JP2012509507A - 高耐久性色合成器 - Google Patents

高耐久性色合成器 Download PDF

Info

Publication number
JP2012509507A
JP2012509507A JP2011537496A JP2011537496A JP2012509507A JP 2012509507 A JP2012509507 A JP 2012509507A JP 2011537496 A JP2011537496 A JP 2011537496A JP 2011537496 A JP2011537496 A JP 2011537496A JP 2012509507 A JP2012509507 A JP 2012509507A
Authority
JP
Japan
Prior art keywords
color
light
optical element
selective dichroic
reflective polarizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011537496A
Other languages
English (en)
Inventor
アンドリュー ジェイ. ウーダーカーク,
スティーヴン ジェイ. ウィレット,
チャールズ エル. ブルゾーン,
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Innovative Properties Co
Original Assignee
3M Innovative Properties Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3M Innovative Properties Co filed Critical 3M Innovative Properties Co
Publication of JP2012509507A publication Critical patent/JP2012509507A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/141Beam splitting or combining systems operating by reflection only using dichroic mirrors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3102Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators
    • H04N9/3111Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying the colours sequentially, e.g. by using sequentially activated light sources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3164Modulator illumination systems using multiple light sources

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)
  • Optical Filters (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Projection Apparatus (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

光学素子、これらの光学素子を使用する色合成器、及びこれらの色合成器を使用する画像プロジェクタを説明する。この光学素子は、異なる波長スペクトル光を受光し、異なる波長スペクトル光を含む合成出力光を生成する色合成器として構成され得る。光学素子は、光学素子内の反射型偏光子を損傷し得る化学光の主要部分を反射する波長選択性ダイクロイックミラーを含む。波長選択性ダイクロイックミラーは、他の波長の光の主要部分を透過する。光学素子を使用する、得られた色合成器は、波長選択性ダイクロイックミラーを欠く色合成器と比較して、改善された耐久性を有することができる。色合成器を使用する画像プロジェクタは、反射型(デジタルマイクロミラーを含む)又は偏光(液晶を含む)撮像モジュールを含んでもよい。
【選択図】図3A

Description

スクリーン上に画像を投影するために使用される投影システムは、種々の色を有する発光ダイオード(LED)などの多色光源を使用して、照射光を生成することができる。光を合成し、LEDから画像表示装置に移動させるために、いくつかの光学素子がLEDと画像表示装置との間に配置される。画像表示装置は、様々な方法を使用して光に画像を与えることができる。例えば、画像表示装置は、透過型又は反射型液晶ディスプレイと同様に偏光を使用してもよい。
画像を画面上に投影するために使用される更に他の投影システムは、Texas InstrumentのDigital Light Processor(DLP(登録商標))ディスプレイに使用されるアレイなどのデジタルマイクロミラーアレイから像様反射するように構成される、白色光を使用することができる。DLP(登録商標)ディスプレイでは、デジタルマイクロミラーアレイ内の個々の鏡は、投影される画像の個々のピクセルを表す。入射光が投影される光学経路に方向付けられるように、対応する鏡が傾斜される際、ディスプレイのピクセルは、照明される。光学経路内に設置される回転カラーホイールは、反射される白色光が、フィルタ処理されて、ピクセルに対応する色を投影するように、デジタルマイクロミラーアレイからの光の反射に対して時間調節される。次いで、デジタルマイクロミラーアレイは、次の所望のピクセル色に切り替えられ、プロセスは、投影されるディスプレイ全体が、連続して照明されるように見えるほど高速で継続される。デジタルマイクロミラー投影システムは、より少ないピクセル化されたアレイコンポーネントを必要とし、これは、結果として、より小さな寸法の投影機をもたらすことができる。
LED照明は、投影照明のための一般的な方法になりつつある。LEDは、長耐用期間、高色域、高効率性、連続撮像装置用ストロボ機能を提供し、水銀を含有しない。しかしLEDは、比較的低い輝度を有する。赤色、緑色、青色LEDからもたらされる白色源の有効輝度を少なくとも倍増させる1つの方法は色合成器を使用することであり、この色合成器はダイクロイックフィルタを使用して、光学的にLEDの個々の色が相互に空間的に重なり合うように見えるようにする。この種の装置は、広く「色合成器」と呼ばれる。
色合成器は、典型的に、通過する光線に対して傾斜しているダイクロイックフィルタを使用する。3M Companyは、ダイクロイックフィルタがLED出力の平均的光路に対して垂直の入射角度にあり、光が反射型偏光子と1/4波長板との組み合わせによって効率的に転向される色合成器を最近開発した。
画像輝度は、投影システムの重要なパラメータである。色光源の輝度、及び光を収集し、合成し、均質化し、また画像表示装置へと伝送する効率性は、全て輝度に影響を及ぼす。現代のプロジェクタシステムのサイズが小型化するに従い、色光源によって生成される熱を、小さなプロジェクタシステム内に消散可能である低レベルに保ちながら、同時に、適切な出力輝度レベルを維持する必要がある。より効率的に複数の色光を合成して、光源が電力を過度に消費することなく適切な輝度レベルの出力光を供給する光合成光学システムが必要とされている。光合成器内の波長感受性構成要素の劣化を最小化する方法で、異なる波長スペクトルの光を方向付ける光合成システムもまた必要とされている。
概して、本記述は、高耐久性光学素子、この光学素子を使用する色合成器、及びこの色合成器を使用する画像プロジェクタに関する。一態様では、光学素子は、第1の入力面を有し、第1の入力面に対して垂直な第1の色の光線を透過するように配置される第1の色選択性ダイクロイックフィルタと、第1の色の光線を約45度の角度で横切るように配置される色選択性ダイクロイックミラーと、色選択性ダイクロイックミラーに近接し、第1の色選択性ダイクロイックフィルタに対向して配置される反射型偏光子と、を含む。色選択性ダイクロイックミラーは、第1の色の光線の主要部分を反射できる。一実施形態では、第1の色の光線は、反射型偏光子を劣化し得る波長の光を含む。別の実施形態では、光学素子は、第2の入力面を有し、第2の入力面に対して垂直な第2の色の光線を透過し、反射型偏光子を約45度の角度で横切るように配置される第2の色選択性ダイクロイックフィルタを更に含み、色選択性ダイクロイックミラーは、第2の色の光線の主要部分を透過できる。更に別の実施形態では、光学素子は、第3の入力面を有し、第3の入力面に対して垂直な第3の色の光線を透過し、反射型偏光子を約45度の角度で横切るように配置される第3の色選択性ダイクロイックフィルタを更に含み、色選択性ダイクロイックミラーは、第3の色の光線の主要部分を透過できる。
別の態様では、色合成器は光学素子を含む。光学素子は、第1の入力面を有し、第1の入力面に対して垂直な第1の色の光線を透過するように配置される第1の色選択性ダイクロイックフィルタと、第1の色の光線を約45度の角度で横切るように配置される色選択性ダイクロイックミラーと、色選択性ダイクロイックミラーに近接し、第1の色選択性ダイクロイックフィルタに対向して配置される反射型偏光子と、を含み、色選択性ダイクロイックミラーは、第1の色の光線の主要部分を反射できる。一実施形態では、第1の色の光線は、反射型偏光子を劣化し得る波長の光を含む。別の実施形態では、光学素子は、第2の入力面を有し、第2の入力面に対して垂直な第2の色の光線を透過するように配置され、反射型偏光子を約45度の角度で横切る、第2の色選択性ダイクロイックフィルタを更に含み、色選択性ダイクロイックミラーは、第2の色の光線の主要部分を透過できる。更に別の実施形態では、光学素子は、第3の入力面を有し、第3の入力面に対して垂直な第3の色の光線を透過し、反射型偏光子を約45度の角度で横切るように配置される第3の色選択性ダイクロイックフィルタを更に含み、色選択性ダイクロイックミラーは、第3の色の光線の主要部分を透過できる。
更に別の態様では、投影システムは光学素子を含む。光学素子は、第1の入力面を有し、第1の入力面に対して垂直な第1の色の光線を透過するように配置される第1の色選択性ダイクロイックフィルタと、第1の色の光線を約45度の角度で横切るように配置される色選択性ダイクロイックミラーと、色選択性ダイクロイックミラーに近接し、第1の色選択性ダイクロイックフィルタに対向して配置される反射型偏光子と、を含み、色選択性ダイクロイックミラーは、第1の色の光線の主要部分を反射できる。一実施形態では、第1の色の光線は、反射型偏光子を劣化し得る波長の光を含む。別の実施形態では、光学素子は、第2の入力面を有し、第2の入力面に対して垂直な第2の色の光線を透過するように配置され、反射型偏光子を約45度の角度で横切る、第2の色選択性ダイクロイックフィルタを更に含み、色選択性ダイクロイックミラーは、第2の色の光線の主要部分を透過できる。更に別の実施形態では、光学素子は、第3の入力面を有し、第3の入力面に対して垂直な第3の色の光線を透過し、反射型偏光子を約45度の角度で横切るように配置される第3の色選択性ダイクロイックフィルタを更に含み、色選択性ダイクロイックミラーは、第3の色の光線の主要部分を透過できる。
更に別の態様では、光学素子は、第1の入力面を有し、第1の入力面に対して垂直な第1の色の光線を透過するように配置される第1の色選択性ダイクロイックフィルタと、第1の色の光線を約45度の角度で横切るように配置される反射型偏光子と、出力面に対して垂直な出力方向に第1の色の光線を透過するように配置される出力面と、第1の色の光線及び第2の色の光線の両方を約45度の角度で横切るように配置される色選択性ダイクロイックミラーと、を含む。色選択性ダイクロイックミラーは、第2の色の光線の第1の主要部分を出力方向に反射でき、第1の光線の第2の主要部分を出力方向に透過できる。一実施形態では、光学素子は、第2の入力面を有し、第2の入力面に対して垂直な第3の色の光線を透過するように配置される第2の色選択性ダイクロイックフィルタを更に含み、第3の色の光線は、反射型偏光子及び色選択性ダイクロイックミラーの両方を約45度の角度で横切ることができる。色選択性ダイクロイックミラーは、第3の光線の第3の主要部分を出力方向に透過できる。
本明細書を通して添付の図面を参照するが、ここで、同様の参照番号は同様の要素を示す。
光学要素の概略図。 PBSの斜視図。 PBSの斜視図。 光合成器の平面概略図。 光合成器の平面概略図。 光合成器の平面概略図。 光合成器の平面概略図。 研磨されたPBSの平面図。 光スプリッタの平面概略図。 2チャネルの色合成器。 2チャネルの色合成器。 色合成器。 色合成器。 透過スペクトルのグラフ。 プロジェクタの概略図。
図面は、必ずしも一定の比率の縮尺ではない。図中で用いられる類似の数字は、類似の構成要素を示す。しかし、所与の図中の構成要素を意味する数字の使用は、同一数字が付けられた別の図中の構成要素を制約するものではないことが理解されよう。
本明細書に記載されている光学素子は、異なる波長スペクトル光を受光し、異なる波長スペクトル光を含む合成出力光を生成する高耐久性色合成器として構成され得る。一態様では、受光された入力光は偏光であり、合成出力光は偏光される。別の態様では、受光された入力光は非偏光であり、合成出力光は非偏光である。いくつかの実施形態では、合成光は、受光された光のそれぞれと同一のエテンデューを有する。合成光は、1つを超える波長スペクトル光を含む、合成された多色光であってよい。合成光は、受光された光のそれぞれの時系列出力であってよい。一態様では、異なる波長スペクトル光それぞれは、異なる色光(例えば、赤色、緑色、及び青色)に相当し、合成出力光は白色光又は時系列の赤色、緑色、及び青色の光である。本明細書に提供される説明のために、「色光」及び「波長スペクトル光」は、両方とも、人間の目に可視である場合に、特定の色と関連付けられ得る波長スペクトル範囲を有する光を意味することが意図される。より一般的な「波長スペクトル光」という用語は、可視光、及び例えば赤外光などの他の波長スペクトル光の両方を指す。
また、本明細書に提供される説明のために、「所望の偏光状態に位置合わせされる」という用語は、光学素子を通過する光の所望の偏光状態、すなわち、s偏光、p偏光、右円偏光、左円偏光など所望の偏光状態に光学素子の通過軸(pass axis)を位置合わせすることに関することを意図する。図を参照して本明細書で説明する一実施形態では、第1の偏光状態に対して位置合わせされた偏光子などの光学素子は、p偏光状態の光を通過させ、第2の偏光状態(この場合はs偏光状態)の光を反射又は吸収する、偏光子の配向を意味する。偏光子は、必要に応じて、むしろs偏光状態の光を通過させ、p偏光状態の光を反射又は吸収するように位置合わせされ得ることを理解されたい。
また、本明細書に提供される説明のために、「面する」という用語は、1つの要素が、要素の表面からの垂直線が同様にもう一方の要素に対して垂直である光学経路をたどるように配置されることを指す。別の要素に面する、ある要素は、互いに隣接して配置される要素を含み得る。別の要素に面する、ある要素には、ある要素に対して垂直な光線が、もう一方の要素に対しても垂直になるように、光学系によって分離される要素を更に含むことができる。
一態様によると、光学素子は、反射型偏光子の方向に第1の色光を透過するように配置される第1の色選択性ダイクロイックフィルタを含む。第1の色光は、第1の色選択性ダイクロイックフィルタを垂直に近い入射角度(すなわち、フィルタの表面に対して約90度)で通過し、反射型偏光子を約45度の角度で横切る。色選択性ダイクロイックミラーは反射型偏光子に近接して配置され、反射型偏光子を損傷し得る光(すなわち、よりエネルギーの高い青色光又は紫外線(UV)などの化学光)から反射型偏光子を保護する働きをする。色選択性ダイクロイックミラーは、反射型偏光子を横切る前に第1の色光(すなわち、潜在的に有害な光)を横切る。色選択性ダイクロイックミラーは、第1の色光の主要部分を反射し、反射型偏光子まで非主要部分を透過する。一態様では、色選択性ダイクロイックミラーによって反射される主要部分は、色選択性ダイクロイックミラーへの第1の色光の入射の51%超、60%超、70%超、75%超、80%超、85%超、又は更には90%超であってよい。
垂直の入射角度で使用する色選択性ダイクロイックフィルタを有する色合成器の利点の1つは、これらの色合成器を低F値光学システムで使用できることである。不利な点の1つは、反射型偏光子が、低吸光係数、広角度受容範囲、及び化学光への強烈な曝露下での長耐用期間を必要とすることである。3M CompanyのMZIP又はAPF多層光学フィルム(MOF)反射型偏光子を使用する色合成器は、十分な角度かつ広帯域の光学性能を有するが、UV光、青色光、及び場合によっては緑色光などの化学光により光劣化し得る。色合成器に好適な用途は、反射型偏光子が化学光に長期間曝露されることを必要とする場合があるが、これは反射型偏光子を劣化し得る。本開示は、反射型偏光子の光安定性が改善された、耐久性のある色合成器について説明する。
反射型偏光子が光劣化するプロセスは、部分的に理解されている。理論に束縛されるものではないが、このプロセスは次の工程で発生すると考えられる。
1.化学光(UV、青色、及び一部の緑色波長)により、反射型偏光子におけるポリエステルの結合切断が発生する。
2.続いて、半結晶ポリエステルの非晶質領域で切断されたポリマー鎖が再配置されて、より大きい結晶を形成するか、又はポリエステル内で共役拡張して、ポリマーの吸光係数を向上させる。
3.より大きい結晶が光を散乱させる。
4.散乱光は増加した平均経路長を有し、結合切断率、吸収を増加させ、最終的に、より高い温度をもたらす。
5.低光度下では、偏光子の効率が低下する。高光度下では、反射型偏光子が熱により破滅的に機能しなくなる恐れがある。
偏光率を低下させるものなど他の劣化プロセスも発生すると考えられるが、これらのプロセスは、上記ほど顕著ではない場合がある。
2つ以上の非偏光の色光が光学素子に方向付けられると、それぞれは1つ以上の反射型偏光子による偏光に従って分かれ得る。以下の一実施形態によると、色光合成システムは、異なる色の非偏光光源から非偏光を受光し、非偏光であるか、所望の一状態に偏光されるかのいずれかである合成出力光を生成する。一態様では、2つ、3つ、4つ、又はそれ以上の受光された色光は、それぞれ光学素子内の反射型偏光子による偏光(例えば、s偏光及びp偏光、又は右及び左円偏光)に従って分かれる。一偏光状態の受光された光は、所望の偏光状態になるように再利用される。
一態様によると、光学素子は、3つの色光のそれぞれからの光が反射型偏光子を約45度の角度で横切るように配置される反射型偏光子を備える。反射型偏光子は、マクニール偏光子、ワイヤーグリッド偏光子、多層光学フィルム偏光子、又はコレステリック液晶偏光子のような円偏光子などの任意の既知の反射型偏光子であることができる。一実施形態によると、多層光学フィルム偏光子が、好ましい反射型偏光子であることができる。
多層光学フィルム偏光子は、異なる波長の範囲光と相互作用するのに役立つ、異なる層の「束(packet)」を含んでよい。例えば、一体型の多層光学フィルム偏光子は、フィルムの厚みを通じていくつかの層の束を含んでよく、それぞれの束は、ある偏光状態を反射し他の偏光状態を透過するように、異なる波長範囲(例えば、色)の光と相互作用する。一態様では、多層光学フィルムは、例えば青色光と相互作用するフィルムの第1の面に近接する第1の層の束(すなわち「青色層」)と、例えば緑色光と相互作用する第2の層の束(すなわち「緑色層」)と、例えば赤色光と相互作用するフィルムの第2の面に近接する第3の層の束(すなわち「赤色層」)とを有することができる。典型的には、「青色層」での層間の距離間隔は、より短い(及びより高エネルギーの)青い波長の光と相互作用するために、「赤色層」での層間の距離間隔より著しく小さい。
ポリマー多層光学フィルム偏光子は、上記のフィルム層の束を含むことができる、特に好ましい反射型偏光子であり得る。多くの場合、青色光などのより高エネルギーの波長の光は、フィルムの経時的安定性に悪影響を与える可能性があり、少なくともこの理由のために、反射型偏光子と青色光との相互作用回数を最小限に抑えることが好ましい。更に、フィルムと青色光との相互作用の特質は、悪影響である経時的劣化の程度に影響する。フィルムを通る青色光の透過は、一般に「青色層」(すなわち、薄層)側から入る青色光の反射よりフィルムにとって害が少ない。また、「青色層」側からフィルムに入る青色光の反射は、「赤色層」(すなわち、厚層)側から入る青色光の反射よりフィルムにとって害が少ない。反射型偏光子と化学光との相互作用回数を低減するため、並びに、例えば反射型偏光子の配置及び配向により相互作用の程度を低減するための方法について、説明されてきた。好適な方法は、例えば同時継続中の代理人整理番号第64829US002号、名称「POLARIZATION CONVERTING COLOR COMBINER」(本件と同日に出願)に記載されている。
一態様では、本開示は、化学光の主要部分を反射型偏光子に絶対に到達させないことによって、色合成器など光学素子内の反射型偏光子の安定性を更に向上させることに関する。色選択性ダイクロイックミラーは、化学光の主要部分を反射し、一方で他の波長の光の主要部分を透過する。一態様では、色選択性ダイクロイックミラーは、反射型偏光子に近接して配置される。一実施形態では、色選択性ダイクロイックミラーは、反射型偏光子上に直接形成されてよい。別の実施形態では、色選択性ダイクロイックミラーは、むしろ対角プリズム面など光学素子上に形成されてよく、反射型偏光子に近接して配置される。更に別の実施形態では、色選択性ダイクロイックミラーは、反射型偏光子に近接して配置される別個のフィルム又はプレート要素であってよい。色選択性ダイクロイックミラーは、無機誘電体スタックの真空蒸着など任意の機知のプロセスで形成されてよい。本開示の一態様では、青色光の主要部分は、青色光が反射型偏光子と相互作用する前に色選択性ダイクロイックミラーによって反射されるので、反射型偏光子から青色層を除去してよい。
反射型偏光子及び色選択性ダイクロイックミラーは、本明細書において「保護反射型偏光子(protected reflective polarizer)(PRP)」と呼ばれ、2つのプリズムの対角面間に配置され得る。PRPは、むしろ薄膜などの自立フィルムであってもよい。いくつかの実施形態では、光学素子の光利用効率は、PRPが、例えば偏光ビームスプリッタ(PBS)など2つのプリズム間に配置されると向上する。この実施形態では、PBSを通過する光のうち本来なら光路から失われることになる光の一部がプリズム面からの内部全反射(TIR)を受けて光学経路と再結合する。少なくともこの理由のために、以下の説明はPRPが2つのプリズムの対角面間に配置される光学素子を目的とするが、薄膜として使用されたときもPBSは同じように機能できることを理解されたい。一態様では、PBSへの入光がTIRを受けるように、PBSプリズムの全ての外面をよく研磨する。このようにすると、光はPBS内に収容され、この光は、部分的に均質化されながらエテンデューを維持する。
一態様によると、色選択性ダイクロイックフィルタなどの波長選択性フィルタは、異なる有色光源のそれぞれからの入力光の経路に配置される。色選択性ダイクロイックフィルタそれぞれは、入力光線がほぼ垂直な入射角でフィルタを横切って、s偏光及びp偏光の分割を最小化し、また色偏移を最小化するように、配置される。各色選択性ダイクロイックフィルタは、近接する入力光源の波長スペクトルを有する光を透過し、他の入力光源の少なくとも1つの波長スペクトルを有する光を反射するように、選択される。いくつかの実施形態では、色選択性ダイクロイックフィルタそれぞれは、近接する入力光源の波長スペクトルを有する光を透過し、他の入力光源全ての波長スペクトルを有する光を反射するように、選択される。一態様では、色選択性ダイクロイックフィルタそれぞれは、各色選択性ダイクロイックフィルタの表面に対してほぼ垂直な入力光線が反射型偏光子を約45度の交差角で横切るように、反射型偏光子に対して配置される。色選択性ダイクロイックフィルタの表面に対して垂直とは、線が色選択性ダイクロイックフィルタの表面に対して垂直に通ることを意味し、ほぼ垂直とは、垂直から約20度未満、又は好ましくは垂直から約10度未満変動することを意味する。一実施形態では、反射型偏光子との交差角は、約25〜65度、35〜55度、40〜50度、43〜47度、又は44.5〜45.5度の範囲である。
一実施形態では、位相差板は、色選択性ダイクロイックフィルタとPRPとの間に配置される。色選択性ダイクロイックフィルタと位相差板と光源の配向との特定の組み合わせは全て協働して、色合成器として構成されたときに合成光を効率的に生成する、より小さく、よりコンパクトな光学素子を可能にする。一態様によると、位相差板は、偏光状態の反射型偏光子に対しておよそ45度に位置合わせされた1/4波長位相差板である。一態様では、位置合わせは、偏光状態の反射型偏光子に対して35〜55度、40〜50度、43〜47度、又は44.5〜45.5度であってよい。
一態様では、第1の色光は非偏光の青色光を含み、第2の色光は非偏光の緑色光を含み、第3の色光は非偏光の赤色光を含み、色光合成器は、この赤色光と青色光と緑色光とを合成して、非偏光の白色光を生成する。一実施形態では、色光合成器は、赤色光と緑色光と青色光とを合成して、時系列化された非偏光の赤色、緑色及び青色光を生成する。一態様では、第一、第二及び第三の色光のそれぞれは、別個の光源に配置される。別の態様では、3つの色光のうちの1つを超えるものが、光源の1つに合成される。更に別の態様では、3つを超える色光が光学素子で合成されて、合成光が生成される。
光線としては、PBSに入るときに、コリメート可能な、収束可能な、又は発散可能な光線が挙げられる。PBSに入る収束光又は発散光は、PBSの面又は末端部のうちの1つによって損失される可能性がある。かかる損失を回避するために、プリズムに基づくPBSの外面の全ては、PBS内での内部全反射(TIR)を可能にするために、研磨することができる。TIRを可能にすることによって、PBSに入る光の利用が改善され、その結果、角度範囲内のPBSに入る光の実質的に全てが、所望の面を通ってPBSを出るように方向付け直される。
各色光の偏光成分は、偏光回転反射体まで通過することができる。偏光回転反射体は、偏光回転反射体内に配置された位相差板のタイプ及び配向によって、光の伝搬方向を反対にし、偏光成分の大きさを変化させる。偏光回転反射体は、色選択性ダイクロイックフィルタ及び位相差板などの波長選択性鏡を含むことができる。1/8波長位相差板及び1/4波長位相差板などの位相差板は、任意の所望のレターデーションを提供することができる。本明細書に記載される実施形態では、1/4波長位相差板及び関連する色選択性ダイクロイック反射体を使用することの利点が存在する。直線偏光は、光偏光軸に対して45度の角度に位置合わせされた1/4波長位相差板を通過する際、円偏光に変化される。続く色合成器内での反射型偏光子及び1/4波長位相差板/反射体からの反射は、結果として、色合成器からの有効な合成された出力光をもたらす。対照的に、直線偏光は、他の位相差板及び配向を通過する際、s偏光とp偏光との間の途中の偏光状態(楕円形又は直線形のいずれか)に変化され、結果として、合成器のより低い効率をもたらす可能性がある。偏光回転反射体は、一般に色選択性ダイクロイックフィルタ及び位相差板を備える。近接する光源に対する位相差板及び色選択性ダイクロイックフィルタの位置は、偏光成分それぞれの所望の経路によって異なり、図を参照しながら他の個所で記載される。一態様では、反射型偏光子は、コレステリック液晶偏光子などの円偏光子であることができる。この態様によると、偏光回転反射体は、関連する任意の位相差板を伴わない色選択性ダイクロイックフィルタを備えることができる。
プリズム、反射型偏光子、1/4波長位相差板、鏡、フィルタ又は他の構成要素などの光学素子の構成要素は、好適な光学接着剤によって共に固着することができる。構成要素を共に固着するために使用される光学接着剤は、光学素子で使用されるプリズムの屈折率より低い屈折率を有する。完全に共に固着された光学素子は、組み立て中、取り扱い中、及び使用中に位置合わせ安定性などの利点を提供する。いくつかの実施形態では、2つの近接するプリズムは、光学接着剤を使用して共に固着されてよい。いくつかの実施形態では、一体型の光学構成要素は、他の個所で記載するように、例えば2つの近接する三角プリズムの光学系を組み込んだ1つの三角プリズムなどの、2つの近接するプリズムの光学系を組み込んでよい。
上述される実施形態は、図面及びそれらの以下の付随の説明を参照することによって、より容易に理解することができる。
図1Aは、本開示の一態様による光学素子10の概略図である。光学素子10は、PBS 100と、第1の色光源80と、任意の光トンネル40と、入力面55を有する第1の色選択性ダイクロイックフィルタ50と、1/4波長位相差板60と、任意の波長選択性吸収体70とを含む。PBS 100は以下の図1Bを参照して更に説明され、第1のプリズム面130と、第2のプリズム面140と、これらの間の対角プリズム面25とを有する第1のプリズム110を含む。PBS 100は、第3のプリズム面150と、第4のプリズム面160と、これらの間の対角プリズム面35とを有する第2のプリズム120を更に含む。PBS 100は、2つの対角プリズム面25と35との間に配置される保護反射型偏光子(PRP)190を更に含む。PRP 190は、色選択性ダイクロイックミラー20と、反射型偏光子30とを含む。光学素子10における1/4波長位相差板60に対するPRP 190の相対的な位置合わせ及び配向については、図1B及び図2を参照して他の箇所で記載する。
第1の色光源80は、他の個所で記載されるように、非保護反射型偏光子を損傷し得る化学光源である。第1の色光82は、任意の光トンネル40を通過し、図示されるように色選択性ダイクロイックフィルタ50の入力面55をほぼ垂直方向に横切る。第1の色光82は、色選択性ダイクロイックフィルタ50、1/4波長位相差板60を通過し、第1のプリズム面130を通ってPBS 100に入り、色選択性ダイクロイックミラー20を約45度の角度で横切る。第1の色光源80からの第1の色光82の主要部分84は、第1の色光82が反射型偏光子30を横切る前に、PRP 190内の色選択性ダイクロイックミラー20から反射される。第1の色光82の非主要部分86は、PRP 190内の反射型偏光子30の方向に向かって色選択性ダイクロイックミラー20を通過する。図1Aは、第1の色光82の非主要部分86が反射型偏光子30を通過し(何らかの損傷を与え得る)、任意の波長選択性吸収体70によって吸収されることを示す。いくつかの実施形態では、任意の波長選択性吸収体70は、化学光の光学経路内の任意の場所に、例えば、色選択性ダイクロイックミラー20と反射型偏光子30との間、反射型偏光子30と対角プリズム面35との間、第3のプリズム面150に近接して、又は図1Aに示されるように第3のプリズム面150から離れて配置されてよい。
別の態様によると、任意の光トンネル40又はレンズのアセンブリ(図示せず)は、他の箇所で記載されるように、他の構成要素から光源を隔てる間隔を与え、加えていくらかの光のコリメーションをもたらし得る。光トンネルは、直線側面若しくは湾曲側面を有してよく、又はレンズシステムで置換することができる。各用途の具体的詳細により、異なる手法が好ましい場合があり、当業者は、特定の用途に最適な手法を選択することにおいて、困難に直面することはないであろう。
図1Bは、PBSの斜視図である。PBS 100は、プリズム110及び120の対角面間に配置された保護反射型偏光子(PRP)190を含む。PRP 190は、図1Aを参照して説明されるように、色選択性ダイクロイックミラー20と、反射型偏光子30とを含む。プリズム110は、2つの端面175、185と、間に90度の角度を有する第1及び第2のプリズム面130、140とを含む。プリズム120は、2つの端面170、180と、間に90度の角度を有する第3及び第4のプリズム面150、160とを含む。第1のプリズム面130は、第3のプリズム面150に対して平行であり、第2のプリズム面140は、第4のプリズム面160に対して平行である。「第1」、「第2」、「第3」及び「第4」で図1Bに示される4つのプリズム面の識別番号は、続くPBS 100の説明を明確化するためだけに用いられる。PRB 190は、デカルト反射型偏光子又は非デカルト反射型偏光子を含み得る。非デカルト反射型偏光子には、マクニール偏光子など、無機誘電体の逐次堆積によって生成されるものなどの多層無機フィルムを挙げることができる。デカルト反射型偏光子は、偏光軸状態を有し、これには、ワイヤーグリッド偏光子、及び多層ポリマー積層体を押出成形し、続いて延伸することによって形成することができるものなどのポリマー多層光学フィルムの両方が挙げられる。一実施形態では、PRP 190は、1つの偏光軸が、第1の偏光状態195に対して平行であり、第2の偏光状態196に対して垂直になるように位置合わせされる。一実施形態では、第1の偏光状態195は、s偏光状態であってよく、第2の偏光状態196は、p偏光状態であってよい。別の実施形態では、第1の偏光状態195は、p偏光状態であってよく、第2の偏光状態196は、s偏光状態であってよい。図1Bに示されるように、第1の偏光状態195は、端面170、175、180、185のそれぞれに対して垂直である。
デカルト反射型偏光子フィルムは、完全にコリメートされていない、中心光ビーム軸から発散又は歪曲している入力光線を高効率で通過させる能力を有する、偏光ビームスプリッタを提供する。デカルト反射型偏光子フィルムは、誘電体又はポリマー材料の多層を含むポリマー多層光学フィルムを含むことができる。誘電体フィルムを使用することによって、光の減衰が低く、光を通過させる効率が高いという利点を有することができる。多層光学フィルムは、米国特許第5,962,114号(Jonzaら)又は同第6,721,096号(Bruzzoneら)に記載されるものなどのポリマー多層光学フィルムを含むことができる。
図2は、いくつかの実施形態で使用される、PBSに対する1/4波長位相差板の位置合わせの斜視図である。1/4波長位相差板は、入射光の偏光状態を変化させるために使用することができる。PBS位相差板システム200は、第1のプリズム110及び第2のプリズム120を有する、PBS 100を含む。1/4波長位相差板220は、第1のプリズム面130及び第2のプリズム面140に近接して配置される。PRP 190は、第1の偏光状態195に対して位置合わせされたデカルト反射型偏光子フィルムを含む。1/4位相差板220は、第1の偏光状態195に対して45度に位置合わせされ得る1/4波長偏光状態295を含む。図2は、第1の偏光状態195に対して時計方向に45°に位置合わせされた偏光状態295を示すが、偏光状態295は、むしろ第1の偏光状態195に対して反時計方向に45°に位置合わせされてよい。いくつかの実施形態では、1/4波長偏光状態295は、第1の偏光状態195に対して、任意の度数の配向、例えば、反時計方向に90度から時計方向に90度に位置合わせされることができる。記載されるように位相差板を約+/−45度で配向することが有利である可能性があるが、それは、直線偏光が、偏光状態に対してそのように位置合わせされた1/4波長位相差板を通過する際に、円偏光がもたらされるためである。1/4波長位相差板の他の配向は、鏡からの反射を受けて、p−偏光に完全に変換されていないs−偏光、及びs−偏光に完全に変換されていないp−偏光をもたらす可能性があり、結果として、本明細書の他の個所に記載される光学素子の効率が低減する。
図3Aは、光合成器の平面図である。図3Aでは、光合成器300は、プリズム110及び120の対角面間に配置される、PRP 190を有するPBS 100を含む。プリズム110は、間に90°の角度を有する第1及び第2のプリズム面130、140を含む。プリズム120は、間に90°の角度を有する第3及び第4のプリズム面150、160を含む。PRP 190は、第1の偏光状態195に対して位置合わせされた(この図では、ページに対して垂直に)、デカルト反射型偏光子を含んでよい。PRB 190は、むしろ非デカルト偏光子を含んでもよい。PRP 190は、反射型偏光子(図示せず)に近接して配置される色選択性ダイクロイックミラー(図1Aの素子20)を更に含む。図3A〜3Dでは、色選択性ダイクロイックミラーは、図3Bを参照して説明されるように、化学光が反射型偏光子を横切る前に化学光を反射するように配置される。光合成器300は、PRP 190の構成要素を通過するいかなる化学光をも吸収するように配置される、任意の波長選択性吸収体70を更に含む。
任意の波長選択性吸収体70は、化学光が通過する必要のないプリズム面のいずれか、例えば図3A〜3Dの第1のプリズム面130、第2のプリズム面140、又は第1及び第2のプリズム面130、140の両方に近接して配置されてよい。ただし、任意の波長選択性吸収体70は、色選択性ダイクロイックミラー20によって透過される化学光の光学経路内の任意の場所に配置してよいことを理解されたい。一実施形態では、青色波長選択性吸収体は、PRP 190の色選択性ダイクロイックミラー20と反射型偏光子30との間に配置されてよい。
光合成器300は、第1、第2、及び第3のプリズム面130、140、及び150に面して配置される1/4波長位相差板220を含む。1/4波長位相差板220は、第1の偏光状態195に対して45°の角度に位置合わせされる。光学的に透過性の物質340は、各1/4波長位相差板220とそれらのそれぞれのプリズム面との間に配置される。光学的に透過性の物質340は、プリズム110、120の屈折率以下の屈折率を有するいずれの物質であってもよい。一実施形態では、光学的に透過性の物質340は、空気である。別の実施形態では、光学的に透過性の物質340は、1/4波長位相差板220を、それらのそれぞれのプリズム面に固着させる、光学接着剤である。
光合成器300は、示されるように、1/4波長位相差板220に面して配置される、第1、第2、及び第3の反射器310、320、330を含む。反射体310、320、330のそれぞれは、図3Aに示されるように、近接する1/4波長位相差板220から分離されてよい。更に、反射器310、320、330のそれぞれは、隣接する1/4波長位相差板220と直接接触させることができる。あるいは、反射器310、320、330のそれぞれを、光学接着剤を用いて、隣接する1/4波長位相差板220に接着することができる。光学接着剤は、硬化性接着剤であってよい。また、光学接着剤は、感圧性接着剤であってもよい。
光合成器300は、2色合成器であってよい。この実施形態では、反射体310は、第1の色選択性ダイクロイックフィルタであり、反射体320、330のうちの1つは、第2の色選択性ダイクロイックフィルタであり、第1及び第2の色光をそれぞれ透過し、他の色の光を反射するように選択される。第3の反射体は、鏡である。鏡とは、実質的に全ての色の光を反射するように選択される鏡面反射鏡を意味する。第1及び第2の色光は、スペクトル範囲内で最小の重なりを有することができるが、所望により、相当量の重なりが存在してもよい。
図3Aに示される一実施形態では、光合成器300は、3色合成器である。この実施形態では、反射体310、320、330は、それぞれ第1、第2、及び第3の色光を透過し他の色の光を反射するように選択される、第1、第2、及び第3の色選択性ダイクロイックフィルタである。一態様では、第1、第2、及び第3の色光は、スペクトル範囲内で最小の重なりを有するが、所望により、相当量の重なりが存在してもよい。この実施形態の光合成器300を使用する方法は、第1の色光350を、第1の色選択性ダイクロイックフィルタ310に方向付ける工程と、第2の色光360を、第2の色選択性ダイクロイックフィルタ320に方向付ける工程と、第3の色光370を、第3の色選択性ダイクロイックフィルタ330に方向付ける工程と、PBS 100の第4の面から、合成光380を受光する工程と、を含む。第1、第2、及び第3の色光350、360、370のそれぞれの経路を、図3B〜図3Dを参照して、更に説明する。
一実施形態では、第1、第2、及び第3の色光350、360、370のそれぞれは、非偏光の光であってよく、合成光380は、非偏光である。更なる実施形態では、第1、第2、及び第3の色光350、360、370のそれぞれは、それぞれ非偏光の青色、緑色、及び赤色の光であってよく、合成光380は、非偏光の白色光であってよい。第1、第2、及び第3の色光350、360、370のそれぞれは、発光ダイオード(LED)源からの光を含むことができる。様々な光源、例えば、レーザー、半導体レーザー、有機LED(OLED)、並びに適切な集光器又は反射体を備えた超高圧(UHP)ハロゲンランプ又はキセノンランプなどの非固体光源を使用することができる。LED光源は、操作の経済性、長耐用期間、ロバスト性、効率的な光生成、及び改善されたスペクトル出力などの、他の光源を超える利点を有することができる。図3A〜3Dには示されていないが、色合成器300は、他の箇所で記載されるように、任意の光トンネル40を含んでよい。
次に、図3Bを参照して、第1の色光350が非偏光である実施形態について、光合成器300を通る第1の色光350の光学経路を説明する。この実施形態では、第1の色光350は、非保護反射型偏光子を損傷し得る化学光である。第1の色光350の主要部分351は、PRP 190から反射される。第1の色光350の非主要部分352は、PRP 190を通過し、任意の波長選択性吸収体70によって吸収される。
第1の色光350は、第1の色選択性ダイクロイックフィルタ310、1/4波長位相差板220を通って方向付けられ、第3のプリズム面150を通ってPBS 100に入る。第1の色光350は、PRP 190を横切り、PRP 190から反射する主要部分351と、PRP 190を透過する非主要部分352とに分かれる。主要部分351は、第4のプリズム面160を通ってPBS 100を出る。
非主要部分352は、PRP 190を通過し、第1のプリズム面130を通ってPBS 100を出て、任意の波長選択性吸収体70によって吸収される。
次に、図3Cを参照して、第2の色光360が非偏光である実施形態について、光合成器300を通る第2の色光360の光学経路を説明する。この実施形態では、s偏光の第2の色光365及びp偏光の第2の色光362を含む非偏光の光は、第4のプリズム面160を通ってPBS 100を出る。
第2の色光360は、第2の色選択性ダイクロイックフィルタ320、1/4波長位相差板220を通って方向付けられ、第2のプリズム面140を通ってPBS 100に入る。第2の色光360は、PRP 190を横切り、p偏光の第2の色光362とs偏光の第2の色光361とに分かれる。p偏光の第2の色光362は、PRP 190を通過し、第4のプリズム面160を通ってPBS 100を出る。
s偏光の第2の色光361は、PRP 190から反射され、PBS 100の第1のプリズム面130を出て、任意の波長選択性吸収体70を通過し、1/4波長位相差板220を通過する際に円偏光390に変化する。円偏光390は、第3の色選択性ダイクロイックフィルタ330から反射して円偏光の方向を変化させ、1/4波長位相差板220を通過し、任意の波長選択性吸収体70を通過し、第1のプリズム面130を通ってp偏光の第2の色光363としてPBS 100に入る。光線363は、PRP 190を通過し、第3のプリズム面150を通ってPBS 100を出て、1/4波長位相差板220を通過する際に円偏光390に変化する。円偏光390は、第1の色選択性ダイクロイックフィルタ310から反射して円偏光の方向を変化させ、1/4波長位相差板220を通過し、第3のプリズム面150を通ってs偏光の第2の色光365としてPBS 100に入る。s偏光の第2の色光365は、PRP 190から反射し、第4のプリズム面160を通ってPBS 100を出る。
次に、図3Dを参照して、第3の色光370が非偏光である実施形態について、光合成器300を通る第3の色光370の光学経路を説明する。この実施形態では、s偏光の第3の色光374及びp偏光の第3の色光373を含む非偏光の光は、第4のプリズム面160を通ってPBS 100を出る。
第3の色光370は、第3の色選択性ダイクロイックフィルタ330、1/4波長位相差板220、任意の波長選択性吸収体70を通って方向付けられ、第1のプリズム面130を通ってPBS 100に入る。第3の色光370は、PRP 190を横切り、p偏光の第3の色光372とs偏光の第3の色光371とに分かれる。p偏光の第3の色光372は、PRP 190を通過し、第3のプリズム面150を出て、1/4波長位相差板220を通過する際に円偏光390に変化する。円偏光390は、第1の色選択性ダイクロイックフィルタ310から反射して円偏光の方向を変化させ、1/4波長位相差板220を通過し、第3のプリズム面150を通ってs偏光の第3の色光374としてPBS 100に入る。s偏光の第3の色光374は、PRP 190から反射し、第4のプリズム面160を通ってPBS 100を出る。
s偏光の第3の色光371は、PRP 190から反射し、第2のプリズム面140を通ってPBS 100を出て、1/4波長位相差板220を通過する際に円偏光390に変化する。円偏光390は、第2の色選択性ダイクロイックフィルタ320から反射して円偏光の方向を変化させ、1/4波長位相差板220を通過し、第2のプリズム面140を通ってp偏光の第3の色光373としてPBS 100に入る。p偏光の第3の色光373は、PRP 190を通過し、第4のプリズム面160を通ってPBS 100を出る。
図4は、研磨されたPBS 400の平面図を示す。一実施形態によると、プリズム110及び120の、第1、第2、第3及び第4のプリズム面130、140、150、160は、研磨された外表面である。別の実施形態によると、PBS 100の外面の全て(図示されない端面を含む)は、研磨された面であり、これは、PBS 100内での斜光線のTIRを提供する。研磨された外表面は、プリズム110及び120の屈折率「n」未満の屈折率「n」を有する物質と接触している。TIRは、特に、研磨されたPBS 400に方向付けられる光が、中心軸に沿ってコリメートされていない、すなわち、入射光が、収束光又は発散光のいずれかである場合、研磨されたPBS 400における光利用を改善する。少なくともいくつかの光は、第3のプリズム面150を通って離れるまで、内部全反射によって研磨されたPBS 400内に閉じ込められる。場合によっては、実質的に全ての光が、第3のプリズム面150を通って離れるまで、内部全反射によって研磨されたPBS 400内に閉じ込められる。
図4に示されるように、光線Lは、角度範囲θ内で第1のプリズム面130に入る。研磨されたPBS 400内の光線Lは、プリズム面140、160及び端面(図示せず)でTIR条件が満たされるように、角度範囲θで伝搬する。光線「AB」、「AC」、及び「AD」は、第3のプリズム面150を通って出る前に異なる入射角でPRP 190を横断する、研磨されたPBS 400を通る光の多くの経路のうちの3つを表す。また、光線「AB」及び「AD」は両方とも、出る前に、それぞれプリズム面160及び140でTIRを受ける。研磨されたPBS 400の端面でも反射を生じさせることができるように、角度θ及びθの範囲は、円錐角であってもよいことを理解されたい。一実施形態では、PRP 190は、広範囲の入射角にわたり、異なる偏光の光を効率的に分割するように選択される。ポリマー多層光学フィルムは、広範囲の入射角にわたり、光を分割するために、特によく適している。マクニール偏光子及びワイヤーグリッド偏光子を含む他の反射型偏光子を使用することができるが、偏光の分割にそれ程効率的ではない。マクニール偏光子は、典型的には偏光選択表面に対して45度であるか又はPBSの入力面に垂直である設計角と実質的に異なる入射角では光を効率的に透過しない。マクニール偏光子を使用する効率的な偏光分割は、垂直よりも約6又は7度低い入射角に制限することができるが、それはp−偏光状態の有意な反射がいくらか大きい角度で生じ得、s−偏光の有意な透過もいくらか大きい角度で生じ得るからである。両方の効果は、マクニール偏光子の分割効率を低減し得る。ワイヤーグリッド偏光子を使用して偏光を効率的に分割するには、典型的に、ワイヤの一方の側に隣接する空隙が必要であり、ワイヤーグリッド偏光子が、より高い屈折率の媒体に埋没される際、効率が低下する。偏光の分割に使用されるワイヤーグリッド偏光子は、例えば、国際公開第2008/1002541号に示されている。
図5は、本発明の一態様による光スプリッタ500の平面概略図である。光スプリッタ500は、図3A〜図3Dに示される光合成器と同一の構成要素を使用するが、逆に機能する。すなわち、合成光580は、第4のプリズム面160に方向付けられ、それぞれ第1、第2、及び第3の色を有する、第1、第2、及び第3の受光される光550、560、570に分割される。図5では、光スプリッタ500は、プリズム110、120の対角面間に配置されるPRP 190を有するPBS 100を含む。プリズム110は、間に90°の角度を有する第1及び第2のプリズム面130、140を含む。プリズム120は、間に90°の角度を有する第3及び第4のプリズム面150、160を含む。PRP 190は、第1の偏光状態195に対して位置合わせされる(この図では、ページに対して垂直に)、デカルト反射型偏光子又は非デカルト偏光子であってもよいが、デカルト反射型偏光子が好ましい。PRP 190は、反射型偏光子(図示せず)に近接して配置される色選択性ダイクロイックミラー(図1Aの素子20)を更に含む。図5では、色選択性ダイクロイックミラーは、図3Bを参照して説明されるように、化学光が反射型偏光子を横切る前に化学光を反射するように配置される。光合成器300は、PRP 190を通過するいかなる化学光をも吸収するように配置される任意の波長選択性吸収体70、図5の第1のプリズム面130、第2のプリズム面140、又は第1及び第2のプリズム面130、140の両方を更に含む。一般に、任意の波長選択性吸収体70は、色選択性ダイクロイックミラー20によって透過される化学光の光学経路内の任意の場所に配置してよい。一実施形態では、青色波長選択性吸収体は、色選択性ダイクロイックミラーと反射型偏光子との間に配置されてよい。別の実施形態では、青色波長選択性吸収体70は、第2のプリズム面140に近接して配置されてよい。
光スプリッタ500は、第1、第2、及び第3のプリズム面130、140、及び150に面して配置される、1/4波長位相差板220も含む。1/4波長位相差板220は、他の箇所で記載されるように、第1の偏光状態195に対して45°の角度に位置合わせされる。光学的に透過性の物質340は、1/4波長位相差板220のそれぞれとそれらのそれぞれのプリズム面との間に配置される。光学的に透過性の物質340は、プリズム110、120の屈折率より低い屈折率を有するいずれの物質であってもよい。一態様では、光学的に透過性の物質340は、空気であってよい。一態様では、光学的に透過性の物質340は、1/4波長位相差板220を、それらのそれぞれのプリズム面に固着させる、光学接着剤であってよい。
光スプリッタ500は、示されるように、1/4波長位相差板220に面して配置され、第1、第2、及び第3の反射器310、320、330を含む。一態様では、反射体310、320、330は、図3Aに示されるように、近接する1/4波長位相差板220から分離することができる。一態様では、反射器310、320、330は、隣接する1/4波長位相差板220と直接接触させることができる。一態様では、反射器310、320、330は、光学接着剤を用いて、隣接する1/4波長位相差板220に接着することができる。
一実施形態では、光スプリッタ500は、2色スプリッタである。この実施形態では、反射体310は、第1の色選択性ダイクロイックフィルタであり、反射体320、330のうちの1つは、第2の色選択性ダイクロイックフィルタであり、第1及び第2の色光をそれぞれ透過し、他の色の光を反射するように選択される。第3の反射体は、鏡である。鏡とは、実質的に全ての色の光を反射するように選択される鏡面反射鏡を意味する。一態様では、第1及び第2の色光は、スペクトル範囲内で最小の重なりを有するが、所望により、相当量の重なりが存在してもよい。
一実施形態では、光スプリッタ500は、3色スプリッタである。この実施形態では、反射体310、320、330は、それぞれ、第1、第2、及び第3の色光を透過し、他の色の光を反射するように選択される、第1、第2、及び第3の色選択性ダイクロイックフィルタである。一態様では、第1、第2、及び第3の色光は、スペクトル範囲内で最小の重なりを有するが、所望により、相当量の重なりが存在してもよい。この実施形態の光スプリッタ500を使用する方法は、合成光580をPBS 100の第4のプリズム面160に方向付ける工程と、色選択性ダイクロイックフィルタ310から、第1の色光550を受光する工程と、第2の色選択性ダイクロイックフィルタ320から、第2の色光560を受光する工程と、第3の色選択性ダイクロイックフィルタ330から、第3の色光570を受光する工程と、を含む。合成光、第1、第2、及び第3の受光された光580、550、560、570のそれぞれの光学経路は、図3B〜図3Dの説明のとおりであるが、光線の全ての方向は反転される。
一実施形態では、合成光580は、非偏光の光であってよく、第1、第2、及び第3の色光550、560、570のそれぞれは、非偏光の光である。一実施形態では、合成光580は非偏光の白色光であってよく、第1、第2、及び第3の色光550、560、570のそれぞれは、それぞれ非偏光の青色、緑色、及び赤色の光である。一態様によると、合成光580は、発光ダイオード(LED)源からの光を含む。様々な光源、例えば、レーザー、半導体レーザー、有機LED(OLED)、並びに適切な集光器及び反射体を備えた超高圧(UHP)、ハロゲンランプ又はキセノンランプなどの非固体状態の光源を使用することができる。LED光源は、操作の経済性、長耐用期間、ロバスト性、効率的な光生成、及び改善されたスペクトル出力などの、他の光源を超える利点を有することができる。
本開示の一態様によると、図6A〜6Bは、2チャネルの色合成器600を示し、第1の色光源650及び第2の色光源660は、PBS 100の同じプリズム面(すなわち、第3のプリズム面150)に光を入射させるように配置される。以下の一実施形態によると、第1の色光源650は、非偏光の青色光源650であってよく、第2の色光源660は、非偏光の赤色光源660であってよい。青色光源650からの青色光651及び赤色光源660からの赤色光は、色合成器600の構成要素の数を減少させるために合成されることができる。青色光及び赤色光651、661は、例えばインテグレートロッド(図示せず)を使用して、共に混合されてよい。一態様によると、任意の光トンネル40又はレンズのアセンブリ(図示せず)は、他の箇所で記載されるように、青色、赤色、及び緑色光源650、660、670のために提供されて、PBS 100から光源を隔てる間隔を与え、加えていくらかの光のコリメーションをもたらし得る。
2チャネルの色合成器600は、緑色光反射型ダイクロイックフィルタ610と、赤色光反射型ダイクロイックフィルタ620と、広帯域鏡630とを含む。2チャネルの色合成器600は、他の箇所で記載されるように、任意の青色光選択性吸収体(図示せず)を更に含む。一実施形態では、広帯域鏡630に入射するいかなる青色光も、反射される(図6Aに示され、詳細は以下に更に記載される)のではなく、吸収されるように、青色光選択性吸収体が広帯域鏡630内に含まれてよい。別の実施形態では、青色光選択性吸収体は、他の箇所で記載されるように、青色光反射型ダイクロイックミラー20によって透過される青色光の光学経路内の任意の場所に配置されてよい。
次に、図6Aを参照して、青色光651及び赤色光661が非偏光である実施形態について、光合成器600を通る青色光源650からの青色光651及び赤色光源660からの赤色光661の光学経路を説明する。この実施形態では、青色光651は、非保護反射型偏光子を損傷し得る化学光である。青色光651の主要部分652は、PRP 190から反射される。青色光651の非主要部分653は、PRP 190内の色選択性ダイクロイックミラー20を通過し、任意の青色光選択性吸収体(図示せず)によって吸収される。
青色光源650からの青色光651は、任意の光トンネル40、緑色光反射型ダイクロイックフィルタ610、1/4波長位相差板220を通過し、第3のプリズム面150を通ってPBS 100に入る。青色光651は、PRP 190を横切り、反射される青色光651の主要部分652と透過される青色光651の非主要部分653とに分かれる。主要部分652は、非偏光の青色光651の主要部分652としてPBS 100を出る。青色光651の非主要部分653は、第1のプリズム面130を通ってPBS 100を出て、1/4波長位相差板220を通過し、広帯域鏡630内に含まれる青色光選択性吸収体によって吸収される。
赤色光源660からの赤色光661は、任意の光トンネル40、緑色光反射型ダイクロイックフィルタ610、1/4波長位相差板220を通過し、第3のプリズム面150を通ってPBS 100に入る。赤色光661は、PRP 190を横切り、p偏光の赤色光線662とs偏光の赤色光線663とに分かれる。s偏光の赤色光線663は、PRP 190から反射し、第4のプリズム面160を通ってs偏光の赤色光線663としてPBS 100を出る。
p偏光の赤色光線662は、PRP 190を通過し、第1のプリズム面130を通ってPBS 100を出て、1/4波長位相差板220を通過する際に円偏光の赤色光線664に変化する。円偏光の赤色光線664は、広帯域鏡630から反射して円偏光の方向を変化させ、1/4波長位相差板220を通過してs偏光の赤色光線665に変化し、第1のプリズム面130を通ってPBS 100に入り、PRP 190から反射し、第2のプリズム面140を通ってPBS 100を出る。s偏光の赤色光線665は、1/4波長位相差板220を通過する際に円偏光の赤色光線666に変化し、赤色光反射型ダイクロイックフィルタ620から反射して円偏光の方向を変化させ、1/4波長位相差板220を通過する際にp偏光の赤色光線667に変化する。p偏光の赤色光線667は、第2のプリズム面140を通ってPBS 100に入り、変化せずにPRP 190を通過し、第4のプリズム面160を通ってp偏光の赤色光線667としてPBS 100を出る。
次に、図6Bを参照して、緑色光671が非偏光である実施形態について、光合成器600を通る緑色光源670からの緑色光671の光学経路を説明する。この実施形態では、p偏光の緑色光線672及びs偏光の緑色光線677を含む非偏光の光は、第4のプリズム面160を通ってPBS 100を出る。
緑色光源670からの緑色光671は、任意の光トンネル40、赤色光反射型ダイクロイックフィルタ620、1/4波長位相差板220を通過し、第2のプリズム面140を通ってPBS 100に入る。緑色光671は、PRP 190を横切り、p偏光の緑色光線672とs偏光の緑色光線673とに分かれる。p偏光の緑色光線672は、PRP 190を通過し、第4のプリズム面160を通ってp偏光の緑色光線672としてPBS 100を出る。
s偏光の緑色光線673は、PRP 190から反射し、第1のプリズム面130を通ってPBS 100を出て、1/4波長位相差板220を通過する際に円偏光の緑色光線674に変化する。円偏光の緑色光線674は、広帯域鏡630から反射して円偏光の方向を変化させ、1/4波長位相差板220を通過してp偏光の緑色光線675に変化し、第1のプリズム面130を通ってPBS 100に入り、PRP 190を通過し、第3のプリズム面150を通ってPBS 100を出る。p偏光の緑色光線675は、1/4波長位相差板220を通過する際に円偏光の緑色光線676に変化し、緑色光反射型ダイクロイックフィルタ610から反射して円偏光の方向を変化させ、1/4波長位相差板220を通過する際にs偏光の緑色光線677に変化する。s偏光の緑色光線677は、第3のプリズム面150を通ってPBS 100に入り、PRP 190から反射し、第4のプリズム面160を通ってs偏光の緑色光線677としてPBS 100を出る。
2チャネルの色合成器600の別の実施形態(図示せず)では、広帯域鏡630の相対的位置は、第2の色選択性ダイクロイックフィルタ620、任意の光トンネル40、及び第3の光源670と入れ替わってよい。この実施形態では、広帯域鏡630は第2のプリズム面140に近接し、第2の色選択性ダイクロイックフィルタ620、任意の光トンネル40、及び第3の光源670は第1のプリズム面130に近接する。青色波長選択性吸収体70は、図3A〜3Dを参照して他の箇所で記載されるように、色選択性ダイクロイックミラー20によって透過される青色光の光学経路内の任意の場所に配置されてよい。
一態様によると、図7A〜7Bは、以下のように図3A〜3D及び図6A〜6BのPRP 190が構成要素の色選択性ダイクロイックミラー20と反射型偏光子30とに分離されている色合成器700を示す。色選択性ダイクロイックミラー20は、自立色選択性ダイクロイックミラー(例えば、薄膜)であってよく、又は図7A〜7Bに示されるように第3及び第4のプリズム780、790などプリズムの対角面に配置されてよい。この態様では、化学光の経路(すなわち、第1の色光源750からの第1の色光751)は、反射型偏光子30から更に分離される。
図7A〜7Bは色合成器700を示し、第2の色光源760及び第3の色光源770は、PBS 100に光を入射させるように配置される。第2の色光源760及び第3の色光源770は、出力面(第4のプリズム面160)を通って出力方向に第1のPBS 100を出る。
第1の色光源750は、第2の色光源760からの第2の色光761及び第3の色光源770からの第3の色光771と合成されるが、PBS 100には入らない、第1の色光751(化学光)を入射させるように配置される。以下の一実施形態によると、第1の色光源750は非偏光の青色光源750であってよく、第2の色光源760は非偏光の赤色光源760であってよく、第3の色光源770は非偏光の緑色光源770であってよい。青色光源750からの青色光751、赤色光源760からの赤色光761、及び緑色光源770からの緑色光771は、色合成器700の耐久性を向上させるために合成されてよい。一態様によると、任意の光トンネル40又はレンズのアセンブリ(図示せず)は、他の箇所で記載されるように、青色、赤色、緑色光源750、760、770のために提供されて、PBS 100から光源を隔てる間隔を与え、加えていくらかの光のコリメーションをもたらし得る。
色合成器700は、緑色光反射型ダイクロイックフィルタ720と、赤色光反射型ダイクロイックフィルタ730と、広帯域鏡740とを含む。一実施形態では、青色光選択性吸収体は、他の箇所で記載されるように、青色光反射型ダイクロイックミラー20によって透過される青色光の光学経路内に含まれてよい。
次に、図7Aを参照して、青色光751が非偏光である実施形態について、光合成器700を通る青色光源750からの青色光751の光学経路を説明する。この実施形態では、青色光751は、非保護反射型偏光子を損傷し得る化学光である。青色光751の主要部分752は、色選択性ダイクロイックミラー20から反射される。青色光751の非主要部分753は、色選択性ダイクロイックミラー20を通過し、色合成器700を出て、任意の青色光選択性吸収体(図示せず)によって所望により吸収される。
青色光源750からの青色光751は、任意の光トンネル40を通過し、第7のプリズム面792を通って第4のプリズム790に入り、色選択性ダイクロイックミラー20を横切る。青色光751は、反射される青色光751の主要部分752と透過される青色光751の非主要部分753とに分かれる。青色光751の主要部分752は、第8のプリズム面794を通って出力方向に第4のプリズム790を出る。青色光751の非主要部分753は、色選択性ダイクロイックミラー20を通過し、第6のプリズム面784を通って第3のプリズム780を出ることによって色合成器700を離れる。
図7Aに戻り、赤色光761が非偏光である実施形態について、光合成器700を通る赤色光源760からの赤色光761の光学経路を説明する。この実施形態では、p偏光の赤色光線767及びs偏光の赤色光線765を含む非偏光の光は、第8のプリズム面794を通って出力方向に第4のプリズム790を出る。
赤色光源760からの赤色光761は、任意の光トンネル40、緑色光反射型ダイクロイックフィルタ720、1/4波長位相差板220を通過し、第1のプリズム面130を通ってPBS 100に入る。赤色光761は、反射型偏光子30を横切り、p偏光の赤色光線762とs偏光の赤色光線763とに分かれる。p偏光の赤色光線762は、反射型偏光子30を通過し、第3のプリズム面150を通ってPBS 100を出て、1/4波長位相差板220を通過する際に円偏光の赤色光線764に変化する。円偏光の赤色光線764は、広帯域鏡740から反射して円偏光の方向を変化させ、1/4波長位相差板220を通過する際にs偏光の赤色光線765に変化し、第3のプリズム面150を通ってPBS 100に入る。s偏光の赤色光線765は、反射型偏光子30から反射し、第4のプリズム面160を通ってPBS 100を出て、第5のプリズム面782を通って第3のプリズム780に入り、色選択性ダイクロイックミラー20を通過し、第8のプリズム面794を通ってs偏光の赤色光線765として第4のプリズム790を出る。
s偏光の赤色光線763は、反射型偏光子30から反射し、第2のプリズム面140を通ってPBS 100を出て、1/4波長位相差板220を通過する際に円偏光の赤色光線766に変化する。円偏光の赤色光線766は、赤色光反射型ダイクロイックフィルタ730から反射して円偏光の方向を変化させ、1/4波長位相差板220を通過してp偏光の赤色光線767に変化し、第2のプリズム面140を通ってPBS 100に入り、反射型偏光子30を通過し、第4のプリズム面160を通ってPBS 100を出る。p偏光の赤色光線767は、第5のプリズム面780を通って第3のプリズム780に入り、色選択性ダイクロイックミラー20を通過し、第8のプリズム面794を通ってp偏光の赤色光線767として第4のプリズム790を出る。
次に、図7Bを参照して、緑色光771が非偏光である実施形態について、光合成器700を通る緑色光源770からの緑色光771の光学経路を説明する。この実施形態では、p偏光の緑色光線772及びs偏光の緑色光線777を含む非偏光の光は、第8のプリズム面794を通って第4のプリズム790を出る。
緑色光源770からの緑色光771は、任意の光トンネル40、赤色光反射型ダイクロイックフィルタ730、1/4波長位相差板220を通過し、第2のプリズム面140を通ってPBS 100に入る。緑色光771は、反射型偏光子30を横切り、p偏光の緑色光線772とs偏光の緑色光線773とに分かれる。p偏光の緑色光線772は、反射型偏光子30を通過し、第4のプリズム面160を通ってPBS 100を出て、第5のプリズム面782を通って第3のプリズム780に入り、色選択性ダイクロイックミラー20を通過し、第8のプリズム面794を通ってp偏光の緑色光線772として第4のプリズム790を出る。
s偏光の緑色光線773は、反射型偏光子30から反射し、第1のプリズム面130を通ってPBS 100を出て、1/4波長位相差板220を通過する際に円偏光の緑色光線774に変化する。円偏光の緑色光線774は、緑色光反射型ダイクロイックフィルタ720から反射して円偏光の方向を変化させ、1/4波長位相差板220を通過してp偏光の緑色光線775に変化し、第1のプリズム面130を通ってPBS 100に入り、反射型偏光子30を通過し、第3のプリズム面150を通ってPBS 100を出る。p偏光の緑色光線775は、1/4波長位相差板220を通過する際に円偏光の緑色光線776に変化し、広帯域鏡740から反射して円偏光の方向を変化させ、1/4波長位相差板220を通過する際にs偏光の緑色光線777に変化する。s偏光の緑色光線777は、第3のプリズム面150を通ってPBS 100に入り、反射型偏光子30から反射し、第4のプリズム面160を通ってPBS 100を出て、第5のプリズム面782を通って第3のプリズム780に入り、色選択性ダイクロイックミラー20を通過し、第8のプリズム面794を通ってs偏光の緑色光線777として第4のプリズム790を出る。
別の実施形態(図示せず)では、色合成器は、第4の色光を含んでよい。この実施形態では、広帯域鏡740は、図7A〜7Bに示される第1及び第2の色選択性ダイクロイックフィルタ720、730、任意の光トンネル40、並びに第2及び第3の光源760、770と同様の方法で配列される、第3の色選択性ダイクロイックミラー、任意の光トンネル40、及び第4の色光源で置換されてよい。第3の色選択性ダイクロイックフィルタは、第4の色光に対して透明であり、第2及び第3の色光760、770を反射してよい。
更に別の実施形態(図示せず)では、色選択性ダイクロイックミラー20は、むしろ青色光に対して透過的である、赤色及び緑色光反射型色選択性ダイクロイックミラーであってよい。この実施形態では、赤色及び緑色光761、771は、前述のように第4のプリズム面160を通って出力方向にPBS 100を出て、次に第5のプリズム面782を通って第3のプリズム780に入り、色選択性ダイクロイックミラー20から反射し、第6のプリズム面784を通って第3のプリズム780を出る。青色光750は、前述のように第4のプリズム790に入るが、青色光751の主要部分753は、青色光透過型色選択性ダイクロイックミラー20を通過し、第6のプリズム面784を通って第3のプリズム780を出る。青色光750の非主要部分752は、青色光透過型色選択性ダイクロイックミラーから反射し、第8のプリズム面794を通って第4のプリズム790から出る。
図9は、3色光合成システム902を含むプロジェクタ900を図示する。3色光合成システム902は、出力領域904において合成出力光をもたらす。一実施形態では、出力領域904における合成出力光は偏光される。出力領域904における合成出力光は、光エンジン光学系906を通ってプロジェクタ光学系908へと通過する。
光エンジン光学系906は、レンズ922、924及び反射体926を含む。プロジェクタ光学系908は、レンズ928、PBS 930、及び投影レンズ932を含む。投影レンズ932の1つ以上は、投影される画像912の焦点を調整するために、PBS 930に対して可動であってよい。反射撮像装置910は、プロジェクタ光学系内の光の偏光状態を調節することができ、その結果、PBS 930を通過し投影レンズに入る光の強度が調節されて、投影画像912を生成する。制御回路914は、反射撮像装置910の動作を光源916、918及び920の順序と同期するように、反射撮像装置910並びに光源916、918及び920に連結されている。一態様では、出力領域904における合成光の第1の部分は、プロジェクタ光学系908を通して方向付けられ、合成出力光の第2部分は、出力領域904を通して色合成器902の中に戻って再利用されてよい。合成光の第2の部分は、例えば、鏡、反射型偏光子、反射LCD及などからの反射によってリサイクルされて色合成器に戻ることができる。図9に図示した構成は代表的なものであり、本開示の光合成システムは、反射型マイクロミラー撮像装置などの投影システムにも使用することができる。一代替態様によると、透過型撮像装置を使用することができる。
一態様によると、上記のような色光合成光学システムは3色(白)出力を生成する。反射型偏光子フィルムを有する偏光ビームスプリッタの偏光特性(s偏光の反射及びp偏光の透過)は、広範囲の光源光の入射角に関して低い感度を有するので、本光学システムは高性能である。追加的なコリメーション構成要素を使用して、色合成器における光源からの光のコリメーションを改善することができる。ある程度のコリメーションがないと、入射角(AOI)、TIRの損失、又はTIRのフラストレーションのためのエバネッセント結合増加、並びに/あるいはPBSにおける偏波識別及びPBSにおける機能の劣化に応じたダイクロイック反射性の変動に関連する有意な光の損失が生じる。本開示において、偏光ビームスプリッタは、内部全反射に含まれ所望の表面を通ってのみ放射される光を保持するためのライトパイプとして機能する。
図8は、TFCalcソフトウェア(Software Spectra,Inc.,Portland ORから入手可能)を使用してモデル化した赤色、緑色、及び青色ダイクロイックフィルタ(R、G、Bと表示)、並びに1つのダイクロイックミラー(BBと表示)の透過スペクトルのグラフである。TFCalcモデルは、460nmの1/4波長厚を有する、10ペアのSiOとTiOとの交互層の光学スタックで開始し、SiOとTiOとの追加層を挿入するニードル最適化による局所探索を使用して最適化した。光学スタックの総厚は、3000nmまでに制限された。
3つのダイクロイックフィルタは、平均入射角0°(すなわち、表面に対して垂直)のランバード角度分布を有するF1.5コーンへの赤色光(630nm)、緑色光(530nm)、青色光(460nm)の入射を透過するようにモデル化した。各ダイクロイックフィルタの入力側は、空中であった。ダイクロイックミラーは、平均入射角45°のランバード角度分布を有するF1.5コーンに入射する、460nmに中心がある光を遮断し、530nm及び630nmに中心がある光を透過するようにモデル化した。ダイクロイックミラーの入力側は、1.52の屈折率を有するガラス内でモデル化した。
図3Bに示される色合成器に図8の透過スペクトルを適用すると、入射青色光(図3Bの第1の色光350)がPRP 190のダイクロイックミラー(BB)を横切ったことを示す。ダイクロイックミラーは、青色光(図3Bの主要部分351)の約75%を反射し、約25%(図3Bの非主要部分352)を透過した。透過された25%の青色光は、図3A〜3Dに示されるなどの色合成器のPRP 190内の反射型偏光子によって典型的に透過される偏光状態と同じ偏光状態のものである。透過された青色光は、任意の波長選択性吸収体70によってシステムから除かれてよく、その結果、ダイクロイックミラーを備えない色合成器と比較して、反射型偏光子の青色光曝露は約12.5%となる。実際には、青色LEDの出力は、25%の減少を補うために増加する場合があり、したがって反射型偏光子の実際の青色光曝露は、ダイクロイックミラーを備えない色合成器の約17%となるであろう。同様に、緑色LEDの出力も、ダイクロイックミラーによる減少(図8から、約75%の透過)を補うために増加し得る。
典型的には、青色光の化学線作用は緑色光の化学線作用の約10倍である。緑色の発光力が青色の発光力の2倍である構成では、ダイクロイックミラーを備える上記の色合成器は、ダイクロイックミラーを備えない色合成器と比較して約4倍の反射型偏光子の耐用期間をもたらすであろう。耐用期間の改善は、散乱が波長に反応し、反射型偏光子への短波長光曝露の低減は光の散乱傾向を低減させる傾向にあるので、更に促進され得る。
標準の色合成器(CC)構成(すなわち、波長選択性ダイクロイックミラーを備えない)の明所視効率を、青色保護色合成器(BBCC)と比較した。波長選択性ダイクロイックミラーを備えない標準の色合成器(CC)は、例えば、米国特許出願第61/095,129号、名称「LIGHT COMBINER」(2008年9月8日出願)に記載されている。Phlatlight(商標)LED(Luminus Inc.から入手可能)のスペクトル出力を使用して、明所視効率に関するデータを生成した。BBCCは、CC構成と比較して、74.3%の青色出力及び88.0%の緑色出力を有していた。青色光源は、装置の出力を制限するLED色ではないことが多いため、BBCCは、CCの輝度及び出力の88%を有していた。
II〜VI半導体変換緑色LEDなど、より長い波長を有する緑色光源を使用して、別の構成をモデル化した。改善された色合成器は、青色及び赤色LEDを緑色II〜VI LEDと共に使用することにより作製することができ、青色LEDと緑色LEDとの向上したスペクトル分離をもたらす。より長い波長のII〜VI LEDを備えるCCとBBCCとの間での輝度の減少(約3%の輝度の減少)は、標準的なInGaN緑色LED(約12%の輝度の減少)と比較してわずかであった。
反射型偏光子の青色光曝露は、他の個所で記載されるように、青色光反射ダイクロイックミラーと反射型偏光子との間に波長選択性吸収体(すなわち、青色フィルタ)を配置することによって更に低減できる。上記と同じ分析を使用すると、この方法は、耐用期間を6倍に延長する可能性を有する。
潜在的な懸念事項は、青色光を吸収することにより発生する熱が反射型偏光子を損傷し得ることである。ピーク温度は、反射型偏光子に対して垂直な両面(すなわち、図1Bに示される端面170、175、180、185)にヒートシンクを配置することによって低下できる。ピーク温度を低下させる他の方法としては、サファイアの層など高熱伝導率を有する材料の層をダイクロイックミラーに組み込むことが挙げられる。サファイア層は、追加の青色光吸収コーティングを加えることによる、又は青色反射ダイクロイックコーティングでサファイアをコーティングすることによる、セリウムなど好適な元素でのドープ処理を経て黄色であり得る。
反射型偏光子への青色光の曝露は、CC又はBBCCのいずれかの色合成器において均一でないことがある。CCでは、非均一性は、青色LEDとPBSとの間の照明光学系(例えば、他の箇所に記載される光トンネル)によってもたらされ得る。BBCCにおける青色反射体は、青色ダイクロイックの角度選択性及び偏光選択性により非均一性を追加することがある。
青色保護ダイクロイック反射体を備える色合成器の効率性は、上記の単純な分析よりも高い場合がある。いくつかのメカニズムは、青色保護反射体によってもたらされる非効率性を低減できる。例えば、青色反射体は、大局的な最適化プロセスを通じて最適化できる。設計は、大局的な最適化を使用することによって、又は誘導体コーティングスタックの平均指数を増加させることによって改善できる。任意の組み合わせの誘電体スタックを使用できる。例えば、TiO及びAlの干渉スタックを、上述の実施例で使用されたTiO及びSiOの代わりに使用できる。更に、実質的な減少は含まれなかった。反射型偏光子からの反射が非常に高いことがあるが、反射型偏光子によって透過された光は、1/4波長位相差板によって4回回転されることができ、散乱及び/又は反射型偏光子との脱分極相互作用は最小化されるはずである。散乱は青色光で最も激しい可能性があり、位相差板は、意図的に、好ましくは3色全てに対して1/4波長遅延をもたらす。このような設計は達成が困難な場合があり、通常は性能が低下する。上記の効率の計算はまた、標準の色合成器が、反射型偏光子によって最初に透過される青色光を効率的に発光することを仮定している。
システム効率を改善する別の方法は、緑色光源よりも青色光源に大きいF値を有する光源を使用することであり得る。光学システムで、青色及び緑色源のF値が同じであることが要求される場合、高分散性の光学素子、例えば、「複眼」ホモジナイザーのバイナリレンズを使用してよい。青色光のF値が大きくなると、より効率的な青色保護フィルタを設計できることがある。
青色保護色合成器の性能は、標準構成と比較して向上し得るが、これは、青色LEDの前の位相差板が緑色及び赤色波長に対して機能するだけでよく、赤色LEDの前の位相差板が緑色光に1/4波長遅延をもたらすだけでよく、緑色LEDの前の位相差板が赤色光に1/4波長遅延をもたらすだけでよいからである。また、赤色LEDと緑色LEDとの間の波長差がより小さくなるので、このことは、II〜VIなど、より長い波長の緑色LEDに利点をもたらす。有限のスペクトル範囲で機能する、より広範囲の使用可能な位相差板が存在する。
指示がない限り、本明細書及び請求項で使用される特性となる大きさ、量、及び物理特性を示す全ての数字は、「約」という用語によって修飾されることを理解されたい。それ故に、別の指示がない限り、本明細書及び添付の請求項に説明される数字のパラメータは近似値であり、本明細書に開示された教示を使用して当業者が獲得しようとする所望の特性に応じて変化し得る。
本願で引用した全ての参照文献及び刊行物は、本開示と直接的に相反する範囲を除いて、その全てが引用によって本開示に明白に組み込まれる。本明細書において特定の実施形態が例示及び説明されてきたが、多様な代替及び/又は同等の実施が、本開示の範囲から逸脱することなく、図示され説明された特定の実施形態と置き換えられ得ることは、当業者には理解されるであろう。本出願は、本明細書で説明された特定の実施形態のいかなる翻案又は変形をも包含すべく意図されている。したがって、本開示が「特許請求の範囲」及びその同等物によってのみ限定されることが意図される。

Claims (57)

  1. 光学素子であって、
    第1の入力面を有し、前記第1の入力面に対して垂直な第1の色の光線を透過するように配置される第1の色選択性ダイクロイックフィルタと、
    前記第1の色の光線を約45度の角度で横切るように配置される色選択性ダイクロイックミラーと、
    前記色選択性ダイクロイックミラーに近接し、前記第1の色選択性ダイクロイックフィルタに対向して配置される反射型偏光子と、
    を備え、
    前記色選択性ダイクロイックミラーが、前記第1の色の光線の主要部分を反射でき、前記第1の色の光線の非主要部分を透過できる、光学素子。
  2. 前記第1の色の光線の前記主要部分が、前記第1の色の光線の少なくとも60%を含む、請求項1に記載の光学素子。
  3. 前記第1の色の光線の前記主要部分が、前記第1の色の光線の少なくとも75%を含む、請求項1に記載の光学素子。
  4. 前記第1の色の光線が、前記反射型偏光子を劣化し得る第1の波長範囲の光を含む、請求項1に記載の光学素子。
  5. 前記第1の波長範囲の光を吸収でき、前記第1の色の光線の前記非主要部分を横切るように配置される波長選択性吸収体を更に備える、請求項4に記載の光学素子。
  6. 前記波長選択性吸収体が、前記色選択性ダイクロイックミラーと前記反射型偏光子との間に配置される、請求項5に記載の光学素子。
  7. 前記第1の波長範囲の光が青色光又は紫外線を含む、請求項4に記載の光学素子。
  8. 前記第1の波長範囲の光が、100ナノメートル〜500ナノメートルの波長範囲を有する光を含む、請求項4に記載の光学素子。
  9. 偏光ビームスプリッタ(PBS)を形成する第1及び第2のプリズムを更に備え、前記反射型偏光子及び前記色選択性ダイクロイックミラーが前記PBSの対角面に配置される、請求項1に記載の光学素子。
  10. 請求項1に記載の光学素子を備える、色合成器。
  11. 請求項10に記載の色合成器を備える、投射システム。
  12. 光学素子であって、
    第2の入力面を有し、前記第2の入力面に対して垂直な第2の色の光線を透過するように配置され、前記第2の色の光線が更に前記色選択性ダイクロイックミラーを約45度の角度で横切る、第2の色選択性ダイクロイックフィルタを更に備え、
    前記色選択性ダイクロイックミラーが、前記第2の色の光線の主要部分を透過できる、請求項1に記載の光学素子。
  13. 前記第1の色の光線及び前記第2の色の光線のそれぞれが収束又は発散光線を含む、請求項12に記載の光学素子。
  14. 光学素子であって、
    前記第1の色選択性ダイクロイックフィルタと前記反射型偏光子との間に配置される第1の位相差板と、
    前記第2の色選択性ダイクロイックフィルタと前記反射型偏光子との間に配置される第2の位相差板と、
    を更に備える、請求項12に記載の光学素子。
  15. 前記反射型偏光子が第1の偏光状態に対して位置合わせされており、各位相差板が、前記第1の偏光状態に対して約45度の角度に位置合わせされた1/4波長位相差板を備える、請求項14に記載の光学素子。
  16. 前記第1の色の光線が第1の色の非偏光を含み、前記第2の色の光線が第1の色の非偏光とは異なる第2の色の非偏光を含む、請求項15に記載の光学素子。
  17. 請求項16に記載の光学素子を備える、色合成器。
  18. 色合成器であって、
    前記第1の色の非偏光を発光する第1の色の光源と、
    前記第2の色の非偏光を発光する第2の色の光源と、
    前記第1の色の非偏光及び前記第2の色の非偏光を含む合成光と、
    を更に含む、請求項17に記載の色合成器。
  19. 請求項18に記載の色合成器を備える、投射システム。
  20. 光学素子であって、
    第3の入力面を有し、前記第3の入力面に対して垂直な第3の色の光線を透過するように配置され、前記第3の色の光線が更に前記色選択性ダイクロイックミラーを約45度の角度で横切る、第3の色選択性ダイクロイックフィルタと、
    前記第1の偏光状態に対して約45度の角度に位置合わせされ、前記第3の色選択性ダイクロイックフィルタに対向して配置される第3の1/4波長位相差板と、
    を更に備え、
    前記色選択性ダイクロイックミラーが、前記第3の色の光線の主要部分を透過できる、請求項15に記載の光学素子。
  21. 前記第1の色の光線が第1の色の非偏光を含み、前記第2の色の光線が第2の色の非偏光を含み、前記第3の色の光線が第3の色の非偏光を含み、前記第1、第2、及び第3の色の光の非偏光のそれぞれが、異なる波長範囲を含む、請求項20に記載の光学素子。
  22. 請求項21に記載の光学素子を備える、色合成器。
  23. 色合成器であって、
    前記第1の色の非偏光を発光する第1の色の光源と、
    前記第2の色の非偏光を発光する第2の色の光源と、
    前記第3の色の非偏光を発光する第3の色の光源と、
    前記第1の色の非偏光、前記第2の色の非偏光、及び前記第3の色の非偏光を含む合成光と、
    を更に含む、請求項22に記載の色合成器。
  24. 請求項23に記載の光学素子を備える、投射システム。
  25. 光学素子であって、
    第1の入力面を有し、前記第1の入力面に対して垂直な第1の色の光線を透過するように配置される第1の色選択性ダイクロイックフィルタと、
    前記第1の色の光線を約45度の角度で横切るように配置される反射型偏光子と、
    出力面に対して垂直な出力方向に前記第1の色の光線を透過するように配置される出力面と、
    前記第1の色の光線及び第2の色の光線の両方を約45度の角度で横切るように配置される色選択性ダイクロイックミラーと、
    を備え、
    前記色選択性ダイクロイックミラーが、前記第2の色の光線の第1の主要部分を前記出力方向に反射でき、前記第1の色の光線の第2の主要部分を前記出力方向に透過できる、光学素子。
  26. 前記色選択性ダイクロイックミラーが、前記出力方向に対して垂直な前記第2の色の光線の第1の主要部分を透過でき、前記出力方向に対して垂直な前記第1の色の光線の第2の主要部分を反射できる、請求項25に記載の光学素子。
  27. 光学素子であって、
    第2の入力面を有し、前記第2の入力面に対して垂直な第3の色の光線を透過するように配置され、前記第3の色の光線が、前記反射型偏光子及び前記色選択性ダイクロイックミラーの両方を約45度の角度で横切ることができる、第2の色選択性ダイクロイックフィルタを更に備え、
    前記色選択性ダイクロイックミラーが、前記第3の光線の第3の主要部分を前記出力方向に透過できる、請求項25に記載の光学素子。
  28. 前記第2の色の光線の前記主要部分が、前記第2の色の光線の少なくとも60%を含む、請求項25に記載の光学素子。
  29. 前記第2の色の光線の前記主要部分が、前記第2の色の光線の少なくとも75%を含む、請求項25に記載の光学素子。
  30. 前記第2の色の光線が、前記反射型偏光子を劣化し得る波長範囲の光を含む、請求項25に記載の光学素子。
  31. 前記波長範囲の光が青色光又は紫外線を含む、請求項30に記載の光学素子。
  32. 前記波長範囲の光が、100ナノメートル〜500ナノメートルの波長範囲を有する光を含む、請求項30に記載の光学素子。
  33. 偏光ビームスプリッタ(PBS)を形成する第1及び第2のプリズムを更に備え、前記反射型偏光子が前記PBSの対角面に配置される、請求項25に記載の光学素子。
  34. 前記第1の色の光線及び前記第2の色の光線のそれぞれが収束又は発散光線を含む、請求項25に記載の光学素子。
  35. 光学素子であって、
    前記第1の色選択性ダイクロイックフィルタと前記反射型偏光子との間に配置される第1の位相差板と、
    前記第2の色選択性ダイクロイックフィルタと前記反射型偏光子との間に配置される第2の位相差板と、
    を更に備える、請求項27に記載の光学素子。
  36. 前記反射型偏光子が第1の偏光状態に対して位置合わせされており、各位相差板が、前記第1の偏光状態に対して約45度の角度に位置合わせされた1/4波長位相差板を備える、請求項35に記載の光学素子。
  37. 前記第1の色の光線が非偏光の第1の色光を含み、前記第2の色の光線が非偏光の第2の色光を含み、前記第3の色の光線が非偏光の第3の色光を含み、前記非偏光の第1、第2、及び第3の色光のそれぞれが異なる波長範囲を含む、請求項36に記載の光学素子。
  38. 請求項37に記載の光学素子を備える、色合成器。
  39. 色合成器であって、
    前記第1の色の非偏光を発光する第1の色の光源と、
    前記第2の色の非偏光を発光する第2の色の光源と、
    前記第3の色の非偏光を発光する第3の色の光源と、
    前記第1の色の非偏光、前記第2の色の非偏光、及び前記第3の色の非偏光を含む合成光と、
    を更に含む、請求項38に記載の色合成器。
  40. 請求項39に記載の光学素子を備える、投射システム。
  41. 第1の色選択性ダイクロイックフィルタと、
    色選択性ダイクロイックミラーと、
    反射型偏光子と、
    を備える、光学素子であって、
    前記第1の色選択性ダイクロイックフィルタは第1の入力面を有し、前記第1の入力面に対して垂直な第1の色の光線を透過するように配置され、前記第1の色の光線が、前記反射型偏光子を劣化し得る第1の波長範囲の光及び第2の波長範囲の光を含み、
    前記色選択性ダイクロイックミラーは前記第1の色の光線を約45度の角度で横切るように配置され、
    前記反射型偏光子は前記色選択性ダイクロイックミラーに近接し、前記第1の色選択性ダイクロイックフィルタに対向して配置され、
    前記色選択性ダイクロイックミラーが、前記第1の波長範囲の光の主要部分を反射でき、前記第1の波長範囲の光の非主要部分を透過でき、前記第2の波長範囲の光の主要部分を反射できる、光学素子。
  42. 前記第1の波長範囲の光の前記主要部分が、前記第1の波長範囲の光の少なくとも60%を含む、請求項41に記載の光学素子。
  43. 前記第1の波長範囲の光の前記主要部分が、前記第1の波長範囲の光の少なくとも75%を含む、請求項41に記載の光学素子。
  44. 光学素子であって、前記第1の波長範囲の光を吸収でき、前記第1の波長範囲の光の前記非主要部分を横切るように配置される波長選択性吸収体を更に備える、請求項41に記載の光学素子。
  45. 前記波長選択性吸収体が、前記色選択性ダイクロイックミラーと前記反射型偏光子との間に配置される、請求項44に記載の光学素子。
  46. 前記波長選択性吸収体が、前記色選択性ダイクロイックミラーと前記反射型偏光子との間に配置される、請求項44に記載の光学素子。
  47. 前記第1の波長範囲の光が青色光又は紫外線を含む、請求項41に記載の光学素子。
  48. 前記第1の波長範囲の光が、100ナノメートル〜500ナノメートルの波長範囲を有する光を含む、請求項41に記載の光学素子。
  49. 偏光ビームスプリッタ(PBS)を形成する第1及び第2のプリズムを更に備え、前記反射型偏光子及び色選択性ダイクロイックミラーが前記PBSの対角面に配置される、請求項41に記載の光学素子。
  50. 請求項41に記載の光学素子を備える、色合成器。
  51. 請求項50に記載の色合成器を備える、投射システム。
  52. 光学素子であって、
    第2の入力面を有し、前記第2の入力面に対して垂直な第2の色の光線を透過するように配置され、前記第2の色の光線が更に前記色選択性ダイクロイックミラーを約45度の角度で横切る、第2の色選択性ダイクロイックフィルタを更に備え、
    前記色選択性ダイクロイックミラーが、前記第2の色の光線の主要部分を透過できる、請求項41に記載の光学素子。
  53. 前記第1の色の光線及び前記第2の色の光線のそれぞれが収束又は発散光線を含む、請求項52に記載の光学素子。
  54. 光学素子であって、
    前記第1の色選択性ダイクロイックフィルタと前記反射型偏光子との間に配置される第1の位相差板と、
    前記第2の色選択性ダイクロイックフィルタと前記反射型偏光子との間に配置される第2の位相差板と、
    を更に備える、請求項52に記載の光学素子。
  55. 前記反射型偏光子が第1の偏光状態に対して位置合わせされており、各位相差板が、前記第1の偏光状態に対して約45度の角度に位置合わせされた1/4波長位相差板を備える、請求項54に記載の光学素子。
  56. 前記第1の色の光線が第1の色の非偏光を含み、前記第2の色の光線が第1の色の非偏光とは異なる第2の色の非偏光を含む、請求項52に記載の光学素子。
  57. 請求項54に記載の光学素子を備える、色合成器。
JP2011537496A 2008-11-19 2009-11-10 高耐久性色合成器 Pending JP2012509507A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11606108P 2008-11-19 2008-11-19
US61/116,061 2008-11-19
PCT/US2009/063779 WO2010059453A2 (en) 2008-11-19 2009-11-10 High durability color combiner

Publications (1)

Publication Number Publication Date
JP2012509507A true JP2012509507A (ja) 2012-04-19

Family

ID=42198744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011537496A Pending JP2012509507A (ja) 2008-11-19 2009-11-10 高耐久性色合成器

Country Status (8)

Country Link
US (1) US8542441B2 (ja)
EP (1) EP2359179A4 (ja)
JP (1) JP2012509507A (ja)
KR (1) KR20110084328A (ja)
CN (1) CN102282497B (ja)
SG (1) SG171330A1 (ja)
TW (1) TWI516805B (ja)
WO (1) WO2010059453A2 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014038329A (ja) * 2012-08-10 2014-02-27 Toyota Motor Engineering & Manufacturing North America Inc 全方向反射体
WO2014196015A1 (ja) * 2013-06-04 2014-12-11 Necディスプレイソリューションズ株式会社 照明光学系及びプロジェクタ
JP2016177129A (ja) * 2015-03-20 2016-10-06 セイコーエプソン株式会社 プロジェクター
CN104950562B (zh) * 2014-03-24 2017-03-01 台达电子工业股份有限公司 投影装置
JP2017083907A (ja) * 2017-02-07 2017-05-18 Necディスプレイソリューションズ株式会社 プロジェクタおよび画像形成素子への照明光の照射方法
JP2021165825A (ja) * 2020-04-01 2021-10-14 パナソニックIpマネジメント株式会社 表示装置
US11366311B2 (en) 2020-04-01 2022-06-21 Panasonic Intellectual Property Management Co., Ltd. Display device

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10788608B2 (en) 2007-08-12 2020-09-29 Toyota Jidosha Kabushiki Kaisha Non-color shifting multilayer structures
US10690823B2 (en) 2007-08-12 2020-06-23 Toyota Motor Corporation Omnidirectional structural color made from metal and dielectric layers
US10870740B2 (en) 2007-08-12 2020-12-22 Toyota Jidosha Kabushiki Kaisha Non-color shifting multilayer structures and protective coatings thereon
JP2013536454A (ja) 2010-06-28 2013-09-19 シンヴェント・アクチェセルスカベット 立体3d表示装置のための視認補助具
US8982463B2 (en) 2010-09-22 2015-03-17 3M Innovative Properties Company Tilted plate normal incidence color combiner with a polarizing beam splitter
DE102011051818A1 (de) 2011-07-13 2013-01-17 Technische Universität Berlin Verfahren zum Mischen von Lichtstrahlen unterschiedlicher Farben, Lichtstrahlkombinier-Vorrichtung und deren Verwendung
WO2013016163A2 (en) * 2011-07-22 2013-01-31 3M Innovative Properties Company Illumination module
WO2013028394A2 (en) 2011-08-19 2013-02-28 3M Innovative Properties Company Projection subsystem
TW201327014A (zh) * 2011-10-24 2013-07-01 3M Innovative Properties Co 偏斜雙色偏光之色彩結合器
WO2013162939A2 (en) 2012-04-25 2013-10-31 3M Innovative Properties Company Two imager projection device
CN102799057A (zh) * 2012-08-07 2012-11-28 华中科技大学 一种采用固体绿激光和红、蓝光led的高亮度混合白光源
US20140204459A1 (en) * 2013-01-22 2014-07-24 Cynosure Photonics Corp. High efficiency light combination module of projection system
TW201447377A (zh) * 2013-06-07 2014-12-16 Hon Hai Prec Ind Co Ltd 雷射合光裝置
US9664905B2 (en) * 2013-06-28 2017-05-30 Microsoft Technology Licensing, Llc Display efficiency optimization by color filtering
CN103592770A (zh) * 2013-11-19 2014-02-19 苏州大学 一种rgb三色光合束器及其制备方法
TWI498662B (zh) * 2013-12-26 2015-09-01 Qisda Corp 雷射投影設備
JP6741586B2 (ja) 2014-04-01 2020-08-19 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド 色シフトのない多層構造
CN106151999A (zh) * 2015-01-30 2016-11-23 欧帝尔光学镀膜有限公司 使用led或荧光粉转换光源的投射系统
US20180017735A1 (en) * 2016-07-13 2018-01-18 Futurewei Technologies, Inc. Wavelength Division Multiplexer/Demultiplexer with Flexibility of Optical Adjustment
JP2019066837A (ja) * 2017-09-29 2019-04-25 キヤノン株式会社 偏光分離素子及びこれを用いた画像投射装置
CN110501287A (zh) * 2018-05-19 2019-11-26 梅特勒-托利多仪器(上海)有限公司 光路结构
CN112630985B (zh) * 2020-12-28 2021-09-14 福建福特科光电股份有限公司 黑光镜头的分色装置及分色方法
CN113970834B (zh) * 2021-10-29 2023-06-16 歌尔光学科技有限公司 合色棱镜、光学模组和电子设备
CN114596792A (zh) * 2022-02-24 2022-06-07 武汉精立电子技术有限公司 微显示器的贴合方法及设备
JP2024041008A (ja) * 2022-09-13 2024-03-26 株式会社小糸製作所 画像投影装置

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3497283A (en) * 1966-08-24 1970-02-24 Bausch & Lomb Color selection polarizing beam splitter
US4424589A (en) * 1980-04-11 1984-01-03 Coulter Systems Corporation Flat bed scanner system and method
US5067799A (en) * 1989-12-27 1991-11-26 Honeywell Inc. Beam combining/splitter cube prism for color polarization
US5621551A (en) 1993-04-30 1997-04-15 Hughes-Jvc Technology Corporation Immersed dichroic system for single projection lens liquid crystal video projector
US5541673A (en) * 1993-09-03 1996-07-30 Nec Corporation Projector having a halfwave plate disposed in light-leaving side of a light valve
US5882774A (en) * 1993-12-21 1999-03-16 Minnesota Mining And Manufacturing Company Optical film
US6704065B1 (en) * 1995-04-07 2004-03-09 Colorlink, Inc. Optical system for producing a modulated color image
US6486997B1 (en) * 1997-10-28 2002-11-26 3M Innovative Properties Company Reflective LCD projection system using wide-angle Cartesian polarizing beam splitter
US6147734A (en) * 1998-12-17 2000-11-14 Dai Nippon Printing Co., Ltd. Bidirectional dichroic circular polarizer and reflection/transmission type liquid-crystal display device
US6550919B1 (en) * 1999-03-26 2003-04-22 Unaxis Balzers Aktiengesellschaft Spectral light division and recombination configuration as well as process for the spectrally selective modulation of light
US6636276B1 (en) * 1999-09-09 2003-10-21 International Business Machines Corporation Projection display system with at least two reflective light valves
US6490081B1 (en) * 2000-07-28 2002-12-03 The Board Of Trustees Of The Leland Stanford Junior University Method of amplifying optical signals using doped materials with extremely broad bandwidths
US6643077B2 (en) * 2001-04-20 2003-11-04 3M Innovative Properties Company Methods and apparatus for positioning optical prisms
US6857747B2 (en) * 2001-08-06 2005-02-22 Advanced Digital Optics, Inc. Color management system
US7352513B2 (en) * 2001-09-12 2008-04-01 Lightmaster Systems, Inc. Prism assemblies and kernel configurations for use in projection systems
US6816309B2 (en) * 2001-11-30 2004-11-09 Colorlink, Inc. Compensated color management systems and methods
US6961179B2 (en) * 2001-11-30 2005-11-01 Colorlink, Inc. Compensated color management systems and methods
JP4157729B2 (ja) 2002-06-12 2008-10-01 株式会社日立製作所 反射型映像投射装置と、それを用いた投写型映像ディスプレイ装置、及び、それに用いる光源装置
JP2004226767A (ja) * 2003-01-24 2004-08-12 Nippon Hoso Kyokai <Nhk> 光学ユニット及びそれを用いた表示システム並びに映像光出力方法
JP2005003825A (ja) 2003-06-10 2005-01-06 Matsushita Electric Ind Co Ltd 画像表示装置
JP2007516452A (ja) 2003-06-24 2007-06-21 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 投射型ディスプレイ等の光学系において反射光を再利用する方法及び装置
US7360900B2 (en) * 2004-03-10 2008-04-22 Seiko Epson Corporation Illuminating apparatus, image display apparatus, and projector
US7692861B2 (en) * 2004-07-06 2010-04-06 Real D Illumination systems
US7320521B2 (en) * 2004-07-12 2008-01-22 Next Wave Optics, Inc. Optical engine architectures
JP4488299B2 (ja) * 2004-07-22 2010-06-23 オリンパス株式会社 ダイクロイックミラー、蛍光フィルタセットおよび顕微鏡装置
US7364302B2 (en) * 2004-08-09 2008-04-29 3M Innovative Properties Company Projection display system using multiple light sources and polarizing element for using with same
JP4913996B2 (ja) 2004-09-16 2012-04-11 キヤノン株式会社 投射型画像表示装置
US7261453B2 (en) * 2005-01-25 2007-08-28 Morejon Israel J LED polarizing optics for color illumination system and method of using same
US7445340B2 (en) 2005-05-19 2008-11-04 3M Innovative Properties Company Polarized, LED-based illumination source
JP4736570B2 (ja) 2005-07-04 2011-07-27 セイコーエプソン株式会社 照明装置及びプロジェクタ
JP2007147698A (ja) * 2005-11-24 2007-06-14 Sumitomo Chemical Co Ltd 波長選択吸収性光学部材
CN101046602A (zh) 2006-03-28 2007-10-03 中华映管股份有限公司 投影显示装置
US20080018861A1 (en) * 2006-07-18 2008-01-24 Colorlink, Inc. Light collectors for projection systems
US20080231953A1 (en) * 2007-03-22 2008-09-25 Young Garrett J System and Method for LED Polarization Recycling
JP5164421B2 (ja) * 2007-04-24 2013-03-21 キヤノン株式会社 色分解合成光学系およびそれを用いた画像投影装置
US7821713B2 (en) * 2007-05-18 2010-10-26 3M Innovative Properties Company Color light combining system for optical projector

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014038329A (ja) * 2012-08-10 2014-02-27 Toyota Motor Engineering & Manufacturing North America Inc 全方向反射体
WO2014196015A1 (ja) * 2013-06-04 2014-12-11 Necディスプレイソリューションズ株式会社 照明光学系及びプロジェクタ
JPWO2014196015A1 (ja) * 2013-06-04 2017-02-23 Necディスプレイソリューションズ株式会社 照明光学系及びプロジェクタ
CN104950562B (zh) * 2014-03-24 2017-03-01 台达电子工业股份有限公司 投影装置
JP2016177129A (ja) * 2015-03-20 2016-10-06 セイコーエプソン株式会社 プロジェクター
JP2017083907A (ja) * 2017-02-07 2017-05-18 Necディスプレイソリューションズ株式会社 プロジェクタおよび画像形成素子への照明光の照射方法
JP2021165825A (ja) * 2020-04-01 2021-10-14 パナソニックIpマネジメント株式会社 表示装置
JP7002061B2 (ja) 2020-04-01 2022-02-10 パナソニックIpマネジメント株式会社 表示装置
US11366311B2 (en) 2020-04-01 2022-06-21 Panasonic Intellectual Property Management Co., Ltd. Display device

Also Published As

Publication number Publication date
EP2359179A4 (en) 2012-08-22
TWI516805B (zh) 2016-01-11
EP2359179A2 (en) 2011-08-24
TW201027119A (en) 2010-07-16
US8542441B2 (en) 2013-09-24
CN102282497A (zh) 2011-12-14
WO2010059453A2 (en) 2010-05-27
KR20110084328A (ko) 2011-07-21
SG171330A1 (en) 2011-07-28
US20110216396A1 (en) 2011-09-08
WO2010059453A3 (en) 2010-07-22
CN102282497B (zh) 2014-07-02

Similar Documents

Publication Publication Date Title
US8542441B2 (en) High durability color combiner
JP5449331B2 (ja) 光学素子及び色合成器
US20110007392A1 (en) Light combiner
JP2012509512A (ja) 偏光変換を行う色合成器
US20140253849A1 (en) Titled dichroic polarizing beamsplitter
US20110149547A1 (en) Optical element and color combiner
US8654444B2 (en) Polarization converting color combiner
US20100277796A1 (en) Light combiner
US20130010360A1 (en) Compact optical integrator
WO2013016163A2 (en) Illumination module