回転を利用して該エンジンに空気を導入する過給機の該タービンを通過した排気ガス中の窒素酸化物を還元する脱硝触媒と、
    前記タービンの上流において前記排気路から分岐され、該タービンの上流の排気ガスを該タービンの下流における該排気路にバイパスする第1バイパス管と、
    前記排気路における前記第1バイパス管への分岐点から該排気路への合流点の間で、該第1バイパス管に還元剤を導入する還元剤導入部と、
    を備えることを特徴とする脱硝装置。
  2. 前記排気路における前記第1バイパス管への分岐点から該排気路への合流点の間で、該第1バイパス管に導入する排気ガスの流量を調整する第1バルブをさらに備え、
    前記還元剤導入部は、前記第1バルブの下流側に前記還元剤を導入することを特徴とする請求項1に記載の脱硝装置。
  3. 前記脱硝触媒の入口の温度を検出する温度検出部と、
    前記温度検出部が検出した温度に基づいて、前記第1バルブの開度を調整するバルブ調整部と、
    をさらに備えることを特徴とする請求項2に記載の脱硝装置。
  4. 前記脱硝触媒の上流において前記排気路から分岐され、該脱硝触媒の上流の排気ガスを該脱硝触媒の下流における該排気路にバイパスする第2バイパス管と、
    前記排気ガスの送出先を、前記脱硝触媒を通過する排気路と前記第2バイパス管とで切り換える流路切換部と、
    をさらに備え、
    前記流路切換部が、前記排気ガスの送出先を、前記脱硝触媒を通過する排気路から前記第2バイパス管に切り換えると、前記バルブ調整部は、前記第1バルブを閉にすることを特徴とする請求項2または3に記載の脱硝装置。
  5. 前記タービンの上流における排気ガス中の窒素酸化物の濃度を検出するNOx検出部と、
    前記NOx検出部が検出した窒素酸化物の濃度に基づいて、前記還元剤導入部が導入する還元剤の量を調整する還元剤調整部と、
    をさらに備えることを特徴とする請求項1から4のいずれか1項に記載の脱硝装置。
  6. 前記排気路における前記タービンと前記脱硝触媒との間に設けられ、前記タービンを通過した排気ガス中の粒子状物質を捕集するダスト除去器をさらに備え、
    前記第1バイパス管は、前記タービンの上流において前記排気路から分岐され、該タービンの上流の排気ガスを、該タービンの下流かつ前記ダスト除去器の上流における排気路にバイパスすることを特徴とする請求項1から5のいずれか1項に記載の脱硝装置。
  7. 前記排気路における前記タービンと前記脱硝触媒との間に設けられ、前記タービンを通過した排気ガス中の粒子状物質を捕集するダスト除去器をさらに備え、
    前記第1バイパス管は、前記タービンの上流において前記排気路から分岐され、該タービンの上流の排気ガスを、前記ダスト除去器の下流かつ前記脱硝触媒の上流における排気路にバイパスすることを特徴とする請求項1から5のいずれか1項に記載の脱硝装置。
JP2011140839A 2011-06-24 2011-06-24 脱硝装置 Pending JP2013007335A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011140839A JP2013007335A (ja) 2011-06-24 2011-06-24 脱硝装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011140839A JP2013007335A (ja) 2011-06-24 2011-06-24 脱硝装置

Publications (1)

Publication Number Publication Date
JP2013007335A true JP2013007335A (ja) 2013-01-10

Family

ID=47674875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011140839A Pending JP2013007335A (ja) 2011-06-24 2011-06-24 脱硝装置

Country Status (1)

Country Link
JP (1) JP2013007335A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101497828B1 (ko) * 2013-09-30 2015-03-02 두산엔진주식회사 선택적 촉매 환원 시스템 및 선택적 촉매 환원 방법
WO2015056452A1 (ja) * 2013-10-17 2015-04-23 川崎重工業株式会社 舶用排気ガス浄化装置及び船舶機関システム
WO2015115092A1 (en) 2014-01-31 2015-08-06 Toyota Jidosha Kabushiki Kaisha Exhaust system structure for internal combustion engine
JP2015214970A (ja) * 2014-05-09 2015-12-03 ヴィンタートゥール ガス アンド ディーゼル アーゲー 往復動ピストン内燃機関、排気ガス処理部及び往復動ピストン内燃機関の運転方法
GB2547205A (en) * 2016-02-09 2017-08-16 Ford Global Tech Llc An exhaust system
US10066587B2 (en) 2016-02-09 2018-09-04 Ford Global Technologies, Llc Methods and systems for a variable volume engine intake system
CN109312651A (zh) * 2016-04-13 2019-02-05 庄信万丰股份有限公司 用于柴油发动机的排气系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001152832A (ja) * 1999-11-29 2001-06-05 Toyota Motor Corp 内燃機関
JP2002531745A (ja) * 1998-12-01 2002-09-24 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 内燃機関の排ガスの後処理装置
JP2006336537A (ja) * 2005-06-02 2006-12-14 Toyota Motor Corp 内燃機関の制御装置
JP2007113401A (ja) * 2005-10-18 2007-05-10 Hino Motors Ltd エンジンの排ガス浄化装置
JP2010071149A (ja) * 2008-09-17 2010-04-02 Yanmar Co Ltd 排気ガス浄化装置
JP2011144765A (ja) * 2010-01-15 2011-07-28 Mitsubishi Heavy Ind Ltd 舶用排ガス脱硝装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002531745A (ja) * 1998-12-01 2002-09-24 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 内燃機関の排ガスの後処理装置
JP2001152832A (ja) * 1999-11-29 2001-06-05 Toyota Motor Corp 内燃機関
JP2006336537A (ja) * 2005-06-02 2006-12-14 Toyota Motor Corp 内燃機関の制御装置
JP2007113401A (ja) * 2005-10-18 2007-05-10 Hino Motors Ltd エンジンの排ガス浄化装置
JP2010071149A (ja) * 2008-09-17 2010-04-02 Yanmar Co Ltd 排気ガス浄化装置
JP2011144765A (ja) * 2010-01-15 2011-07-28 Mitsubishi Heavy Ind Ltd 舶用排ガス脱硝装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101497828B1 (ko) * 2013-09-30 2015-03-02 두산엔진주식회사 선택적 촉매 환원 시스템 및 선택적 촉매 환원 방법
WO2015056452A1 (ja) * 2013-10-17 2015-04-23 川崎重工業株式会社 舶用排気ガス浄化装置及び船舶機関システム
WO2015115092A1 (en) 2014-01-31 2015-08-06 Toyota Jidosha Kabushiki Kaisha Exhaust system structure for internal combustion engine
JP2015214970A (ja) * 2014-05-09 2015-12-03 ヴィンタートゥール ガス アンド ディーゼル アーゲー 往復動ピストン内燃機関、排気ガス処理部及び往復動ピストン内燃機関の運転方法
GB2547205A (en) * 2016-02-09 2017-08-16 Ford Global Tech Llc An exhaust system
GB2547205B (en) * 2016-02-09 2018-02-14 Ford Global Tech Llc An exhaust treatment system with reactant injected into a turbocharger bypass duct
US10066587B2 (en) 2016-02-09 2018-09-04 Ford Global Technologies, Llc Methods and systems for a variable volume engine intake system
CN109312651A (zh) * 2016-04-13 2019-02-05 庄信万丰股份有限公司 用于柴油发动机的排气系统
JP2019518896A (ja) * 2016-04-13 2019-07-04 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company ディーゼルエンジンのための排気システム

Similar Documents

Publication Publication Date Title
JP2013007335A (ja) 脱硝装置
JP2013002355A (ja) 脱硝装置
JP5536180B2 (ja) 排気ガス浄化装置
US9068489B2 (en) Process for the reduction of nitrogen oxides and sulphur oxides in the exhaust gas from internal combustion engine
KR20130087146A (ko) Urea-scr 시스템 장치 및 제어방법
KR20130018862A (ko) 내연 기관의 배기 가스 내의 산화질소, 일산화탄소 및 탄화수소를 저감하기 위한 조립체 및 방법
WO2008104070A1 (en) Emission reduction system using wet scrubbing
JP6079056B2 (ja) 脱硝装置、および、脱硝方法
US20070277506A1 (en) Ammonia producing engine utilizing oxygen separation
KR20160067047A (ko) 연소 엔진에 의해 작동되는 차량용, 특히 선박용 배기 가스 후처리 시스템
US20080209894A1 (en) Method For Regeneration Of An Exhaust Aftertreatment System
US7204082B1 (en) System for combustion of reformate in an engine exhaust stream
JP2007009718A (ja) 排気浄化装置
US10501337B2 (en) System for neutralizing the pH of exhaust condensate
CN115773169A (zh) 氨燃料船舶发动机系统及其尾气后处理系统
FI124227B (fi) Menetelmä polttomoottorin käyttämiseksi ja polttomoottorijärjestely
JP7149691B2 (ja) 内燃機関の運転方法および内燃機関
JP5029841B2 (ja) 排気浄化装置
JP6102329B2 (ja) 脱硝装置および脱硝方法
Thanikachalam Energy demand and exhaust gas emissions of marine engines: mitigating technologies and prediction
JP6007468B2 (ja) 脱硝装置
JPH09267025A (ja) 排ガス脱硝用還元剤の供給方法
JP6872270B2 (ja) 内燃機関の脱硝装置用の加熱ガス発生装置及びその運転方法
JP2018013122A (ja) 内燃機関の運転方法及び内燃機関
JP6064476B2 (ja) 脱硝装置および脱硝方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150515

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151027