JP2012512328A5 - - Google Patents

Download PDF

Info

Publication number
JP2012512328A5
JP2012512328A5 JP2011541157A JP2011541157A JP2012512328A5 JP 2012512328 A5 JP2012512328 A5 JP 2012512328A5 JP 2011541157 A JP2011541157 A JP 2011541157A JP 2011541157 A JP2011541157 A JP 2011541157A JP 2012512328 A5 JP2012512328 A5 JP 2012512328A5
Authority
JP
Japan
Prior art keywords
nitrogen
proportion
electrode
doped carbon
molecular oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011541157A
Other languages
English (en)
Japanese (ja)
Other versions
JP5607064B2 (ja
JP2012512328A (ja
Filing date
Publication date
Priority claimed from DE102008063727A external-priority patent/DE102008063727A1/de
Application filed filed Critical
Publication of JP2012512328A publication Critical patent/JP2012512328A/ja
Publication of JP2012512328A5 publication Critical patent/JP2012512328A5/ja
Application granted granted Critical
Publication of JP5607064B2 publication Critical patent/JP5607064B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

JP2011541157A 2008-12-18 2009-12-05 分子酸素の還元のための電気化学法 Expired - Fee Related JP5607064B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102008063727A DE102008063727A1 (de) 2008-12-18 2008-12-18 Elektrochemisches Verfahren zur Reduktion molekularen Sauerstoffs
DE102008063727.0 2008-12-18
PCT/EP2009/008699 WO2010069490A1 (de) 2008-12-18 2009-12-05 Elektrochemisches verfahren zur reduktion molekularen sauerstoffs

Publications (3)

Publication Number Publication Date
JP2012512328A JP2012512328A (ja) 2012-05-31
JP2012512328A5 true JP2012512328A5 (enExample) 2013-01-24
JP5607064B2 JP5607064B2 (ja) 2014-10-15

Family

ID=41718375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011541157A Expired - Fee Related JP5607064B2 (ja) 2008-12-18 2009-12-05 分子酸素の還元のための電気化学法

Country Status (7)

Country Link
US (2) US20110233071A1 (enExample)
EP (1) EP2379782B1 (enExample)
JP (1) JP5607064B2 (enExample)
CN (1) CN102257182B (enExample)
DE (1) DE102008063727A1 (enExample)
SG (1) SG172041A1 (enExample)
WO (1) WO2010069490A1 (enExample)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009058833A1 (de) * 2009-12-18 2011-06-22 Bayer Technology Services GmbH, 51373 Stickstoff-dotierte Kohlenstoffnanoröhrchen mit Metall-Nanopartikeln
DE102009058832A1 (de) 2009-12-18 2011-06-30 Bayer Technology Services GmbH, 51373 Verfahren zur elektrochemischen Sauerstoffreduktion im Alkalischen
JP5638433B2 (ja) 2011-03-24 2014-12-10 株式会社東芝 電解装置および冷蔵庫
JP6281906B2 (ja) * 2014-05-15 2018-02-21 国立大学法人 名古屋工業大学 空気極、金属空気電池、並びに窒素がドープされたカーボンナノチューブ及び空気極の製造方法
DE102014218368A1 (de) 2014-09-12 2016-03-17 Covestro Deutschland Ag Sauerstoffverzehrelektrode und Verfahren zu ihrer Herstellung
DE102014218367A1 (de) 2014-09-12 2016-03-17 Covestro Deutschland Ag Sauerstoffverzehrelektrode und Verfahren zu ihrer Herstellung
CN107196020A (zh) * 2017-06-03 2017-09-22 太原理工大学 氮掺杂碳纳米管阵列/碳纤维材料空气电极的制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5669384A (en) * 1979-11-09 1981-06-10 Asahi Glass Co Ltd Preparation of caustic alkali
JP4308527B2 (ja) * 2001-01-29 2009-08-05 ウィリアム・マーシュ・ライス・ユニバーシティ ジアゾニウム種を用いてカーボンナノチューブを誘導体化する方法及びその組成物
US20070275160A1 (en) * 2003-10-10 2007-11-29 Stephen Maldonado Carbon Nanostructure-Based Electrocatalytic Electrodes
DE102006007147A1 (de) * 2006-02-16 2007-08-23 Bayer Technology Services Gmbh Verfahren zur kontinuierlichen Herstellung von Katalysatoren
JP5068029B2 (ja) * 2006-03-31 2012-11-07 株式会社日鉄技術情報センター 酸素還元複合触媒及びその製造方法並びにこれを用いた燃料電池
US7629285B2 (en) * 2006-10-31 2009-12-08 University Of South Carolina Carbon-based composite electrocatalysts for low temperature fuel cells
DE102007062421A1 (de) 2007-12-20 2009-06-25 Bayer Technology Services Gmbh Verfahren zur Herstellung von Stickstoff-dotierten Kohlenstoffnanoröhrchen
JP2010009807A (ja) * 2008-06-25 2010-01-14 Nec Corp 空気極用燃料電池触媒、その製造方法、電極および燃料電池

Similar Documents

Publication Publication Date Title
JP2012512328A5 (enExample)
Wang et al. Non-enzymatic glucose biosensor based on copper oxide-reduced graphene oxide nanocomposites synthesized from water-isopropanol solution
Yu et al. Nitrogen doped carbon nanoparticles enhanced extracellular electron transfer for high-performance microbial fuel cells anode
Liang et al. Direct electron transfer glucose biosensor based on glucose oxidase self-assembled on electrochemically reduced carboxyl graphene
Xiao et al. TiO2 nanotube arrays fabricated by anodization in different electrolytes for biosensing
Dubey et al. Hydrogen generation by water electrolysis using carbon nanotube anode
Cornejo et al. Surface modification for enhanced biofilm formation and electron transport in shewanella anodes
Xiao et al. Growth of metal–metal oxide nanostructures on freestanding graphene paper for flexible biosensors
Yang et al. A facile one-step synthesis of Fe2O3/nitrogen-doped reduced graphene oxide nanocomposite for enhanced electrochemical determination of dopamine
Qian et al. Au nanoparticles decorated polypyrrole/reduced graphene oxide hybrid sheets for ultrasensitive dopamine detection
Kipf et al. Systematic screening of carbon-based anode materials for microbial fuel cells with Shewanella oneidensis MR-1
Ghasemi et al. Palladium nanoparticles supported on graphene as an efficient electrocatalyst for hydrogen evolution reaction
Kalathil et al. Enhanced performance of a microbial fuel cell using CNT/MnO2 nanocomposite as a bioanode material
Lee et al. Enzymatic fuel cells based on electrodeposited graphite oxide/cobalt hydroxide/chitosan composite–enzymeelectrode
Zhou et al. Highly ordered mesoporous carbons-based glucose/O2 biofuel cell
Ling et al. A facile one-step electrochemical fabrication of reduced graphene oxide–mutilwall carbon nanotubes–phospotungstic acid composite for dopamine sensing
Yang et al. Eighteen-month assessment of 3D graphene oxide aerogel-modified 3D graphite fiber brush electrode as a high-performance microbial fuel cell anode
Sun et al. Electrodeposited nickel oxide and graphene modified carbon ionic liquid electrode for electrochemical myglobin biosensor
Sun et al. Direct electrochemistry and electrocatalysis of hemoglobin in graphene oxide and ionic liquid composite film
CN111465718A (zh) 氧化的碳材料催化高效氧还原为过氧化氢
Han et al. Enhanced hydrogen peroxide sensing by incorporating manganese dioxide nanowire with silver nanoparticles
Shen et al. Three-dimensional electro-Fenton degradation of methyleneblue based on the composite particle electrodes of carbon nanotubes and nano-Fe3O4
Zhang et al. Long-term effect of carbon nanotubes on electrochemical properties and microbial community of electrochemically active biofilms in microbial fuel cells
CN109665597A (zh) 还原电极物质、其制造方法及利用其的电芬顿装置
Liu et al. The effect of electrolytic oxidation on the electrochemical properties of multi-walled carbon nanotubes