JP2012236182A - Catalyst carrier, catalyst product using the same, and catalyst module - Google Patents

Catalyst carrier, catalyst product using the same, and catalyst module Download PDF

Info

Publication number
JP2012236182A
JP2012236182A JP2011118474A JP2011118474A JP2012236182A JP 2012236182 A JP2012236182 A JP 2012236182A JP 2011118474 A JP2011118474 A JP 2011118474A JP 2011118474 A JP2011118474 A JP 2011118474A JP 2012236182 A JP2012236182 A JP 2012236182A
Authority
JP
Japan
Prior art keywords
catalyst
wire
coil
metal
catalyst carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011118474A
Other languages
Japanese (ja)
Other versions
JP5789129B2 (en
Inventor
Naonori Seo
尚之 瀬尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Seisen Co Ltd
Original Assignee
Nippon Seisen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Seisen Co Ltd filed Critical Nippon Seisen Co Ltd
Priority to JP2011118474A priority Critical patent/JP5789129B2/en
Publication of JP2012236182A publication Critical patent/JP2012236182A/en
Application granted granted Critical
Publication of JP5789129B2 publication Critical patent/JP5789129B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a catalyst carrier for carrying a catalyst on it, the carrier being excellent, for example, in hydrogen-storing/supplying capability, increasing the amount, per unit volume, of a catalyst substance to be carried on, and more surely conducting flowing contact with a fluid to be treated; and to provide a catalyst product and a catalyst module.SOLUTION: The catalyst carrier, which carries a catalyst substance on it, comprises a coil wire which is formed by consecutively winding a metallic wire material from one end to the other end. In this case, the gap width (H) between a virtual external diameter (D1) and a virtual internal diameter (D2), which are drawn by the metallic wire material when the winding is projected in the axial direction of the coil wire, is amplified to be at least twice as long as the equivalent wire diameter (d) of the metallic wire material to make a deformed coil form. The catalyst product is produced by carrying on the catalyst a prescribed catalyst substance. The catalyst module comprises the catalyst product.

Description

本発明は、例えば芳香族化合物への水素付加反応または芳香族化合物の水素誘導体の脱水素反応に触媒活性を示す水素化反応/脱水素反応用の触媒製品に好適する触媒用の担体とこれを用いた触媒製品、並びに触媒モジュールに関する。  The present invention relates to a catalyst carrier suitable for, for example, a hydrogenation reaction / dehydrogenation catalyst product that exhibits catalytic activity in a hydrogenation reaction to an aromatic compound or a dehydrogenation reaction of a hydrogen derivative of an aromatic compound. The present invention relates to the catalyst product used and the catalyst module.

近年、地球温暖化が問題視され、これまで広く活用されてきた化石燃料に代わる新たなクリーンエネルギーとして、燃料電池システムが注目されている。この燃料電池システムは水素を燃料とし、電力発生時には水のみが排出されることから、最も環境負荷が小さいクリーンなエネルギー技術として普及拡大への期待が高まっている。  In recent years, global warming has been seen as a problem, and fuel cell systems have attracted attention as new clean energy alternatives to fossil fuels that have been widely used. Since this fuel cell system uses hydrogen as fuel, and only water is discharged when power is generated, there is an increasing expectation for widespread use as a clean energy technology with the least environmental impact.

また、ガソリン自動車や船舶・機関車用デイゼル発電機などにおいても、ガソリンなどの燃料油に水素を加える「水素混焼技術」によってその燃費向上を図るとともに、CO2、NOx、COなどの環境負荷物の発生を低減することも検討されており、このような技術革新の中で水素の需要傾向は従来にも増して高まりつつある。しかしその一方で、水素は可燃性で爆発などの危険性が高く、また金属材料に対しては水素脆性の原因物質であることから、その貯蔵や運搬が難しいという問題もあり、製造や貯蔵、運搬など幅広い対策が必要である。  Gasoline automobiles and ship / locomotive diesel generators also improve fuel efficiency through the “hydrogen co-firing technology” that adds hydrogen to fuel oil such as gasoline, while reducing environmental impacts such as CO2, NOx, and CO. Reduction of generation is also under consideration, and the demand trend of hydrogen is increasing more than ever in such technological innovation. However, on the other hand, hydrogen is flammable and has a high risk of explosion, and it is a causative substance of hydrogen embrittlement for metal materials. A wide range of measures such as transportation is necessary.

そこで、こうした問題を抑制する方策として、必要に応じてレスポンスよく供給できる水素貯蔵・供給システムが検討され、例えばA)天然ガス、プロパンガス、メタノールなど水素を含む原料物質から水蒸気改質や水素分離技術によって水素のみを得る方法、B)表面にγ−アルミナ層を介して触媒を担持して板状、リボン状、ハニカム状に形成した触媒体を用いる方法、C)光合成細菌や嫌気性水素発生細菌等を用る方法等、種々取組みが進められている。(例えば、特許文献1および特許文献2参照。)  Therefore, as a measure to suppress such problems, a hydrogen storage and supply system that can supply responsively as needed is studied. For example, A) Steam reforming and hydrogen separation from raw materials containing hydrogen such as natural gas, propane gas, and methanol. B) Method of obtaining only hydrogen by technology, B) Method of using catalyst body formed on plate, ribbon, or honeycomb by supporting catalyst on the surface via γ-alumina layer, C) Generation of photosynthetic bacteria and anaerobic hydrogen Various approaches such as a method using bacteria are being promoted. (For example, see Patent Document 1 and Patent Document 2.)

また、得られた水素の貯蔵手段についても、例えば水素吸蔵合金を用いた貯蔵システムや、カーボンナノチューブあるいはカーボンナノファイバー等のカーボン材料を用いるシステム開発も見られている。(例えば、特許文献3および特許文献4参照。)  In addition, with respect to the obtained hydrogen storage means, for example, a storage system using a hydrogen storage alloy and a system development using a carbon material such as carbon nanotube or carbon nanofiber are also being seen. (For example, see Patent Document 3 and Patent Document 4.)

特開2007−117992号公報JP 2007-117992 A 特開平2−144154号公報JP-A-2-144154 特開平7−192746号公報JP 7-192746 A 特開平5−270801号公報Japanese Patent Laid-Open No. 5-270801

しかしながら、前者の水素製造システムでは、所定量の水素をより効果的に得る為に、例えばその使用モジュールを大型化したり複数モジュールを同時併用するなど、装置自体の大型化や複雑化が必要で、その為の設置スペースや高コスト化による問題が指摘され、普及の妨げになっており、また後者の水素吸蔵合金による貯蔵システムについても、使用合金の単位容積当たりの水素貯蔵量の制約や、その応答速度のレスポンス性能の問題があり、さらにこれら合金は価格的にも高価なことから、十分な普及には至っていない。  However, in the former hydrogen production system, in order to obtain a predetermined amount of hydrogen more effectively, for example, the module itself needs to be enlarged or complicated, such as using a larger module or simultaneously using multiple modules. For this reason, problems due to installation space and cost increase have been pointed out, which has hindered widespread use, and the storage system using the latter hydrogen storage alloy is limited by the amount of hydrogen stored per unit volume of the alloy used, There is a problem of response performance of response speed, and these alloys are not expensive enough because they are expensive.

かかる状況下で、本発明者らは、低コストで製造効率に優れるとともに、水素レスポンス性にも優れた水素貯蔵・供給システムとして、水素反応や脱水素機能を持つ所定の触媒物質を担持した触媒ワイヤーを所定の巻径で巻回したコイル形状品とすることで、線材が持つ増大した表面積によって一定容積当りにおける反応効率を高めたコイル線体による触媒製品を試作し、その反応の評価試験を進めている。  Under such circumstances, the present inventors, as a hydrogen storage / supply system that is low in cost and excellent in production efficiency and excellent in hydrogen response, have a catalyst carrying a predetermined catalytic substance having a hydrogen reaction or dehydrogenation function. By making a coil-shaped product in which the wire is wound with a predetermined winding diameter, a catalyst product using a coiled wire body with increased reaction efficiency per fixed volume due to the increased surface area of the wire rod is manufactured, and the evaluation test of the reaction is performed. proceeding.

しかしながらこれまでの実施結果では、該コイル線体は、通常の同径かつ密着コイル形状に巻回されたもので、しかもその装着は原液反応用の配管やハウジング容器内にその供給原液の流下方向に沿うように配置することから、触媒反応は供給原液の該コイル線体の先端側のコイル部のようにごく限られた一部表面での反応になりやすく、コイル線体の構成長さに伴う長さ効果は十分とは言い難い。その為、例えばコイル線体の中心部内部の空間や配管容器との外方隙間部分を流れる被処理流体は、触媒反応を生ずることなくそのまま放出されてしまい、生成流体と未処理流体をさらに分離する作業が必要になるなど、反応効率を高める工夫が求められている。  However, according to the implementation results so far, the coil wire body is wound in the usual same-diameter and close-contact coil shape, and is mounted in the stock solution reaction pipe or housing container in the flow direction of the supplied stock solution. Therefore, the catalytic reaction is likely to be a reaction on a very limited part of the surface, such as the coil portion on the tip side of the coil wire body of the feed stock solution, and the length of the coil wire body is reduced. The accompanying length effect is not sufficient. For this reason, for example, the fluid to be processed flowing in the space inside the central portion of the coil wire body or the outer gap with the piping container is discharged without causing a catalytic reaction, and the generated fluid and the untreated fluid are further separated. There is a need for devices that increase reaction efficiency, such as the need to perform work.

そこで本発明は、前記提案の従来型コイル線体によるこのような欠点を改善して触媒性能を高めるとともに、これを収容する配管やハウジング容器の流路スペースをより有効に活用し得るコイル線体として、その軸方向に投影したときの投影幅を増大した異形のコイル形状とすることが有効との結論に至り、ここに本発明を完成した。  Therefore, the present invention improves the catalyst performance by improving the above-described disadvantages of the proposed conventional coil wire, and more effectively utilizes the piping space for housing the housing and the flow path space of the housing container. As a result, it has been concluded that it is effective to obtain an irregular coil shape with an increased projection width when projected in the axial direction, and the present invention has been completed here.

課題を対決するための解決手段Solutions to confront challenges

すなわち、本願請求項1に係る発明は、触媒物質を担持する為の触媒用担体であって、
金属線材により一方から他方側に連続的に巻回されたコイル線体で構成され、かつその巻回が該コイル線体を軸線方向に投影したときの前記金属線材が描く仮想外径(D1)と仮想内径(D2)との開き幅(H)が、該金属線材の等価線径(d)の2倍以上に増幅した異形コイル形状に成形されたものであることを特徴とする触媒用担体である。
That is, the invention according to claim 1 of the present application is a catalyst carrier for supporting a catalyst substance,
A virtual outer diameter (D1) drawn by the metal wire, which is composed of a coil wire continuously wound from one side to the other by a metal wire, and the winding projects the coil wire in the axial direction. And an imaginary inner diameter (D2), the carrier width for the catalyst is formed into a deformed coil shape amplified to be twice or more the equivalent wire diameter (d) of the metal wire It is.

そして本願請求項2に係る発明は、前記コイル線体は、その軸線方向に沿う第一番目のコイル部から第N番目のコイル部に向かってコイル中心点を偏心させることで、そのコイル線体の胴部に螺旋溝乃至螺旋凸条を形成したものであり、請求項3に係る発明は、前記コイル線体は、その巻回が非円形の形状に成形されたもので、かつその非円形形状が第一番目のコイル部から第N番目のコイル部に向かって巻回方位角(α)を変化させることで、そのコイル線体の胴部に螺旋溝乃至螺旋凸条を形成したもの、本願請求項4に係る発明は、前記非円形形状が、そのコイル成形幅(Cw)とコイル高さ(Ch)の比(Cw/Ch)が1.5〜10倍の楕円又は平形によるものであり、更に請求項5に係る発明は、前記コイル中心点の偏心又は巻回方位角(α)の変化した巻回で形成される前記螺旋溝乃至螺旋凸条の前記螺旋溝乃至螺旋凸条の、該コイル線体の軸線に対する傾斜角(θ)が20〜80°であることを各々特徴とする前記触媒用担体である。  In the invention according to claim 2 of the present application, the coil wire body is formed by decentering the coil center point from the first coil portion along the axial direction toward the Nth coil portion. In the invention according to claim 3, the coil wire body is formed in a non-circular shape and the non-circular shape is provided. By changing the winding azimuth angle (α) from the first coil portion toward the Nth coil portion, the shape of the coil wire body is formed with spiral grooves or spiral ridges, In the invention according to claim 4 of the present application, the non-circular shape is an ellipse or a flat shape having a ratio (Cw / Ch) of the coil forming width (Cw) to the coil height (Ch) of 1.5 to 10 times. Further, the invention according to claim 5 is the eccentricity or winding of the coil center point. An inclination angle (θ) of the spiral groove or spiral ridge of the spiral groove or spiral ridge formed by winding with a change in the angle (α) with respect to the axis of the coil wire body is 20 to 80 °. The catalyst carrier is characterized by the above.

また、請求項6に係る発明は、前記開き幅(H)が、該金属線材の等価線径(d)の3〜15倍に増幅してなるもの、請求項7に係る発明は、前記コイル線体は、前記金属線材の等価線径(d)の1.3倍以下のピッチで密着巻きされてなるもの、請求項8に係る発明は、前記金属線材は、通電又は電磁誘導によって自己加熱する金属芯線と、その表面を覆う第二の金属外装材との複合線によるもの、請求項9に係る発明は、前記金属線材は、その横断面における前記第二の金属外装材の複合率が5〜40%で複合され、かつその外面には更に該金属外装材の酸化物による多孔質構造を備えるもの、請求項10に係る発明は、前記金属芯線は、常温での電気抵抗率が5μΩ・cm以上のニッケル又はニッケル合金、クロム又はクロム合金、チタン又はチタン合金、鉄及び鉄合金のいずれか1種を少なくとも備えるものである前記記載の触媒用担体である。    Further, the invention according to claim 6 is such that the opening width (H) is amplified to 3 to 15 times the equivalent wire diameter (d) of the metal wire, and the invention according to claim 7 is the coil The wire is closely wound at a pitch of 1.3 times or less the equivalent wire diameter (d) of the metal wire, and the invention according to claim 8 is characterized in that the metal wire is self-heated by energization or electromagnetic induction. In the invention according to claim 9, wherein the metal wire has a composite rate of the second metal sheathing material in the transverse section thereof. In the invention according to claim 10, wherein the metal core wire has an electrical resistivity at room temperature of 5 μΩ・ Nickel or nickel alloy, chrome or chromium alloy, titanium The catalyst carrier as described above, comprising at least one of titanium, a titanium alloy, iron, and an iron alloy.

そして触媒製品に係る請求項11に係る発明は、これらいずれか記載の触媒用担体に、所定の触媒粒子が担持されてなるものであり、請求項12に係る発明は、前記触媒粒子は、前記触媒用担体の外面に形成した酸化物層の多孔質構造内に担持したもの、請求項13に係る発明は、前記酸化物層はアルミニウムのアルマイト層で構成され、かつ前記触媒用担体の少なくとも一部の電気配線用接続部とする部分を除き、その全面を被包してなる前記触媒製品である。  The invention according to claim 11 relating to the catalyst product is such that predetermined catalyst particles are supported on the catalyst carrier according to any one of these, and the invention according to claim 12 is characterized in that the catalyst particles In the invention according to claim 13, wherein the oxide layer is formed of an aluminum alumite layer and is supported in at least one of the catalyst carriers. The catalyst product is formed by encapsulating the entire surface except for a portion to be a connecting portion for electrical wiring.

さらに請求項14に係る発明は、前記触媒製品を、内部にその長手方向に沿って被処理流体が流下する内部流路に通じる一方の開口と他方の開口を備える配管又はハウジング容器内に組込まれ、かつ前記配線用接続部を介した前記金属線材への電気供給によって該金属芯線を自己加熱可能に構成したことを特徴とする触媒モジュールであり、請求項15に係る発明は、芳香族化合物への水素付加反応又は該芳香族化合物の水素化誘導体の脱水素反応用として用いられる前記記載の触媒モジュールである。  Furthermore, the invention according to claim 14 is configured such that the catalyst product is incorporated in a pipe or a housing container having one opening leading to an internal flow path through which the fluid to be treated flows down along the longitudinal direction thereof and the other opening. The catalyst module is configured to be capable of self-heating the metal core wire by supplying electricity to the metal wire through the connection portion for wiring. The invention according to claim 15 is directed to an aromatic compound. The catalyst module as described above, which is used for hydrogenation reaction or dehydrogenation reaction of a hydrogenated derivative of the aromatic compound.

発明の効果Effect of the invention

本発明の触媒用担体やこれを用いた触媒製品、並びに触媒モジュールの各発明によれば、その構成材料である触媒用担体が、これを軸線方向に投影したときの前記金属線材が描く開き幅(H)が、その金属線材の等価線径に対して2倍以上に増幅した異形コイル形状のコイル線体であることから、これを用いた触媒製品や更に触媒モジュールとして使用する際には、その配管容器等の断面内に該コイル線体の金属線材、更にそれに担持される触媒物質の分布密度を良好にし、供給される被処理流体の接触機会を高めて、触媒反応の大幅な向上を図ることができる。  According to each invention of the catalyst carrier of the present invention, the catalyst product using the catalyst carrier, and the catalyst module, the catalyst carrier as the constituent material has an opening width drawn by the metal wire when projected in the axial direction. Since (H) is a coiled wire with a deformed coil shape that has been amplified more than twice the equivalent wire diameter of the metal wire, when using it as a catalyst product or further as a catalyst module, In the cross section of the piping container, etc., the distribution density of the metal wire of the coil wire body and the catalyst substance supported on the coil wire is improved, and the contact opportunity of the fluid to be treated is increased, so that the catalytic reaction is greatly improved. You can plan.

またその成形も種々方法や形態で実施でき、得られたコイル線体は従来のコイル品と同様の取り扱いができることから、その使用に伴う特別な設計変更を必要としない。したがって、金属線材が持つ増大した表面積と、これを例えば直接通電加熱等の手段によって加熱することで反応のレスポンス性による性能向上がもたらされる。  Moreover, the shaping | molding can also be implemented with a various method and form, and since the obtained coil wire can be handled similarly to the conventional coil goods, the special design change accompanying the use is not required. Accordingly, the increased surface area of the metal wire and the performance improvement due to the response of the reaction is brought about by heating the surface by means such as direct current heating.

本発明に係る触媒用担体の一例を示す外観図であって、図1Aはその斜視図、図1Bは図1AのBA方向から見た平面図、図1Bは同Bb方向から見た側面図である。    FIG. 1A is an external view showing an example of a catalyst carrier according to the present invention, FIG. 1A is a perspective view thereof, FIG. 1B is a plan view seen from the BA direction of FIG. 1A, and FIG. 1B is a side view seen from the Bb direction. is there. 本発明に係る触媒製品の一例として、他の形態によるコイル線体の前記触媒用担体によるものの側面図である。    It is a side view of what is based on the said catalyst support | carrier of the coil wire body by another form as an example of the catalyst product which concerns on this invention. 図2のA−A’断面を示す拡大断面図である。    It is an expanded sectional view which shows the A-A 'cross section of FIG. 複合構造の金属線材の一例を示す顕微鏡写真である。    It is a microscope picture which shows an example of the metal wire of composite structure. 酸化物層を備える金属線材の縦断面を示す顕微鏡写真である。    It is a microscope picture which shows the longitudinal cross-section of a metal wire provided with an oxide layer. 酸化物層に形成される多孔質構造を示す拡大図である。    It is an enlarged view which shows the porous structure formed in an oxide layer. 実施例による多孔質表面状態の一例を示す顕微鏡写真である。    It is a microscope picture which shows an example of the porous surface state by an Example. 水素付加/脱水素反応用白金担持アルマイトクッラド金属細線触媒を用いた水素貯蔵・生成システム例の構成概要図である。    1 is a schematic configuration diagram of an example of a hydrogen storage / generation system using a platinum-supported alumite clad metal fine wire catalyst for hydrogenation / dehydrogenation reaction. 触媒モジュールの作用を説明する一形態の断面図である。    It is sectional drawing of one form explaining the effect | action of a catalyst module. 触媒モジュールの他の形態を示す横断面図である。    It is a cross-sectional view which shows the other form of a catalyst module.

1 触媒用担体
2 金属線材
2A 金属芯線
2B 金属外装材
3(13)コイル線体
4 螺旋溝
4a 螺旋凸条
5(5A,5B)電気接続部
8 酸化物層
A1 触媒製品
A2 触媒モジュール
D1 仮想外径
D2 仮想内径
X 触媒物質
Y 軸線
H 開き幅
DESCRIPTION OF SYMBOLS 1 Catalyst support | carrier 2 Metal wire 2A Metal core wire 2B Metal exterior material 3 (13) Coil wire 4 Spiral groove 4a Spiral protrusion 5 (5A, 5B) Electrical connection part 8 Oxide layer A1 Catalyst product A2 Catalyst module D1 Virtual outside Diameter D2 Virtual inner diameter X Catalytic substance Y Axis H Opening width

以下、本発明の好ましい形態を添付図面とともに説明する。
本発明に係る触媒用担体(以下、単に担体ともいう)1は、前記するように金属線材2のコイル線体3で構成され、そのコイル形状が該コイル線体3の軸線Y方向に投影したときに該金属線材2が描く仮想外径(D1)と仮想内径(D2)との間の開き幅(H)を、該金属線材2の線径(d)の2倍以上に増幅することを特徴とする。
Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings.
The catalyst carrier (hereinafter also simply referred to as carrier) 1 according to the present invention is composed of the coil wire 3 of the metal wire 2 as described above, and the coil shape is projected in the direction of the axis Y of the coil wire 3. Amplifying the opening width (H) between the virtual outer diameter (D1) and the virtual inner diameter (D2) drawn by the metal wire 2 to be twice or more the wire diameter (d) of the metal wire 2 Features.

その一例として、図1A〜1Cでは、該コイル線体3の各コイル形状を例えば楕円乃至平形の非円形状にして連続的に巻回しながら、その巻回方向が所定の方位角(α)で変化させることで構成した第一の形態を示し、図1Aはその斜視図、図1Bは同図1Aの矢印Ba方向から見た平面図、図1Cは同矢印Bb方向の軸線Y方向で見た側面図である。As an example, in FIGS. 1A to 1C, each coil shape of the coil wire 3 is continuously wound in an elliptical shape or a flat non-circular shape, and the winding direction is a predetermined azimuth angle (α). FIG. 1A is a perspective view thereof, FIG. 1B is a plan view seen from the direction of the arrow Ba in FIG. 1A, and FIG. 1C is seen in the axis Y direction of the arrow Bb direction. It is a side view.

そして同各図のコイル線体では、その描かれる前記開き幅(H)が該金属線材2の等価線径(d)の約5倍程度にまで増幅したものを示し、その形成コイル形状は、通常の円形コイルをやや押し潰したような実質的に扁平化した非円形形状としており、その第1番目のコイル部から2番目・、3番目・・・N番目に沿ってその成形方向が前記方位角(α)で変化することで、前記仮想外径(D1),仮想内径(D2)とともに、そのコイル胴部には全長に渡って螺旋階段的な螺旋溝4やその張り出しによる螺旋凸条4aを形成している。  And in the coil wire body of each of the figures, the drawn opening width (H) is shown to be amplified to about 5 times the equivalent wire diameter (d) of the metal wire 2, and the formed coil shape is It is a non-circular shape that is substantially flattened as if a normal circular coil is slightly crushed, and the molding direction is the second, third,... Nth from the first coil portion. By changing with the azimuth angle (α), the spiral outer surface (D1), the virtual inner diameter (D2), and the coil body have a spiral stepped spiral groove 4 over its entire length, and a spiral ridge formed by its overhang. 4a is formed.

このような螺旋階段的な表面形状や前記方位角(α)を持たせる為に、本形態ではその図1Cに示すように、各コイル形状を、例えば楕円形状や平形形状に近い広幅の栗形のようなやや丸味と若干の広がり角を持つような扁平形状にして、そのコイル幅(Cw)とコイル高さ(Ch)、及び所定の曲率曲げrを備える。そのコイル形状の調整は任意に設定でき、例えば前記開き幅(H)をより大きくするには、好ましくは該コイル形状のCw/Ch比を2倍以上、例えば2〜20倍程度、より好ましくは3〜15倍の比率で扁平化させることが推奨される。逆にこのような扁平形状以外に、例えばやや丸味を持つ三角形状や正方形状、五角形状‥‥などのように比較的コイル幅Cw/コイル高さChの比の小さな形状にすることもできるが、その場合もできるだけ少ない辺数で構成するのが望ましい。  In order to have such a spiral stepped surface shape and the azimuth angle (α), in this embodiment, as shown in FIG. 1C, each coil shape is, for example, a wide chestnut shape close to an elliptical shape or a flat shape. A flat shape having a slight roundness and a slight divergence angle, and having a coil width (Cw), a coil height (Ch), and a predetermined curvature bend r. The adjustment of the coil shape can be arbitrarily set. For example, in order to increase the opening width (H), the Cw / Ch ratio of the coil shape is preferably at least twice, for example, about 2 to 20 times, more preferably It is recommended to flatten at a ratio of 3 to 15 times. Conversely, in addition to such a flat shape, for example, a shape having a relatively small ratio of coil width Cw / coil height Ch, such as a slightly rounded triangular shape, square shape, pentagonal shape, etc., can be used. In such a case, it is desirable that the number of sides be as small as possible.

ここで前記開き幅(H)については、例えば図1Cのように該コイル線体3の任意横断面を見たとき、すなわちその軸線Y方向に投影(透視)したときに、前記金属線材2が描く最も外側の外径の仮想線(D1)とその同軸で求められる最も内側の内径の仮想線(D2)との間の幅寸法(H)で示される。但し、その開き幅が一定でない場合は、任意に測定した数点の平均値が用いられる。  Here, with respect to the opening width (H), for example, when the arbitrary cross section of the coil wire body 3 is viewed as shown in FIG. 1C, that is, when projected (perspectively) in the axis Y direction, It is indicated by a width dimension (H) between the outermost imaginary line (D1) to be drawn and the innermost imaginary line (D2) obtained on the same axis. However, when the opening width is not constant, an average value of several points arbitrarily measured is used.

本発明では、その開き幅(H)はそれに用いる金属線材2の線径(d)と成形するコイル形状の大きさや前記形状比率によって異なるものの、該金属線材2の線径dの2倍以上としている。2倍以下では使用する際の被処理流体が有効に接触するのに十分な効果は期待され難く、通常は2〜20程度で設定される。特に、図1Cのような扁平形状のコイル体によるものでは、その比率をより大きく設定できる。しかし、20倍を超える程大きくするものでは、担体1自体が太径化して大型化し、逆に小型化する場合には、該コイル形状をより薄型に扁平化させる為にコイル曲げ部の曲率径rを小さくさせるのに伴って、該金属線材2が折損する要因ともなる。このような折損を防止するには、そのコイル成形曲げ部の曲率半径rが該金属線材2の線径dの少なくとも5倍以上となるように設定することが好ましい。また図2のように実質的に仮想内径(D2)を備えないコイル形状のものでは、前記開き幅(H)は該コイル線体の中心点までの幅寸法で示すこととする。  In the present invention, the opening width (H) differs depending on the wire diameter (d) of the metal wire 2 used for it and the size of the coil shape to be formed and the shape ratio, but is more than twice the wire diameter d of the metal wire 2. Yes. If it is 2 times or less, it is difficult to expect a sufficient effect for the fluid to be treated to use effectively when it is used, and it is usually set to about 2 to 20. In particular, in the case of a flat coil body as shown in FIG. 1C, the ratio can be set larger. However, in the case where the size is increased to exceed 20 times, the carrier 1 itself is increased in diameter and increased in size, and conversely, in order to reduce the size of the coil, the curvature diameter of the coil bending portion is reduced. As r is reduced, the metal wire 2 is also broken. In order to prevent such breakage, it is preferable to set the radius of curvature r of the coil-formed bent portion to be at least 5 times the wire diameter d of the metal wire 2. Further, in the case of a coil shape that does not substantially have a virtual inner diameter (D2) as shown in FIG. 2, the opening width (H) is indicated by a width dimension to the center point of the coil wire body.

コイル線体3に用いる前記金属線材2は、最終的にその表面に触媒物質Xを担持するもので、その断面形状や線径は任意に設定できるが、一般的には通常のワイヤー線材のような断面円形の線材が採用される。しかし、これ以外にも例えば楕円の楕円線や三角線、帯状線、四角線更には星型線など任意な断面非円形な線材を用いることもできる。特に丸線形状や楕円、乃至星形のような多辺形状の線材では、その表面積の増大効果が顕著で、結果的に触媒物質Xの収容効率を高め得る。このように、本発明ではその金属線材として断面非円形な形状の異形線材も含むことから、その場合の線径表示は、例えばその横断面面積から算出される等価換算線径(d)によるものとし、その等価線径(d)は、例えば1mm以下、より好ましくは0.2〜0.8mm程度の細線が用いられる。但し、これに限るものではない。The metal wire 2 used for the coil wire 3 finally carries the catalyst substance X on its surface, and its cross-sectional shape and wire diameter can be arbitrarily set, but in general, like a normal wire wire A wire with a circular cross section is adopted. However, any other non-circular wire rod such as an elliptical elliptical line, a triangular line, a strip line, a square line, or a star line can be used. In particular, a multi-sided wire rod such as a round wire shape, an ellipse, or a star shape has a remarkable effect of increasing the surface area, and as a result, the efficiency of accommodating the catalytic substance X can be increased. Thus, in the present invention, since the metal wire includes a deformed wire having a non-circular cross section, the wire diameter display in that case is based on, for example, an equivalent conversion wire diameter (d) calculated from the cross-sectional area. The equivalent wire diameter (d) is, for example, 1 mm or less, more preferably a thin wire of about 0.2 to 0.8 mm. However, the present invention is not limited to this.

本形態のコイル線体3は、前記図1A〜1Cで説明したように扁平化した非円形のコイル形状のもので、各コイル形状の方向を所定の方位角度(α)で変化させることで、そのコイル胴部にコイル線体の軸線Y方向に沿って螺旋階段状に伸びる螺旋溝4及びそれに伴い形成される凸条4aを備える異形のコイル線体のものとしている。  The coil wire body 3 of this embodiment is a non-circular coil shape flattened as described in FIGS. 1A to 1C, and by changing the direction of each coil shape by a predetermined azimuth angle (α), The coil body is formed of a deformed coil wire body having a spiral groove 4 extending in a spiral staircase shape along the axis Y direction of the coil wire body and a protrusion 4a formed therewith.

その方位角度(α)は、例えば5〜60°程度に設定することで、例えば図1Cのように金属線材2間に隙間Csが形成される。その隙間Csは被処理流体の自由な流入を促進するとともに、前記螺旋溝4がその軸線Yに対する平面視で例えば20〜80°の傾斜角(θ)で形成される。このような螺旋溝4や螺旋凸条4aは、これを例えば図9,図10に見られるように、所定の配管やハウジング容器等の内部にセットする際に、その断面内で該金属線材2が占める見掛け上の占有容積率を高め得る。そして、供給される被処理流体が流下する際には、多段の該螺旋溝4や螺旋凸条4aでより効果的な接触が図られ、結果的に触媒反応の促進をもたらすとともに、被処理流体は前記隙間Cs間を流通して円滑な処理が成し得る。また複数のコイル線体13A,13B・・・を併設配置する場合にも、それらが一部重なり合うように位置合わせ(任意に回転)することで、触媒モジュールとして全体的な省スペーカ化を促進する利点もある。その好ましい前記交差角度(θ)は、30〜70°、より好ましくは40〜60°で設計される。  By setting the azimuth angle (α) to about 5 to 60 °, for example, a gap Cs is formed between the metal wires 2 as shown in FIG. 1C, for example. The gap Cs promotes free inflow of the fluid to be treated, and the spiral groove 4 is formed with an inclination angle (θ) of, for example, 20 to 80 ° in a plan view with respect to the axis Y. Such spiral grooves 4 and spiral ridges 4a are formed in the cross section of the metal wire 2 when the spiral grooves 4 and the spiral ridges 4a are set inside a predetermined pipe or housing container as shown in FIGS. The apparent occupied volume ratio occupied by can be increased. And when the to-be-processed fluid supplied flows down, more effective contact is aimed at by the multistage spiral groove 4 or the spiral protrusion 4a, and as a result, the catalytic reaction is promoted, and the to-be-processed fluid Can circulate between the gaps Cs to achieve smooth processing. In addition, when a plurality of coil wire bodies 13A, 13B,... Are arranged side by side, positioning (arbitrarily rotates) so that they partially overlap each other, thereby promoting overall reduction in the amount of space as a catalyst module. There are also advantages. The preferable said intersection angle ((theta)) is designed by 30-70 degrees, More preferably, it is 40-60 degrees.

次に、このようなコイル線体3の第二の形態を図2に示す。
この形態では、その成形コイル形状は円形であるものの、そのコイル中心点が例えば円を描くように順次偏心させながら巻回することで、前記第一形態のコイル線体の場合と同様な螺旋溝4や螺旋凸条4aを形成している。なおこの形態では、その仮想外径(D1)が各コイル部のコイル径のほぼ2倍程度にすることで、実質的に仮想内径(D2)は見られていないが、このような偏心型コイルによる場合の前記開き幅(H)は前記仮想外径(D1)の1/2とする。もし必要ならば、成形コイルの偏心させる径の調節で前記第一形態と同様に仮想内径(D2)を備えることができ、必要に応じて任意の寸法調整で設定される。偏心寸法の大小や形状は任意であり、円形以外のものも可能であり、この第二形態のように、各コイルの中心点が変移するように構成したコイル線体を偏心型のコイル線体と呼ぶ。
Next, the 2nd form of such a coil wire 3 is shown in FIG.
In this form, the shape of the formed coil is circular, but the coil center point is wound while sequentially decentering so as to draw a circle, for example, so that the same spiral groove as in the case of the coil wire of the first form is used. 4 and spiral ridges 4a are formed. In this embodiment, the virtual outer diameter (D1) is approximately twice the coil diameter of each coil portion, so that the virtual inner diameter (D2) is not substantially seen. In this case, the opening width (H) is ½ of the virtual outer diameter (D1). If necessary, a virtual inner diameter (D2) can be provided in the same manner as in the first embodiment by adjusting the diameter of the formed coil to be decentered, and can be set by arbitrary dimensional adjustment as necessary. The size and shape of the eccentric dimension are arbitrary, and other than circular shapes are possible. As in the second embodiment, the coil wire configured to shift the center point of each coil is an eccentric type coil wire. Call it.

本発明の前記触媒用担体1は、このような、▲1▼その各コイル形状を非円形形状にして、その巻回方位角(α)を変化させる方式の第一形態によるもの、▲2▼コイル形状は円形であるものの、その中心点を偏心させる偏心コイル線体による第二形態のもの、更に▲3▼第一形態と第二形態を適宜組合した組合せ型の第三形態によるものなど種々形態で実施でき、特性的に改良された触媒担持用の担体が提供される。  The catalyst carrier 1 according to the present invention is according to the first embodiment of the system in which the coil shape is changed to a non-circular shape and the winding azimuth angle (α) is changed. Although the coil shape is circular, there are various types, such as a second form using an eccentric coil wire body that decenters the center point, and (3) a combination form that combines the first form and the second form as appropriate. Provided is a support for carrying the catalyst which can be implemented in the form and which has improved properties.

このような異形型のコイル線体は、例えば通常のコイルバネのようなばね成形機によって微妙なピン調節で直接成形できる他、所定形状の型具への巻回による方法、更には通常の同径コイルばね形状のコイル線体3をローラーやプレス等で部分的に螺旋状に押圧変形させる等の方法で実施可能である。また、該コイル線体が例えば比較的短尺なものの場合は、このような異形形状でなく、単にその巻回径をその長手方向に沿って円錐型や鼓コイル型、あるいは蛇腹コイル状に変化したものなどで構成することもできる。しかしその複数を併設する場合は、予めその凹凸形状の高さ位置を調整したコイル形状にしておくことが必要となるが、前記螺旋形状のコイル線体では回転調整で自由に設定できる利点がある。  Such an irregularly shaped coil wire can be directly formed by a fine pin adjustment by a spring forming machine such as a normal coil spring, a method by winding around a predetermined shaped tool, and a normal same diameter. The coil wire-shaped coil wire 3 can be partially pressed and deformed in a spiral shape with a roller, a press or the like. In addition, when the coil wire is relatively short, for example, it is not such a deformed shape, and its winding diameter is simply changed to a conical shape, a drum coil shape, or a bellows coil shape along its longitudinal direction. It can also consist of things. However, when there are a plurality of them, it is necessary to make the coil shape in which the height position of the uneven shape is adjusted in advance. However, the spiral coil wire body has an advantage that it can be freely set by rotation adjustment. .

コイル線体3のこれら巻回方式やその構成、寸法等の仕様設計は、その使用目的、使用装置、設置スペース、設計性能等に応じて適宜設定可能である。例えば前記図9や図10のように、所定の配管内に1乃至複数個を組み込んで使用する場合は、巻き外径D1:30mm以下、例えば5〜15mm程度で、その長さは5〜500mm程度の成形寸法で巻回される。また、その巻回ピッチ(P)は、通常は密着巻きしたコイル線体として、該金属線材2の等価線径(d)の1.3倍以下にすることで、その取り扱いや複数本を隣接配置する場合の他方側のコイル線体との絡まりが防止でき、装置内への組立て作業性を高め、更に性能面でも加熱発熱に伴う熱効率を高めるなどの効果をもたらす。  The specification design of the coil wire body 3 such as the winding method, its configuration, and dimensions can be appropriately set according to the purpose of use, the device used, the installation space, the design performance, and the like. For example, as shown in FIG. 9 and FIG. 10, when one or more are incorporated in a predetermined pipe, the outer diameter D1 is 30 mm or less, for example, about 5 to 15 mm, and the length is 5 to 500 mm. It is wound with a molding dimension of about. In addition, the winding pitch (P) is usually 1.3 times or less of the equivalent wire diameter (d) of the metal wire 2 as a closely wound coil wire body, so that the handling and multiple wires are adjacent to each other. In the arrangement, the coil wire on the other side can be prevented from being entangled, the assembly workability in the apparatus is improved, and the thermal efficiency associated with the heat generation is also improved in terms of performance.

また前記コイル線体3による触媒製品が、例えば電気通電や電磁誘導によってそれ自身を所定の使用温度に自己加熱させるものである場合の金属線材2としては、例えば常温での電気抵抗率が5μΩ・cm以上(5〜200μΩ.cm程度)の電気特性と、熱膨張係数が20×10−6/℃以下(但し、温度0〜100℃)の低膨張材料が選択される。これにより、使用性能が向上し、具体的には次のような金属材料による単一の金属線でなるもの又はこれを用い、例えば図2〜図4で説明するような複合線とすることもできる。Further, as the metal wire 2 in the case where the catalyst product by the coil wire body 3 is self-heated to a predetermined use temperature by, for example, electrical conduction or electromagnetic induction, for example, the electrical resistivity at room temperature is 5 μΩ · A low expansion material having an electric characteristic of cm or more (about 5 to 200 μΩ.cm) and a thermal expansion coefficient of 20 × 10 −6 / ° C. or less (however, a temperature of 0 to 100 ° C.) is selected. As a result, the use performance is improved, and specifically, a single metal wire made of the following metal material or a composite wire as illustrated in FIGS. it can.

該複合線は、前記自己加熱するために選択された前記特性の金属芯線2Aと、更にその表面を第二の金属外装材2Bで被包したもので構成しており、全体としてそれ自体でコイル線体としての形状を維持可能とする所定の弾性強度を備えるように調節される。その金属芯線2A(単一線の場合は、金属線材2)には、例えばステンレス鋼、ニッケル又はニッケル合金、クロム又はクロム合金、チタン又はチタン合金、アルミニウム又はアルミニウム合金、タングステンやタングステン合金等の金属材料が用いられる。    The composite wire is composed of the metal core wire 2A having the characteristics selected for the self-heating, and the surface covered with the second metal sheathing material 2B, and the coil itself as a whole. It is adjusted to have a predetermined elastic strength that enables the shape of the wire body to be maintained. The metal core wire 2A (in the case of a single wire, metal wire 2) includes, for example, a metal material such as stainless steel, nickel or nickel alloy, chromium or chromium alloy, titanium or titanium alloy, aluminum or aluminum alloy, tungsten or tungsten alloy, etc. Is used.

そのより好適する合金組成としては、例えば、Cr:15〜25wt%、Ni+Co:55%以上、C:0.15%以下、Si:0.5〜1.5%、Mn:2.5%以下を含有し、残部Feと若干の不可避不純物でなるJIS−NCH1乃至NCH2、あるいはCr:15〜25wt%、C:0.10%以下、Si:1.5%以下、Mn:1.0%以下、Al:2〜6%と、残部Fe及び不可避不純物でなるJIS−FCH1やFCH2の他、前記ニッケル材としては、例えばNi:99wt%以上のN200材料は、特に発熱特性が外装材であるアルミニウムに近似するとともに、細径加工の加工性にも優れ好ましい。またその強度は、例えば引張強さが300〜600MPa程度を有するものが好ましい。  As a more preferable alloy composition, for example, Cr: 15 to 25 wt%, Ni + Co: 55% or more, C: 0.15% or less, Si: 0.5 to 1.5%, Mn: 2.5% or less JIS-NCH1 to NCH2 containing Fe and some inevitable impurities, or Cr: 15 to 25 wt%, C: 0.10% or less, Si: 1.5% or less, Mn: 1.0% or less In addition to JIS-FCH1 and FCH2 made of Al: 2 to 6% and the balance Fe and inevitable impurities, the nickel material is, for example, Ni: 99 wt% or more of N200 material, in particular, aluminum whose heat generation characteristic is an exterior material In addition, it is excellent in workability of small diameter machining. The strength is preferably that having a tensile strength of about 300 to 600 MPa, for example.

他方、これら金属芯線2Aを覆う金属外装材2Bとして、例えばアルミニウムの金属層(単にアルミ層ともいう)7を用いる場合を説明する。アルミニウムはその陽極酸化処理によって、表面上に例えば図5乃至図7に示すような多孔質構造の微薄厚さでなるアルマイト(酸化物層)の層8が形成され、このアルマイト層8は、最終的にこの多孔質構造内に所定の触媒物質Xを担持させるのに好適する。    On the other hand, the case where, for example, an aluminum metal layer (also simply referred to as an aluminum layer) 7 is used as the metal sheathing material 2B covering these metal core wires 2A will be described. The aluminum is anodized to form an alumite (oxide layer) layer 8 having a porous structure as shown in FIGS. 5 to 7 on the surface. In particular, this is suitable for supporting a predetermined catalytic substance X in the porous structure.

アルマイト層の形成処理は、例えば特開平2−144154号公報、特開平8−246190号公報などに示されるように、所定の電解液中での電気化学処理と例えば350〜600℃程度の加熱焼成処理で実施される。その生成現象の詳細は省略するが、アルミニウム酸化物のコロイドが凝集した微粒子の成長によって、該微粒子の存在していない表面部分の一部が細孔になり多孔質構造をもたらすものとされている。    An alumite layer is formed by, for example, electrochemical treatment in a predetermined electrolytic solution and heating and baking at, for example, about 350 to 600 ° C., as disclosed in, for example, JP-A-2-144154 and JP-A-8-246190. Implemented in the process. Although the details of the generation phenomenon are omitted, it is said that the growth of the fine particles in which the colloid of aluminum oxide is agglomerated causes a part of the surface portion where the fine particles are not present to become pores, resulting in a porous structure. .

図6は該多孔質構造の一例の拡大模式図であって、例えば亀甲状に分布する多数の微細な有底細孔Asをその厚さ方向に形成したメソポーラスの構造体とし、該細孔Asは例えば内径10〜100nm程度、好ましくは30〜50nmの微細な開口と、所定長さ(L)500μm以下を持つ有底筒状をなす。また必要ならば、この細孔Asの拡幅や深耕の後処理によって、該開口のアスペクト比(長さL/内径d)を3〜2000程度に調整することが好ましい。  FIG. 6 is an enlarged schematic view of an example of the porous structure, for example, a mesoporous structure in which a number of fine bottomed pores As distributed in a turtle shell shape are formed in the thickness direction. For example, it has a bottomed cylindrical shape having a fine opening with an inner diameter of about 10 to 100 nm, preferably 30 to 50 nm, and a predetermined length (L) of 500 μm or less. If necessary, it is preferable to adjust the aspect ratio (length L / inner diameter d) of the opening to about 3 to 2000 by widening the pores As and post-plowing treatment.

こうして得られるアルマイト層8は電気的にも非導電性の絶縁被膜として機能し、この絶縁性被膜で覆われた触媒用担体1は、その使用時の他の部材(他のコイル線体やハウジング容器など)との接触による電気的短絡が防止できる。このため、特別な絶縁手段を講じることなく使用できる利便性と、該多孔質構造は、非常に微細かつ硬質で、前記触媒物質Xを図6のようにその細孔Asの内面に担持させることで、その使用における他の部材との接触や摩擦等によって離脱したり、細孔の変形や封孔が防止できる利点を有する  The alumite layer 8 thus obtained functions as an electrically non-conductive insulating coating, and the catalyst carrier 1 covered with this insulating coating is used for other members (other coil wire bodies and housings) at the time of use. Electrical short circuit due to contact with containers, etc.) can be prevented. For this reason, the convenience that can be used without taking special insulating means, and the porous structure is very fine and hard, and the catalyst substance X is supported on the inner surface of the pore As as shown in FIG. Therefore, it has the advantage that it can be detached by contact with other members or friction in its use, or deformation or sealing of the pores can be prevented.

また、これらアルマイト層8は、例えば前記アルミニウムなどの外装材2Bの酸化処理で形成でき、該アルミニウムは前記金属芯線2Aの表面に例えばメッキ処理やクラッド技術によって複合化したものの他、例えば該芯線2自体をアルミニウムを含む金属材料で構成して、これを例示しない例えば析出熱処理によってその表面上にアルミ元素を層状析出させることで形成することもできる。  These anodized layers 8 can be formed, for example, by oxidizing the exterior material 2B such as aluminum. The aluminum is combined with the surface of the metal core wire 2A by, for example, plating or clad technology, for example, the core wire 2 It can also be formed by forming itself with a metal material containing aluminum, and laminating aluminum elements on the surface thereof by, for example, precipitation heat treatment, which is not exemplified.

該金属線材2における前記金属外装材2B(前記アルマイト層を含む)の複合率は、そのバラツキを考慮して、例えば〔(アルマイト層+アルミ層)の容積/金属線材の容積〕の比率が5〜40%であるように設定することが好ましい。その容積比が5%未満のものでは、十分なアルマイト層の厚さが得られ難く、逆に40%を超える程大きく設定したものでは生産効率を低下させるとともに、使用時の熱影響による不具合や強度特性の低下を招きやすい。より好ましい複合率は8〜20%で、またこれら外装材2B(アルミ層7)の形成厚さは、例えば0.2mm以下、好ましくは10〜100μm程度になるように調整しておくことが好ましい。  The composite ratio of the metal sheathing material 2B (including the alumite layer) in the metal wire 2 is, for example, a ratio of [volume of (alumite layer + aluminum layer) / volume of metal wire] is 5 in consideration of the variation. It is preferable to set it to be ˜40%. When the volume ratio is less than 5%, it is difficult to obtain a sufficient thickness of the alumite layer. Conversely, when the volume ratio is set to be larger than 40%, the production efficiency is lowered, and there is a problem caused by the thermal influence during use. It tends to cause deterioration of strength characteristics. More preferably, the composite rate is 8 to 20%, and the thickness of the exterior material 2B (aluminum layer 7) is preferably adjusted to be, for example, 0.2 mm or less, preferably about 10 to 100 μm. .

ところで、前記アルマイト層8は一般的に靭性に劣り曲げ変形などによって割れが生じやすいことから、通常はその成形処理に先立って該金属線材2を予め目的形状のコイル線体3に成形しておくことが好ましい。それによって、曲げ加工に伴う該アルマイト層(酸化物層)のクラックや割れ剥離を防止することができる。    By the way, since the alumite layer 8 is generally inferior in toughness and easily cracked due to bending deformation or the like, the metal wire 2 is usually formed in advance into a coil wire 3 having a desired shape prior to the forming process. It is preferable. Thereby, cracks and crack peeling of the alumite layer (oxide layer) accompanying bending can be prevented.

前記図2は担体1としてのコイル形状を示すだけでなく、触媒製品A1としての構成を含むもので、コイル線体3の両端部には前記アルマイト層8を設けることなく、実質的に金属線材2を露出した電気接続部5A,5Bを設けるとともに、該アルマイト層8には更に触媒物資Xを担持している。
この接続部5A,5Bは、これを使用する際の導線6を介した外部電源Vによって自己加熱する為の配線接続する部分で、同図のように必要長さに渡って外装材2B又は金属芯線2Aを露出させており、その処理は、例えばアルマイト処理の際にその部分が処理されないようにマスキングする方法、ないし処理後の研磨加工で除却することで実施される。また本形態では、主として金属外装材2Bがアルミニウムによる場合を説明したが、これに限らず同様の酸化物層を形成する例えばMg,Ti,Ta、Znなどの種々金属材料を用いることもできる。また、前記図1では触媒用担体として単に成形コイルの巻回状態のみを説明しているが、これは図2の場合と同様に処理され触媒製品として用いられる。
FIG. 2 not only shows the shape of the coil as the carrier 1 but also includes the structure as the catalyst product A1, and the metal wire material is substantially formed without providing the alumite layer 8 at both ends of the coil wire 3. 2 are provided, and the alumite layer 8 further carries a catalyst material X.
These connecting portions 5A and 5B are portions for wiring connection for self-heating by the external power source V via the conducting wire 6 when they are used, and the exterior material 2B or metal over the necessary length as shown in FIG. The core wire 2A is exposed, and the treatment is performed by, for example, a method of masking so that the portion is not treated during the alumite treatment, or by removing by a polishing process after the treatment. In the present embodiment, the case where the metal sheathing material 2B is mainly made of aluminum has been described. However, the present invention is not limited to this, and various metal materials such as Mg, Ti, Ta, and Zn that form a similar oxide layer can also be used. In FIG. 1, only the wound state of the formed coil is described as the catalyst carrier, but this is treated in the same manner as in FIG. 2 and used as a catalyst product.

次に、こうして得られた担体1は、その表面上に所定の触媒物質Xを担持することで触媒製品A1となり、触媒物質Xの種類や分量については使用目的に応じて種々選択される。例えば白金、ロジウム、レニウム、ニッケル、ジルコニウム、チタン、亜鉛、マグネシウム、モリブデン乃至タングステン塩によるものが選択され、またそれらの塩酸塩、硝酸塩、蓚酸塩及び酸素酸塩を用いて水あるいはエタノールやメタノール溶液から多孔質アルミナ表面層を備えた前記担体に同時乃至逐次の工程で含浸担持することができる。また、本発明は該触媒物質Xを前記アルマイト層8を介することなく直接金属線材2に担持したものを含む。  Next, the carrier 1 thus obtained becomes a catalyst product A1 by carrying a predetermined catalyst substance X on the surface thereof, and the type and amount of the catalyst substance X are variously selected according to the purpose of use. For example, platinum, rhodium, rhenium, nickel, zirconium, titanium, zinc, magnesium, molybdenum or tungsten salts are selected, and water, ethanol or methanol solutions using their hydrochlorides, nitrates, oxalates and oxyacid salts From the above, the carrier having a porous alumina surface layer can be impregnated and supported in the same or sequential steps. Further, the present invention includes the catalyst material X supported directly on the metal wire 2 without the alumite layer 8 interposed therebetween.

このような触媒物質の担持技術は、これまでにも種々方法が知られ幅広く実施されている。例えば白金を含む白金溶液を付与する場合、前記多孔質構造のアルマイト層8に塗布してその有底細孔As内に圧入浸透させる担持法が推奨できる。この工程で用いられる白金溶液としては、例えばハキサクロロ白金(IV)酸六水和液、ジニトロジアンミン白金(II)硝酸溶液、ヘキサアンミン白金(IV)クロライド溶液若しくはテトラアンミン白金(II)水酸塩溶液等が好適に用いられる。また、白金あるいはおよび遷移金属塩溶液は、アルマイトクッラド金属細線を通電あるいは電磁波誘電過熱しながら所定の温度域で、浸漬、滴下、塗布若しくは噴霧等の方法で、白金およびあるいは遷移金属塩を同時あるいは逐次担持することもできる。  As for the catalyst material loading technology, various methods have been known and widely implemented. For example, when a platinum solution containing platinum is applied, a supporting method in which it is applied to the porous anodized layer 8 and pressed into the bottomed pores As can be recommended. Examples of the platinum solution used in this step include haxachloroplatinum (IV) acid hexahydrate, dinitrodiammineplatinum (II) nitric acid solution, hexaammineplatinum (IV) chloride solution, tetraammineplatinum (II) hydrochloride solution, and the like. Are preferably used. In addition, platinum or a transition metal salt solution is prepared by simultaneously immersing platinum or transition metal salt by a method such as immersion, dropping, coating or spraying in a predetermined temperature range while energizing an alumite clad metal wire or heating an electromagnetic dielectric. Or it can carry | support sequentially.

この他にも、Pt(CO)Cl,Rh(CO12,Ni(CO),Re(CO)などの金属カルボニル化合物やCpTiCl(Cp=シクロペンタヂエニル)、Mo(CO)などを用いる化学気相固定法(Chemical Vapor Deposition)により担持することが出来る。担持後、酸素含有雰囲気中での250〜600℃の温度域での段階的な焼成、さらに水素ガス雰囲気下で100〜450℃の温度域で段階的に昇温することにより活性化処理を行うことが好ましい。水素活性化処理あるいはヒドラジン、ボロンハイドライドなどの還元剤で還元処理することにより白金およびあるいは遷移金属を担持するアルミニウムのクラッド金属細線触媒を調整することができる。白金及び遷移金属のアルマイトクラッドした金属細線に対する担持量は、例えば0.01〜10%重量比とし好ましくは0.1〜5%重量比である。また白金と遷移金属との担持量は原子比のおいて0.1〜10であり好ましくは0.1〜0.5である。これら記載の触媒前駆物質の選択や、触媒製造の工程や活性化処理条件などに限定されるものではない。In addition, metal carbonyl compounds such as Pt (CO) 2 Cl, Rh 4 (CO 12 , Ni (CO) 4 , Re 2 (CO) 7 , CpTiCl 2 (Cp = cyclopentadienyl), Mo (CO ) It can be supported by a chemical vapor deposition method using 6, etc. After supporting, stepwise firing in a temperature range of 250 to 600 ° C. in an oxygen-containing atmosphere, and further in a hydrogen gas atmosphere The activation treatment is preferably carried out by raising the temperature stepwise in the temperature range of 100 to 450 ° C. Platinum and / or transition metal by hydrogen activation treatment or reduction treatment with a reducing agent such as hydrazine or boron hydride. It is possible to prepare an aluminum clad metal fine wire catalyst supporting platinum, platinum and transition metal alloys. For example, the supported amount with respect to the metal clad metal wire is 0.01 to 10% by weight, and preferably 0.1 to 5% by weight. It is 1 to 10, preferably 0.1 to 0.5, and is not limited to the selection of the catalyst precursors described above, the catalyst production process, the activation treatment conditions, and the like.

こうして構成された触媒製品A1は、例えば図9及び図10に示すように、所定の配管やハウジング容器11に収納した触媒モジュール10として利用される。その触媒モジュール10は、例えば芳香族化合物への水素付加反応又は該芳香族化合物の水素化誘導体の脱水素反応用をはじめ、排ガス用として、その他反応用の各種触媒装置などとして広く採用可能である。  The catalyst product A1 thus configured is used as a catalyst module 10 accommodated in predetermined piping or a housing container 11 as shown in FIGS. 9 and 10, for example. The catalyst module 10 can be widely employed as various catalyst devices for other reactions, for example, for exhaust gas, for example, for hydrogenation reaction to an aromatic compound or for dehydrogenation of a hydrogenated derivative of the aromatic compound. .

前記水素反応用とするものでは、その導入側から供給される例えばメチルヘキサン(MCH)の噴霧流体を何らか方法で加熱し、あるいは所定温度に自己加熱可能に構成したコイル状の触媒製品内を流入させることで、該被処理流体が金属線体上の触媒物質Xによって水素ガスに変換され取り出すもので、反応は次のように行われる。  In the hydrogen reaction product, for example, methylhexane (MCH) sprayed fluid supplied from the introduction side is heated by some method, or inside the coiled catalyst product configured to be self-heated to a predetermined temperature. By flowing in, the fluid to be treated is converted into hydrogen gas by the catalyst substance X on the metal wire and taken out, and the reaction is performed as follows.

CH11 ⇔ CH+3H CH 3 C 6 H 11 CH CH 3 C 6 H 5 + 3H 2

図9の触媒モジュールA2では、所定の例えば配管10内に2つの触媒製品13A,13Bを所定の配置間隔でセットし、その両端は図2のようにアルマイト層を備えない電気接続部5で接続される配線16を介して外部電源Vに繋がることで、目的の使用温度(例えば200〜600℃)に調整可能に構成している。各触媒製品13A,13Bは、螺旋溝4や螺旋凸条4aが各々嵌合するように回転配置し、上下の多孔板12A,12B間で保持しており、また外部配線16は容器10の壁面に設けた引出孔11を通り、所定充填剤での封止により被処理流体や生成水素が漏れないように配慮される。同様に図10では、5つの触媒製品が一部重なり合いながら配置して、各々電気的な接続がなされている。  In the catalyst module A2 of FIG. 9, two catalyst products 13A and 13B are set at a predetermined arrangement interval in a predetermined pipe 10, for example, and both ends thereof are connected by an electrical connection portion 5 having no anodized layer as shown in FIG. By connecting to the external power supply V via the wiring 16 to be configured, it can be adjusted to a target use temperature (for example, 200 to 600 ° C.). The catalyst products 13A and 13B are rotationally arranged so that the spiral grooves 4 and the spiral ridges 4a are fitted, and are held between the upper and lower perforated plates 12A and 12B, and the external wiring 16 is the wall surface of the container 10 It is considered that the fluid to be treated and the generated hydrogen do not leak by sealing with a predetermined filler through the extraction hole 11 provided in the container. Similarly, in FIG. 10, five catalyst products are arranged so as to partially overlap each other and are electrically connected to each other.

本発明者らの性能比較によれば、従来型の同径密着コイルのコイル線体による触媒製品に比して、その形成方法の選択で前記開き幅(H)を自由に設定することができ、また一定の横断面内での単純比較でも数〜十数倍という高い有効面積比を備えることができる。その為、供給される被処理流体は、その所定容器10の横断面内に幅広くかつポーラス的な分布配置となるコイル線体の前記形成隙間Csを自由に流通しながら効果的な接触反応させることができ、被処理流体が未処理状態のまま放出される未反応流体(すなわち、供給流体)を、従来型の例えば50% ⇒5%以下に大幅に低減させるものとなった。同時に、このようなコイル構造によって、複数のコイル線体を用いる場合にも、その前記螺旋溝4同士の回転嵌合によって、相互に重なり合いながら配置できることから、全体の配置面積の省スペース化によるモジュールの小型化が図れ、流通抵抗の実質的な上昇を招くことなく、触媒反応性や操作性に優れた小型触媒モジュールの提供が可能である。    According to the performance comparison by the present inventors, the opening width (H) can be freely set by selecting the formation method as compared with the catalyst product using the coil wire body of the conventional close contact coil of the same diameter. In addition, a high effective area ratio of several to several tens of times can be provided even by simple comparison within a certain cross section. For this reason, the supplied fluid to be treated is subjected to an effective contact reaction while freely flowing through the formation gap Cs of the coil wire body having a wide and porous distribution in the cross section of the predetermined container 10. Thus, the unreacted fluid (that is, the supply fluid) that is released while the fluid to be treated is in an untreated state is greatly reduced to, for example, 50% → 5% or less of the conventional type. At the same time, even when a plurality of coil wire bodies are used by such a coil structure, the spiral grooves 4 can be arranged so as to overlap each other by rotational fitting between the spiral grooves 4, thereby reducing the overall arrangement area and saving the module. Therefore, it is possible to provide a small catalyst module excellent in catalyst reactivity and operability without causing a substantial increase in flow resistance.

本発明の担体製品や触媒モジュールの性能評価は、例えば図8の該水素貯蔵/水素生成システム20で行われる。
該システム20は、芳香族化合物(例えば、トルエン)に水素を付加して水素化誘導体である有機ハイドライド(例えば、メチルシクロヘキサン)として水素を貯蔵すると共に、有機ハイドライドの脱水素により、芳香族化合物と水素に分解して水素を生成することができる装置である。同システム20は、反応器22と、芳香族化合物を入れたタンク23と、有機ハイドライドを入れたタンク24と、反応器22で生成された反応生成物を貯蔵するためのタンク25とを主に備えている。
The performance evaluation of the carrier product and the catalyst module of the present invention is performed, for example, by the hydrogen storage / hydrogen generation system 20 shown in FIG.
The system 20 adds hydrogen to an aromatic compound (eg, toluene) to store the hydrogen as a hydrogenated derivative, organic hydride (eg, methylcyclohexane), and dehydrogenates the organic hydride to form an aromatic compound. It is an apparatus that can decompose hydrogen into hydrogen. The system 20 mainly includes a reactor 22, a tank 23 containing an aromatic compound, a tank 24 containing an organic hydride, and a tank 25 for storing a reaction product generated in the reactor 22. I have.

反応器22は、加熱手段(例えば、電磁波誘電加熱ヒータ)26と、自己加熱可能に構成されコイル線体に形成した触媒用担体に、所定の例えば水素付加/脱水素反応用の白金触媒を担持したコイル状の触媒製品(以下、単に、「コイル触媒」という。)27を備え、所定の容器内に収納されている。このコイル触媒27には、前記例えば扁平型コイル線体や偏心コイル線体が用いられ、図9のようにモジュール化しており、また反応器22の上方には、液体原料供給用の配管28が貫通し先端の噴霧ノズル29から被処理流体が供給されるように構成しており、被処理流体は、各配管28、三方バルブ32、可変バルブ30を介してタンク23又は24から供給される。  The reactor 22 carries a predetermined platinum catalyst for hydrogenation / dehydrogenation, for example, on a heating means 26 (for example, an electromagnetic dielectric heater) and a catalyst carrier that is configured to be self-heated and formed in a coil wire. The coil-shaped catalyst product (hereinafter simply referred to as “coil catalyst”) 27 is provided and stored in a predetermined container. As the coil catalyst 27, for example, a flat coil wire or an eccentric coil wire is used, which is modularized as shown in FIG. 9. A pipe 28 for supplying a liquid raw material is provided above the reactor 22. The fluid to be processed is supplied from the spray nozzle 29 penetrating through the tip, and the fluid to be processed is supplied from the tank 23 or 24 via each pipe 28, the three-way valve 32, and the variable valve 30.

三方バルブ32とタンク23の底部との間は、配管31にて接続されており、その配管31の途中には、送液ポンプ33が接続されている。また、三方バルブ32とタンク24の底部との間は、配管34にて接続されており、その配管34の途中には、送液ポンプ35が接続されている。三方バルブ32は、タンク23と反応器22との間のみを開通し、タンク24と反応器22との間のみを開通し、あるいは、反応器22とタンク23,24との間を閉鎖するように切り替え可能なバルブである。  The three-way valve 32 and the bottom of the tank 23 are connected by a pipe 31, and a liquid feed pump 33 is connected in the middle of the pipe 31. The three-way valve 32 and the bottom of the tank 24 are connected by a pipe 34, and a liquid feed pump 35 is connected in the middle of the pipe 34. The three-way valve 32 opens only between the tank 23 and the reactor 22, opens only between the tank 24 and the reactor 22, or closes between the reactor 22 and the tanks 23, 24. It is a valve that can be switched to.

反応器22の上方には、水素供給用の配管36が貫通している。配管36の途中には、バルブ37が接続されている。また、反応器22の外部における配管36の先には、水素供給手段(図に示さず)が接続されている。反応器22の底部近傍とタンク25の上部との間は、配管38で接続されている。配管38の途中には、ポンプ39と、冷却器40が接続されている。また、タンク25の上方には、水素などの気体を排気するための配管41が接続されている。  A hydrogen supply pipe 36 passes through the reactor 22. A valve 37 is connected in the middle of the pipe 36. A hydrogen supply means (not shown) is connected to the tip of the pipe 36 outside the reactor 22. A pipe 38 is connected between the vicinity of the bottom of the reactor 22 and the top of the tank 25. A pump 39 and a cooler 40 are connected in the middle of the pipe 38. A pipe 41 for exhausting a gas such as hydrogen is connected above the tank 25.

水素を有機ハイドライドの形態にて貯蔵する場合には、次のような手順にて操作を行う。加熱は例えば加熱手段26又は自己加熱による白金担持のアルマイトクラッド金属細線でなるコイル触媒27を通電加熱する。次に、バルブ37を開いて、配管36を経由して水素を反応器22内に入れる。このとき、ポンプ39をオンとして、配管41を通じて水素を反応器22から外部に流しておくのが好ましい。次に、三方バルブ32を調整して、タンク23と反応器22との間の経路のみを開通し、送液ポンプ33をオンにして、タンク23内の芳香族化合物を反応器22に向けて送る。バルブ30を一定時間毎に開き、噴霧ノズル29から芳香族化合物を一定時間毎に噴霧する。それに伴い、被処理流体はコイル触媒27の表面にて、噴霧された芳香族化合物と水素との水素付加反応が起きて、有機ハイドライドが生成する。有機ハイドライドは、ポンプ39を通じてタンク25内に入る。配管38を通る気体状の生成物は、冷却器40により冷却され、タンク25内に液体として貯蔵される。水素は冷却器40にて冷却されても液化しないので、配管41を通って外部に排気される。  When hydrogen is stored in the form of organic hydride, the operation is performed in the following procedure. For heating, for example, the heating means 26 or the coil catalyst 27 made of platinum-supported anodized clad metal wire by self-heating is energized and heated. Next, the valve 37 is opened, and hydrogen is introduced into the reactor 22 via the pipe 36. At this time, it is preferable that the pump 39 is turned on and hydrogen is allowed to flow from the reactor 22 to the outside through the pipe 41. Next, the three-way valve 32 is adjusted to open only the path between the tank 23 and the reactor 22, the liquid feed pump 33 is turned on, and the aromatic compound in the tank 23 is directed to the reactor 22. send. The valve 30 is opened at regular intervals, and the aromatic compound is sprayed from the spray nozzle 29 at regular intervals. Along with this, a hydrogenation reaction between the atomized aromatic compound and hydrogen occurs on the surface of the coil catalyst 27 in the fluid to be treated, and organic hydride is generated. The organic hydride enters the tank 25 through the pump 39. The gaseous product passing through the pipe 38 is cooled by the cooler 40 and stored as a liquid in the tank 25. Since hydrogen does not liquefy even when cooled by the cooler 40, it is exhausted to the outside through the pipe 41.

一方、有機ハイドライドの脱水素反応により水素を生成する場合には、次のような手順にて操作を行う。まず、加熱手段26を用いて白金担持アルマイトクラッド細線触媒27を加熱する。次に、ポンプ39をオンとする。  On the other hand, when hydrogen is generated by dehydrogenation of organic hydride, the operation is performed according to the following procedure. First, the platinum-supported alumite clad fine wire catalyst 27 is heated using the heating means 26. Next, the pump 39 is turned on.

三方バルブ32をタンク24と反応器22との間の経路のみを開通し、送液ポンプ35をオンとして、タンク24内の有機ハイドライドを反応器22に向けて送る。バルブ30を一定時間毎に開き、噴霧ノズル29から有機ハイドライドを一定時間毎に噴霧する。それに伴い、コイル触媒27の表面にて、噴霧された有機ハイドライドの脱水素反応が生じることにより、水素と芳香族化合物とが生成する。芳香族化合物は、ポンプ39を通じてタンク25内に入る。配管38を通る気体状の芳香族化合物は、冷却器40により冷却され、タンク25内に液体として貯蔵される。水素は、配管41を通って外部へ排出される。Only the path between the tank 24 and the reactor 22 is opened through the three-way valve 32, the liquid feed pump 35 is turned on, and the organic hydride in the tank 24 is sent toward the reactor 22. The valve 30 is opened at regular intervals, and the organic hydride is sprayed from the spray nozzle 29 at regular intervals. Along with this, a dehydrogenation reaction of the sprayed organic hydride occurs on the surface of the coil catalyst 27, thereby generating hydrogen and an aromatic compound. Aromatic compounds enter the tank 25 through the pump 39. The gaseous aromatic compound passing through the pipe 38 is cooled by the cooler 40 and stored as a liquid in the tank 25. Hydrogen is discharged outside through the pipe 41.

また、本実施の形態は、芳香族炭化水素の水素化反応/水素化誘導体の脱水素化反応用白金担持アルマイトクラッド細線によるコイル触媒としているが、芳香族炭化水素の水素化反応のみを行うために用いることもできるし、水素化誘導体(有機ハイドライド)の脱水素反応のみを行うために用いてもよい。また同システムにおける前記複合触媒1は、その複数を例えば図7に示すような配管乃至拡幅したハウジング容器12内に内蔵配置して内部流路に原料流体を流入させるとともに、各複合触媒1は各々外部電源に接続することで自己加熱可能なモジュールとして使用され、このようなモジュール化によって容易な取扱を可能とする。  In this embodiment, the coil catalyst is formed by a platinum-supported alumite clad wire for hydrogenation reaction of aromatic hydrocarbon / dehydrogenation of hydrogenated derivative, but only hydrogenation reaction of aromatic hydrocarbon is performed. It can also be used for the dehydrogenation of hydrogenated derivatives (organic hydrides). In addition, a plurality of the composite catalysts 1 in the system are housed in, for example, a pipe or widened housing container 12 as shown in FIG. 7 so that the raw material fluid flows into the internal flow path. It is used as a self-heatable module by connecting to an external power supply, and such modularization allows easy handling.

こうして被処理流体(MCHパルス噴霧)は、その供給側の一方の開口から例えば噴霧状態で供給しながらコイル触媒で触媒反応を生じさせ、他方の排出口15bから系外に排出され、コイル触媒や触媒モジュールは必要に応じて、任意に構成される。また、これを内燃機関の水素燃料として応用する場合、 その反応器容器12の側面を、例えばエンジンで加熱された排気ガスによって間接的に加熱するように配管接続しておくことも好ましい。  Thus, the fluid to be treated (MCH pulse spray) causes a catalytic reaction by the coil catalyst while being supplied from one opening on the supply side, for example, in a sprayed state, and is discharged out of the system from the other discharge port 15b. The catalyst module is arbitrarily configured as necessary. Moreover, when applying this as hydrogen fuel of an internal combustion engine, it is also preferable that the side surface of the reactor vessel 12 is connected by piping so as to be indirectly heated by, for example, exhaust gas heated by the engine.

以下、本願発明に係る複合触媒のより最適な実施例を更に説明するが、これは一例であって何ら本発明を限定するものではない。
《実施品1》
Hereinafter, although the more optimal example of the composite catalyst which concerns on this invention is further demonstrated, this is an example and does not limit this invention at all.
<< Product 1 >>

(アルミニウムクラッドコイル線体の製造)
通電加熱機能を有するニッケル(純度99%)線にアルミニウム(純度99.9%)帯材を被包したアルミクラッド線材(線径12mm)を母材として、これを伸線加工と温度600℃での熱処理を繰り返し行いながら、線径0.45mmで表面に平均厚さ30μmのアルミニウム層を持つアルミクラッド金属細線を得た。このクラッドした細線の横断面の拡大被覆状態を、図4に示す。
(Manufacture of aluminum clad coil wire)
An aluminum clad wire (12 mm diameter) encapsulated in a nickel (purity 99%) wire having an electric heating function and encapsulated with an aluminum (purity 99.9%) strip is used as a base material, and this is drawn at a temperature of 600 ° C. The aluminum clad metal fine wire having an aluminum layer with a wire diameter of 0.45 mm and an average thickness of 30 μm was obtained while repeating the heat treatment. FIG. 4 shows an enlarged covering state of the cross section of the clad fine wire.

このクラッド細線を引張強さ420MPaで十分な強度を有し、コイルばね成形機にセットして、そのコイル形状が、図1Cのようにコイル幅(w)12mm、コイル高さ(h)5mmで両側に曲率を持つ扁平栗型の密着コイル線体を成形して、かつ各コイル部の方位角(α)を25°で変位させることで、そのコイル胴部には軸線Yとの傾斜角(θ)が55°となる螺旋溝(螺旋凸条)を形成した。    This thin clad wire has sufficient strength with a tensile strength of 420 MPa, and is set in a coil spring molding machine. The coil shape has a coil width (w) of 12 mm and a coil height (h) of 5 mm as shown in FIG. 1C. By forming a flat chestnut-shaped close-contact coil wire having a curvature on both sides and displacing the azimuth angle (α) of each coil portion by 25 °, the coil body portion has an inclination angle with the axis Y ( Spiral grooves (spiral ridges) having a θ) of 55 ° were formed.

このコイル線体の前記仮想外径は12mm,仮想内径3mmで、コイル胴部の全体長さは120mmのものであり、この構成で該仮想内・外径の開き幅(H)に対する前記クラッド細線の線径dに対する比率は約10倍であり、かつコイル線体の全体長さに亘って、前記螺旋溝による合計20条の螺旋凸条が形成された。そのコイル線体の仮想外径がなす所定容積内での前記開き幅による肉厚筒体の実質的な容積比は93.8%で、ほぼその全面にわたって幅広く、かつ多段に金属線材が分布することとなり、内部を流下する被処理流体のより確実な接触が可能となった。
《実施品2》
The coil wire has an imaginary outer diameter of 12 mm, an imaginary inner diameter of 3 mm, and an overall length of the coil body of 120 mm. With this configuration, the clad fine wire with respect to the opening width (H) of the imaginary inner and outer diameters The ratio of to the wire diameter d was about 10 times, and a total of 20 spiral protrusions were formed by the spiral groove over the entire length of the coil wire. The substantial volume ratio of the thick cylindrical body due to the opening width within a predetermined volume formed by the virtual outer diameter of the coil wire body is 93.8%, and the metal wire material is distributed over a substantially wide area and in many stages. As a result, a more reliable contact of the fluid to be treated flowing down the interior is possible.
<Product 2>

実施品1で用いたアルミクラッド細線により、図2のように偏心コイル線体として、各コイル部のコイル径が7mmで全体構成外径(仮想外径D1)12mmになるようにその中心点を偏心させることで、前記開き幅(H)が4mmの偏心コイルを得た。その開き幅(H)に対する前記クラッド細線の線径の比は8.8倍で、実施例1の場合と同様にそのコイル胴部には、該クラッド細線が螺旋状の凸条として合計24条形成させることができた。また、そのコイル線体の仮想外径D1による円柱体の所定断面内での前記開き幅部分が占める面積比は97%で、非常に高いものが得られた。
《実施品3》
As shown in FIG. 2, the center point is set so that the coil diameter of each coil portion is 7 mm and the overall configuration outer diameter (virtual outer diameter D1) is 12 mm by the aluminum clad thin wire used in the product 1. An eccentric coil having an opening width (H) of 4 mm was obtained by performing eccentricity. The ratio of the wire diameter of the clad fine wire to the opening width (H) is 8.8 times, and in the same manner as in the first embodiment, the clad fine wire is formed in the coil body portion in the form of spiral ridges in total 24 pieces. Could be formed. Moreover, the area ratio which the said opening width part occupies in the predetermined cross section of the cylindrical body by the virtual outer diameter D1 of the coil wire body is 97%, and a very high thing was obtained.
<Product 3>

電熱用鉄クロム合金(FCH1/線径0.40mm)の軟質金属細線を用い、これを幅7mm、厚さ2.3mmの断面楕円形状の捻り棒状型具に巻き付け取り外して、仮想外径8mm、仮想内径2mmで、前記傾斜角θが58°の螺旋凸条を持つ、長さ100mmのコイル線体を得た。その成形加工で細線の断線はなく、またその前記開き幅Hは3mmで、該金属細線の線径の7.5倍であり、またそのコイル線体の仮想外径D1による円柱体の所定断面内での前記開き幅部分が占める面積比は93%であった。  Using a soft metal thin wire of an iron-chromium alloy (FCH1 / wire diameter of 0.40 mm) for electric heating, this was wound around a twisted rod-shaped tool having a cross section ellipse shape of width 7 mm and thickness 2.3 mm, and a virtual outer diameter of 8 mm, A coil wire body having a virtual inner diameter of 2 mm and a spiral protrusion having a tilt angle θ of 58 ° and a length of 100 mm was obtained. There is no disconnection of the thin wire in the forming process, the opening width H is 3 mm, 7.5 times the wire diameter of the metal thin wire, and the predetermined cross section of the cylindrical body by the virtual outer diameter D1 of the coil wire body The area ratio occupied by the opening width portion was 93%.

そして、このコイル線体を所定の析出熱処理で、該金属細線中のAl元素をその表面上に層状に析出させる析出処理を行った。得られたコイル線体は、その表面側に向かってAlが勾配的に増加するAl被覆層で覆われ、剥離などもなく良好な表面状態を有するものであった。
《比較品1》
Then, the coil wire was subjected to a precipitation treatment in which the Al element in the fine metal wire was deposited in a layered manner on the surface thereof by a predetermined precipitation heat treatment. The obtained coiled wire was covered with an Al coating layer in which Al gradually increased toward the surface side, and had a good surface state without peeling.
<Comparative product 1>

この比較用のコイル線体として、実施品1で用いたアルミクラッド細線により、コイル外径8mm、コイル全長120mmの一般的な密着コイル線体を製造した。この比較用コイル線体には、前記螺旋溝や螺旋凸条は備えない筒状のコイル形状品で、前記開き幅(H)は実質的にクラッド細線の線径そのものであり、そのコイル外径を筒体とする所定断面内での該クラッド細線が占める面積比は、該コイル形状の内側面積が反映されないことからわずか21%と低く、前記各実施品に比して大きく劣るものであった。  As a comparative coil wire, a general close-contact coil wire having a coil outer diameter of 8 mm and a coil total length of 120 mm was manufactured from the aluminum clad fine wire used in the product 1. This comparative coil wire is a cylindrical coil-shaped product that does not have the spiral groove or spiral ridge, and the opening width (H) is substantially the wire diameter itself of the clad wire, and the coil outer diameter. The area ratio occupied by the thin clad wire in a predetermined cross section with a cylindrical body is as low as 21% because the inner area of the coil shape is not reflected, which is significantly inferior to the above-mentioned respective products. .

次に、これら各コイル線体について各々アルマイト処理を行った。その処理は、各線体の両端部を除く全面に厚さ10〜30μm程度のアルマイト層を形成して合計4種類の触媒用担体を得た。アルマイト処理は、各コイル線体を4%wtしゅう酸水溶液、35℃で、電流密度50〜70A/mの条件で陽極酸化処理を行ない、その後、同種のしゅう酸処理液に6時間浸漬したままで酸処理をして、ポアサイズの拡幅処理をして大気中で乾燥させた。次に、300〜450℃で約1時間の焼成処理をした後、80℃以上で約2時間水和処理を行ない乾燥した後、更に500℃で3時間相当に焼成処理をすることで所要の耐熱性多孔質アルミナ皮膜を形成した。図5及び図7は、前記実施例1によるアルミクラッド線によるものの顕微鏡写真を一例として示している。Next, each coil wire was subjected to an alumite treatment. In the treatment, an alumite layer having a thickness of about 10 to 30 μm was formed on the entire surface excluding both ends of each linear body to obtain a total of four types of catalyst carriers. In the anodizing treatment, each coil wire was anodized under a condition of a current density of 50 to 70 A / m 2 at 35 ° C. in a 4% wt oxalic acid aqueous solution, and then immersed in the same kind of oxalic acid treatment solution for 6 hours. The acid treatment was carried out as it was, and the pore size widening treatment was carried out, followed by drying in the atmosphere. Next, after baking at 300-450 ° C. for about 1 hour, hydration at 80 ° C. or higher for about 2 hours, drying, and further baking at 500 ° C. for 3 hours. A heat resistant porous alumina film was formed. 5 and 7 show micrographs of the aluminum clad wire according to Example 1 as an example.

こうして得られた各触媒用担体の見掛け上の面積比は、実施品1(A):93.8%、実施品2(B):97%、実施品3(C):93.0%、比較品1(D):21%で、各実施品は比較品に比して大幅な容積占有率を備えるもので、効果増大を図ることができるものであった。しかも各実施品のコイル線体はその構造内に、該金属細線の分布によって十分に被処理流体を流通させる空孔Asが形成されており、被処理流体の流通抵抗を高めるような問題は見られないものであった。
(触媒の担持調整)
The apparent area ratio of each catalyst carrier thus obtained was as follows: Example 1 (A): 93.8%, Example 2 (B): 97%, Example 3 (C): 93.0%, Comparative product 1 (D): 21%, and each of the implemented products had a larger volume occupancy rate than the comparative product, and the effect could be increased. In addition, the coil wire bodies of the respective products are formed with pores As that allow the fluid to be treated to flow sufficiently by the distribution of the fine metal wires in the structure, and there is no problem of increasing the flow resistance of the fluid to be treated. It was not possible.
(Catalyst loading adjustment)

次に、前記実施品A,B及び比較品Dのコイル線体について、触媒製品とする為の触媒担持処理を行った。
触媒物質は白金として、0.02grの塩化白金酸HPtCl6HOを用いて10ccエタノールにそれぞれ溶解して、塩化白金酸溶液を作成した。この内に前記各コイル線体を浸漬して、その表面の多孔質構造内に白金を担持させた後、所定温度に加熱し乾燥して、目標の担持触媒品3種類を得た。
Next, for the coil wires of the products A and B and the comparative product D, a catalyst supporting treatment for making a catalyst product was performed.
The catalyst material was platinum, and 0.02 gr of chloroplatinic acid H 2 PtCl 6 6H 2 O was dissolved in 10 cc ethanol to prepare a chloroplatinic acid solution. Each coil wire was immersed in this, and platinum was supported in the porous structure on its surface, and then heated to a predetermined temperature and dried to obtain three types of target supported catalyst products.

こうして触媒担持した各触媒品A,B,Dについて、各々図8に示す水素化反応および脱水素化反応装置のモジュールとして組み込み、メチルシクロヘキサンの脱水素反応を行った。反応装置に備えたパルス型噴霧ノズルよりメチルシクロヘキサンを窒素気流中(流速150ml/min)噴霧サイクル0.5秒(1回噴霧量0.39gr)噴霧間隔10および20秒で、310℃の所定温度に加熱された各触媒を用いた実験での水素発生速度、メチルシクロヘキサンのトルエン転化率をガスクロマトグラフィーにより分析し測定した。
《試験例1》
The catalyst products A, B, and D thus supported on the catalyst were incorporated as modules of the hydrogenation reaction and dehydrogenation reaction apparatus shown in FIG. 8, respectively, and methylcyclohexane was dehydrogenated. A predetermined temperature of 310 ° C. at a spray cycle of 10 and 20 seconds for methylcyclohexane in a nitrogen stream (flow rate 150 ml / min) spray cycle 0.5 seconds (single spray amount 0.39 gr) from a pulse type spray nozzle provided in the reactor The hydrogen generation rate and the toluene conversion rate of methylcyclohexane in the experiment using each catalyst heated in the same manner were analyzed and measured by gas chromatography.
<< Test Example 1 >>

各試験体A,B,Dは、各々系外の電流・電圧安定電源により各コイル線体に所定の電気量で直接通電加熱を行なった。その結果、白金担持した変形コイル品の触媒品A、Bでは、メチルシクロヘキサン転化率では、80〜90%、またトルエン選択率では、80〜100%であったのに対し、従来型の比較品Cでは各々約1/2以下の性能しか得らず、本発明による変形コイル品の有効性が確認された。
《試験例2》
Each of the test bodies A, B, and D was directly energized and heated with a predetermined amount of electricity to each coil wire body by a current / voltage stable power source outside the system. As a result, the catalyst products A and B, which are platinum-supported deformed coil products, had a methylcyclohexane conversion of 80 to 90% and a toluene selectivity of 80 to 100%, whereas the comparative products of the conventional type. In C, only about 1/2 or less performance was obtained, and the effectiveness of the deformed coil product according to the present invention was confirmed.
<< Test Example 2 >>

実施品1のコイル線体による触媒製品Aを3点準備し、これらを内径26mmの配管製のハウジング容器内にセットして、各々直列通電加熱可能に配線し組み立てた。その組み込み状態で、該容器の断面積あたりにおける前記触媒製品が占める面積比は68%で、従来型の比較品Cを同様に3点をセットするには配管を内径30mm程度に太径にする必要が生じ、それに伴って前記面積比は4.5%に大幅に低下した。このように、実質的な被処理流体の流下方向において、担体が存在する分布面積比率は約15倍の効果を有するものである。  Three catalyst products A using the coil wire body of the product 1 were prepared, and these were set in a pipe-made housing container having an inner diameter of 26 mm, and wired and assembled so that they could be heated in series. In the assembled state, the area ratio occupied by the catalyst product per cross-sectional area of the container is 68%, and in order to set three points in the same manner as the conventional comparative product C, the pipe has a large diameter of about 30 mm. As a result, the area ratio was greatly reduced to 4.5%. As described above, the distribution area ratio in which the carrier exists in the substantial flow-down direction of the fluid to be treated has an effect of about 15 times.

本発明の前記触媒用担体、触媒製品及び触媒モジュールは、その構成密度を高めることで高機能化をもたらすものであり、特に水素を燃料として利用する自動車、船舶、機関車産業および化学産業に幅広く用いることができる。  The catalyst carrier, catalyst product, and catalyst module of the present invention bring about high functionality by increasing their constituent density, and are widely used in automobiles, ships, locomotive industries and chemical industries that use hydrogen as a fuel. Can be used.

Claims (15)

触媒物質を担持する為の触媒用担体であって、
金属線材により一方から他方側に連続的に巻回されたコイル線体で構成され、かつその巻回が該コイル線体を軸線方向に投影したときの前記金属線材が描く仮想外径(D1)と仮想内径(D2)との開き幅(H)が、該金属線材の等価線径(d)の2倍以上に増幅した異形コイル形状に成形されたものであることを特徴とする触媒用担体。
A catalyst carrier for supporting a catalyst substance,
A virtual outer diameter (D1) drawn by the metal wire, which is composed of a coil wire continuously wound from one side to the other by a metal wire, and the winding projects the coil wire in the axial direction. And an imaginary inner diameter (D2), the carrier width for the catalyst is formed into a deformed coil shape amplified to be twice or more the equivalent wire diameter (d) of the metal wire .
前記コイル線体は、その軸線方向に沿う第一番目のコイル部から第N番目のコイル部に向かってコイル中心点を偏心させることで、そのコイル線体の胴部に螺旋溝乃至螺旋凸条を形成したものである請求項1に記載の触媒用担体    In the coil wire body, the coil center point is decentered from the first coil portion along the axial direction toward the Nth coil portion, so that a spiral groove or a spiral ridge is formed in the body portion of the coil wire body. The catalyst carrier according to claim 1, wherein 前記コイル線体は、その巻回が非円形の形状に成形されたもので、かつその非円形形状が第一番目のコイル部から第N番目のコイル部に向かって巻回方位角(α)を変化させることで、そのコイル線体の胴部に螺旋溝乃至螺旋凸条を形成したものである請求項1に記載の触媒用担体    The coil wire is formed in a non-circular shape, and the non-circular shape has a winding azimuth angle (α) from the first coil portion toward the N-th coil portion. The catalyst carrier according to claim 1, wherein a spiral groove or a spiral ridge is formed in a body portion of the coil wire body by changing 前記非円形形状は、そのコイル幅(Cw)とコイル高さ(Ch)の比(Cw/Ch)が1.3〜10倍の楕円又は平形によるものである請求項3に記載の触媒用担体。    The catalyst carrier according to claim 3, wherein the non-circular shape is an ellipse or a flat shape having a ratio (Cw / Ch) of a coil width (Cw) to a coil height (Ch) of 1.3 to 10 times. . 前記中心点の偏心又は巻回方位角(α)の変化した巻回で形成される前記螺旋溝乃至螺旋凸条の、該コイル線体の軸線Yに対する傾斜角(θ)が20〜80°である請求項2〜4のいずれかに記載の触媒用担体。    The inclination angle (θ) of the spiral groove or spiral ridge formed by the eccentricity of the center point or the winding with the winding azimuth angle (α) changed with respect to the axis Y of the coil wire body is 20 to 80 °. The catalyst carrier according to any one of claims 2 to 4. 前記開き幅(H)が、該金属線材の等価線径(d)の3〜15倍のものである請求項1〜5のいずれかに記載の触媒用担体。    The catalyst carrier according to any one of claims 1 to 5, wherein the opening width (H) is 3 to 15 times the equivalent wire diameter (d) of the metal wire. 前記コイル線体は、前記金属線材の等価線径(d)の1.3倍以下のピッチ(P)で密着巻きされたものである請求項1〜6のいずれかに記載の触媒用担体。    The catalyst carrier according to any one of claims 1 to 6, wherein the coil wire is tightly wound at a pitch (P) that is 1.3 times or less the equivalent wire diameter (d) of the metal wire. 前記金属線材は、通電又は電磁誘導によって自己加熱する金属芯線と、その表面を覆う第二の金属外装材との複合線によるものである請求項1〜7のいずれかに記載の触媒用担体。    The catalyst carrier according to any one of claims 1 to 7, wherein the metal wire is a composite wire of a metal core wire that self-heats by energization or electromagnetic induction and a second metal sheathing material that covers the surface of the metal core wire. 前記金属線材は、その横断面における前記第二の金属外装材の複合率が5〜40%で複合され、かつその外面には更に該金属外装材の酸化物による多孔質構造を備えるものである請求項8に記載の触媒用担体。    The metal wire is compounded with a composite ratio of the second metal sheathing material in the cross section of 5 to 40%, and further provided with a porous structure made of an oxide of the metal sheathing material on the outer surface. The catalyst carrier according to claim 8. 前記金属線材は、常温での電気抵抗率が5μΩ・cm以上のニッケル又はニッケル合金、クロム又はクロム合金、チタン又はチタン合金のいずれか1種を少なくとも備えるものである請求項1〜9のいずれかに記載の触媒用担体。    The metal wire includes at least one of nickel or a nickel alloy, chromium or a chromium alloy, titanium or a titanium alloy having an electrical resistivity at room temperature of 5 μΩ · cm or more. A catalyst carrier as described in 1. above. 請求項1〜10のいずれか記載の触媒用担体に、所定の触媒粒子が担持されてなることを特徴とする触媒製品。    A catalyst product comprising predetermined catalyst particles supported on the catalyst carrier according to any one of claims 1 to 10. 前記触媒粒子は、前記触媒用担体の外面に形成した酸化物層の多孔質構造内に担持したものである請求項11に記載の触媒製品    The catalyst product according to claim 11, wherein the catalyst particles are supported in a porous structure of an oxide layer formed on an outer surface of the catalyst carrier. 前記酸化物層はアルミニウムのアルマイト層で構成され、かつ前記触媒用担体の少なくとも一部の電気配線用接続部とする部分を除き、その全面を被包してなる請求項12に記載の触媒製品    13. The catalyst product according to claim 12, wherein the oxide layer is formed of an aluminum alumite layer, and encapsulates the entire surface except for at least a part of the catalyst carrier used as a connection part for electric wiring. 請求項13に記載の触媒製品を、内部にその長手方向に沿って被処理流体が流下する内部流路に通じる一方の開口と他方の開口を備える配管又はハウジング容器内に組み込まれ、かつ前記配線用接続部を介した前記金属線材への電気供給によって該金属線材を自己加熱可能に構成したことを特徴とする触媒モジュール。    The catalyst product according to claim 13 is incorporated in a pipe or housing container provided with one opening leading to an internal flow path through which a fluid to be treated flows along the longitudinal direction thereof, and the other opening, and the wiring A catalyst module, wherein the metal wire is configured to be capable of self-heating by supplying electricity to the metal wire via a connecting portion. 芳香族化合物への水素付加反応又は該芳香族化合物の水素化誘導体の脱水素反応用として用いられるものである請求項14に記載の触媒モジュール  The catalyst module according to claim 14, wherein the catalyst module is used for a hydrogenation reaction to an aromatic compound or a dehydrogenation reaction of a hydrogenated derivative of the aromatic compound.
JP2011118474A 2011-05-09 2011-05-09 Catalyst carrier and catalyst product and catalyst module using the same Active JP5789129B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011118474A JP5789129B2 (en) 2011-05-09 2011-05-09 Catalyst carrier and catalyst product and catalyst module using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011118474A JP5789129B2 (en) 2011-05-09 2011-05-09 Catalyst carrier and catalyst product and catalyst module using the same

Publications (2)

Publication Number Publication Date
JP2012236182A true JP2012236182A (en) 2012-12-06
JP5789129B2 JP5789129B2 (en) 2015-10-07

Family

ID=47459585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011118474A Active JP5789129B2 (en) 2011-05-09 2011-05-09 Catalyst carrier and catalyst product and catalyst module using the same

Country Status (1)

Country Link
JP (1) JP5789129B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017001006A (en) * 2015-06-04 2017-01-05 日本精線株式会社 Composite wire type catalyst member, and catalyst reactor for hydrogen production using the same
JP2019514825A (en) * 2016-04-26 2019-06-06 ハルドール・トプサー・アクチエゼルスカベット Process for producing hydrogen or synthesis gas by methanol decomposition
US11826734B2 (en) 2021-03-26 2023-11-28 Korea Advanced Institute Of Science And Technology Catalyst structure for LOHC dehydrogenation reactor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001321423A (en) * 2000-05-18 2001-11-20 Matsushita Electric Ind Co Ltd Deodorizing apparatus
JP2005047743A (en) * 2003-07-28 2005-02-24 Nippon Oil Corp Method of producing hydrogen using heat conductive catalytic body
JP2005246115A (en) * 2004-03-01 2005-09-15 Dainippon Printing Co Ltd Microreactor and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001321423A (en) * 2000-05-18 2001-11-20 Matsushita Electric Ind Co Ltd Deodorizing apparatus
JP2005047743A (en) * 2003-07-28 2005-02-24 Nippon Oil Corp Method of producing hydrogen using heat conductive catalytic body
JP2005246115A (en) * 2004-03-01 2005-09-15 Dainippon Printing Co Ltd Microreactor and its manufacturing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017001006A (en) * 2015-06-04 2017-01-05 日本精線株式会社 Composite wire type catalyst member, and catalyst reactor for hydrogen production using the same
JP2019514825A (en) * 2016-04-26 2019-06-06 ハルドール・トプサー・アクチエゼルスカベット Process for producing hydrogen or synthesis gas by methanol decomposition
US11059719B2 (en) 2016-04-26 2021-07-13 Haldor Topsøe A/S Process for producing hydrogen or syngas by methanol cracking
JP7041636B2 (en) 2016-04-26 2022-03-24 ハルドール・トプサー・アクチエゼルスカベット Method for producing hydrogen or syngas by decomposition of methanol
US11826734B2 (en) 2021-03-26 2023-11-28 Korea Advanced Institute Of Science And Technology Catalyst structure for LOHC dehydrogenation reactor

Also Published As

Publication number Publication date
JP5789129B2 (en) 2015-10-07

Similar Documents

Publication Publication Date Title
US9180438B2 (en) Wire catalyst for hydrogenation/dehydrogenation reaction and manufacturing method therefor
JP5632836B2 (en) Catalyst structure and hydrogen reaction module using the same
JP5122178B2 (en) Supported catalyst for hydrogenation / dehydrogenation reaction, production method thereof, and hydrogen storage / supply method using the catalyst
JP2000007301A (en) Reforming reactor
JP5789129B2 (en) Catalyst carrier and catalyst product and catalyst module using the same
JP5620077B2 (en) Hydrogen catalyst material
WO2008047676A1 (en) Method for producing hydrogen-containing gas
JP4707526B2 (en) Catalyst for partial oxidation of hydrocarbons
DIALLO New strategies of Designing Nickel-based Multifunctional Materials for Various Catalytic Applications: New advances
US11631876B2 (en) Co-electroless deposition methods for formation of methanol fuel cell catalysts
JP6783292B2 (en) Composite wire type catalyst member and catalyst reactor for hydrogen production using this
JP2011194340A (en) Catalyst for producing hydrogen and method for producing hydrogen-containing gas
JP5995322B2 (en) Reactor for hydrogen generation and control method thereof
JP2002028490A (en) Water vapor reforming catalyst and producing method thereof
JP5717993B2 (en) Reforming apparatus and manufacturing method thereof
JP6527398B2 (en) Composite wire type catalyst member and catalytic reactor for hydrogen production using the same
JP2002121007A (en) Hydrogen generating device
WO2018150823A1 (en) Method for producing structured catalyst and method for producing hydrogen using structured catalyst
JP2009101298A (en) Catalyst for reforming hydrocarbon or oxygen-containing hydrocarbon and method for producing hydrogen-containing gas using the same
KR20230123732A (en) Catalyst for Dehydrogenation Reaction Based on LOHC and Method for Preparing the Same
JP2011104565A (en) Catalyst for producing hydrogen and method for producing hydrogen by using the same
Pech et al. Core-Shell Catalysts for Oxygen Reduction Reaction in Acidic Medium
JP6450247B2 (en) Catalyst carrier and catalyst member using the same
JP2000007302A (en) Reforming reactor
JP2024521178A (en) Catalytic electric heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150217

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150218

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150721

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150731

R150 Certificate of patent or registration of utility model

Ref document number: 5789129

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250