JP2012532386A - チャンバコンディション - Google Patents

チャンバコンディション Download PDF

Info

Publication number
JP2012532386A
JP2012532386A JP2012518695A JP2012518695A JP2012532386A JP 2012532386 A JP2012532386 A JP 2012532386A JP 2012518695 A JP2012518695 A JP 2012518695A JP 2012518695 A JP2012518695 A JP 2012518695A JP 2012532386 A JP2012532386 A JP 2012532386A
Authority
JP
Japan
Prior art keywords
fluid
chamber
particle detector
clean
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012518695A
Other languages
English (en)
Other versions
JP5671530B2 (ja
Inventor
ロン・ノックス
カール・ボットガー
Original Assignee
エックストラリス・テクノロジーズ・リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2009903184A external-priority patent/AU2009903184A0/en
Application filed by エックストラリス・テクノロジーズ・リミテッド filed Critical エックストラリス・テクノロジーズ・リミテッド
Publication of JP2012532386A publication Critical patent/JP2012532386A/ja
Application granted granted Critical
Publication of JP5671530B2 publication Critical patent/JP5671530B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/10Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
    • G08B17/103Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using a light emitting and receiving device
    • G08B17/107Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using a light emitting and receiving device for detecting light-scattering due to smoke
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/53Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/10Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
    • G08B17/11Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using an ionisation chamber for detecting smoke or gas
    • G08B17/113Constructional details
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B29/00Checking or monitoring of signalling or alarm systems; Prevention or correction of operating errors, e.g. preventing unauthorised operation
    • G08B29/18Prevention or correction of operating errors
    • G08B29/20Calibration, including self-calibrating arrangements
    • G08B29/24Self-calibration, e.g. compensating for environmental drift or ageing of components

Abstract

粒子検知器(10)は、チャンバ(12)、第1の吸引器(14)、センサ(28)、コントローラ(20)、清浄流体源(18)を有する。清浄流体源および清浄流体インレットは、検知モードにあるとき、清浄流体をチャンバに案内して、1つまたはそれ以上の構成部品のダストおよびデブリスに起因する、粒子検知器の精度を低減するような汚染を防止し、コントローラは、検知モードにおいて、センサから指標信号を受信し、指標信号に対して論理演算を実行して、別の信号(22)を生成し、浄化モードにおいて、清浄流体源からの清浄流体を用いて、サンプル流体のチャンバを実質的に浄化するように制御する。コントローラは、チャンバが浄化されたときに指標信号を受信し、必要ならば、指標信号に対する論理演算を調整する。

Description

本願発明は、粒子検知に関する。以下の明細書においては、煙検知器、とりわけ光学式の煙検知器に焦点を当てて説明するが、本願発明はより広い用途で用いられることを当業者ならば理解される。疑義を払拭するために、「粒子検知」およびここで用いられる同様の用語は、固体および/または液体の粒子を検知することを意味する。
さまざまな煙検知器は、空気サンプルが取り込まれ、粒子の有無について判断されるために通過させるチャンバを有する。ダスト(塵)やデブリス(破片)が長期間において検知チャンバ内の表面に堆積すると、煙検知器の動作に影響を与える可能性がある。
たとえば散乱光式の煙検知器は、検知チャンバを横断するビームを放射するように構成された光源を有する。光電子式センサは、その視野領域にビームの一部が横断するように配置される。光電子式センサは、検知チャンバ内の粒子の有無によりビームからの散乱光を受光する。長期間においてダストやデブリスが検知チャンバの表面上に堆積し、光電子式センサに向かう光が反射すると、検知チャンバ内における粒子の誤判定を生じることがある。またダストやデブリスは、光源および/または光電子式センサ上に積もることにより、光の透過および受光を遮蔽し、煙検知器の感度を低下させることがある。
これらの問題に対処するための1つのアプローチには、「エアーバリア(空気障壁)」の使用が含まれる。1つまたは複数の清浄な空気の流れを検知チャンバ内に導入することにより、エアーバリアを形成し、光源、光電子式センサ、および光電子式センサの視野に入る壁部などの重要な部品の上に風を当てて、ダストやデブリスが堆積することを防ぐ。
吸引式の煙検知器は、吸引器として知られたファンを採用し、検知チャンバ内にある調査すべき空気を吸引するものである。調査される空気は、1つまたは複数のインレットを介してチャンバ内に導入される。エアーバリアのコンセプトの望ましい実施態様では、清浄空気を形成するためのフィルタを採用する。フィルタはインレットに対して平行に配置されるため、清浄空気は、吸引器からフィルタを介して検知チャンバ内に導入される。たとえばパイプネットワークからの共通する空気の流れは、2つの部分に分割され、一方は清浄空気を形成するためにフィルタリング処理され、他方は調査用空気としてチャンバ内に導入される。
ダストやデブリスがチャンバ内に堆積することに関連する問題を解決するための別のアプローチは、堆積したダストやデブリスから反射した光(「背景光」としてしられている。)による測定を行い、光電子式センサから得た信号に対して、背景光に応じた検知基準(検知閾値)を適用することが含まれる。背景光を測定するための1つのアプローチは、検知チャンバ内に第2の光電子式センサを配置することを含む。第2の光電子式センサは、その視野内にビームが入らないように配置される。第2の光電子式センサからの信号は、ビームから直接散乱した光ではなく、検知チャンバ内で反射した光の強度を示すものとなる。
日本特許出願公開第59−192940号の要約書によれば、パージ装置機能付スモークメータに関し、測定デバイスに清浄空気を充填し、較正のために清浄空気内の不透過度を測定することが記載されている。上記デバイスは、清浄空気を検知チャンバへ供給する専用のブロワを有する。押下可能なスイッチにより制御可能なバルブを用いて、流入チューブを閉じて、浄化作用前に検知チャンバ内に放出ガスのフローを停止させる。
ニュージーランド特許第250497号は、消火システムが誤作動アラームに呼応して起動することを防止することに関連する。これは、吸引式の煙検知器に適用可能な作動構成について記載している。警告状態が検知されると、チャンバは清浄空気で浄化され、背景「煙」信号が検出される。背景測定値が所定の閾値以下とならなければ、検知器異常は感知されない。背景「煙」信号が所定の閾値以下となれば、システムは、消火システムを起動する前に、検知された煙レベルが別の閾値を越えるまで待機する。
特開昭59−192940号公報 ニュージーランド特許第250497号明細書
本願発明の目的は、改善された粒子検知器を提供することにある。
本発明のさまざまな態様は、較正のために用いられる背景測定値を得るために、検知チャンバを浄化する方法および装置に関する。
1つの態様において、本発明は、サンプル流体を受容する少なくとも1つのサンプルインレット、清浄流体を受容する少なくとも1つの清浄流体インレット、および少なくとも1つの流体アウトレットを有するチャンバと、チャンバを介してサンプル流体を送出する第1の吸引器と、チャンバ内の粒子を検知し、チャンバ内の粒子を表すセンサ信号を出力する1つまたはそれ以上のセンサと、検知モードおよび浄化モードを有するコントローラと、清浄流体を清浄流体インレットに供給する清浄流体源とを備え、清浄流体源および清浄流体インレットは、検知モードにあるとき、清浄流体をチャンバに案内して、1つまたはそれ以上の構成部品のダストおよびデブリスに起因する、粒子検知器の精度を低減するような汚染を防止し、コントローラは、検知モードにおいて、センサ信号を受信し、論理演算を実行して、別の信号を生成し、浄化モードにおいて、清浄流体源からの清浄流体を用いて、サンプル流体のチャンバを実質的に浄化するように制御し、コントローラは、チャンバが浄化されたときにセンサ信号を受信し、必要ならば、センサ信号に対する論理演算を調整する粒子検知器を提供するものである。
浄化モードにおいて、第1の吸引器は作動しない。清浄流体源がチャンバに清浄流体を供給する。浄化モードにおいて、清浄流体源は、作動して、清浄流体をチャンバに供給する。
好適には、清浄流体源は、清浄流体を生成するために流体を濾過するフィルタと、清浄流体を送出する専用の清浄流体吸引器とを有し、専用の清浄流体吸引器は、濾過されない流体に曝されることを回避するために、フィルタの下流側に配置される。本発明の好適な形態によれば、検知モードにおいて、専用の清浄流体吸引器は実質的に作動せず、第1の吸引器が流体をフィルタに送出する。好適には、浄化モードの少なくとも一部において、第1の吸引器は非作動状態となり、チャンバへのサンプル流体の流れを停止させ、専用の清浄流体吸引器が作動状態となり、清浄空気をチャンバ内に吸引する。
検知器は、(たとえばパイプネットワークからの)流体の流れを2つまたはそれ以上の部分的流れに分割し、一方の部分的流れを濾過して清浄流体を形成するために清浄流体源に案内し、他方の部分的流れをチャンバに案内して、サンプル流体を形成する配管を有する。
好都合にも、コントローラは、論理演算を調整する必要がある場合には自動的にチャンバを浄化する。たとえばコントローラは、周期的に調整する必要がある場合にはそのように浄化するように構成され、調整と調整の間の期間は変化し得るが、好適には固定され、最も好適な期間は28日間である。浄化処理および調整処理は、たとえば1日のうちの同じ稼働時間中に行われることが好ましい。
粒子検知器は光学式検知器であってもよく、チャンバを通過する光(ビーム等)を照射する光源と、照射された光と公差する視野領域を有する光電子デバイスとを有し、チャンバ内に存在する粒子により照射光の散乱光を受光するものであってもよい。
粒子検知器は煙検知器であってもよく、好適には、センサ信号は煙レベルの指標となるものである。別の信号とは、アラーム信号であってもよく、これを含むものであってもよい。論理演算はアラーム閾値を含むものであってもよい。コントローラは、検知モードから浄化モードへの移行は、センサ信号により条件付けられるように構成されたものであってもよい。たとえば検知器は、指標信号が浄化開始閾値以上であれば、浄化モードへ移行しないように構成してもよい。浄化開始閾値は、好適には、最も好適には、アラーム閾値の50%未満の粒子濃度に対応する。
コントローラは、好適には、チャンバが浄化されている際、所定の期間における指標信号に基づいた複数の測定値を記憶する。チャンバが浄化された際の指標信号があまりにも小さい場合、あまりにも大きい場合、あまりにも変動が大きい場合、および/または先の浄化処理および調整処理の際の指標に対してあまりにも異なる場合には、コントローラは異常信号を生成するように構成してもよい。論理演算は、指標信号から背景光の測定値を差し引くことを含むものであってもよい。演算処理の調整は、記憶された指標信号を平均化して、背景光の新たな測定値を計算することを含むものであってもよい。
また本発明に係る態様は、粒子検知器を操作する方法を提供するものである。この粒子検知器は、サンプル流体を受容する少なくとも1つのサンプルインレットと、清浄流体をチャンバに案内して、1つまたはそれ以上の構成部品のダストおよびデブリスに起因する、粒子検知器の精度を低減するような汚染を防止する用に構成された少なくとも1つの清浄流体インレットと、少なくとも1つの流体アウトレットと、チャンバ内の粒子を検知し、チャンバ内の粒子を表すセンサ信号を出力する1つまたはそれ以上のセンサとを備える。この操作方法は、検知モードにおいて、チャンバを介してサンプル流体を送出するステップと、チャンバ内の粒子を検出するために、センサ信号を受信ステップと、別の信号を形成するために、センサ信号に論理演算を行うステップと、浄化モードにおいて、清浄流体インレットを介して、清浄流体を用いてサンプル流体を含むチャンバを実質的に浄化するステップと、チャンバが浄化されたとき、センサ信号を受信するステップと、必要ならば、センサ信号に対する論理演算を調整するステップとを有する。
本発明に係る別の態様は、粒子検知器を提供するものである。この粒子検知器は、サンプル流体を受容する少なくとも1つのサンプルインレットおよび少なくとも1つの流体アウトレットを有するチャンバと、チャンバを介してサンプル流体を送出する第1の吸引器と、チャンバ内の粒子を検知し、チャンバ内の粒子を表すセンサ信号を出力する1つまたはそれ以上のセンサと、清浄流体を生成するために流体を濾過するフィルタ、およびフィルタの下流側に配置され、濾過されない流体に曝されることを回避するために清浄流体を送出する専用の清浄流体吸引器を有する清浄流体源と、検知モードおよび浄化モードを有するコントローラとを備え、清浄流体源および清浄流体インレットは、検知モードにあるとき、清浄流体をチャンバに案内して、1つまたはそれ以上の構成部品のダストおよびデブリスに起因する、検知器の精度を低減するような汚染を防止し、コントローラは、検知モードにおいて、センサ信号を受信し、論理演算を実行して、別の信号を生成し、浄化モードにおいて、清浄流体源からの清浄流体を用いて、サンプル流体のチャンバを実質的に浄化するように制御し、コントローラは、チャンバが浄化されたときにセンサ信号を受信し、必要ならば、センサ信号に対する論理演算を調整するものである。
また本発明に係る態様は、粒子検知器を操作する方法を提供するものである。粒子検知器は、サンプル流体を受容する少なくとも1つのサンプルインレットおよび少なくとも1つの流体アウトレットを有するチャンバと、チャンバ内の粒子を検知し、チャンバ内の粒子を表すセンサ信号を出力する1つまたはそれ以上のセンサと、清浄流体を生成するために流体を濾過するフィルタ、およびフィルタの下流側に配置され、濾過されない流体に曝されることを回避するために清浄流体を送出する専用の清浄流体吸引器を有する清浄流体源とを備える。この操作方法は、検知モードにおいて、チャンバを介してサンプル流体を送出するステップと、チャンバ内の粒子を検出するために、センサ信号を受信ステップと、別の信号を形成するために、指標センサ信号に論理演算を行うステップと、
浄化モードにおいて、清浄流体インレットを介して、清浄流体を用いてサンプル流体を含むチャンバを実質的に浄化するステップと、チャンバが浄化されたとき、センサ信号を受信するステップと、必要ならば、センサ信号に対する論理演算を調整するステップとを有する。
本発明の好適な実施形態に係る粒子検知器の概略図である。 図1に示す粒子検知器の検知チャンバの軸方向の概略断面図である。 図1に示す粒子検知器の検知チャンバ、清浄空気源、および配管器具の斜視図である。 図3の4−4線から見た水平方向の断面図である。 図1に示す粒子検知器のコントローラの動作を示すフローチャートである。 図1に示す粒子検知器のコントローラの動作を示すフローチャートである。 所定期間におけるセンサ出力信号および修正された出力信号のグラフであり、本発明の実施形態に係る方法の動作を示す。
図1の粒子検知器10は、本発明の好適な実施形態に係る煙検知器である。粒子検知器10は、検知チャンバ12、吸引器14、コントローラ20、配管器具32、および清浄空気源18を有する。
吸引器14は、遠心ファンであり、コントローラ20により制御される。通常動作時、吸引器14は、パイプネットワーク30を介して、部屋等のサンプリング空間から空気を吸引する。
粒子検知器10は、吸引器14の排気孔から空気の流れを受容する配管器具32を有する。受容した空気の流れは、吸引器14を通過する空気の少量の一部分であり、サンプルと呼ぶ。配管器具32は、空気の流れを2つの部分に分ける。配管器具32は、一方の空気の流れを検知チャンバ12に、他方の空気の流れを清浄空気源18に案内する。検知チャンバに案内された空気は、濾過(フィルタ処理)されず、「サンプル空気」と呼ぶ。
清浄空気源18は、清浄空気を形成するために、問題となる粒子サイズを有する実質的にすべての粒子、あるいは少なくとも実質的にすべての粒子を、空気から除去するフィルタ34を有する。濾過された清浄空気は、清浄空気源18から検知チャンバ12に案内される。
図2を参照すると、検知チャンバ12は、配管器具32からサンプル空気を受容するインレット24と、清浄空気源18から濾過された清浄空気を受容するインレット26A,26B,26Cとを有する。検知チャンバ12は、吸引器14の取込口と連通するアウトレット38を有する。
インレット24を介して検知チャンバ12に案内されるサンプル空気、およびインレット26A,26B,26Cを介して検知チャンバ12に案内される清浄空気は、吸引器14により検知チャンバ12から、アウトレット38を介して、混合フローとして吸引される。したがって、サンプル空気62の流れは、潜在的に粒子を含有するが、インレット24とアウトレット38との間において検知チャンバ12を横断する。
検知チャンバ12は光源40を有し、光源40は検知チャンバ12を横断する光ビーム42を照射するように構成されている。光ビーム42は、検知チャンバ12を横断し、光減衰器44で消失する。フォトダイオード28の携帯を有する光電子式デバイスは、検知チャンバ12のサブチャンバ内に固定されている。
検知チャンバ12は、光ビーム42、サンプル空気62の流れ、およびフォトダイオード28の視野領域が、関心ある領域(検知領域)46で交差するように構成されている。フォトダイオード28は、サンプル空気62の流れにより搬送される粒子による光ビーム42の散乱光を受光するように構成されている。
インレット26A,26B,26Cは、サンプル空気により搬送されたダストおよびデブリスにより、重要部品を汚染して、粒子検知器の精度を低減することがないように構成されている。インレット26Aは、これとアウトレット38との間で清浄空気を流すことにより、ダストおよびデブリスが光源に到達しないようにするシールド(遮蔽部)を形成するように構成されている。またインレット26Bは、フォトダイオード28の上方に清浄空気の流れを案内し、ダストおよびデブリスがフォトダイオード28上に沈着することを防ぐように構成されている。さらにインレット26Cは、ダストおよびデブリスが光減衰器に沈着することを防止するように構成されている。
当業者ならば理解されるように、適正な割合のサンプル空気と清浄空気とを検知チャンバ12に供給されるように、配管器具32や、清浄空気源18、インレット24,26A,26B,26Cを含むさまざまな構成部品の抵抗(インピータンス)により特定される2つのフロー流路の相対的な抵抗を調整する必要がある。
コントローラ20は、フォトダイオード28から、サンプル流体62の流れに含まれる粒子を表すセンサ信号16を受信する。検知モードにおいて、コントローラ20は、センサ信号16に論理演算を適用して、別の信号22を形成する。この論理演算は、背景光の測定値を差し引くことにより、信号22がサンプル流体62の流れの中にある粒子濃度を表すようにする。
論理演算は、同様にアラーム閾値を有する。サンプル流体62の流れの中にある粒子濃度がアラーム閾値より高くなると、コントローラは、アラーム信号を含む別の信号22を送信することにより応答する。センサ信号16がより小さい第2の閾値より小さくなると、別の信号22は障害信号を有する。
清浄空気源18は、フィルタ34に加え、フィルタ34の下流側に配置された吸引器36を有する。吸引器36は、フィルタ34の下流側に配置されているので、サンプル空気ではなく、濾過された清浄空気が供給されるので、濾過されない空気中に含まれるダストおよびデブリスによる汚染から保護される。これにより、吸引器36を比較的に小型・軽量ユニットに構成することができ、しばらくの間、「べたつき(clagging up)」なく休止状態に維持することができる。
図示しない択一的な実施形態において、検知チャンバに至る空気フロー経路にバルブを配置するように図1のシステムを変形して、検知器が浄化モードに入ったとき、チャンバへのサンプル空気源を遮断することができる。この場合、専用清浄空気ファン36は任意的に省略することができる。このシステムが浄化モードに入ると、チャンバ12へのバルブを閉じて、主たる吸引器14が清浄空気フィルタ34を介して空気をチャンバ12内に吸引することにより、チャンバ12に清浄空気を充満させ、サンプル空気のチャンバ12を浄化する。このとき、本願明細書の別の箇所で記載したように、背景ノイズ測定を行うことができる。再び検知モードに入るためには、再度バルブを開き、再度サンプル空気をチャンバ内に取り込む。検知モードにおいては、主たる吸引器14は、チャンバ12を介して、サンプルフローおよび清浄空気の両方を吸引する。
使用に際して、粒子検知器は、通常の粒子検知処理を行う検知モードと、検知チャンバ12を清浄空気で浄化し、較正プロセスを実行する浄化モードとを含む複数の処理モードを有するように構成されている。
こうした粒子検知器の動作方法の詳細が図5Aおよび図5Bのフローチャートに図示されている。プロセス500は、検知器10が検知モードで作動している状態で開始する。
コントローラ20は、28日毎に1回、所定の測定チャンバ背景開始時間に、検知モードから浄化モードに移行するように構成またはプログラムされている(図5A参照;ステップ0)。浄化モードに進む前に、まずコントローラ20はアラーム信号が差し迫っているか(予兆があるか)否かチェックする(ステップ1)。この実施形態において、コントローラ20は、指標センサ信号16がアラーム閾値の50%未満である場合にのみ、浄化モードに進む。
センサ信号16が閾値以下であるとき、コントローラ20は浄化モードに進み、メインおよびチャンバ異常のモニタリング(監視)を停止し、流れる煙の傾向(トレンド)データの記録を停止する(ステップ2)。これにより、以下のステップにおいて、およびサンプル空気がチャンバ内に存在しない期間から、メインファンが停止したときに、少量フロー異常を生じることを防止する。
浄化モードにおいて、コントローラ20は吸引器14の動作を停止させる(ステップ3)。そして吸引器36を起動して、フィルタ34を介して空気を取り込み、濾過された清浄空気を検知チャンバ12内に案内する。検知チャンバ12において、サンプル空気が排気され、清浄空気が充満する。吸引器14は、動作が停止しても、空気が通過するようなタイプのものである。チャンバ12が浄化されると、空気はチャンバ12のアウトレット38から、吸引器14およびパイプネットワーク30に向かって(またはこれらを通過して)排気される。同様に、空気はチャンバ12のインレット24からも排気される。
この実施形態において、吸引器36は30秒間作動し、次のステップが行われる前に、確実に検知チャンバのサンプル空気を十分に排気する(ステップ4)。これを「背景測定開始遅延時間(measure background start delay)」という。コントローラ20は、吸引器36に入力された電流(特に、電流パルス)をモニタする。入力電流に基づき、コントローラ20は、吸引器の動作状態に影響を与えることができる(ステップ5)。択一的には、吸引器36は、タコメータ(回転速度計)の出力端子を有し、これとコントローラ20とを接続してもよい。吸引器36が作動していないとき、または正確に作動していないとき、異常信号が生成される(ステップ13)。
コントローラ20は、チャンバ12内に清浄空気を充満させるとき、指標センサ信号16、すなわち「煙レベル測定値」を、「背景測定平均時間(measure background average time)」毎(この実施形態では1秒間毎)に定期的に測定する。記憶された指標センサ信号は、8秒間において平均化され、新規な背景光測定値を生成する。信号の統計データ(標準偏差および最大偏差等)も同様に計算される。新規な背景光測定値が所定の閾値より大きい場合(ステップ7C)、異常信号を生成する(ステップ14A)。同様に、新規な背景光測定値があまりにも小さい場合も同様に、異常信号を生成する。記録された指標センサ信号(または浄化モードにおける連続的な指標センサ信号)があまりにも常軌を逸している場合、たとえば標準偏差または二乗平均平方根(RMS)が所定の閾値より大きい場合、または平均信号の最大偏差が所定の閾値より大きい場合、異常信号が生成される(ステップ7Aおよび7B)。
異常信号が発生したとき、背景信号はリセットされず、異常信号は記録媒体に記録される(ステップ14B)。
異常信号が生成されなかった場合、新規な背景光測定値を古いものと置換し、コントローラ20が実行する論理演算を調節する(ステップ8)。コントローラ20内に記憶された事象記録には、背景光測定値が更新されたことが記録される(ステップ9)。
コントローラの論理演算を調節した後、浄化もモードが終了し、検知モードに入ると、吸引器36の動作を停止し、吸引器14を起動して、検知器10に流れる空気フローを形成する(ステップ10)。「背景測定再開始時間(measure background restart time)」という期間(この実施形態では15秒間)において、相対的な量のサンプル空気および清浄空気が検知チャンバ内に案内されるとともに、フローパターンが安定状態に復帰した後(ステップ11)、コントローラは検知モードに戻る(ステップ12Aおよび12B)。すなわちステップ11は、検知モードと浄化モードとの間の移行モードと見ることができる。
所望の実施形態において、統計的測定値が計算され、検討され、浄化モードにおける背景測定値が更新される(ステップ7A〜9)。これらのステップは、検知モードや移行モード中等の別の期間においても実行することができる。
本発明の好適な実施形態は、粒子検知器の有効な較正、および検知チャンバ内に堆積するダストやデブリスに対する有効な補償を提供することにある。図6は、未処理のセンサ出力値および較正されたセンサ出力値の所定期間におけるグラフ600であり、本発明の1つの実施形態に係る方法による処理手順を示すものである。
図6は、所定期間におけるプロットされた以下の3つの信号値を概略的に示し、本発明の1つの実施形態の処理手順を図解するものである。
未処理のセンサ出力値602のグラフについて、この出力値は、検知チャンバの光センサにより所定期間において受光された散乱光レベルを示唆するものである。このグラフから明らかなように、この出力値は、一般に時間とともに増大している。この傾向は、チャンバの壁部からの反射光レベルが増大して、チャンバ内の背景光が増大していることによるものである。この反射光は、ダスト等がチャンバの壁部に堆積したことに起因するものである。時刻t1を中心とするピークは、火事の発生を検知したことによる受光強度の一時的なピークを示すものである。
背景信号604を示すグラフを用いて、所定期間における未処理のセンサ出力値を修正することができる。明らかに、グラフ604は、複数回の浄化処置の間で徐々に増大する信号部分を有する。この具体例は、時刻t,t,tにおいて行った3回の浄化処置を示す。時刻t,t,tのそれぞれにおいて、検知器は浄化モードを行い、チャンバを清浄空気で浄化し、清浄空気を包含するチャンバ内の光レベルを検知する。この出力値は、背景レベル604として設定され、次回の浄化プロセスが実施されるまで用いられる。
修正されたセンサ出力値606について説明すると、最も簡便な形態において、この出力値は、未処理のセンサ出力値から現在の背景信号値を差し引いた値である。
図3および図4は、好適な実施形態に係る検知器の部品構成を示すものである。
検知モードにおいて、検知器の後部にあるインレット56を介して、空気が取り込まれ、パイプ48を介して配管器具32に送られる。検知器の後部にあるアウトレット38を介して、空気は排気される。吸引器14(図3および図4では図示せず)は、空気が検出器内を通過するように、インレット56とアウトレット38との間に圧力差を形成する。
配管器具32の一部はハウジング58と一体に形成され、同様にハウジングは清浄空気源18の一部を構成する。配管器具32はマニホールド空間32Aを有する。マニホールド空間32Aは、ほぼT字状のものであり、2つの対向するアームと、単一の中央アームとを有し、水平平面上に配置される。直立した管状栓の形態を有するニップルが対向するT字アームの両端に配設されている。
一方の管状栓は、パイプ48の端部に封止して収容されており、マニホールド空間32A内に空気を受け入れるためのものである。他方の管状栓は、パイプ54の端部に封止して収容されており、検知チャンバ12にサンプル空気を供給するためのものである。T字の中央アームは、ハウジング58の内部に対して開口し、清浄空気源18に空気を供給するものである。
ハウジング58は、正方形の断面を有する直立した管状構造体である。ハウジング58はプレート上に固定され、このプレートがハウジング58を閉じ、マニホールド空間32Aの下側領域を形成するものである。フィルタ34は、管状構造体を構成する透過壁からなり、ハウジング58と同心円上に配置されている。配管器具32からハウジング58の内部に受け入れられる空気は、透過壁を通過して、フィルタ34の内部に侵入するとき、濾過される。
吸引器36は、垂直軸の周りに回転し、フィルタ34上に設置され、フィルタの内部から空気を吸引する。蓋60は、吸引器上に配置され、ハウジング58と係合して、これを閉口する。管状栓の形態を有するニップルは、蓋60の側壁から水平方向の斜め前方に突出し、パイプ50の一方の端部に封止して収容されている。パイプ50の他方の端部は、マニホールド52と封止して連通している。マニホールド52は、インレット26A,26B,26Cに連通している。
特定の実施形態において、配管器具32およびサンプル空気インレット24に接続されるパイプ54は、長くて、かつ細く、サンプル空気の流路の抵抗を制御するものであり、狭小開口部のそれぞれは、フィルタ34および吸引器36の間であって、マニホールド52内の各インレット26A,26B,26Cに対応する位置に配置され、清浄空気の流路の抵抗を制御するものである。2つの流路の相対的な抵抗は、調整される。通常モードおよび検知モードにおいて、清浄空気とサンプル空気を適正な割合で検知チャンバ内に供給するように、2つの流路の相対的な抵抗が調整される。
上記説明した実施形態によれば、吸引器14は、パイプネットワーク30および検知チャンバ12のアウトレット38から空気を吸引する。こうした構成をサブサンプリング・ループという。他の実施形態によれば、吸引器は、検知チャンバのみから空気を吸引し、配管器具32は、空気を吸引器の吐出口ではなく、パイプネットワークから直接的に吸引する。これらの他の実施形態は、パイプネットワークから検知器に送出される時間が実質的に増大するという課題を有する。
明らかに、本発明の実施形態は、共有のメイン吸引器またはそれぞれ独立したメイン吸引器、および/または共有の清浄空気吸引器またはそれぞれ独立した清浄空気吸引器を有する複数の検知チャンバを利用することができる。これらすべての択一的な実施形態は本発明の態様を構成するものである。
理解されるように、本願明細書に開示され、定義された発明は、明細書および図面に記載された複数の各特徴、またはこれらから明らかな特徴を組み合わせた択一的な特徴に対して拡張することができる。
10…粒子検知器、12…検知チャンバ、14…吸引器、16…指標センサ信号、18…清浄空気源、20…コントローラ、22…別の信号、24,26…インレット、28…フォトダイオード、30…パイプネットワーク、32…配管器具、34…フィルタ、36…吸引器、38…アウトレット、40…光源、42…光ビーム、44…光減衰器、62…サンプル空気。

Claims (27)

  1. 粒子検知器であって、
    サンプル流体を受容する少なくとも1つのサンプルインレット、清浄流体を受容する少なくとも1つの清浄流体インレット、および少なくとも1つの流体アウトレットを有するチャンバと、
    チャンバを介してサンプル流体を送出する第1の吸引器と、
    チャンバ内の粒子を検知し、チャンバ内の粒子を表すセンサ信号を出力する1つまたはそれ以上のセンサと、
    検知モードおよび浄化モードを有するコントローラと、
    清浄流体を清浄流体インレットに供給する清浄流体源とを備え、
    清浄流体源および清浄流体インレットは、検知モードにあるとき、清浄流体をチャンバに案内して、1つまたはそれ以上の構成部品のダストおよびデブリスに起因する、粒子検知器の精度を低減するような汚染を防止し、
    コントローラは、検知モードにおいて、センサ信号を受信し、論理演算を実行して、別の信号を生成し、浄化モードにおいて、清浄流体源からの清浄流体を用いて、サンプル流体のチャンバを実質的に浄化するように制御し、
    コントローラは、チャンバが浄化されたときにセンサ信号を受信し、必要ならば、センサ信号に対する論理演算を調整することを特徴とする粒子検知器。
  2. 請求項1に記載の粒子検知器であって、
    清浄流体源は、清浄流体を生成するために流体を濾過するフィルタと、清浄流体を送出する専用の清浄流体吸引器とを有し、
    専用の清浄流体吸引器は、濾過されない流体に曝されることを回避するために、フィルタの下流側に配置されることを特徴とする粒子検知器。
  3. 請求項2に記載の粒子検知器であって、
    検知モードにおいて、専用の清浄流体吸引器は実質的に作動せず、第1の吸引器が流体をフィルタに送出することを特徴とする粒子検知器。
  4. 粒子検知器であって、
    サンプル流体を受容する少なくとも1つのサンプルインレットおよび少なくとも1つの流体アウトレットを有するチャンバと、
    チャンバを介してサンプル流体を送出する第1の吸引器と、
    チャンバ内の粒子を検知し、チャンバ内の粒子を表すセンサ信号を出力する1つまたはそれ以上のセンサと、
    清浄流体を生成するために流体を濾過するフィルタ、およびフィルタの下流側に配置され、濾過されない流体に曝されることを回避するために清浄流体を送出する専用の清浄流体吸引器を有する清浄流体源と、
    検知モードおよび浄化モードを有するコントローラとを備え、
    清浄流体源および清浄流体インレットは、検知モードにあるとき、清浄流体をチャンバに案内して、1つまたはそれ以上の構成部品のダストおよびデブリスに起因する、検知器の精度を低減するような汚染を防止し、
    コントローラは、検知モードにおいて、センサ信号を受信し、論理演算を実行して、別の信号を生成し、浄化モードにおいて、清浄流体源からの清浄流体を用いて、サンプル流体のチャンバを実質的に浄化するように制御し、
    コントローラは、チャンバが浄化されたときにセンサ信号を受信し、必要ならば、センサ信号に対する論理演算を調整することを特徴とする粒子検知器。
  5. 請求項2〜4のいずれか1に記載の粒子検知器であって、
    検知モードにおいて、専用の清浄流体吸引器は実質的に作動せず、第1の吸引器が流体をフィルタに送出することを特徴とする粒子検知器。
  6. 請求項2〜5のいずれか1に記載の粒子検知器であって、
    流体の流れを2つまたはそれ以上の部分的流れに分割し、一方の部分的流れを濾過して清浄流体を形成するために清浄流体源に案内し、他方の部分的流れをチャンバに案内して、サンプル流体を形成する配管を有することを特徴とする粒子検知器。
  7. 請求項1〜6のいずれか1に記載の粒子検知器であって、
    コントローラは、浄化モードにおいて第1の吸引器を作動させないように構成されたことを特徴とする粒子検知器。
  8. 請求項1〜8のいずれか1に記載の粒子検知器であって、
    コントローラは、周期的な調整が必要な場合には、自動的に浄化処理を行うように構成されたことを特徴とする粒子検知器。
  9. 請求項1〜9のいずれか1に記載の粒子検知器は光学式検知器であることを特徴とする粒子検知器。
  10. 請求項1〜9のいずれか1に記載の粒子検知器は煙検知器であることを特徴とする粒子検知器。
  11. 請求項1〜10のいずれか1に記載の粒子検知器であって、
    演算処理はアラーム閾値を含むことを特徴とする粒子検知器。
  12. 請求項1〜11のいずれか1に記載の粒子検知器であって、
    コントローラは、検知モードから浄化モードへの移行は、センサ信号により条件付けられるように構成されたことを特徴とする粒子検知器。
  13. 請求項1〜12のいずれか1に記載の粒子検知器であって、
    演算処理は、センサ信号から背景光の測定値を差し引くことを含み、
    演算処理の調整は、背景信号の測定値を更新することを含むことを特徴とする粒子検知器。
  14. 粒子検知器を操作する方法であって、
    粒子検知器は、
    サンプル流体を受容する少なくとも1つのサンプルインレットと、
    清浄流体をチャンバに案内して、1つまたはそれ以上の構成部品のダストおよびデブリスに起因する、粒子検知器の精度を低減するような汚染を防止する用に構成された少なくとも1つの清浄流体インレットと、
    少なくとも1つの流体アウトレットと、
    チャンバ内の粒子を検知し、チャンバ内の粒子を表すセンサ信号を出力する1つまたはそれ以上のセンサとを備え、
    この操作方法は、
    検知モードにおいて、
    チャンバを介してサンプル流体を送出するステップと、
    チャンバ内の粒子を検出するために、センサ信号を受信ステップと、
    別の信号を形成するために、センサ信号に論理演算を行うステップと、
    浄化モードにおいて、
    清浄流体インレットを介して、清浄流体を用いてサンプル流体を含むチャンバを実質的に浄化するステップと、
    チャンバが浄化されたとき、センサ信号を受信するステップと、
    必要ならば、センサ信号に対する論理演算を調整するステップとを有することを特徴とする操作方法。
  15. 請求項14に記載の操作方法であって、
    清浄流体を生成するために、フィルタを介して流体を送出するステップをさらに有することを特徴とする操作方法。
  16. 請求項15に記載の操作方法であって、
    浄化するステップは、専用の清浄流体吸引器を起動させるステップを有し、
    専用の清浄流体吸引器は、濾過されない流体に曝されることを回避するために、フィルタの下流側に配置される特徴とする操作方法。
  17. 粒子検知器を操作する方法であって、
    粒子検知器は、
    サンプル流体を受容する少なくとも1つのサンプルインレットおよび少なくとも1つの流体アウトレットを有するチャンバと、
    チャンバ内の粒子を検知し、チャンバ内の粒子を表すセンサ信号を出力する1つまたはそれ以上のセンサと、
    清浄流体を生成するために流体を濾過するフィルタ、およびフィルタの下流側に配置され、濾過されない流体に曝されることを回避するために清浄流体を送出する専用の清浄流体吸引器を有する清浄流体源とを備え、
    この操作方法は、
    検知モードにおいて、
    チャンバを介してサンプル流体を送出するステップと、
    チャンバ内の粒子を検出するために、センサ信号を受信ステップと、
    別の信号を形成するために、指標センサ信号に論理演算を行うステップと、
    浄化モードにおいて、
    清浄流体インレットを介して、清浄流体を用いてサンプル流体を含むチャンバを実質的に浄化するステップと、
    チャンバが浄化されたとき、センサ信号を受信するステップと、
    必要ならば、センサ信号に対する論理演算を調整するステップとを有することを特徴とする操作方法。
  18. 請求項15、16、または17に記載の操作方法であって、
    流体の流れを2つまたはそれ以上の部分的流れに分割するステップと、
    清浄流体を形成するために、一方の部分的流れを濾過するように清浄流体源に案内するステップと、
    サンプル流体を形成するために、他方の部分的流れをチャンバに案内するステップとを有することを特徴とする操作方法。
  19. 請求項14〜18のいずれか1に記載の操作方法であって、
    浄化するステップと、
    必要ならば定期的に調整するステップとを有することを特徴とする操作方法。
  20. 請求項14〜19のいずれか1に記載の操作方法であって、
    浄化ステップは、センサ信号が浄化開始閾値以下となることを条件として行うことを特徴とする操作方法。
  21. 請求項14〜20のいずれか1に記載の操作方法であって、
    検出器は、チャンバを介してサンプル流体を送出する第1の吸引器を有し、
    浄化ステップは、第1の吸引器を実質的に作動させないことを特徴とする操作方法。
  22. 請求項14〜21のいずれか1に記載の操作方法であって、
    粒子検知器は、光学式検知器であることを特徴とする操作方法。
  23. 請求項14〜22のいずれか1に記載の操作方法であって、
    粒子検知器は、煙検知器であることを特徴とする操作方法。
  24. 請求項14〜23のいずれか1に記載の操作方法であって、
    演算処理はアラーム閾値を含むことを特徴とする操作方法。
  25. 請求項14〜23のいずれか1に記載の操作方法であって、
    演算処理は、指標信号から背景光の測定値を差し引くことを含み、
    演算処理の調整は、背景信号の測定値を更新することを含むことを特徴とする操作方法。
  26. 請求項1に記載の粒子検知器であって、
    粒子検知器が浄化ステップにあるとき、サンプル流体がチャンバの少なくとも1つのサンプルインレットに入ることを禁止し、粒子検知器が検知モードにあるとき、サンプル流体がチャンバの少なくとも1つのサンプルインレットに入ることを許容する少なくとも1つのバルブを有することを特徴とする粒子検知器。
  27. 請求項1に記載の粒子検知器であって、
    第1の吸引器は、追加的に清浄空気源をチャンバ内に入るようにすることを特徴とする粒子検知器。
JP2012518695A 2009-07-07 2010-07-07 チャンバコンディション Active JP5671530B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AU2009903184 2009-07-07
AU2009903184A AU2009903184A0 (en) 2009-07-07 Chamber condition
PCT/AU2010/000871 WO2011003145A1 (en) 2009-07-07 2010-07-07 Chamber condition

Publications (2)

Publication Number Publication Date
JP2012532386A true JP2012532386A (ja) 2012-12-13
JP5671530B2 JP5671530B2 (ja) 2015-02-18

Family

ID=43428673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012518695A Active JP5671530B2 (ja) 2009-07-07 2010-07-07 チャンバコンディション

Country Status (11)

Country Link
US (1) US9111427B2 (ja)
EP (1) EP2452323B1 (ja)
JP (1) JP5671530B2 (ja)
KR (1) KR102061714B1 (ja)
CN (1) CN102473339B (ja)
AU (1) AU2010269127B2 (ja)
CA (1) CA2765593C (ja)
HK (1) HK1165895A1 (ja)
MY (1) MY167512A (ja)
TW (1) TWI537551B (ja)
WO (1) WO2011003145A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2416529T3 (es) * 2010-11-29 2013-08-01 Minimax Gmbh & Co Kg Método y dispositivo para la detección de incendios en volúmenes
US9239405B2 (en) * 2012-03-22 2016-01-19 Azbil Corporation Apparatus for detecting particles
DE102013203109A1 (de) 2013-02-26 2014-08-28 Siemens Aktiengesellschaft Staubleitung mit optischem Sensor und Verfahren zur Messung der Zusammensetzung von Staub
EP2830065A1 (en) 2013-07-22 2015-01-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus and method for decoding an encoded audio signal using a cross-over filter around a transition frequency
AT514912B1 (de) * 2013-11-07 2015-05-15 Strauss Sicherungsanlagenbau Ges M B H Lab Rauchdetektionsanordnung
JP6456605B2 (ja) * 2014-05-28 2019-01-23 アズビル株式会社 粒子検出装置
CN105277475B (zh) * 2015-12-07 2018-10-02 中国矿业大学 一种通风流场的粉尘测试实验系统
CN109313131A (zh) * 2016-06-13 2019-02-05 夏普株式会社 光电式灰尘传感器装置及空调设备
JP6826666B2 (ja) * 2017-07-28 2021-02-03 京セラ株式会社 センサモジュール
FR3080673B1 (fr) * 2018-04-30 2020-05-08 Commissariat A L'energie Atomique Systeme de ventilation perfectionne
CN108573591A (zh) * 2018-07-18 2018-09-25 中国科学技术大学 一种散射型火灾烟雾探测器及其光吸收器
DE102019103885A1 (de) * 2019-02-15 2020-08-20 HELLA GmbH & Co. KGaA Sensorvorrichtung zur Untersuchung mindestens eines Gasvolumens
US11268891B2 (en) 2020-06-17 2022-03-08 Kidde Technologies, Inc. Fire extinguishing agent concentration measuring system and method
US11280731B2 (en) 2020-06-24 2022-03-22 Kidde Technologies, Inc. Fire extinguishing agent concentration measuring system and method of measuring a fire extinguishing agent within an environment
US11781969B2 (en) 2020-11-18 2023-10-10 Kidde Technologies, Inc. Clean gas curtain to prevent particle buildup during concentration measurement
US20240021069A1 (en) * 2022-07-18 2024-01-18 Honeywell International Inc. Performing a self-clean of a fire sensing device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59136639A (ja) * 1983-01-26 1984-08-06 Toyota Central Res & Dev Lab Inc 塵埃濃度の測定法と測定器
JPS59151040A (ja) * 1983-02-17 1984-08-29 Rion Co Ltd 光散乱式粒子計数装置
JPH07151680A (ja) * 1993-01-07 1995-06-16 Hochiki Corp 微粒子検出兼用煙検出装置
JPH08271425A (ja) * 1995-03-31 1996-10-18 Matsushita Electric Works Ltd 流体中に含まれる異質物質検出装置及び異質物質検出装置を備えた空気清浄器
JP2000509503A (ja) * 1996-05-03 2000-07-25 ビジョン・プロダクツ・プロプライエタリー・リミテッド 浮揚汚染物質の検出
JP2003161689A (ja) * 2001-11-26 2003-06-06 Kurita Water Ind Ltd 粒子状態検出用プローブおよび凝集モニタ装置
JP2007248388A (ja) * 2006-03-17 2007-09-27 Matsushita Electric Ind Co Ltd 煙霧透過率測定装置
JP2008234416A (ja) * 2007-03-22 2008-10-02 Nohmi Bosai Ltd 煙感知器

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3809913A (en) 1972-10-20 1974-05-07 Steel Corp Detector for particulate matter in flowing gas streams
US3787122A (en) 1973-01-05 1974-01-22 Wehr Corp Light scattering particle analyzer
US4155651A (en) * 1977-11-14 1979-05-22 The Boeing Company Apparatus for measuring the total mass of particles suspended in a fluid
CH657222A5 (de) 1981-01-12 1986-08-15 Pyrotector Inc Ionisations-detektor sowie verwendung desselben.
JPS57189041A (en) 1981-05-18 1982-11-20 Oki Electric Ind Co Ltd Densitometer for soot and dust of very small amount
JPS59192940A (ja) 1983-04-16 1984-11-01 Toyota Motor Corp パ−ジ装置付スモ−クメ−タ
US4583859A (en) * 1984-03-30 1986-04-22 The Babcock & Wilcox Company Filter cleaning system for opacity monitor
US4616928A (en) * 1984-06-20 1986-10-14 Kidde, Inc. Photoelectric smoke detector with adjustable background signal
US4617560A (en) * 1984-12-31 1986-10-14 Gutmann Robin P E Smoke or fire detector
US5001463A (en) * 1989-02-21 1991-03-19 Hamburger Robert N Method and apparatus for detecting airborne allergen particulates
US5060508A (en) 1990-04-02 1991-10-29 Gaztech Corporation Gas sample chamber
GB2261502A (en) * 1991-10-04 1993-05-19 Churchill V L Ltd Smoke detection device
CN1032666C (zh) * 1991-11-18 1996-08-28 葛兹国际有限公司 改进的气体取样室
GB2274333B (en) * 1993-01-07 1996-12-11 Hochiki Co Smoke detecting apparatus capable of detecting both smoke and fine particles
US5543777A (en) 1993-07-12 1996-08-06 Detection Systems, Inc. Smoke detector with individual sensitivity calibration and monitoring
NZ250497A (en) 1993-12-17 1998-03-25 Telecom New Zealand Ltd Fire suppression: smoke detector controls sprinkler operation
GB2309076B (en) 1996-01-10 1999-08-11 Kidde Fire Protection Ltd Particle separation and detection apparatus
AUPN965996A0 (en) * 1996-05-03 1996-05-30 Vision Products Pty Ltd The detection of airborne pollutants
US5946091A (en) 1997-04-10 1999-08-31 Yufa; Aleksandr L. Method and device for precise counting and measuring the particles
GB2327752B (en) 1997-07-26 2001-05-02 Rafiki Prot Ltd Optical scatter smoke sensor
JPH11312278A (ja) 1998-04-30 1999-11-09 Matsushita Electric Works Ltd 防災用監視システム
AU2003903703A0 (en) * 2003-07-18 2003-07-31 Garrett Thermal Systems Limited Method and system for a filter
JP4980101B2 (ja) * 2007-03-08 2012-07-18 能美防災株式会社 煙感知器
TWI654418B (zh) * 2007-11-15 2019-03-21 巴哈馬商愛克斯崔里斯科技有限公司 粒子檢測器
WO2009065062A1 (en) 2007-11-16 2009-05-22 Particle Measuring Systems, Inc. System and method for calibration verification of an optical particle counter
EP2425410B1 (en) * 2009-05-01 2013-11-06 Marshell Electrical Contractors Limited Detectors

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59136639A (ja) * 1983-01-26 1984-08-06 Toyota Central Res & Dev Lab Inc 塵埃濃度の測定法と測定器
JPS59151040A (ja) * 1983-02-17 1984-08-29 Rion Co Ltd 光散乱式粒子計数装置
JPH07151680A (ja) * 1993-01-07 1995-06-16 Hochiki Corp 微粒子検出兼用煙検出装置
JPH08271425A (ja) * 1995-03-31 1996-10-18 Matsushita Electric Works Ltd 流体中に含まれる異質物質検出装置及び異質物質検出装置を備えた空気清浄器
JP2000509503A (ja) * 1996-05-03 2000-07-25 ビジョン・プロダクツ・プロプライエタリー・リミテッド 浮揚汚染物質の検出
JP2003161689A (ja) * 2001-11-26 2003-06-06 Kurita Water Ind Ltd 粒子状態検出用プローブおよび凝集モニタ装置
JP2007248388A (ja) * 2006-03-17 2007-09-27 Matsushita Electric Ind Co Ltd 煙霧透過率測定装置
JP2008234416A (ja) * 2007-03-22 2008-10-02 Nohmi Bosai Ltd 煙感知器

Also Published As

Publication number Publication date
KR20120106702A (ko) 2012-09-26
CA2765593C (en) 2018-10-30
AU2010269127B2 (en) 2015-01-22
US9111427B2 (en) 2015-08-18
JP5671530B2 (ja) 2015-02-18
MY167512A (en) 2018-09-04
TWI537551B (zh) 2016-06-11
AU2010269127A1 (en) 2012-01-19
US20120154161A1 (en) 2012-06-21
KR102061714B1 (ko) 2020-02-11
EP2452323A4 (en) 2014-06-25
CN102473339B (zh) 2016-01-27
EP2452323A1 (en) 2012-05-16
CA2765593A1 (en) 2011-01-13
WO2011003145A1 (en) 2011-01-13
EP2452323B1 (en) 2018-03-14
HK1165895A1 (zh) 2012-10-12
TW201118367A (en) 2011-06-01
CN102473339A (zh) 2012-05-23

Similar Documents

Publication Publication Date Title
JP5671530B2 (ja) チャンバコンディション
JP6475882B2 (ja) フィルタバイパス
US9618440B2 (en) Gas detector for use with an air sampling particle detection system
CA2839363C (en) In-line smoke attenuator
NL2014610B1 (en) Device and Method for Measuring the Moisture in Die Casting Molds.
JP2010520997A (ja) 粒子を検知する方法およびシステム
US11828687B2 (en) Detection of a clogged filter in an aspirating detection system
KR20200033619A (ko) 미세먼지 감지 센서 어셈블리
CN102762972B (zh) 用于确定散射光测量设备的测量结果质量的方法和装置
EP3485255A1 (en) Apparatus and method for monitoring particle flow in a stack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20140428

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20140508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141219

R150 Certificate of patent or registration of utility model

Ref document number: 5671530

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250