JP2012237066A - 熱間プレス成形品、その製造方法および熱間プレス成形用薄鋼板 - Google Patents

熱間プレス成形品、その製造方法および熱間プレス成形用薄鋼板 Download PDF

Info

Publication number
JP2012237066A
JP2012237066A JP2012103946A JP2012103946A JP2012237066A JP 2012237066 A JP2012237066 A JP 2012237066A JP 2012103946 A JP2012103946 A JP 2012103946A JP 2012103946 A JP2012103946 A JP 2012103946A JP 2012237066 A JP2012237066 A JP 2012237066A
Authority
JP
Japan
Prior art keywords
hot press
less
volume
thin steel
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012103946A
Other languages
English (en)
Other versions
JP5873385B2 (ja
Inventor
Junya Naito
純也 内藤
Toshio Murakami
俊夫 村上
Chikayuki Ikeda
周之 池田
Keisuke Okita
圭介 沖田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2012103946A priority Critical patent/JP5873385B2/ja
Publication of JP2012237066A publication Critical patent/JP2012237066A/ja
Application granted granted Critical
Publication of JP5873385B2 publication Critical patent/JP5873385B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • B21D22/208Deep-drawing by heating the blank or deep-drawing associated with heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

【課題】強度と伸びのバランスを適切な範囲にコントロールでき、且つ高延性である熱間プレス成形品、このような熱間プレス成形品を製造するための有用な方法および熱間成形用薄鋼板を提供する。
【解決手段】本発明の熱間プレス成形品は、薄鋼板を熱間プレス法によって成形された熱間プレス成形品であって、金属組織が、残留オーステナイト:3〜20体積%を含むものであり、マルテンサイトまたはベイナイトが80体積%以上の金属組織を有する薄鋼板を、プレス成形金型を用いてプレス成形するに際して、前記薄鋼板をAc1変態点以上、(Ac1変態点×0.2+Ac3変態点×0.8)以下の温度に加熱した後、成形を開始し、成形中は金型内で20℃/秒以上の平均冷却速度を確保して製造する。
【選択図】なし

Description

本発明は、自動車部品の構造部材に使用されるような、強度が必要とされる熱間プレス成形品、その製造方法および熱間プレス成形用薄鋼板に関し、特に予め加熱された鋼板(ブランク)を所定の形状に成形加工する際に、形状付与と同時に熱処理を施して所定の強度を得る熱間プレス成形品、そのような熱間プレス成形品の製造方法および熱間プレス成形用薄鋼板に関するものである。
地球環境問題に端を発する自動車の燃費向上対策の一つとして、車体の軽量化が進められており、自動車に使用される鋼板をできるだけ高強度化することが必要となる。しかしながら、自動車の軽量化のために鋼板を高強度化していくと、伸びELやr値(ランクフォード値)が低下し、プレス成形性や形状凍結性が劣化することになる。
このような課題を解決するために、鋼板を所定の温度(例えば、オーステナイト相となる温度)に加熱して強度を下げた(即ち、成形を容易にした)後、薄鋼板に比べて低温(例えば室温)の金型で成形することによって、形状の付与と同時に、両者の温度差を利用した急冷熱処理(焼入れ)を行って、成形後の強度を確保する熱間プレス成形法が部品製造に採用されている。
こうした熱間プレス成形法によれば、低強度状態で成形されるので、スプリングバックも小さくなると共に(形状凍結性が良好)、Mn、B等の合金元素を添加した焼入れ性の良い材料を使用することで、急冷によって引張強度で1500MPa級の強度が得られることになる。尚、このような熱間プレス成形法は、ホットプレス法の他、ホットフォーミング法、ホットスタンピング法、ホットスタンプ法、ダイクエンチ法等、様々な名称で呼ばれている。
図1は、上記のような熱間プレス成形(以下、「ホットスタンプ」で代表することがある)を実施するための金型構成を示す概略説明図であり、図中1はパンチ、2はダイ、3はブランクホルダー、4は鋼板(ブランク)、BHFはしわ押え力、rpはパンチ肩半径、rdはダイ肩半径、CLはパンチ/ダイ間クリアランスを夫々示している。また、これらの部品のうち、パンチ1とダイ2には冷却媒体(例えば水)を通過させることができる通路1a,2aが夫々の内部に形成されており、この通路に冷却媒体を通過させることによってこれらの部材が冷却されるように構成されている。
こうした金型を用いてホットスタンプ(例えば、熱間深絞り加工)するに際しては、鋼板(ブランク)4を、(Ac1変態点〜Ac3変態点)の二相域温度またはAc3変態点以上の単相域温度に加熱して軟化させた状態で成形を開始する。即ち、高温状態にある鋼板4をダイ2とブランクホルダー3間に挟んだ状態で、パンチ1によってダイ2の穴内(図1の2,2間)に鋼板4を押し込み、鋼板4の外径を縮めつつパンチ1の外形に対応した形状に成形する。また、成形と並行してパンチおよびダイを冷却することによって、鋼板4から金型(パンチ1およびダイ2)への抜熱を行なうと共に、成形下死点(パンチ先端が最深部に位置した時点:図1に示した状態)で更に保持冷却することによって素材の焼入れを実施する。こうした成形法を実施することによって、寸法精度の良い1500MPa級の成形品を得ることができ、しかも冷間で同じ強度クラスの部品を成形する場合に比較して、成形荷重が低減できることからプレス機の容量が小さくて済むことになる。
現在広く使用されているホットスタンプ用鋼板としては、22MnB5鋼を素材とするものが知られている。この鋼板では、引張強度が1500MPaで伸びが6〜8%程度であり、耐衝撃部材(衝突時に極力変形させず、破断しない部材)に適用されている。また、C含有量を増やし、22MnB5鋼をベースに、更に高強度化(1500MPa以上、1800MPa級)する開発も進められている。
しかしながら、22MnB5鋼以外の鋼種はほとんど適用されておらず、部品の強度、伸びをコントロール(例えば、低強度化:980MPa級、高伸び化:20%等)し、耐衝撃部材以外へ適用範囲を広げる鋼種・工法の検討はほとんどされていないのが現状である。
中型以上の乗用車では、側面衝突時や後方衝突時にコンパチビィリティ(小型車が衝突してきたときに相手側も守る機能)を考慮して、Bピラーやリアサイドメンバの部品内に、耐衝撃性部位とエネルギー吸収部位の両機能を持たせる場合がある。こうした部材を作製するには、これまでは、例えば980MPa級の高強度超ハイテンと、440MPa級の伸びのあるハイテンをレーザー溶接(テーラードウェルドブランク:TWB)して、冷間でプレス成型する方法が主流であった。しかしながら、最近では、ホットスタンプで部品内の強度を作り分ける技術の開発が進められている。
例えば、非特許文献1では、ホットスタンプ用の22MnB5鋼と、金型で焼入れしても高強度とならない材料をレーザー溶接(テーラードウェルドブランク:TWB)して、ホットスタンプする方法が提案されており、高強度側(耐衝撃部位側)で引張強度:1500MPa(伸び6〜8%)、低強度側(エネルギー吸収部位側)で引張強度:440MPa(伸び12%)となる作り分けを行っている。また、部品内で強度を作り分けるための技術として、例えば非特許文献2〜4のような技術も提案されている。
上記非特許文献1,2の技術では、エネルギー吸収部位側で引張強度が600MPa以下、伸びが12〜18%程度であるが、事前にレーザー溶接(テーラードウェルドブランク:TWB)する必要があり、工程が増加すると共に高コストとなる。また、本来、焼入れを行う必要のないエネルギー吸収部位を加熱することとなり、熱量消費の観点からも好ましくない。
非特許文献3の技術では、22MnB5鋼をベースとしているが、ボロン添加の影響によって、二相域温度の加熱に対して焼入れ後の強度のロバスト性が悪く、エネルギー吸収部位側の強度コントロールが難しく、更に伸びも15%程度しか得られていない。
非特許文献4の技術では、22MnB5鋼をベースとしており、本来、焼入れ性の良い22MnB5鋼に焼きが入らないように制御する点(金型冷却制御)で合理的ではない。
Klaus Lamprecht, Gunter Deinzer, Anton Stich, Jurgen Lechler, Thomas Stohr, Marion Merklein,"Thermo-Mechanical Properties of Tailor Welded Blanks in Hot Sheet Metal Forming Processes", Proc. IDDRG2010, 2010. Usibor1500P(22MnB5)/1500MPa・8%-Ductibor500/550〜700MPa・17%[平成23年4月27日検索]インターネット〈http://www.arcelomittal.com/tailoredblanks/pre/seifware.pl〉 22MnB5/above AC3/1500MPa・8%-below AC3/Hv190・Ferrite/Cementite Rudiger Erhardt and Johannes Boke,"Industrial application of hot forming process simulation", Proc, of 1st Int. Conf. on Hot Sheet Metal Forming of High-Performance steel, ed. By Steinhoff, K., Oldenburg, M, Steinhoff, and Prakash, B., pp83-88, 2008. Begona Casas, David Latre, Noemi Rodriguez, and Isaac Valls,"Tailor made tool materials for the present and upcoming tooling solutions in hot sheet metal forming", Proc, of 1st Int. Conf. on Hot Sheet Metal Forming of High-Performance steel, ed. By Steinhoff, K., Oldenburg, M, Steinhoff, and Prakash, B., pp23-35, 2008.
本発明は上記事情に鑑みてなされたものであって、その目的は、強度と伸びのバランスを適切な範囲にコントロールでき、且つ高延性である熱間プレス成形品、このような熱間プレス成形品を製造するための有用な方法および熱間成形用薄鋼板を提供することにある。
上記目的を達成することのできた本発明の熱間プレス成形品とは、熱間プレス法によって薄鋼板を成形した熱間プレス成形品であって、金属組織が、残留オーステナイト:3〜20体積%を含むものである点に要旨を有するものである。本発明の熱間プレス成形品
においては、金属組織は、残留オーステナイトの他、焼鈍しマルテンサイトまたは焼鈍しベイナイト:30〜97体積%、焼入れままマルテンサイト:0〜67体積%を含むものであることが好ましい。
本発明の熱間プレス成形品において、その化学成分組成は限定されないが、代表的なものとして、C:0.1〜0.3%(質量%の意味。以下、化学成分組成について同じ。)、Si:0.5〜3%、Mn:0.5〜2%、P:0.05%以下(0%を含まない)、S:0.05%以下(0%を含まない)、Al:0.01〜0.1%、およびN:0.001〜0.01%を夫々含有し、残部が鉄および不可避不純物からなるものが挙げられる。
本発明の熱間プレス成形品においては、必要に応じて、更に他の元素として、(a)B:0.01%以下(0%を含まない)およびTi:0.1%以下(0%を含まない)、(b)Cu,Ni,CrおよびMoよりなる群から選択される1種以上:合計で1%以下(0%を含まない)、(c)Vおよび/またはNb:合計で0.1%以下(0%を含まない)等を含有させることも有用であり、含有される元素の種類に応じて、熱間プレス成形品の特性が更に改善される。
本発明の熱間プレス成形品を製造するに当たっては、マルテンサイトまたはベイナイトが80体積%以上の金属組織を有する薄鋼板を、プレス成形金型を用いてプレス成形するに際して、前記薄鋼板をAc1変態点以上、(Ac1変態点×0.2+Ac3変態点×0.8)以下の温度に加熱した後、成形を開始し、成形中は金型内で20℃/秒以上の平均冷却速度を確保すれば良い。
本発明は上記のような熱間プレス成形品を製造するための熱間プレス成形用薄鋼板をも包含し、この薄鋼板は、マルテンサイトまたはベイナイトが80体積%以上の金属組織を有することを特徴とする。
本発明によれば、熱間プレス成形法において、その条件を適切に制御することによって、熱間プレス成形品の金属組織に適正量の残留オーステナイトを存在させることができ、従来の22MnB5鋼を用いたときよりも、成形品に内在する延性(残存延性)をより高くした熱間プレス成形品が実現でき、また熱処理条件や成形前鋼板の組織(初期組織)との組み合わせにより、強度および伸びを制御できる。また、二相域での加熱温度を調整することで、強度および伸びを自由に作り分けることが可能となる。
熱間プレス成形を実施するための金型構成を示す概略説明図である。
本発明者らは、薄鋼板を所定の温度に加熱した後、熱間プレス成形して成形品を製造するに際して、成形後において高強度を確保しつつ良好な延性(伸び)をも示すような熱間プレス成形品を実現するべく、様々な角度から検討した。
その結果、熱間プレス成形品を製造するに当たって、所定量のマルテンサイトまたはベイナイトを含むような金属組織を有する薄鋼板を用い、プレス成形金型を用いてプレス成形するに際して、加熱温度、および成形時の条件を適切に制御し、残留オーステナイトを3〜20体積%含むようにすれば、強度−延性バランスに優れた成形品組織が実現できることを見出し、本発明を完成した。
本発明の熱間プレス成形品における各組織(基本組織および好ましい組織)の範囲設定理由は次の通りである。
[残留オーステナイト:3〜20体積%]
残留オーステナイトは、塑性変形中にマルテンサイトに変態することで、加工硬化率を上昇させ(変態誘起塑性)、成形品の延性を向上させる効果がある。こうした効果を発揮させるためには、残留オーステナイトの分率を3体積%以上とする必要がある。延性に対しては、残留オーステナイト分率が多ければ多いほど良好になるが、自動車用鋼板に用いられる組成では、確保できる残留オーステナイトは限られており、20体積%程度が上限となる。残留オーステナイトの好ましい下限は5体積%以上(より好ましくは7体積%以上)であり、好ましい上限は15体積%以下(より好ましくは10体積%以下)である。
[焼鈍しマルテンサイトまたは焼鈍しベイナイト:30〜97体積%]
主要組織を、微細で且つ転位密度の低い焼鈍しマルテンサイトまたは焼鈍しベイナイトにすることで、所定の強度を確保しつつ、熱間プレス成形品の延性(伸び)を高めることができる。こうした観点から、焼鈍しマルテンサイトまたは焼鈍しベイナイトの体積分率は、30体積%以上とすることが好ましい。しかしながら、この分率が97体積%を超えると、残留オーステナイトの分率が不足し、延性(残存延性)が低下する。焼鈍しマルテンサイトまたは焼鈍しベイナイトの分率のより好ましい下限は40体積%以上(更に好ましくは50体積%以上)であり、より好ましい上限は90体積%未満(更に好ましくは80体積%未満)である。
[焼入れままマルテンサイト:0〜67体積%]
焼入れままマルテンサイトは、延性に乏しい組織であるため、多量に存在すると強度が高くなり過ぎて伸びを劣化させるので、0体積%であっても良い。しかしながら、強度上昇には非常に有効な組織であるため、適量の存在は許容できる。こうした観点から、焼入れままマルテンサイトの分率は、67体積%以下とすることが好ましい。焼入れままマルテンサイトの分率のより好ましい上限は60体積%以下(更に好ましくは50体積%以下)である。
上記組織の他は、フェライト、パーライト、ベイナイト等を残部組織として含み得るが、これらの組織は強度に対する寄与や、延性に対する寄与が他の組織に比べて低く、基本的に含有しないことが好ましい(0体積%でも良い)。但し、20体積%までなら許容できる。残部組織は、より好ましくは10体積%以下であり、更に好ましくは5体積%以下である。
本発明の熱間プレス成形品を製造するに当たっては、マルテンサイトまたはベイナイトが80体積%以上の金属組織からなる薄鋼板を用い(化学成分組成は成形品と同じ)、この薄鋼板に対してプレス成形金型を用いてプレス成形するに際して、前記薄鋼板をAc1変態点以上、(Ac1変態点×0.2+Ac3変態点×0.8)以下の温度に加熱した後、成形を開始し、成形中は金型内で20℃/秒以上の平均冷却速度を確保すれば良い。この方法における各要件を規定した理由は次の通りである。
[金属組織がマルテンサイトまたはベイナイトが80体積%以上からなる薄鋼板]
その後の加熱工程(加熱、熱間プレス成形および冷却)で、微細で延性への寄与の大きい焼鈍しマルテンサイトや焼鈍しベイナイトを適量確保するためには、マルテンサイトまたはベイナイトの分率が80体積%以上の薄鋼板(本発明の熱間プレス成形用薄鋼板)を用いることが好ましい。この分率が80体積%未満になると、成形品の組織中に焼鈍しマルテンサイトや焼鈍しベイナイトを適量確保できなくなるばかりか、他の組織(例えばフェライト)の分率を高め、強度−延性バランスを低下させることになる。この分率のより好ましい下限は、いずれも90体積%以上(更に好ましくは95体積%以上)である。
[薄鋼板をAc1変態点以上、(Ac1変態点×0.2+Ac3変態点×0.8)以下の温度に加熱した後、成形を開始する]
薄鋼板中に含まれるマルテンサイトやベイナイトを焼鈍し(焼鈍)しつつ、部分的に変態させるために、加熱温度は所定の範囲に制御する必要がある。この加熱温度を適切に制御することによって、その後の冷却過程で、残留オーステナイト若しくはマルテンサイトに変態させ、最終的な熱間プレス成形品で所望の組織に作り込むことができる。薄鋼板の加熱温度がAc1変態点未満であると、加熱時に十分な量のオーステナイトが得られず、最終組織(成形品の組織)で所定量の残留オーステナイトを確保できない。また、薄鋼板の加熱温度が(Ac1変態点×0.2+Ac3変態点×0.8)を超えると、加熱時にオーステナイトへの変態量が増加し過ぎて、最終組織(成形品の組織)で所定量の焼鈍しマルテンサイトや焼鈍しベイナイトを確保できない。
[成形中は金型内で20℃/秒以上の平均冷却速度を確保する]
上記加熱工程で形成されたオーステナイトを、フェライト、パーライトおよびベイナイト等の組織の生成を阻止しつつ、所望の組織とするためには、成形中の平均冷却速度を適切に制御する必要がある。こうした観点から、成形中の平均冷却速度は20℃/秒以上とする必要があり、好ましくは30℃/秒以上(より好ましくは40℃/秒以上)である。成形中の平均冷却速度の制御は、(a)成形金型の温度を制御する(前記図1に示した冷却媒体)、(b)金型の熱伝導率を制御する等の手段によって達成できる。
尚、本発明の熱間プレス成形法において、その成形終了温度は特に限定されず、上記平均冷却速度で室温まで冷却しながら成形を終了してもよいが、400℃以下(好ましくは300℃以下、より好ましくは200℃以下)まで冷却した後の冷却を停止し、その後成形を終了するようにしても良い。
本発明の熱間プレス成形法では、前記図1に示したような単純な形状の熱間プレス成形品を製造する場合(ダイレクト工法)は勿論のこと、比較的複雑な形状の成形品を製造する場合にも適用できるものである。但し、複雑な部品形状の場合には、1回のプレス成形で製品の最終形状までを作り込むことが難しいことがある。このような場合には、熱間プレス成形の前工程で冷間プレス成形を行う方法(この方法は、「インダイレクト工法」と呼ばれている)を採用することができる。この方法では、成形が難しい部分を冷間加工によって近似形状まで予め成形しておき、その他の部分を熱間プレス成形する方法である。こうした方法と採用すれば、例えば成形品の凹凸部(山部)が3箇所ある様な部品を成形する際に、冷間プレス成形によって、その2箇所まで成形しておき、その後に3箇所目を熱間プレス成形することになる。
本発明では、高強度鋼板からなる熱間プレス成形品を想定してなされたものであり、その鋼種については高強度鋼板としての通常の化学成分組成のものであれば良いが、C、Si、Mn、P、S、AlおよびNについては、適切な範囲に調整するのが良い。こうした観点から、これらの化学成分の好ましい範囲およびその範囲限定理由は下記の通りである。
[C:0.1〜0.3%]
Cは、残留オーステナイトを確保する上で重要な元素である。二相域温度での加熱時にオーステナイトに濃化することで、焼入れ後に残留オーステナイトを形成させる。また、マルテンサイト量の増加にも寄与する。C含有量が0.1%未満では、所定の残留オーステナイト量が確保できず、良好な延性が得られない。またC含有量が過剰になって0.3%を超えると、強度が高くなり過ぎることになる。C含有量のより好ましい下限は0.15%以上(更に好ましくは0.20%以上)であり、より好ましい上限は0.27%以下(更に好ましくは0.25%以下)である。
[Si:0.5〜3%]
Siは、二相域温度での加熱後のオーステナイトがセメンタイトとフェライトに分解することを防止し、残留オーステナイトを増加させる作用を発揮する。また、固溶強化によって、延性をあまり劣化させずに強度を高める作用も発揮する。Si含有量が0.5%未満では、所定の残留オーステナイト量が確保できず、良好な延性が得られない。またSi含有量が過剰になって3%を超えると、固溶強化量が大きくなり過ぎ、延性が大幅に劣化することになる。Si含有量のより好ましい下限は1.15%以上(更に好ましくは1.20%以上)であり、より好ましい上限は2.7%以下(更に好ましくは2.5%以下)である。
[Mn:0.5〜2%]
Mnは、オーステナイトを安定化させる元素であり、残留オーステナイトの増加に寄与する。また、フェライト変態、パーライト変態およびベイナイト変態を抑制するため、加熱後の冷却中に、フェライト、パーライト、ベイナイトの形成を防止し、残留オーステナイトの確保に寄与する元素である。こうした効果を発揮させるためには、Mnは0.5%以上含有させることが好ましい。特性だけを考慮した場合は、Mn含有量は多い方が好ましいが、合金添加のコストが上昇することから、2%以下とすることが好ましい。また、オーステナイトの強度を大幅に向上させるため、熱間圧延の負荷が大きくなり、鋼板の製造が困難になるため、生産性の上からも、2%を超えて含有させることは好ましくない。Mn含有量のより好ましい下限は0.7%以上(更に好ましくは0.9%以上)であり、より好ましい上限は1.8%以下(更に好ましくは1.6%以下)である。
[P:0.05%以下(0%を含まない)]
Pは、鋼中に不可避的に含まれる元素であるが延性を劣化させるので、Pは極力低減することが好ましい。しかしながら、極端な低減は製鋼コストの増大を招き、0%とすることは製造上困難であるので、0.05%以下(0%を含まない)とすることが好ましい。P含有量のより好ましい上限は0.045%以下(更に好ましくは0.040%以下)である。
[S:0.05%以下(0%を含まない)]
SもPと同様に鋼中に不可避的に含まれる元素であり、延性を劣化させるので、Sは極力低減することが好ましい。しかしながら、極端な低減は製鋼コストの増大を招き、0%とすることは製造上困難であるので、0.05%以下(0%を含まない)とすることが好ましい。S含有量のより好ましい上限は0.045%以下(更に好ましくは0.040%以下)である。
[Al:0.01〜0.1%]
Alは、脱酸元素として有用であると共に、鋼中に存在する固溶NをAlNとして固定し、延性の向上に有用である。こうした効果を有効に発揮させるためには、Al含有量は0.01%以上とすることが好ましい。しかしながら、Al含有量が過剰になって0.1%を超えると、Al23が過剰に生成し、延性を劣化させる。尚、Al含有量のより好ましい下限は0.013%以上(更に好ましくは0.015%以上)であり、より好ましい上限は0.08%以下(更に好ましくは0.06%以下)である。
[N:0.001〜0.01%]
Nは、不可避的に混入する元素であり、低減することが好ましいが、実プロセスの中で低減するには限界があるため、0.001%を下限とした。また、N含有量が過剰になると、歪み時効により延性が劣化したり、Bを添加している場合はBNとして析出し、固溶Bによる焼入れ性改善効果を低下させるため、上限を0.01%とした。N含有量のより好ましい上限は0.008%以下(更に好ましくは0.006%以下)である。
本発明のプレス成形品における基本的な化学成分は、上記の通りであり、残部は実質的に鉄である。尚、「実質的に鉄」とは、鉄以外にも本発明の鋼材の特性を阻害しない程度の微量成分(例えば、Mg,Ca,Sr,Baの他、Ra等のREM、およびZr,Hf,Ta,W,Mo等の炭化物形成元素等)も許容できる他、P,S以外の不可避不純物(例えば、O,H等)も含み得るものである。
本発明のプレス成形品には、必要によって更に、(a)B:0.01%以下(0%を含まない)およびTi:0.1%以下(0%を含まない)、(b)Cu,Ni,CrおよびMoよりなる群から選択される1種以上:合計で1%以下(0%を含まない)、(c)Vおよび/またはNb:合計で0.1%以下(0%を含まない)等を含有させることも有用であり、含有される元素の種類に応じて、プレス成形品の特性が更に改善される。これらの元素を含有するときの好ましい範囲およびその範囲限定理由は下記の通りである。
[B:0.01%以下(0%を含まない)およびTi:0.1%以下(0%を含まない)]
Bは、フェライト変態、パーライト変態およびベイナイト変態を抑制する作用を有するため、加熱後の冷却中に、フェライト、パーライト、ベイナイトの形成を防止し、残留オーステナイトの確保に寄与する元素である。こうした効果を発揮させるためには、Bは0.0001%以上含有させることが好ましいが、0.01%を超えて過剰に含有させても効果が飽和する。B含有量のより好ましい下限は0.0002%以上(更に好ましくは0.0005%以上)であり、より好ましい上限は0.008%以下(更に好ましくは0.005%以下)である。
一方、Tiは、Nを固定し、Bを固溶状態で維持させることで焼入れ性の改善効果を発現させる。こうした効果を発揮させるためには、Tiは少なくともNの含有量の4倍以上含有させることが好ましいが、Ti含有量が過剰になって0.1%を超えると、TiCを多量に形成し、析出強化により強度が上昇するが延性が劣化する。Ti含有量のより好ましい下限は0.05%以上(更に好ましくは0.06%以上)であり、より好ましい上限は0.09%以下(更に好ましくは0.08%以下)である。
[Cu,Ni,CrおよびMoよりなる群から選択される1種以上:合計で1%以下(0%を含まない)]
Cu,Ni,CrおよびMoは、フェライト変態、パーライト変態およびベイナイト変態を抑制するため、加熱後の冷却中に、フェライト、パーライト、ベイナイトの形成を防止し、残留オーステナイトの確保に有効に作用する。こうした効果を発揮させるためには、合計で0.01%以上含有させることが好ましい。特性だけを考慮すると含有量は多いほうが好ましいが、合金添加のコストが上昇することから、合計で1%以下とすることが好ましい。また、オーステナイトの強度を大幅に高める作用を有するため、熱間圧延の負荷が大きくなり、鋼板の製造が困難になるため、製造性の観点からも1%以下とすることが好ましい。これらの元素含有量のより好ましい下限は合計で0.05%以上(更に好ましくは0.06%以上)であり、より好ましい上限は合計で0.09%以下(更に好ましくは0.08%以下)である。
[Vおよび/またはNb:合計で0.1%以下(0%を含まない)]
VおよびNbは、微細な炭化物を形成し、ピン止め効果により組織を微細にする効果がある。こうした効果を発揮させるためには、合計で0.001%以上含有させることが好ましい。しかしながら、これらの元素の含有量が過剰になると、粗大な炭化物が形成され、破壊の起点になることで逆に延性を劣化させるので、合計で0.1%以下とすることが好ましい。これらの元素含有量のより好ましい下限は合計で0.005%以上(更に好ましくは0.008%以上)であり、より好ましい上限は合計で0.08%以下(更に好ましくは0.06%以下)である。
尚、本発明の熱間プレス成形用薄鋼板は、非めっき鋼板、めっき鋼板のいずれでも良い。めっき鋼板である場合、そのめっきの種類としては、一般的な亜鉛系めっき、アルミ系めっき等のいずれでも良い。また、めっきの方法は、溶融めっき、電気めっき等のいずれでも良く、更にめっき後に合金化熱処理を施しても良く、複層めっきを施しても良い。
本発明によれば、プレス成形条件(加熱温度や冷却速度)を適切に調整することによって、成形品の強度や伸び等の特性を制御することができ、しかも高延性(残存延性)の熱間プレス成形品が得られるので、これまでの熱間プレス成形品では適用しにくかった部位(例えば、エネルギー吸収部材)にも適用が可能となり、熱間プレス成形品の適用範囲を拡げる上で極めて有用である。また、本発明で得られる成形品は、冷間プレス成形した後に通常の焼鈍しを施して組織調整した成形品と比べて、残存延性が更に大きなものとなる。
以下、本発明の効果を実施例によって更に具体的に示すが、下記実施例は本発明を限定するものではなく、前・後記の趣旨に徴して設計変更することはいずれも本発明の技術的範囲に含まれるものである。
下記表1に示した化学成分組成を有する鋼材を真空溶製し、実験用スラブとした後、熱間圧延を行い、その後に冷却して巻き取った。更に、冷間圧延をして薄鋼板とした後、所定の初期組織となるよう焼入れ処理を行っている。尚、表1中のAc1変態点およびAc3変態点は、下記の(1)式および(2)式を用いて求めたものである(例えば、「レスリー鉄鋼材料学」丸善,(1985)参照)。また、表1には、(Ac1変態点×0.2+Ac3変態点×0.8)の計算値(以下、「A値」とする)も同時に示した。
Ac1変態点(℃)=723+29.1×[Si]−10.7×[Mn]+16.9×[Cr]−16.9×[Ni] …(1)
Ac3変態点(℃)=910−203×[C]1/2+44.7×[Si]−30×[Mn]+700×[P]+400×[Al]+400×[Ti]+104×[V]−11×[Cr]+31.5×[Mo]−20×[Cu]−15.2×[Ni] …(2)
但し、[C],[Si],[Mn],[P],[Al],[Ti],[V],[Cr],[Mo],[Cu]および[Ni]は、夫々C,Si,Mn,P,Al,Ti,V,Cr,Mo,CuおよびNiの含有量(質量%)を示す。また、上記(1)式、(2)式の各項に示された元素が含まれない場合は、その項がないものとして計算する。
Figure 2012237066
得られた鋼板を下記表2に示す各条件で加熱した後、平均冷却速度をコントロールできる鉄鋼用高速熱処理試験装置(CASシリーズ アルバック理工製)を用いて、冷却処理を実施した。冷却時の鋼板サイズは、190mm×70mm(板厚:1.4mm)とした。尚、めっき鋼板(試験No.22、23)は、上記の加熱および冷却処理前の鋼板に対して、めっきシミュレータを用いて、所定の初期組織となるよう熱処理を施した後、溶融した亜鉛浴に浸漬してめっきを付着させ、試験No.23の鋼板は更に合金化処理を施すことによって、めっき鋼板(溶融亜鉛めっき鋼板:GI、合金化溶融亜鉛めっき鋼板:GA)を得た。
上記の処理(加熱、冷却)を行った各鋼板につき、引張強度(TS)、および伸び(全伸びEL)、金属組織の観察(各組織の分率)を下記要領で行った。
[引張強度(TS)、および伸び(全伸びEL)]
JIS5号試験片を用いて引張試験を行い、引張強度(TS)、伸び(EL)を測定した。このとき、引張試験の歪速度:10mm/秒とした。本発明では、(a)引張強度(TS)が780〜979MPで伸び(EL)が25%以上、(b)引張強度(TS)が980〜1179MPaで伸び(EL)が20%以上、(c)引張強度(TS)が1180MPa以上で伸び(EL)15%以上のいずれかを満足するときに合格と評価した。
[金属組織の観察(各組織の分率)]
(1)鋼板中の焼鈍しマルテンサイト、ベイナイト、焼鈍しベイナイトの組織については、鋼板をナイタールで腐食し、SEM(倍率:1000倍または2000倍)観察により、焼鈍しマルテンサイト、ベイナイト、焼鈍しベイナイトを区別し、夫々の分率(体積率)を求めた。
(2)鋼板中の残留オーステナイト分率は、鋼板の1/4の厚さまで研削した後、化学研磨してからX線回折法によって測定した(例えば、ISJJ Int.Vol.33.(1933),No.7,P.776)。
(3)焼入れままマルテンサイト分率については、鋼板をレペラ腐食し、白いコントラストを焼入れままマルテンサイトと残留オーステナイトの混合組織として体積率を測定し、そこからX線回折により求めた残留オーステナイト分率を差いて、焼入れままマルテンサイト分率を計算した。
これらの結果を、成形前鋼板の組織(初期組織)、製造条件(加熱温度、平均冷却速度)と共に、下記表2に示す。
Figure 2012237066
この結果から、次のように考察できる。試験No.2〜4、7〜16、19、20、22、23のものは、本発明で規定する要件を満足する実施例であり、強度−延性バランスの良好な部品が得られていることが分かる。
これに対し、試験No.1、5、6、17、18、21のものは本発明で規定するいずれかの要件を満足しない比較例であり、いずれかの特性が劣化している。即ち、試験No.1のものは、加熱温度がA値よりも高くなっており、成形品の組織がベイナイト主体とするものとなって残留オーステナイトが確保されておらず、低い伸びELしか得られていない。
試験No.5のものは、加熱温度がAc1変態点よりも低くなっており、成形品の組織が焼戻しマルテンサイト100体積%で、残留オーステナイトが確保されておらず、引張強度が低く且つ低い伸びELしか得られていない。また試験No.6のものは、成形中の平均冷却速度が遅くなっており、残留オーステナイトが確保されておらず、低い伸びELしか得られていない。
試験No.17のものは、鋼板および成形品の化学成分においてC含有量が本発明で規定するものよりも低くなっており(鋼種K)、残留オーステナイトが確保されておらず、低い伸びELしか得られていない。また試験No.18のものは、鋼板および成形品の化学成分においてSi含有量が本発明で規定するものよりも低くなっており(鋼種L)、残留オーステナイトが確保されておらず、低い伸びELしか得られていない。
試験No.21のものは、鋼板の初期組織においてベイナイトの割合が本発明で規定するものよりも低くなっているため、成形品の組織において焼鈍しマルテンサイトの割合が低くなり、その他の組織(フェライトおよびベイナイト)の割合が大きくなっており、低い伸びELしか得られていない。
1 パンチ
2 ダイ
3 ブランクホルダー
4 鋼板(ブランク)

Claims (8)

  1. 熱間プレス成形法によって薄鋼板を成形した熱間プレス成形品であって、金属組織が、残留オーステナイト:3〜20体積%を含むものであることを特徴とする熱間プレス成形品。
  2. 金属組織が、残留オーステナイトの他、焼鈍しマルテンサイトまたは焼鈍しベイナイト:30〜97体積%、焼入れままマルテンサイト:0〜67体積%を含むものである請求項1に記載の熱間プレス成形品。
  3. 化学成分組成が、
    C :0.1〜0.3%(質量%の意味。以下、化学成分組成について同じ。)、
    Si:0.5〜3%、
    Mn:0.5〜2%、
    P :0.05%以下(0%を含まない)、
    S :0.05%以下(0%を含まない)、
    Al:0.01〜0.1%、および
    N:0.001〜0.01%、
    を夫々含有し、残部が鉄および不可避不純物からなる請求項1または2に記載の熱間プレス成形品。
  4. 更に他の元素として、B:0.01%以下(0%を含まない)およびTi:0.1%以下(0%を含まない)を含有するものである請求項3に記載の熱間プレス成形品。
  5. 更に他の元素として、Cu,Ni,CrおよびMoよりなる群から選択される1種以上:合計で1%以下(0%を含まない)含有するものである請求項3または4に記載の熱間プレス成形品。
  6. 更に他の元素として、Vおよび/またはNb:合計で0.1%以下(0%を含まない)含有するものである請求項3〜5のいずれかに記載の熱間プレス成形品。
  7. 請求項1〜6のいずれかに記載の熱間プレス成形品を製造するに当たり、マルテンサイトまたはベイナイトが80体積%以上の金属組織を有する薄鋼板を、プレス成形金型を用いてプレス成形するに際して、前記薄鋼板をAc1変態点以上、(Ac1変態点×0.2+Ac3変態点×0.8)以下の温度に加熱した後、成形を開始し、成形中は金型内で20℃/秒以上の平均冷却速度を確保することを特徴とする熱間プレス成形品の製造方法。
  8. 請求項1〜6のいずれかに記載の熱間プレス成形品を製造するための熱間プレス成形用薄鋼板において、マルテンサイトまたはベイナイトが80体積%以上の金属組織を有することを特徴とする熱間プレス成形用薄鋼板。
JP2012103946A 2011-04-28 2012-04-27 熱間プレス成形品、その製造方法および熱間プレス成形用薄鋼板 Expired - Fee Related JP5873385B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012103946A JP5873385B2 (ja) 2011-04-28 2012-04-27 熱間プレス成形品、その製造方法および熱間プレス成形用薄鋼板

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011102408 2011-04-28
JP2011102408 2011-04-28
JP2012103946A JP5873385B2 (ja) 2011-04-28 2012-04-27 熱間プレス成形品、その製造方法および熱間プレス成形用薄鋼板

Publications (2)

Publication Number Publication Date
JP2012237066A true JP2012237066A (ja) 2012-12-06
JP5873385B2 JP5873385B2 (ja) 2016-03-01

Family

ID=47072474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012103946A Expired - Fee Related JP5873385B2 (ja) 2011-04-28 2012-04-27 熱間プレス成形品、その製造方法および熱間プレス成形用薄鋼板

Country Status (8)

Country Link
US (1) US9475113B2 (ja)
EP (1) EP2703513B1 (ja)
JP (1) JP5873385B2 (ja)
KR (2) KR20140006073A (ja)
CN (1) CN103547694B (ja)
ES (1) ES2656564T3 (ja)
TR (1) TR201803006T4 (ja)
WO (1) WO2012147963A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015080242A1 (ja) 2013-11-29 2015-06-04 新日鐵住金株式会社 熱間成形鋼板部材およびその製造方法ならびに熱間成形用鋼板
JP2016503456A (ja) * 2013-05-09 2016-02-04 ヒュンダイ ハイスコ カンパニー リミテッド 靭性が向上したホットスタンピング部品およびその製造方法
KR101827188B1 (ko) * 2013-09-10 2018-02-07 가부시키가이샤 고베 세이코쇼 열간 프레스용 강판 및 프레스 성형품, 및 프레스 성형품의 제조 방법
KR101827187B1 (ko) * 2013-09-10 2018-02-07 가부시키가이샤 고베 세이코쇼 열간 프레스용 강판 및 프레스 성형품, 및 프레스 성형품의 제조 방법
CN109402505A (zh) * 2018-10-26 2019-03-01 朱经辉 一种预加硬高镜面防酸塑胶模具钢材料及其制备方法

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5890711B2 (ja) * 2012-03-15 2016-03-22 株式会社神戸製鋼所 熱間プレス成形品およびその製造方法
DE102013009232A1 (de) * 2013-05-28 2014-12-04 Salzgitter Flachstahl Gmbh Verfahren zur Herstellung eines Bauteils durch Warmumformen eines Vorproduktes aus Stahl
DE102013012478A1 (de) * 2013-07-26 2015-01-29 GM Global Technology Operations LLC (n. d. Gesetzen des Staates Delaware) Karosseriebauteil sowie Verfahren zur Herstellung eines Karosseriebauteils
KR101716624B1 (ko) * 2013-09-10 2017-03-14 가부시키가이샤 고베 세이코쇼 프레스 성형품의 제조 방법 및 프레스 성형품
WO2015124404A1 (de) * 2014-02-24 2015-08-27 Bayerische Motoren Werke Aktiengesellschaft Umformwerkzeug, zur formgebenden bearbeitung eines werkstücks sowie verfahren zum anordnen einer temperiereinrichtung an einem umformwerkzeug
JP5934272B2 (ja) * 2014-03-20 2016-06-15 富士重工業株式会社 熱間プレス深絞り成形方法および装置
CN104745970A (zh) * 2015-04-10 2015-07-01 唐山曹妃甸区通鑫再生资源回收利用有限公司 一种热压铁块
CN104826909A (zh) * 2015-05-07 2015-08-12 唐满宾 汽车翼子板的加工方法
CN104826910A (zh) * 2015-05-07 2015-08-12 唐满宾 汽车后门板加工方法
CN104826911A (zh) * 2015-05-07 2015-08-12 唐满宾 汽车前门板加工方法
CN104815890A (zh) * 2015-05-07 2015-08-05 唐满宾 汽车前门板加强筋的加工方法
MX2018011026A (es) 2016-03-16 2018-11-15 Nippon Steel & Sumitomo Metal Corp Metodo para fabricar un articulo moldeado en forma de panel.
US10619223B2 (en) 2016-04-28 2020-04-14 GM Global Technology Operations LLC Zinc-coated hot formed steel component with tailored property
US10385415B2 (en) 2016-04-28 2019-08-20 GM Global Technology Operations LLC Zinc-coated hot formed high strength steel part with through-thickness gradient microstructure
US10288159B2 (en) 2016-05-13 2019-05-14 GM Global Technology Operations LLC Integrated clutch systems for torque converters of vehicle powertrains
US10240224B2 (en) 2016-08-12 2019-03-26 GM Global Technology Operations LLC Steel alloy with tailored hardenability
EP3502291B1 (en) 2016-08-16 2023-10-18 Nippon Steel Corporation Hot press-formed part
US11078550B2 (en) * 2016-11-25 2021-08-03 Nippon Steel Corporation Method for manufacturing quenched molding, method for manufacturing hot press steel material, and hot press steel material
EP3548641B1 (en) 2016-11-29 2020-08-26 Tata Steel IJmuiden B.V. Method for manufacturing a hot-formed article, and obtained article
US10260121B2 (en) 2017-02-07 2019-04-16 GM Global Technology Operations LLC Increasing steel impact toughness
JP6860420B2 (ja) * 2017-05-24 2021-04-14 株式会社神戸製鋼所 高強度鋼板およびその製造方法
JP6849536B2 (ja) * 2017-05-31 2021-03-24 株式会社神戸製鋼所 高強度鋼板およびその製造方法
CN107475623A (zh) * 2017-08-15 2017-12-15 苏州普热斯勒先进成型技术有限公司 一种热成形高强钢及其加工方法
CN108326159B (zh) * 2018-02-08 2020-03-17 苑世剑 一种大尺寸铝合金拼焊板类构件冷冻成形方法
WO2019222950A1 (en) 2018-05-24 2019-11-28 GM Global Technology Operations LLC A method for improving both strength and ductility of a press-hardening steel
CN112534078A (zh) 2018-06-19 2021-03-19 通用汽车环球科技运作有限责任公司 具有增强的机械性质的低密度压制硬化钢
CN111197145B (zh) 2018-11-16 2021-12-28 通用汽车环球科技运作有限责任公司 钢合金工件和用于制造压制硬化钢合金部件的方法
US11530469B2 (en) 2019-07-02 2022-12-20 GM Global Technology Operations LLC Press hardened steel with surface layered homogenous oxide after hot forming
CN111235375A (zh) * 2019-10-28 2020-06-05 金华克钻特钢工具有限公司 一种锯片热处理工艺
CN113025876A (zh) 2019-12-24 2021-06-25 通用汽车环球科技运作有限责任公司 高性能压制硬化钢组件

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007016296A (ja) * 2005-07-11 2007-01-25 Nippon Steel Corp 成形後の延性に優れたプレス成形用鋼板及びその成形方法、並びにプレス整形用鋼板を用いた自動車用部材
JP2009508692A (ja) * 2005-09-21 2009-03-05 アルセロールミタル・フランス 多相微構造の鋼部品を製造する方法
JP2010174280A (ja) * 2009-01-28 2010-08-12 Jfe Steel Corp 延性に優れたホットプレス部材、そのホットプレス部材用鋼板、およびそのホットプレス部材の製造方法
JP2011184758A (ja) * 2010-03-09 2011-09-22 Jfe Steel Corp 高強度プレス部材およびその製造方法
JP2012041613A (ja) * 2010-08-20 2012-03-01 Nippon Steel Corp 耐遅れ破壊特性及び衝突安全性に優れたホットプレス用鋼板及びその製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3320014B2 (ja) * 1997-06-16 2002-09-03 川崎製鉄株式会社 耐衝撃特性に優れた高強度高加工性冷延鋼板
CN1276987C (zh) * 2001-10-19 2006-09-27 住友金属工业株式会社 具有优异的可加工性和成型精度的薄钢板及其制造方法
JP4288216B2 (ja) 2004-09-06 2009-07-01 新日本製鐵株式会社 耐水素脆化特性に優れたホットプレス用鋼板、自動車用部材及びその製造方法
KR100878614B1 (ko) 2005-12-01 2009-01-15 주식회사 포스코 열처리 경화형 초고강도 강판, 이를 이용한 열처리 경화형부재와 그 제조방법
KR100711445B1 (ko) 2005-12-19 2007-04-24 주식회사 포스코 도금밀착성 및 충격특성이 우수한 열간성형 가공용 합금화용융아연도금강판의 제조방법, 이 강판을 이용한열간성형부품의 제조방법
WO2007064172A1 (en) 2005-12-01 2007-06-07 Posco Steel sheet for hot press forming having excellent heat treatment and impact property, hot press parts made of it and the method for manufacturing thereof
JP5053157B2 (ja) 2007-07-04 2012-10-17 新日本製鐵株式会社 プレス成形性の良好な高強度高ヤング率鋼板、溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板及び鋼管、並びに、それらの製造方法
CN101275200A (zh) 2008-05-21 2008-10-01 钢铁研究总院 一种热成型马氏体钢
JP5369713B2 (ja) * 2009-01-28 2013-12-18 Jfeスチール株式会社 延性に優れたホットプレス部材、そのホットプレス部材用鋼板、およびそのホットプレス部材の製造方法
JP5538954B2 (ja) 2010-02-26 2014-07-02 キヤノン株式会社 導電性ベルト及び電子写真装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007016296A (ja) * 2005-07-11 2007-01-25 Nippon Steel Corp 成形後の延性に優れたプレス成形用鋼板及びその成形方法、並びにプレス整形用鋼板を用いた自動車用部材
JP2009508692A (ja) * 2005-09-21 2009-03-05 アルセロールミタル・フランス 多相微構造の鋼部品を製造する方法
JP2010174280A (ja) * 2009-01-28 2010-08-12 Jfe Steel Corp 延性に優れたホットプレス部材、そのホットプレス部材用鋼板、およびそのホットプレス部材の製造方法
JP2011184758A (ja) * 2010-03-09 2011-09-22 Jfe Steel Corp 高強度プレス部材およびその製造方法
JP2012041613A (ja) * 2010-08-20 2012-03-01 Nippon Steel Corp 耐遅れ破壊特性及び衝突安全性に優れたホットプレス用鋼板及びその製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016503456A (ja) * 2013-05-09 2016-02-04 ヒュンダイ ハイスコ カンパニー リミテッド 靭性が向上したホットスタンピング部品およびその製造方法
KR101827188B1 (ko) * 2013-09-10 2018-02-07 가부시키가이샤 고베 세이코쇼 열간 프레스용 강판 및 프레스 성형품, 및 프레스 성형품의 제조 방법
KR101827187B1 (ko) * 2013-09-10 2018-02-07 가부시키가이샤 고베 세이코쇼 열간 프레스용 강판 및 프레스 성형품, 및 프레스 성형품의 제조 방법
WO2015080242A1 (ja) 2013-11-29 2015-06-04 新日鐵住金株式会社 熱間成形鋼板部材およびその製造方法ならびに熱間成形用鋼板
KR20160090865A (ko) 2013-11-29 2016-08-01 신닛테츠스미킨 카부시키카이샤 열간 성형 강판 부재 및 그 제조 방법 및 열간 성형용 강판
CN109402505A (zh) * 2018-10-26 2019-03-01 朱经辉 一种预加硬高镜面防酸塑胶模具钢材料及其制备方法

Also Published As

Publication number Publication date
TR201803006T4 (tr) 2018-03-21
EP2703513A1 (en) 2014-03-05
CN103547694A (zh) 2014-01-29
EP2703513A4 (en) 2015-09-30
JP5873385B2 (ja) 2016-03-01
CN103547694B (zh) 2017-07-25
EP2703513B1 (en) 2018-01-10
US20140044585A1 (en) 2014-02-13
US9475113B2 (en) 2016-10-25
KR20160003866A (ko) 2016-01-11
ES2656564T3 (es) 2018-02-27
WO2012147963A1 (ja) 2012-11-01
KR20140006073A (ko) 2014-01-15

Similar Documents

Publication Publication Date Title
JP5873385B2 (ja) 熱間プレス成形品、その製造方法および熱間プレス成形用薄鋼板
JP5873393B2 (ja) 熱間プレス成形品、その製造方法および熱間プレス成形用薄鋼板
JP5883351B2 (ja) 熱間プレス成形品、その製造方法および熱間プレス成形用薄鋼板
JP5883350B2 (ja) 熱間プレス成形品、その製造方法および熱間プレス成形用薄鋼板
JP5890711B2 (ja) 熱間プレス成形品およびその製造方法
JP5890710B2 (ja) 熱間プレス成形品およびその製造方法
JP6001883B2 (ja) プレス成形品の製造方法およびプレス成形品
JP6001884B2 (ja) プレス成形品の製造方法およびプレス成形品
JP5756774B2 (ja) 熱間プレス用鋼板およびプレス成形品、並びにプレス成形品の製造方法
JP6073154B2 (ja) 熱間プレス成形品の製造方法
WO2015037061A1 (ja) 熱間プレス用鋼板およびプレス成形品、並びにプレス成形品の製造方法
WO2013133166A1 (ja) 熱間プレス用鋼板およびプレス成形品、並びにプレス成形品の製造方法
KR101716624B1 (ko) 프레스 성형품의 제조 방법 및 프레스 성형품
JP5894470B2 (ja) 熱間プレス用鋼板およびプレス成形品、並びにプレス成形品の製造方法
JP5802155B2 (ja) プレス成形品の製造方法およびプレス成形品
JP5894469B2 (ja) 熱間プレス用鋼板およびプレス成形品、並びにプレス成形品の製造方法
JP5869924B2 (ja) プレス成形品の製造方法およびプレス成形品

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160115

R150 Certificate of patent or registration of utility model

Ref document number: 5873385

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees