JP2012512328A5 - - Google Patents
Download PDFInfo
- Publication number
- JP2012512328A5 JP2012512328A5 JP2011541157A JP2011541157A JP2012512328A5 JP 2012512328 A5 JP2012512328 A5 JP 2012512328A5 JP 2011541157 A JP2011541157 A JP 2011541157A JP 2011541157 A JP2011541157 A JP 2011541157A JP 2012512328 A5 JP2012512328 A5 JP 2012512328A5
- Authority
- JP
- Japan
- Prior art keywords
- nitrogen
- proportion
- electrode
- doped carbon
- molecular oxygen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE102008063727A DE102008063727A1 (de) | 2008-12-18 | 2008-12-18 | Elektrochemisches Verfahren zur Reduktion molekularen Sauerstoffs |
| DE102008063727.0 | 2008-12-18 | ||
| PCT/EP2009/008699 WO2010069490A1 (de) | 2008-12-18 | 2009-12-05 | Elektrochemisches verfahren zur reduktion molekularen sauerstoffs |
Publications (3)
| Publication Number | Publication Date |
|---|---|
| JP2012512328A JP2012512328A (ja) | 2012-05-31 |
| JP2012512328A5 true JP2012512328A5 (enExample) | 2013-01-24 |
| JP5607064B2 JP5607064B2 (ja) | 2014-10-15 |
Family
ID=41718375
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2011541157A Expired - Fee Related JP5607064B2 (ja) | 2008-12-18 | 2009-12-05 | 分子酸素の還元のための電気化学法 |
Country Status (7)
| Country | Link |
|---|---|
| US (2) | US20110233071A1 (enExample) |
| EP (1) | EP2379782B1 (enExample) |
| JP (1) | JP5607064B2 (enExample) |
| CN (1) | CN102257182B (enExample) |
| DE (1) | DE102008063727A1 (enExample) |
| SG (1) | SG172041A1 (enExample) |
| WO (1) | WO2010069490A1 (enExample) |
Families Citing this family (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE102009058833A1 (de) * | 2009-12-18 | 2011-06-22 | Bayer Technology Services GmbH, 51373 | Stickstoff-dotierte Kohlenstoffnanoröhrchen mit Metall-Nanopartikeln |
| DE102009058832A1 (de) | 2009-12-18 | 2011-06-30 | Bayer Technology Services GmbH, 51373 | Verfahren zur elektrochemischen Sauerstoffreduktion im Alkalischen |
| JP5638433B2 (ja) | 2011-03-24 | 2014-12-10 | 株式会社東芝 | 電解装置および冷蔵庫 |
| JP6281906B2 (ja) * | 2014-05-15 | 2018-02-21 | 国立大学法人 名古屋工業大学 | 空気極、金属空気電池、並びに窒素がドープされたカーボンナノチューブ及び空気極の製造方法 |
| DE102014218368A1 (de) | 2014-09-12 | 2016-03-17 | Covestro Deutschland Ag | Sauerstoffverzehrelektrode und Verfahren zu ihrer Herstellung |
| DE102014218367A1 (de) | 2014-09-12 | 2016-03-17 | Covestro Deutschland Ag | Sauerstoffverzehrelektrode und Verfahren zu ihrer Herstellung |
| CN107196020A (zh) * | 2017-06-03 | 2017-09-22 | 太原理工大学 | 氮掺杂碳纳米管阵列/碳纤维材料空气电极的制备方法 |
Family Cites Families (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS5669384A (en) * | 1979-11-09 | 1981-06-10 | Asahi Glass Co Ltd | Preparation of caustic alkali |
| JP4308527B2 (ja) * | 2001-01-29 | 2009-08-05 | ウィリアム・マーシュ・ライス・ユニバーシティ | ジアゾニウム種を用いてカーボンナノチューブを誘導体化する方法及びその組成物 |
| US20070275160A1 (en) * | 2003-10-10 | 2007-11-29 | Stephen Maldonado | Carbon Nanostructure-Based Electrocatalytic Electrodes |
| DE102006007147A1 (de) * | 2006-02-16 | 2007-08-23 | Bayer Technology Services Gmbh | Verfahren zur kontinuierlichen Herstellung von Katalysatoren |
| JP5068029B2 (ja) * | 2006-03-31 | 2012-11-07 | 株式会社日鉄技術情報センター | 酸素還元複合触媒及びその製造方法並びにこれを用いた燃料電池 |
| US7629285B2 (en) * | 2006-10-31 | 2009-12-08 | University Of South Carolina | Carbon-based composite electrocatalysts for low temperature fuel cells |
| DE102007062421A1 (de) | 2007-12-20 | 2009-06-25 | Bayer Technology Services Gmbh | Verfahren zur Herstellung von Stickstoff-dotierten Kohlenstoffnanoröhrchen |
| JP2010009807A (ja) * | 2008-06-25 | 2010-01-14 | Nec Corp | 空気極用燃料電池触媒、その製造方法、電極および燃料電池 |
-
2008
- 2008-12-18 DE DE102008063727A patent/DE102008063727A1/de not_active Withdrawn
-
2009
- 2009-12-05 WO PCT/EP2009/008699 patent/WO2010069490A1/de not_active Ceased
- 2009-12-05 CN CN200980150665.8A patent/CN102257182B/zh not_active Expired - Fee Related
- 2009-12-05 JP JP2011541157A patent/JP5607064B2/ja not_active Expired - Fee Related
- 2009-12-05 EP EP09764740.8A patent/EP2379782B1/de not_active Not-in-force
- 2009-12-05 SG SG2011041928A patent/SG172041A1/en unknown
- 2009-12-05 US US13/131,166 patent/US20110233071A1/en not_active Abandoned
-
2016
- 2016-11-18 US US15/355,855 patent/US20170107634A1/en not_active Abandoned
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP2012512328A5 (enExample) | ||
| Wang et al. | Non-enzymatic glucose biosensor based on copper oxide-reduced graphene oxide nanocomposites synthesized from water-isopropanol solution | |
| Yu et al. | Nitrogen doped carbon nanoparticles enhanced extracellular electron transfer for high-performance microbial fuel cells anode | |
| Liang et al. | Direct electron transfer glucose biosensor based on glucose oxidase self-assembled on electrochemically reduced carboxyl graphene | |
| Xiao et al. | TiO2 nanotube arrays fabricated by anodization in different electrolytes for biosensing | |
| Dubey et al. | Hydrogen generation by water electrolysis using carbon nanotube anode | |
| Cornejo et al. | Surface modification for enhanced biofilm formation and electron transport in shewanella anodes | |
| Xiao et al. | Growth of metal–metal oxide nanostructures on freestanding graphene paper for flexible biosensors | |
| Yang et al. | A facile one-step synthesis of Fe2O3/nitrogen-doped reduced graphene oxide nanocomposite for enhanced electrochemical determination of dopamine | |
| Qian et al. | Au nanoparticles decorated polypyrrole/reduced graphene oxide hybrid sheets for ultrasensitive dopamine detection | |
| Kipf et al. | Systematic screening of carbon-based anode materials for microbial fuel cells with Shewanella oneidensis MR-1 | |
| Ghasemi et al. | Palladium nanoparticles supported on graphene as an efficient electrocatalyst for hydrogen evolution reaction | |
| Kalathil et al. | Enhanced performance of a microbial fuel cell using CNT/MnO2 nanocomposite as a bioanode material | |
| Lee et al. | Enzymatic fuel cells based on electrodeposited graphite oxide/cobalt hydroxide/chitosan composite–enzymeelectrode | |
| Zhou et al. | Highly ordered mesoporous carbons-based glucose/O2 biofuel cell | |
| Ling et al. | A facile one-step electrochemical fabrication of reduced graphene oxide–mutilwall carbon nanotubes–phospotungstic acid composite for dopamine sensing | |
| Yang et al. | Eighteen-month assessment of 3D graphene oxide aerogel-modified 3D graphite fiber brush electrode as a high-performance microbial fuel cell anode | |
| Sun et al. | Electrodeposited nickel oxide and graphene modified carbon ionic liquid electrode for electrochemical myglobin biosensor | |
| Sun et al. | Direct electrochemistry and electrocatalysis of hemoglobin in graphene oxide and ionic liquid composite film | |
| CN111465718A (zh) | 氧化的碳材料催化高效氧还原为过氧化氢 | |
| Han et al. | Enhanced hydrogen peroxide sensing by incorporating manganese dioxide nanowire with silver nanoparticles | |
| Shen et al. | Three-dimensional electro-Fenton degradation of methyleneblue based on the composite particle electrodes of carbon nanotubes and nano-Fe3O4 | |
| Zhang et al. | Long-term effect of carbon nanotubes on electrochemical properties and microbial community of electrochemically active biofilms in microbial fuel cells | |
| CN109665597A (zh) | 还原电极物质、其制造方法及利用其的电芬顿装置 | |
| Liu et al. | The effect of electrolytic oxidation on the electrochemical properties of multi-walled carbon nanotubes |