JP2012517030A - 狭小表面波形格子 - Google Patents

狭小表面波形格子 Download PDF

Info

Publication number
JP2012517030A
JP2012517030A JP2011548437A JP2011548437A JP2012517030A JP 2012517030 A JP2012517030 A JP 2012517030A JP 2011548437 A JP2011548437 A JP 2011548437A JP 2011548437 A JP2011548437 A JP 2011548437A JP 2012517030 A JP2012517030 A JP 2012517030A
Authority
JP
Japan
Prior art keywords
grating
waveguide
width
corrugated
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011548437A
Other languages
English (en)
Inventor
ジョーンズ,リチャード
Original Assignee
インテル コーポレイション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by インテル コーポレイション filed Critical インテル コーポレイション
Publication of JP2012517030A publication Critical patent/JP2012517030A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1028Coupling to elements in the cavity, e.g. coupling to waveguides adjacent the active region, e.g. forward coupled [DFC] structures
    • H01S5/1032Coupling to elements comprising an optical axis that is not aligned with the optical axis of the active region
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/124Geodesic lenses or integrated gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29304Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
    • G02B6/29316Light guides comprising a diffractive element, e.g. grating in or on the light guide such that diffracted light is confined in the light guide
    • G02B6/29325Light guides comprising a diffractive element, e.g. grating in or on the light guide such that diffracted light is confined in the light guide of the slab or planar or plate like form, i.e. confinement in a single transverse dimension only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0206Substrates, e.g. growth, shape, material, removal or bonding
    • H01S5/021Silicon based substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0268Integrated waveguide grating router, e.g. emission of a multi-wavelength laser array is combined by a "dragon router"
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1028Coupling to elements in the cavity, e.g. coupling to waveguides adjacent the active region, e.g. forward coupled [DFC] structures
    • H01S5/1032Coupling to elements comprising an optical axis that is not aligned with the optical axis of the active region
    • H01S5/1035Forward coupled structures [DFC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/125Distributed Bragg reflector [DBR] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4087Array arrangements, e.g. constituted by discrete laser diodes or laser bar emitting more than one wavelength

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Optical Integrated Circuits (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Semiconductor Lasers (AREA)

Abstract

集積光素子用の狭小表面波形格子、およびその製造方法である。実施例は、上部に構成が形成される導波管の幅よりも狭い幅を有する格子を含む。本発明のある実施例では、マスク化フォトリソグラフィ法を用いて、所望の格子強度を有する狭小格子が形成される。ある実施例では、レーザの光キャビティは、導波管の幅よりも狭い幅を有する反射器格子を有するように構成される。別の実施例では、集積光通信システムは、1または2以上の狭小表面波形格子を含む。

Description

本発明の実施例は、集積光学素子(IOC)分野に関し、特に、表面波形格子に関する。
通信ネットワークは、網羅範囲およびデータ密度の点で、成長を続けている。この継続的な成長を可能にする重要な技術は、光学(フォトニック)素子の高集積化である。例えば、現在、大都市領域ネットワークおよび広域ネットワークは、波長分割多重方式(WDM)とともに開発され、この技術では、極めて大規模な集積(VLSI)製造技術を用いてシリコンもしくは他の半導体基板上に集積された波長選択フィルタを用いて、チャンネルが追加/減少される。
光通信には、波長選択フィルタの他にも、多くの用途があり、これは、少なくともある範囲で、ブラッグ格子を利用する。いくつかこの例を挙げると、レーザ(例えば分散ブラッグ反射器(DBR)レーザ、または分散フィードバック(DFB)レーザ)、格子支援コンピュータ、および分散補償器がある。通常、集積ブラッグ格子の一つのタイプは、「波形格子」と呼ばれ、これは、基板上の薄膜状にパターン化された導波管(例えば平坦またはリブ/リッジ導波管)の表面を、物理的に波形にすることによって形成される。1550nmの波長で作動する1次の波形格子の場合、格子周期、または「歯」のピッチは、約200nmから250nmの間である。この比較的小さな特徴的ピッチでは、VLSI製造技術を用いて格子強度(κ)を調整する際に、自由度がほとんどない。
本発明では、フォトニック装置であって、
基板上の第1および第2のパッシブ半導体導波管領域と、
前記第1および第2のパッシブ導波管領域の間に結合された、エバネセント半導体導波管領域と、
を有し、
前記パッシブまたはエバネセント導波管領域のいずれかは、第1のブラッグ反射器を有し、該第1のブラッグ反射器は、前記導波管領域の幅よりも狭い幅を有する表面波形格子を有し、前記導波管領域には、格子が形成されることを特徴とするフォトニック装置が提供される。
実施例による波形表面格子の等角図である。 実施例による波形表面格子の等角図である。 実施例による、一定波長幅に対する格子幅の関数としての、格子強度のグラフである。 実施例による波形表面格子の平面図である。 実施例による波形表面格子の平面図である。 実施例による波形表面格子の平面図である。 実施例による波形表面格子を形成する方法のフロー図である。 実施例による、アクティブ導波管領域に隣接するパッシブ導波管領域における一組の格子ミラーを含むフォトニック装置の断面図である。 実施例による、アクティブ導波管領域、およびパッシブ導波管領域における一組の格子ミラーを含むフォトニック装置の断面図である。 共通基板上に集積された複数のフォトニック装置を有する光通信システムを示す図である。
本発明の実施例は、添付図面を参照して、一例として示されているが、これは、本発明を限定するものではない。
以下、図面を参照して、狭小表面波形格子、その製造、およびその集積光素子の適用の実施例を示す。本願で参照するように、表面波形格子は、「狭小」であり、これは、格子が形成される導波管の幅よりも、格子幅が狭いことを意味する。
本願に示す特定の実施例は、1または2以上のこれらの特定の細部、または他の既知の方法、材料、および機器との組み合わせがなくても、実施される。例えば、シリコン系DBRおよびDFBレーザの記載において、格子ミラーが記載されていても、狭小表面波形格子、および本願に記載の技術は、例えば、これに限られるものではないが、光追加/減少フィルタ、信号調整器等のような、他の集積光素子と容易に適合される。以下の記載には、具体的材料、寸法、および材料パラメータなど、多くの特定の細部が記載され、本発明の実施例の理解が容易となる。他の例では、良く知られた光設計およびVLSI加工技術は、本発明の不要な妨害を避けるため、詳しくは記載されていない。本明細書を通して、「実施例」とは、本発明の少なくとも一つの実施例に含まれる、実施例に関して記載された、特定の特徴、構造、材料、および特性を意味する。従って、本明細書を通じて、多くの箇所における「本実施例では」という用語は、必ずしも本発明の同じ実施例を表してはいない。また、特定の特徴、構造、材料、または特性は、いかなる適当な方法で、1または2以上の実施例において、組み合わされても良い。特定の実施例は、相互に排他的ではなく、組み合わされても良いことに留意する必要がある。
「上部」、「下側」、「間」、および「上」という使用用語は、ある部材の、他の部材に対する相対的な位置を表す。例えば、別の部材の上部または下側に配置される一つの部材は、他の部材と直接接していても、1または2以上の介在部材を有しても良い。また、部材間に配置された一つの部材は、直接、2つの部材と接しても良く、あるいは1または2以上の介在部材を有しても良い。一方、第2の部材「上の」第1の部材は、第2の部材と密着しても良い。また、一つの部材の他の部材との相対位置は、動作が、基板または部材の絶対配置を考慮することなく、部材に共通の基板に対して行われると仮定して、提供されても良い。
図1Aを参照すると、狭小表面波形格子100の一例の等角図が示されている。狭小表面波形格子100は、格子115を有し、この格子は、基板105の上部の導波管110の一部を波形にすることにより構成される。導波管110は、上部表面111を有し、この表面は、第1の導波管側壁112および第2の導波管側壁113で定められる幅WWGを有し、これらは、さらに、リブまたはリッジ高さHRを定める。導波管側壁112および113は、正確に垂直である(すなわち、上部表面111と直交している)必要はないため、本願では、上部表面111の幅WWGが導波管の幅として使用される。特定の実施例では、幅WWGは、約0.3から2.5μmの間であり、リブ高さHRは、約0.2μmから2μmの間である。図1Aに示すように、通常、格子は、一定の導波管幅を有する導波管の部分または領域に形成される。ただし、別の実施例では、狭小表面波形格子は、導波管のテーパ状部分に形成される。
狭小波形表面格子には、通常、波形表面格子用の従来公知のいかなる材料システムを適用しても良い。例えば、基板105は、集積光素子の加工に適した、いかなる材料で構成されても良い。ある実施例では、基板105は、これに限られるものではないが、シリコン、またはインジウムリン(InP)のようなIII−V化合物半導体材料を含む、単結晶材料からなるバルク基板である。別の実施例では、基板105は、バルク層を有し、このバルク層上には、上部エピタキシャル層が形成される。特定の実施例では、バルク層は、単結晶材料で構成され、この材料は、これに限られるものではないが、シリコンまたはIII−V化合物半導体材料であり、上部エピタキシャル層は、これに限られるものではないが、シリコンまたはIII−V化合物半導体材料を含む、単結晶で構成されても良い。別の実施例では、上部エピタキシャル層は、(例えばシリコンオンインシュレータ基板を形成するため)二酸化ケイ素、窒化ケイ素、および酸窒化ケイ素のような介在(層間)絶縁層により、バルク層から分離される。導波管110は、例えば、基板105の候補材として記載した前述のいかなる材料であっても良く、あるいは高分子(SU-8など)のような、従来公知の他の材料であっても良い。
格子115は、複数の溝を含み、これらの溝は、格子長さLGに沿って、導波管上部表面111に形成された溝G1、G2、G3...Gnを有する。溝G1−Gnは、導波管110の上部表面111を波形にし、これにより、溝と、溝の間の「歯」または「リッジ」との周期的な配置が得られ、ブラッグ格子が形成され、導波管110の一部において、屈折率が調整される。溝G1−Gnは、格子ピッチまたは周期PGを有し、これは、実施例に応じて、均一であっても、段階的であっても良く、あるいは局在化されても、超格子に分配されても良い。また、ある実施例では、狭小格子は、溝G1−Gnが図1Aに示す配置から傾斜するように、傾斜していても良い(すなわち、溝は、導波管の全長に対して非直交である)。溝G1−Gnは、波深さDGを有し、この深さは、リブ高さHRよりも十分に小さく、溝深さが深くなると、格子強度が向上する。ある実施例では、格子は、約1から1.5μmの間の幅、および約0.5μmのリブ高さHRを有するシリコン導波管に形成され、深さDGは、約10から300nmである。
さらに、図1Aに示すように、溝G1−Gnは、格子のジューティサイクルを定める長さ寸法DCを有し、この寸法は、格子周期PGに基づく。格子のジューティサイクルは、溝(すなわちリッジ高さ)と格子周期の空間比であり、従って、所与のパターン化方法で得られる、最小溝間隔と最小溝寸法(すなわち溝長さ)の関数である。格子ジューティサイクルは、特定の格子ピッチPGにおいて、溝対歯長さ比が大きくなると減少する。例えば、格子ジューティサイクルが50%の場合、溝は、歯と等しい長さを有し、格子ピッチが240nmで、溝長さが150nm(歯は90nm)の場合、37.5%のジューティサイクルが得られ、溝長さが90nmの場合、62.5%のジューティサイクルが得られる。約1から1.5μmの幅と、約0.5μmのリブ高さHRとを有するシリコン導波管に、格子が形成されるある特定の実施例では、格子の波深さDGは、約10から300nmであり、格子長さLGは、約1から200μmであり、複数の溝は、約190から250nmのピッチ(すなわち格子周期PG)を有する。この一例としての実施例は、1550nmの公称波長を利用する遠隔通信における、集積光導波管用途に適する。
ある実施例では、少なくとも一つの溝G1−Gnは、導波管の幅よりも狭い幅を有する。ある狭小波形表面格子100では、複数の溝の各々は、導波管の幅WWGよりも狭い幅WGを有する。一般に、格子強度を抑制するため、実質的に全ての溝G1−Gnが、導波管よりも狭い幅を有するようにされる。しかしながら、導波管の幅よりも狭い溝G1−Gnの数が、格子強度を抑制するのに十分な数だけある限り、狭小波形表面格子の思想から逸脱しないで、1または2以上の溝G1−Gnは、導波管の幅と等しい幅WGを有しても良い。従って、特定の実施例では、狭小格子内の少なくとも95%の溝が、導波管よりも狭い幅を有しても良い。別の実施例では、大部分の溝の幅は、同じ量だけ、導波管の幅よりも狭くても良い(すなわち、大部分は、同じ幅である)。特定の実施例では、図1Aおよび1Bに示すように、全ての(または実質的に全ての)格子溝G1−Gnまたは格子歯T1−Tnは、それぞれ、格子長さLGに沿って、ほぼ等しい狭小幅を有する。
実施例において、狭小表面波形格子は、幅が導波管の幅の90%以下の、少なくとも一つの溝を有する。従って、例えば、幅が約1.5μmの導波管の場合、狭小表面波形格子は、約1.35μm未満の格子幅を有する。別の実施例では、狭小表面波形格子は、幅が導波管の幅の少なくとも5%の、少なくとも一つの溝を有するが、この幅は、導波管の幅WWGの90%を超えない。従って、例えば約1.5μmの幅の導波管の場合、狭小表面波形格子は、約75nmから1.35μmの間の格子幅を有する。
導波管の幅よりも格子幅を狭くすることにより、格子強度κを制御することができる。これにより、反射率およびバンド幅が、格子幅の関数として制御され、表面波形格子の設計および形成の際に、追加の自由度が得られる。格子の反射率Rは、1式で近似され
る:
Figure 2012517030
ここで、Lは、格子長さである(例えば図1AのLG)。図2には、狭小表面波形格子の実験データおよびフィールドシミュレーションデータを示す。図に示すように、格子強度κは、1.5μmの幅の導波管にパターン化された格子の場合、格子幅の関数としてモデル化される。格子幅が1.3μmと0.3μmの間の場合、格子強度は、実験的に定められ、格子強度は、1.3μmの格子幅における320cm-1から、0.3μmの格子幅における78cm-1まで減少する。
再度、図1Aを参照すると、格子強度κを制御するように格子の幅を設定することにより、格子ピッチPGまたは格子深さDGの独立性が得られると言う利点が得られる。これらは、それぞれ、導波管幅WWGに比べて、寸法的に著しく小さい。従って、格子のパターン化方法の解像度は、例えば、格子のジューティサイクルを変えることによって、格子強度が調整される場合と同じ制限を受けなくなる。ある適用例では、格子深さは、極めて小さく、場合によっては、数十ナノメートルであるため、溝のエッチングを制御可能に行うことは、極めて難しくなる。しかしながら、完全な幅の溝に対して、抑制された格子強度を有する狭小格子溝は、比較的大きな深さまで、例えば2〜3倍深くエッチングすることができ、これにより、特別な格子強度が得られる。従って、本願の狭小表面波形格子では、溝のエッチングプロセスにおいて、追加の自由度および制御性が得られる。また、格子深さは、通常、同一基板上の格子間で変化させることは難しいため、全ての格子に対して、比較的大きな格子深さが得られ、最大格子強度の第1格子が得られる。これは、その後、基板上の他の格子の格子幅を狭めることにより、格子固有の基準に抑制される。これらの理由のため、所与の格子長さの狭小波形表面格子によって、広い範囲の格子強度κが得られる。
さらに、図1Aに示すように、格子115は、近似的に導波管110の長手中心軸に整列された長手中心軸を有する。溝と導波管側壁112、113の間には、空間S1およびS2が生じる。示された実施例では、中心の整列の結果、および格子長さに沿った一定の格子幅のため、S1の寸法は、S2の寸法とほぼ等しくなる。しかしながら、導波管と格子の長手中心軸同士の間のある量のずれは、使用製造方法の関数、およびこの方法を実施する特定の機器の誤差の関数として、予想されることが理解される。通常の場合、格子と導波管の長手中心軸の間のずれの感度は、格子幅WGに逆比例することが認められている。
図1Bには、図1Aに示した実施例の代替例としての、狭小表面波形格子の実施例を示す。この代替実施例では、狭小表面波形格子101は、格子歯T1−Tnを有し、これらの歯は、導波管幅WWGよりも狭い幅を有する。図に示すように、導波管の隣接部分が除去されて格子歯T1−Tnが形成され、これにより、格子長さLGの全体に沿って、空間S1およびS2が形成される。その後、空間S1およびS2は、図1Aの実施例の溝G1−Gnのように、歯T1−Tnの間の溝とともに、適当なクラッド材料で実質的に充填される。格子ピッチPGおよびジューティサイクルDCによっては、自立の格子歯T1−Tnの周囲を充填するクラッドは、図1Aの溝G1−Gnを充填するクラッドよりも優れる。図1Bに示したこれらの狭小表面波形格子101の残りの特徴物は、図1Aに示した狭小表面波形格子のものと実質的に等しい。
別の実施例では、格子幅は、格子長さの関数として変化し、表面波形格子を形成する複数の溝における各溝の幅は、全てが等しくはない。そのような格子構造では、格子長さに沿って格子強度を変化させることができ、副ローブ(side-lobe)強度を低減することが可能な、アポダイズ化狭小表面波形格子が提供される。そのような格子幅アポダイズ化を使用することにより、格子の反射率およびバンド幅を変化させ、挿入損失を抑制し、および/または透過スペクトルを平滑化することができる。格子幅WGの調整により、これに限られるものではないが、ガウシアンおよび二乗コサイン(raised-cosine)のような、いかなるタイプのアポダイズ化が提供されても良い。
図3には、格子幅アポダイズ化表面波形格子300の一実施例の平面図を示す。図に示すように、格子315は、基板305上の導波管310に形成される。格子幅WGは、格子長さLGに沿って、WG,MINからWG,MAXまで変化する。図3に示した実施例では、格子の各部分の格子幅WGは、導波管幅WWGよりも小さいが、他の実施例では、格子を構成する溝のいくつかのサブセットは、導波管幅WWGと等しい幅を有しても良い。
図3に示す実施例では、格子ピッチおよびジューティサイクルDCは、格子長さLGにわたって一定である。しかしながら、他の実施例では、ジューティサイクルDCおよび格子幅WGの両方が、格子長さLGにわたって変化しても良く、この場合、幅またはジューティサイクルのいずれか一方の調整を介して行う場合よりも大きなカップリング係数変化が提供される。図4Aには、導波管410を示す。導波管の一部は、格子415を有する。格子415は、一定の格子ピッチPGを有するが、格子の幅は、格子長さに沿って、WG,1からWG,2、WG,3まで変化する。また、格子のジューティサイクルDCは、格子長さに沿って、DC1からDC2、DC3まで変化する。
別の実施例では、格子の長さに沿って、狭小格子幅が、調整された格子周期と組み合わせて使用される(例えば、チャープ化狭小表面波形格子)。例えば、図4Bには、格子415が示されており、この格子幅は、WG,1からWG,nまで変化し、格子周期は、PG,1からPG,2まで変化する。他の実施例では、格子周期は、従来のいかなる方法で段階化されても良く、導波管の幅よりも狭い一定の幅を有する格子と組み合わせることにより、反射/透過スペクトルが制御される(例えば反射スペクトルの広域化)。
実施例において、図1乃至4Bを参照して示した狭小表面波形格子は、マスク化フォトリソグラフィ法でパターン化される。マスク化フォトリソグラフィ法は、ホログラフィック(インターフェース)技術および電子ビームパターン化技術のような、格子をパターン化する通常の方法を超える多くの利点を有する。例えば、マスク化フォトリソグラフィ法は、VLSI製造プロセスを広く使用できるという利点を有し、このリソグラフィの形態では、導波管に対する適切な配列との組み合わせにより、通常の導波管よりも狭い格子を形成する機能が提供される。一方、ホログラフィ技術は、通常、極めて広い領域(例えば基板全体)にわたって、干渉パターンをパターン化することに基づくが、Eビームによる描画は、比較的遅いプロセスであり、比較的位置合わせ精度が劣る。また、マスク化フォトリソグラフィ法を用いることで、同じ基板にわたって、格子強度を異なる値に調整することが可能となり、これにより、同一基板上の光素子同士間の異なる導波管に対して、または同一光素子の2つの異なる部分の間でさえも、格子フィルタまたはミラーを調整することが可能となる。
図5には、狭小表面波形格子を形成する、一例としてのマスク化フォトリソグラフィ法500のフロー図を示す。方法500は、操作501での、図1Aにおける基板105のような基板の準備から開始される。例えば、ある実施例では、シリコンオンインシュレータ基板が提供される。
次に、操作505において、第1のフォトマスクパターンを用いて、材料層に、特定の長さ、周期および幅を有する格子がパターン化される。パターン化操作505は、従来公知のいかなるフォトリソグラフィプロセスを含んでも良い。しかしながら、ある実施例では、193nmのリソグラフィが利用される。193nmのリソグラフィノードでのステッパは、十分に小さな特徴物サイズ(例えば90nmのオーダ)を印刷することができ、シリコン内に形成され、光通信に利用される1550nmの公称波長用に設計された、光導波管向けの、十分な周期を有する格子が印刷される。
従って、ある実施例では、操作505において、SOI基板に感光層が設置され、この層が波長193nmの電磁エネルギーによって露光され、感光層に、第1のフォトマスクに基づいた格子パターンが印刷される。実施例によっては、格子パターンは、狭小格子溝がエッチングされる箇所にレジスト開口を提供するものであっても、あるいは基板の狭小格子歯が形成される場所にレジストピラーを提供するものであっても良い。いずれの場合も、第1のフォトマスクは、ブライトフィールドマスク(格子の一部および導波管よりも僅かに大きな領域のみをマスキングする)であっても、ダークフィールドマスク(格子の一部のみを露光する)であっても良い。次に、感光層は、エッチングマスクにとして現像され、従来の湿式または乾式のエッチングプロセスを使用して、下側の介在ハードマスク層に、あるいは導波管層に、直接、パターンが転写される。例えば、SOI基板の上部シリコン層は、シリコン層にエッチングマスクの格子パターンが転写されるようにエッチングされても良い。ある実施例では、二重パターン化方法を用いて、第1のフォトマスクのピッチより小さくなるように、格子のピッチが低減される。VLSIの分野において従来公知の、いかなる二重パターン化方法を使用しても良い。ある一実施例では、露光パターンは、下側エッチングマスク層に転写され、マスク層のいずれかの側に、スペーサが形成され、マスク層が除去され、その後、スペーサがハーフピッチマスクとして使用され、基板(例えば、SOI基板の上部シリコン層)に格子がエッチングされる。
一例としてのマスク化フォトリソグラフィ法500では、基板上または基板内の層(例えば、SOI基板の上部シリコン層)に、格子パターンが形成された後、操作510において、第2のフォトマスクを用いて、導波管がフォトリソグラフィ法でパターン化される。第2のフォトマスクは、格子パターンと整列され、導波管パターンが格子を取り囲むようになる(すなわち、導波管パターンは、少なくとも格子のある部分よりも長くて、広い)。ある実施例では、典型的に193nmのリソグラフィ法が使用され、導波管がパターン化される。193nmのリソグラフィノードでのステッパでは、十分に小さな誤差(例えば100nmのオーダ)で、導波管フォトマスクが格子フォトマスクと整列され、格子強度を制御するため、格子幅の広い範囲が利用されるようになる。代替実施例では、最初に導波管がパターン化され、その後、格子パターンが導波管パターンに整列され、第2のフォトマスクパターンとして印刷されても良い。しかしながら、導波管をパターン化する前に格子をパターン化することが有意である。これは、より平坦な基板表面では、比較的小さな格子の寸法が容易に得られるためである。
格子および導波管の両方をパターン化した後、方法500が完了するが、その後、導波管および/または格子に関して、従来のいかなるプロセスを実施しても良い。例えば、導波管および格子の回りにクラッドが形成され、溝が充填され、および/または格子の歯が覆われても良い。導波管に利用される材料システムに応じて、クラッド用に、十分なインデックスコントラストを提供する、いかなるクラッド層材料を使用しても良い。あるSOIの実施例では、シリコン導波管に二酸化ケイ素クラッド層を使用することにより、導波管が覆われ、格子溝が充填される。別のSOIの実施例では、シリコン導波管上のクラッドとして、SU-8が使用される。
狭小表面波形格子およびそのような格子を製造する方法は、これに限られるものではないが、集積光格子フィルタおよび集積光格子ミラーなど、多くの光学用途に適用され得る。集積光格子ミラーは、より具体的には、DFBおよびDBRレーザの光キャビティを形成するように利用されても良い。
図6Aには、少なくとも一つの狭小表面波形格子を用いる電気的ポンプ化ハイブリッド半導体エバネセントレーザの、ある実施例の断面図を示す。示された断面は、ハイブリッド半導体エバネセントレーザおよび格子の長手中心軸を切断したものである。図に示すように、DBRレーザ601は、SOI基板に集積され、SOI基板は、単結晶半導体層603と、半導体層603と基板層631の間に配置された埋設酸化層629とを有する。ある実施例では、半導体層603および基板層631は、パッシブシリコンで構成される。図に示すように、半導体層603には、光導波管605が配置され、光ビーム619は、これを介して誘導される。図6Aに示す例では、光導波管605は、リブ導波管、ストリップ導波管等である。光キャビティ622は、該光キャビティ622のいずれかの端部に隣接する、光導波管605のパッシブ部分における格子反射器607および608の間に、導波管のアクティブ部分を形成する。図6Aに示すように、反射器607および609は、ブラッグ格子反射器であり、特定の実施例では、反射器607および609の少なくとも一つは、狭小表面波形格子であり、この格子は、前述のように、光導波管605のパッシブ部分の幅よりも狭い格子幅を有する。
III−Vゲイン媒体623は、隣接する光導波管605の「上部」を横断して、半導体層603の「上部」に、結合されまたはエピタキシャル成長され、ゲイン媒体−半導体材料界面633が提供される。界面633は、光ビーム619が伝播する方向と平行に、光導波管605に沿って延在する。ある例では、ゲイン媒体−半導体材料界面633は、エバネセント結合界面であり、この界面は、活性ゲイン媒体材料623と光導波管605の半導体層603の結合界面を含んでも良い。例えば、そのような結合界面は、薄膜二酸化ケイ素層または他の適当な結合界面材料を含んでも良い。ある例では、ゲイン媒体623は、活性III−Vゲイン媒体であり、光導波管605とゲイン媒体材料623の間の、ゲイン媒体−半導体材料界面633に、エバネセント光結合が存在する。光導波管605の導波管寸法に応じて、光ビーム619の光モードの一部は、III−Vゲイン媒体材料623の内部にあり、光ビーム619の光モードの一部は、光導波管605の内部にある。ゲイン媒体材料623は、光キャビティ622に光を発生させるため、電気的にポンプ化されても良い。
ある実施例では、ゲイン媒体材料623は、活性半導体材料であり、InP、AlGaInAs、InGaAs、および/もしくはInP/InGaAsPのようなIII−V半導体材料を含むIII−V半導体バー、ならびに/または従来公知の適当な材料、ならびに適当な厚さおよび適当なドーピング濃度での、これらの組み合わせである。ある特定の実施例では、ゲイン媒体材料623は、オフセット多重量子井戸(MQW)領域ゲインチップであり、これは、フリップチップ結合またはウェハ結合され、あるいはSOIウェハのシリコン層における1または2以上の光導波管の「上部」にエピタキシャル成長される。
ゲイン媒体材料623がMQWのような活性材料を含み、反射器またはミラー(少なくとも一つは、狭小表面波形格子である)として、パッシブシリコン導波管系格子を有するある実施例では、光キャビティ622内にレージング(lasing)(発振)が得られる。図6Aでは、レージングは、光キャビティ622において、反射器607および609の間で、逆方向および順方向に反射される光ビーム619で示されている。示された例では、レーザの「後」側の反射器607は、反射器609よりも高いパワー反射を有する。反射器609は、部分反射性であり、光ビーム619は、光導波管のパッシブ部分に、レーザの「前」側から出力され、光ビーム619は、光導波管を介して、他の部材に誘導されても良い。
各反射器607および609の反射性パワーは、格子長さおよび格子強度の一方または両方に基づいて調整される。ある実施例では、各反射器607および609のパワー反射率は、2つの反射器の格子幅に基づいて、独立に調整される。ある実施例では、反射器607および609の両方が、狭小表面波形格子であり、格子深さとは独立に、格子幅により、格子強度が調整される。一例では、反射器607は、パッシブ導波管幅よりも狭い第1の格子幅を有する第1の狭小表面波形格子であり、反射器609は、パッシブ導波管幅よりも狭い第2の格子幅を有する第2の狭小表面波形格子であり、第2の格子幅は、第1の格子幅と同じであっても異なっていても良い。そのような実施例では、反射器607および609の各々は、5から500μmの間のミラー長さを有し、格子幅は、パッシブ導波管幅の90%未満であり、約1から1.5μmの間である。
別の実施例では、反射器609は、パッシブ導波管幅よりも狭い格子幅を有する狭小表面波形格子であり、反射器607は、パッシブ導波管幅と実質的に等しい格子幅を有する格子である(すなわち、反射器609のみが狭小表面波形格子)。別の実施例では、前述のように、反射器607および609のいずれかまたは両方が、アポダイズ化狭小表面波形格子であっても良い。
図6Bには、別の実施例を示す。DFBレーザ602は、SOI基板に集積され、この基板は、単結晶半導体層603と、該半導体層603と基板層631の間に設置された埋設酸化層629とを有する。さらに、図に示すように、光ビーム619は、光キャビティ622内で、反射器607および609の間で、逆方向および順方向に反射される。特定の実施例では、格子は、反射器607および609として使用され、これらの格子は、シリコン導波管の光キャビティ622のアクティブ部分内に配置される。ある実施例では、反射器607および609の両方が、狭小表面波形格子であり、格子深さおよび格子強度と独立して、格子幅により、格子強度が調整される。例えば、反射器607は、アクティブ導波管幅よりも狭い第1の格子幅を有する第1の狭小表面波形格子であり、反射器609は、アクティブ導波管幅よりも狭い第2の格子幅を有する第2の狭小表面波形格子であり、第2の格子幅は、第1の格子幅と同じであっても異なっていても良い。
別の実施例では、反射器609は、アクティブ導波管幅よりも狭い格子幅を有する狭小表面波形格子であり、反射器607は、アクティブ導波管幅と実質的に等しい幅を有する格子である(すなわち、反射器609のみが狭小表面波形格子である)。別の実施例では、前述のように、反射器607および609の一方または両方が、アポダイズ化狭小表面波形格子であっても良い。
図7には、集積光素子を利用する光システム751の一例を示す。集積光素子は、基板703上または基板内のパッシブ半導体層に結合された、電気的ポンプ化ハイブリッド半導体エバネセントレーザ701の配列を有する、集積半導体変調器多重波長レーザを有する。ある実施例では、レーザ配列701の各レーザは、実質的に図6A乃至6Bを参照して示したような、電気的ポンプ化ハイブリッドシリコンエバネセントレーザである。別の実施例では、レーザ配列701は、低格子強度を利用するDBRレーザと、高格子強度を利用するDFBレーザの両方を有する。示された例では、図11の半導体基板703は、光チップであり、これは、複数の光導波管705A−705Nを有し、これらを介して、ゲイン媒体材料723の単一のバーが結合され、複数の光導波管705A−705Nにおいて、それぞれ、複数の光ビーム719A−719Nを発生するレーザの配列が形成される。複数の光ビーム719A−719Nは、変調器713A−713Nにより変調され、その後、複数の光ビーム719A−719Nの選択波長が光追加減少マルチプレクサ717により結合され、単一の光ビーム721が出力される。次に、この光ビームは、単一の光ファイバ753を介して、外部光受信器757に伝送される。
ある実施例では、少なくとも一つの反射器709A−709Nは、導波管幅(パッシブおよび/またはアクティブ:レーザのタイプに依存する)よりも狭い格子幅を有する狭小表面波形格子であり、格子は前述のように形成される。特定の実施例では、反射器709A−709Nの各々が狭小表面波形格子であり、その1または2以上が、他とは異なる幅を有する。別の実施例では、マルチプレクサ717は、光導波管705A−705Nの幅よりも狭い格子幅を有する少なくとも一つの狭小表面波形格子を有し、格子は前述の方法で形成される。別の実施例では、反射器709A−709Nのいずれかまたはマルチプレクサ717が、アポダイズ化狭小表面波形格子を有しても良い。その場合、半導体基板703に集積される光素子として、いずれかの反射器709A−709Nおよび/またはマルチプレクサ717が同時に加工される際には、フォトリソグラフィ法を用いて、複数の格子を含む単一のフォトマスクが像化され、各々は、特定の用途(例えばレーザ、マルチプレクサフィルタ等)に必要な、特定の格子パワーに特化された幅を有する。
ある実施例では、集積半導体変調器多重波長レーザは、単一の光ファイバ753にわたって、1Tb/sを超える速度で、単一の光ビーム721に含まれる複数の波長で、データを伝送することができる。ある例では、複数の光導波管705A−705Nは、半導体基板703の上部の単一層に、約50から100μmの間隔を空けて配置される。従って、ある例では、光データの全バスは、基板703の4mmピースよりも小さな寸法で、集積半導体変調器多重波長レーザから伝送される。
また、図7には、光システム751の一例において、単一の半導体基板703が結合され、外部光送信器759から、光ファイバ755を介して光ビーム721が受信されることを示す。従って、示された実施例では、単一の半導体基板703は、小型形態因子での超高容量性送受信器である。光受信器757および外部光送信器759は、同じチップ761上に存在するものとして示されているが、外部光受信器757および外部光信器759が、別のチップに提供されても良いことは、明らかである。示された実施例では、受信光ビーム722は、光追加/低減デマルチプレクサ718によって受信され、これは、受信された光ビーム722を、複数の光ビーム720A−720Nに分割する。ある実施例では、複数の光ビーム720A−720Nは、デマルチプレクサ718内の1または2以上の狭小表面波形格子によって、それぞれの波長に応じて分割され、その後、半導体基板703上または内の薄膜層に設置された複数の光導波管706A−706Nを介して、誘導される。
示された実施例では、1または2以上の光検出器が、複数の光導波管706A−706Nの各々と光学的に結合され、各複数の光ビーム720A−720Nが検出される。光検出器763A−763Nの配列は、複数の光導波管706A−706Nと光学的に結合される。ある例では、光検出器763A−763Nの各々は、SiGe系等の光検出器である。別の実施例では、図7に示すように、複数の光導波管706A−706Nにわたって、半導体材料724の単一のバーが基板703上または内の層に結合され、複数の光導波管706A−706Nと光学的に結合された光検出器の配列が形成される。ある例では、半導体材料724の単一のバーは、III−V半導体材料を含み、III−V光検出器が形成される。図に示すように、SiGeおよびIII−V系光検出器が複数の光導波管706A−706に光学的に結合されると、複数の光ビーム720A−720Nの各種波長が検出される。
また、制御/ポンプ回路は、基板703上に集積され、または収容されても良い。ある実施例では、基板703は、シリコン層を有し(例えばSOI基板)、制御回路762は、シリコンに直接集積されても良い。ある例では、制御回路762は、制御、モニタ、および/または電気的ポンプ化のため、多重波長レーザ配列701におけるいかなるレーザ、複数の光変調器713A−713N、光検出器の配列(例えば763A−713N)、または基板703上に配置された他の装置もしくは構造と、電気的に結合されても良い。
以上、狭小表面波形格子、その製造方法、および光集積素子における適用について説明した。構造的特徴または方法的態様について、具体的に本発明の実施例を示したが、本発明は、添付の特許請求の範囲において定められ、記載された特定の特徴または態様に、必ずしも限定されないことが理解される。特定の特徴および態様は、単に、本発明の具体的な例として記載されており、本発明を限定するのではなく、説明するため提供されていることが理解される。

Claims (20)

  1. フォトニック装置であって、
    基板上の第1および第2のパッシブ半導体導波管領域と、
    前記第1および第2のパッシブ導波管領域の間に結合された、エバネセント半導体導波管領域と、
    を有し、
    前記パッシブまたはエバネセント導波管領域のいずれかは、第1のブラッグ反射器を有し、該第1のブラッグ反射器は、前記導波管領域の幅よりも狭い幅を有する表面波形格子を有し、前記導波管領域には、格子が形成されることを特徴とするフォトニック装置。
  2. 前記第1のブラッグ反射器を有する前記導波管領域は、2つの対向する側壁を有し、該側壁は、前記基板の反対の上部表面で、前記導波管幅を定め、
    前記表面波形格子は、格子長さに沿って、前記導波管上部表面に形成された複数の溝を有し、
    前記溝の大部分の幅は、ほぼ同じ量だけ、前記導波管幅よりも狭いことを特徴とする請求項1に記載のフォトニック装置。
  3. 前記第1のブラッグ反射器を有する前記導波管領域は、2つの対向する側壁を有し、該側壁は、前記基板の反対の上部表面で、前記導波管幅を定め、
    前記表面波形格子は、格子長さに沿って、前記導波管上部表面に形成された複数の歯を有し、
    前記歯の大部分は、ほぼ同じ量だけ、前記導波管幅よりも狭いことを特徴とする請求項1に記載のフォトニック装置。
  4. 前記半導体は、シリコンを含み、前記第1のブラッグ反射器は、5から500μmの間のミラー長さを有し、
    前記第1のブラッグ反射器を有する前記導波管領域は、約1から1.5μmの間の幅を有し、
    前記第1の格子幅は、前記導波管幅の90%未満であることを特徴とする請求項1に記載のフォトニック装置。
  5. 前記半導体は、シリコンを有し、
    前記エバネセント導波管領域は、前記導波管上に配置された、電気的ポンプ化発光層を有することを特徴とする請求項1に記載のフォトニック装置。
  6. 前記第1のパッシブ導波管領域は、前記第1のブラッグ反射器を有し、前記第2のパッシブ導波管領域は、DBRレーザを形成する第2のブラッグ反射器を有し、
    前記第2のブラッグ反射器は、第2の格子幅の表面波形格子を有し、前記第2の格子幅は、前記第2のパッシブ導波管領域の幅よりも狭いことを特徴とする請求項1に記載のフォトニック装置。
  7. 前記第1の格子幅は、前記第2の格子幅とは異なっており、前記第2の格子よりも高い格子強度を有する前記第1の格子が提供されることを特徴とする請求項6に記載のフォトニック装置。
  8. 前記エバネセント導波管領域は、前記第1のブラッグ反射器格子と、DFBレーザを形成する第2のブラッグ反射器格子とを有し、
    前記第1および第2の格子の各々は、前記エバネセント導波管領域よりも狭い幅を有することを特徴とする請求項1に記載のフォトニック装置。
  9. 請求項1に記載の第1のフォトニック装置と、
    請求項1に記載の第2のフォトニック装置と、
    を有する機器であって、
    前記第1および第2のフォトニック装置は、同じ基板上に集積されることを特徴とする機器。
  10. 前記第1のフォトニック装置の第1の格子幅は、前記第2のフォトニック装置の格子幅とは異なることを特徴とする請求項9に記載の機器。
  11. 光導波管内の表面波形格子であって、前記格子の幅は、前記光導波管の幅よりも狭く、前記格子は、レーザのアクティブ導波管部分の内部、またはレーザのアクティブ導波管部分の界面にある、光導波管内の表面波形格子と、
    前記光導波管に結合され、前記レーザにより放射される光を変調する光変調器と、
    を有するシステム。
  12. 前記光導波管は、シリコンを有し、
    前記格子は、ハイブリッドシリコンエバネセントレーザの光キャビティを定めることを特徴とする請求項11に記載のシステム。
  13. 前記格子は、前記光導波管の上部表面に複数の溝を有し、
    前記溝の大部分の幅は、ほぼ同じ量だけ、前記導波管の上部表面の幅よりも狭いことを特徴とする請求項12に記載のシステム。
  14. 狭小表面波形格子であって、
    基板上の光導波管であって、該光導波管は、2つの対向する側壁を有し、該側壁は、前記基板の反対の上部表面の幅を定める、光導波管と、
    格子長さに沿って、前記導波管の上部表面に形成された、複数の歯および該歯の間の複数の溝と、
    を有し、
    溝または歯の実質的に全ての幅は、前記導波管の上部表面の幅よりも狭いことを特徴とする狭小表面波形格子。
  15. 前記溝または歯の幅は、前記複数の大部分にわたって、ほぼ等しく、前記導波管の上部表面の幅の90%を超えないことを特徴とする請求項14に記載の狭小表面波形格子。
  16. 前記導波管は、シリコンを有し、前記導波管の上部表面の幅は、約1から1.5μmの間であり、前記格子長さは、約1から200μmの間であり、前記格子は、約190から250nmの間のピッチを有することを特徴とする請求項14に記載の狭小表面波形格子。
  17. 前記複数の溝のサブセットは、変化する溝幅を有し、前記狭小格子がアポダイズ化されることを特徴とする請求項14に記載の狭小表面波形格子。
  18. 狭小表面波形格子を形成する方法であって、
    第1のマスク化リソグラフィ露光に基づいて、薄膜の表面に、該表面を波状にするため、複数の格子溝および該格子溝の間の複数の格子歯をパターン化するステップと、
    第2のマスク化リソグラフィ露光に基づいて、前記薄膜に、導波管をパターン化するステップであって、前記導波管は、2つの対向する側壁を有し、該側壁は、導波管幅を定めるステップと、
    を有し、
    前記波形表面は、前記導波管側壁の間に配置され、導波管上部表面の部分が形成され、
    前記溝または歯の実質的に全ての幅は、前記導波管幅よりも狭いことを特徴とする方法。
  19. 前記格子をパターン化するステップ、および前記導波管をパターン化するステップは、各々、
    前記基板上に感光層を設置するステップと、
    前記感光層を、フォトマスクを介して電磁放射線に露光するステップと、
    前記露光の後、前記感光層を現像して、エッチングマスクパターンを形成するステップと、
    を有することを特徴とする請求項18に記載の方法。
  20. 前記電磁放射線は、約193nmの波長を有し、
    前記導波管は、約1から1.5μmの幅でパターン化され、前記表面波形格子は、約1から200μmの長さ、190から250nmの間のピッチ、および約0.3μmから1.3μmの間の幅でパターン化されることを特徴とする請求項19に記載の方法。
JP2011548437A 2009-03-31 2010-03-08 狭小表面波形格子 Pending JP2012517030A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/415,932 US7961765B2 (en) 2009-03-31 2009-03-31 Narrow surface corrugated grating
US12/415,932 2009-03-31
PCT/US2010/026479 WO2010117527A1 (en) 2009-03-31 2010-03-08 Narrow surface corrugated grating

Publications (1)

Publication Number Publication Date
JP2012517030A true JP2012517030A (ja) 2012-07-26

Family

ID=42784186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011548437A Pending JP2012517030A (ja) 2009-03-31 2010-03-08 狭小表面波形格子

Country Status (9)

Country Link
US (2) US7961765B2 (ja)
EP (1) EP2414880A4 (ja)
JP (1) JP2012517030A (ja)
KR (1) KR101325334B1 (ja)
CN (1) CN102378933A (ja)
BR (1) BRPI1006436A2 (ja)
SG (1) SG172463A1 (ja)
TW (1) TWI498614B (ja)
WO (1) WO2010117527A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015161828A (ja) * 2014-02-27 2015-09-07 日本電信電話株式会社 グレーティングカプラ
JP2015161829A (ja) * 2014-02-27 2015-09-07 日本電信電話株式会社 グレーティングカプラ
JP2015194658A (ja) * 2014-03-31 2015-11-05 富士通株式会社 半導体光導波路装置
JP2017500735A (ja) * 2013-12-27 2017-01-05 インテル・コーポレーション 非対称光導波路格子共振器及びdbrレーザ

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8450186B2 (en) * 2009-09-25 2013-05-28 Intel Corporation Optical modulator utilizing wafer bonding technology
FR2954638B1 (fr) * 2009-12-21 2012-03-23 Commissariat Energie Atomique Laser hybride couple a un guide d'onde
FR2977987B1 (fr) * 2011-07-11 2014-02-14 Commissariat Energie Atomique Dispositif laser a cavite en forme de boucle apte a etre fonctinalisee
JP2013021230A (ja) * 2011-07-13 2013-01-31 Mitsubishi Electric Corp 半導体レーザ
EP2769252A4 (en) * 2011-10-21 2015-12-02 Hewlett Packard Development Co DIFFRACTION NETWORK COUPLERS EQUIPPED WITH NON-UNIFORM DEEP GROWTH DIFFRACTION NETWORKS
KR101857160B1 (ko) * 2011-12-16 2018-05-15 한국전자통신연구원 반도체 레이저 및 그의 제조방법
CN102638000A (zh) * 2012-04-20 2012-08-15 中国科学院半导体研究所 在硅波导上刻槽制备硅基混合激光器的方法
JP5998651B2 (ja) * 2012-05-31 2016-09-28 富士通株式会社 光送信器
CN102662218B (zh) * 2012-05-31 2013-10-30 东南大学 一种皱褶式切趾波导布拉格光栅滤波器及其制备方法
CN104395798B (zh) * 2012-07-30 2019-03-01 慧与发展有限责任合伙企业 紧凑型光子平台
US10209445B2 (en) 2012-07-30 2019-02-19 Hewlett Packard Enterprise Development Lp Method of fabricating a compact photonics platform
US9509122B1 (en) * 2012-08-29 2016-11-29 Aurrion, Inc. Optical cladding layer design
CN102882129A (zh) * 2012-10-25 2013-01-16 中国科学院半导体研究所 改变硅波导宽度制备多波长硅基混合激光器阵列的方法
US10597750B2 (en) * 2012-10-30 2020-03-24 Technological Resources Pty. Limited Apparatus and a method for treatment of mined material with electromagnetic radiation
WO2014133481A1 (en) * 2013-02-26 2014-09-04 Hewlett-Packard Development Company, L.P. Multiview 3d telepresence
US9325140B2 (en) * 2013-03-14 2016-04-26 Massachusetts Institute Of Technology Photonic devices and methods of using and making photonic devices
US9933554B2 (en) 2013-07-03 2018-04-03 California Institute Of Technology High-coherence semiconductor light sources
CA2915690A1 (en) * 2013-07-03 2015-01-08 California Institute Of Technology High-coherence semiconductor light sources
US9274275B2 (en) * 2013-07-03 2016-03-01 Cisco Technology, Inc. Photonic integration platform
EP3114511A4 (en) * 2014-03-07 2017-10-11 Aeponyx Inc. Methods and system for wavelength tunable optical components and sub-systems
JP6224495B2 (ja) 2014-03-19 2017-11-01 株式会社東芝 半導体レーザ装置
JP6772244B2 (ja) 2015-03-23 2020-10-21 エポニクス インコーポレイテッドAeponyx Inc. フォトニックスイッチ、フォトニックスイッチングファブリック、データセンター用の方法
WO2016164038A1 (en) 2015-04-10 2016-10-13 Hewlett Packard Enterprise Development Lp Optical zig-zags
US9933576B2 (en) * 2015-12-29 2018-04-03 Stmicroelectronics (Crolles 2) Sas Electro-optic device with an optical grating coupler having a grating period variation and methods of formation thereof
CN107046229A (zh) * 2016-02-05 2017-08-15 南京威宁锐克信息技术有限公司 一种激光器阵列的制作方法及激光器阵列
FR3061961B1 (fr) * 2017-01-19 2019-04-19 Commissariat A L'energie Atomique Et Aux Energies Alternatives Dispositif photonique comportant un laser optiquement connecte a un guide d'onde silicium et procede de fabrication d'un tel dispositif photonique
US11385410B2 (en) 2017-06-26 2022-07-12 The Trustees Of Columbia University In The City Of New York Millimeter scale long grating coupler
US10389090B2 (en) * 2017-11-21 2019-08-20 International Business Machines Corporation Lateral growth of edge-emitting lasers
CN108933382B (zh) * 2018-06-21 2019-12-20 武汉光迅科技股份有限公司 一种光栅、dbr激光器及光栅制备方法
JP6479293B1 (ja) * 2018-07-12 2019-03-06 三菱電機株式会社 光送信デバイス
DE102018216775B4 (de) * 2018-09-28 2022-01-20 Robert Bosch Gmbh Optisches Phasenarray und Verfahren zum Herstellen eines Phasenarrays
US11275211B2 (en) * 2019-06-18 2022-03-15 Cisco Technology, Inc. Fiber array unit with unfinished endface
US10983273B1 (en) * 2020-06-22 2021-04-20 Voyant Photonics, Inc. Integrated optical waveguide emitter
US11555958B2 (en) 2021-04-01 2023-01-17 Saudi Arabian Oil Company Nested anti-resonant nodeless optical fiber and subsurface system using the same
US11585976B2 (en) 2021-04-01 2023-02-21 Saudi Arabian Oil Company Optical fiber with corrugations
US11664640B1 (en) * 2021-08-05 2023-05-30 United States Of America As Represented By The Administrator Of Nasa Method for integration of variable Bragg grating coupling coefficients

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5914690A (ja) * 1982-07-16 1984-01-25 Nec Corp 半導体レ−ザ
JPH0345938A (ja) * 1989-07-14 1991-02-27 Canon Inc 波長可変光フィルタ
JPH10270789A (ja) * 1997-03-26 1998-10-09 Nec Corp 光通信等に用いる半導体光素子及びその製造方法
JP2002158398A (ja) * 2000-11-20 2002-05-31 Mitsubishi Electric Corp 分布帰還型レーザおよびその製造方法
JP2004523113A (ja) * 2001-01-19 2004-07-29 ザ トラスティーズ オブ プリンストン ユニバーシテイ 非対称導波路電界吸収型変調レーザ
JP2006019541A (ja) * 2004-07-02 2006-01-19 Nippon Telegr & Teleph Corp <Ntt> 波長可変半導体モード同期レーザ
WO2008005721A2 (en) * 2006-06-30 2008-01-10 Intel Corporation Transmitter-receiver with integrated modulator array and hybrid bonded multi-wavelength laser array

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4852960A (en) * 1987-03-11 1989-08-01 American Telephone And Telegraph Company, At&T Bell Laboratories Narrow-linewidth resonant optical device, transmitter, system, and method
DE4322163A1 (de) * 1993-07-03 1995-01-12 Ant Nachrichtentech Auf DFB- oder DBR-Gitter basierendes optoelektronisches Bauelement mit quasi-kontinuierlich axial verteilbarer Brechungsindex-Variation, mit axial beliebig verteilbarer und variierbarer Phasenverschiebung, sowie mit axial quasi-kontinuierlich variierbarem Gitter-Kopplungskoeffizienten
US5838870A (en) * 1997-02-28 1998-11-17 The United States Of America As Represented By The Secretary Of The Air Force Nanometer-scale silicon-on-insulator photonic componets
US6282219B1 (en) * 1998-08-12 2001-08-28 Texas Instruments Incorporated Substrate stack construction for enhanced coupling efficiency of optical couplers
JP2001345512A (ja) * 2000-06-02 2001-12-14 Fujitsu Ltd 分布帰還型レーザダイオード
EP1186916A1 (en) * 2000-09-06 2002-03-13 Corning Incorporated Fabrication of gratings in planar waveguide devices
US6775427B2 (en) * 2001-03-09 2004-08-10 Photodigm, Inc. Laterally coupled wave guides
KR100488221B1 (ko) * 2003-09-08 2005-05-10 주식회사 파이버프로 광섬유 브래그 격자 센서 시스템
US7289699B1 (en) * 2004-04-29 2007-10-30 Northrop Grumman Corporation Grating apodization technique for diffused optical waveguides
US7508576B2 (en) * 2005-01-20 2009-03-24 Intel Corporation Digital signal regeneration, reshaping and wavelength conversion using an optical bistable silicon raman laser
WO2007059147A2 (en) * 2005-11-14 2007-05-24 Applied Materials, Inc. Semiconductor laser
US20080002929A1 (en) 2006-06-30 2008-01-03 Bowers John E Electrically pumped semiconductor evanescent laser
JP4312239B2 (ja) * 2007-02-16 2009-08-12 富士通株式会社 光素子及びその製造方法
CN100583579C (zh) * 2008-10-06 2010-01-20 南京大学 单片集成半导体激光器阵列的制造方法及装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5914690A (ja) * 1982-07-16 1984-01-25 Nec Corp 半導体レ−ザ
JPH0345938A (ja) * 1989-07-14 1991-02-27 Canon Inc 波長可変光フィルタ
JPH10270789A (ja) * 1997-03-26 1998-10-09 Nec Corp 光通信等に用いる半導体光素子及びその製造方法
JP2002158398A (ja) * 2000-11-20 2002-05-31 Mitsubishi Electric Corp 分布帰還型レーザおよびその製造方法
JP2004523113A (ja) * 2001-01-19 2004-07-29 ザ トラスティーズ オブ プリンストン ユニバーシテイ 非対称導波路電界吸収型変調レーザ
JP2006019541A (ja) * 2004-07-02 2006-01-19 Nippon Telegr & Teleph Corp <Ntt> 波長可変半導体モード同期レーザ
WO2008005721A2 (en) * 2006-06-30 2008-01-10 Intel Corporation Transmitter-receiver with integrated modulator array and hybrid bonded multi-wavelength laser array
JP2009537871A (ja) * 2006-06-30 2009-10-29 インテル・コーポレーション 集積変調器アレイ及びハイブリッド接合型多波長レーザアレイを有する送信器/受信器

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017500735A (ja) * 2013-12-27 2017-01-05 インテル・コーポレーション 非対称光導波路格子共振器及びdbrレーザ
US10109981B2 (en) 2013-12-27 2018-10-23 Intel Corporation Asymmetric optical waveguide grating resonators and DBR lasers
JP2015161828A (ja) * 2014-02-27 2015-09-07 日本電信電話株式会社 グレーティングカプラ
JP2015161829A (ja) * 2014-02-27 2015-09-07 日本電信電話株式会社 グレーティングカプラ
JP2015194658A (ja) * 2014-03-31 2015-11-05 富士通株式会社 半導体光導波路装置

Also Published As

Publication number Publication date
BRPI1006436A2 (pt) 2019-09-24
WO2010117527A1 (en) 2010-10-14
EP2414880A1 (en) 2012-02-08
US8223811B2 (en) 2012-07-17
CN102378933A (zh) 2012-03-14
US7961765B2 (en) 2011-06-14
KR20110122764A (ko) 2011-11-10
KR101325334B1 (ko) 2013-11-08
US20110243496A1 (en) 2011-10-06
US20100246617A1 (en) 2010-09-30
TWI498614B (zh) 2015-09-01
TW201044042A (en) 2010-12-16
SG172463A1 (en) 2011-08-29
EP2414880A4 (en) 2017-08-16

Similar Documents

Publication Publication Date Title
JP2012517030A (ja) 狭小表面波形格子
US9620931B2 (en) Optical device, optical transmission device, optical reception device, hybrid laser and optical transmission apparatus
US6910780B2 (en) Laser and laser signal combiner
US5805755A (en) Self-aligned transition from ridge to buried heterostructure waveguide, especially for multi-wavelength laser array integration
US20040037503A1 (en) Optical waveguide with non-uniform sidewall gratings
US20170317471A1 (en) An optical device and a method for fabricating thereof
US7609919B2 (en) Coupling-enhanced surface etched gratings
KR100575964B1 (ko) 광검출기가 모놀리식 집적된 전계 흡수형 광변조 모듈
JP6510391B2 (ja) 半導体レーザ
CA2269872A1 (en) A method of manufacturing a semiconductor optical waveguide array and an array-structured semiconductor optical device
US20130094074A1 (en) Gain medium providing laser and amplifier functionality to optical device
CN104917051A (zh) 基于重构-等效啁啾技术的分布耦合系数dfb激光器及其阵列
US5606573A (en) Method and apparatus for control of lasing wavelength in distributed feedback lasers
US20030206694A1 (en) Photonic multi-bandgap lightwave device and methods for manufacturing thereof
EP1104060A2 (en) Optical semiconductor device and process for producing the same
US8571362B1 (en) Forming optical device using multiple mask formation techniques
CN114114538B (zh) 光耦合结构及其制备方法、包括光耦合结构的硅基芯片
US9594213B2 (en) Temperature control of components on an optical device
JPH08255947A (ja) 半導体レーザ装置,及びその製造方法
JP2938185B2 (ja) 半導体発光装置
WO2023105759A1 (ja) 波長多重光源
JP2004037938A (ja) 光素子

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130927

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20131004

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20131030

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140225