JP6527398B2 - Composite wire type catalyst member and catalytic reactor for hydrogen production using the same - Google Patents

Composite wire type catalyst member and catalytic reactor for hydrogen production using the same Download PDF

Info

Publication number
JP6527398B2
JP6527398B2 JP2015125137A JP2015125137A JP6527398B2 JP 6527398 B2 JP6527398 B2 JP 6527398B2 JP 2015125137 A JP2015125137 A JP 2015125137A JP 2015125137 A JP2015125137 A JP 2015125137A JP 6527398 B2 JP6527398 B2 JP 6527398B2
Authority
JP
Japan
Prior art keywords
layer
wire
catalyst
metal
catalyst member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015125137A
Other languages
Japanese (ja)
Other versions
JP2017001006A (en
Inventor
常夫 飽浦
常夫 飽浦
遼一 安次嶺
遼一 安次嶺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Seisen Co Ltd
Original Assignee
Nippon Seisen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Seisen Co Ltd filed Critical Nippon Seisen Co Ltd
Priority to JP2015125137A priority Critical patent/JP6527398B2/en
Publication of JP2017001006A publication Critical patent/JP2017001006A/en
Application granted granted Critical
Publication of JP6527398B2 publication Critical patent/JP6527398B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

発明の詳細な説明Detailed Description of the Invention

本発明は、例えば芳香族化合物への水素化反応、又はその逆反応である脱水素反応用の触媒部材として、特にその反応温度を該部材の通電加熱によって行うとともに長寿命化に寄与する複合ワイヤー型の触媒部材と、これを用いた水素製造用の触媒反応器に関する。  The present invention, for example, as a catalyst member for dehydrogenation reaction which is a hydrogenation reaction to an aromatic compound or its reverse reaction, particularly a composite wire which contributes to prolonging the life while performing the reaction temperature by electric heating of the member The present invention relates to a catalyst member of the type and a catalytic reactor for hydrogen production using the same.

近年、地球環境に及ぼす温暖化が指摘され、これまでの化石燃料に代わる新たなクリーンエネルギーとして、燃料電池システムが注目されている。この燃料電池はその燃料として水素が用いられ、また水素は、その他分野のエネルギー源としての需要も高まる中で、安定かつ効率的な水素製造技術の確立が急がれている。  In recent years, global warming has been pointed out, and fuel cell systems are attracting attention as a new clean energy alternative to conventional fossil fuels. In this fuel cell, hydrogen is used as the fuel, and with the increasing demand for hydrogen as an energy source in other fields, establishment of a stable and efficient hydrogen production technology is urgently required.

その水素製造について従来から種々方法が試みられているが、規模的には比較的少量タイプのものが中心で、例えば水素ステーション用とするような大流量用プラントに好適する製造システムとしては未だ開発段階にある。その代表的なものとして、例えば水の電気分解によるもの、水素を含む種々混合流体から水素のみを分離生成する分離膜によるもの、更にその他触媒技術によるなどを挙げることができる。また、後者触媒技術に関するものとして、例えば特許文献1は、通電加熱用のニクロム線を芯線とし、更に表面にアルミニウム金属膜を被覆して陽極酸化処理を施し、触媒物質を担持する複合型触媒ワイヤーを、別製の上下型枠内流路に沿って配置することを開示している。  Various methods have been tried in the past for hydrogen production, but in terms of scale it is mainly of a relatively small amount type, and is still developed as a production system suitable for high flow rate plants such as for hydrogen stations. It is in the stage. As typical examples thereof, there may be mentioned, for example, those by electrolysis of water, those by a separation membrane which separates and generates only hydrogen from various mixed fluids containing hydrogen, and further by other catalyst technology. Also, as for the latter catalyst technology, for example, Patent Document 1 uses a Nichrome wire for electric heating as a core wire, and further coats the surface with an aluminum metal film to carry out anodizing treatment and support a catalyst substance. Are disposed along the flow path in the separate upper and lower formwork.

また、本出願人らは、このような複合型ワイヤーについて、更にその単位容積当たりにおける触媒担持量の増大を図るべく、表面積向上の為に該ワイヤーをコイル状に巻回成形したコイル線体(特許文献2〜4)を提供し、その効率向上に取り組みしている。  In addition, the applicants of the present invention have a coil wire body in which the wire is formed into a coil shape to improve the surface area in order to further increase the catalyst loading amount per unit volume of such a composite type wire. Patent documents 2 to 4) are provided, and efforts are made to improve the efficiency.

特開2005−246115号公報  JP, 2005-246115, A 特開2011−245475号公報  JP, 2011-245475, A 国際公開WO2012−090326号公報  International Publication WO 2012-090326 特開2012−236182号公報  JP 2012-236182 A

このように、前記各先行特許文献は、いずれも複合ワイヤー型の触媒部材を対象として、その軸芯に通電加熱用の発熱線を配置するとともに、表面にアルミニウム被覆層を介して多孔質なアルマイト層を形成し被包するものとしている。すなわち、前記発熱線とアルミニウム層、及び触媒物質を担持するアルマイト層を備える三層構造の複合ワイヤー構造にすることで、この触媒部材は加熱応答性、すなわち所定温度への制御と応答速度のレスポンス性が促進されるものとなる。  As described above, each of the prior patent documents is directed to a composite wire type catalyst member, in which an exothermic heating wire for electric heating is disposed on the axial core, and porous alumite through the aluminum coating layer on the surface It is intended to form and encapsulate a layer. That is, by using a composite wire structure of a three-layer structure provided with the heating wire, the aluminum layer, and the alumite layer supporting the catalyst substance, the catalyst member has a heating response, that is, a response to control and response speed to a predetermined temperature. Sex is promoted.

しかし該触媒部材は、前記アルマイト層の多孔質構造部に所定の触媒物質を担持するもので、その触媒反応は例えば温度300〜500℃程度に加熱した状態で行われることから、該触媒部材の前記発熱線とアルミニウム被覆層との境界面での相互拡散は避けられない。特に、その使用が例えば10000時間以上、好ましくは3年以上のような長期に亙って連続乃至断続的に加熱・冷却を繰り返しながら使用する場合においては、前記拡散影響部が増大して、発熱線の通電性能を低下させたり、時に層剥離や断線を引き起こすことが懸念され、この問題を未然に予防することが求められている。  However, since the catalyst member carries a predetermined catalyst substance on the porous structure portion of the alumite layer, the catalytic reaction is carried out, for example, at a temperature of about 300 to 500 ° C. Interdiffusion at the interface between the heating wire and the aluminum covering layer is inevitable. In particular, when the use is repeated while heating or cooling continuously or intermittently over a long period such as, for example, 10000 hours or more, preferably 3 years or more, the diffusion-affected zone is increased to generate heat. There is a concern that the current-carrying performance of the wire may be reduced, or delamination may occur at times or disconnection, and it is required to prevent this problem in advance.

本発明者は、こうした使用状態を前提として、前記発熱用の芯線材料と、その表面を被包する被覆金属層との境界面に着目し、特に使用に伴って生成する余剰拡散を阻止して長期間の安定使用に適するように耐熱寿命の向上を図ることとし改善に取り組んだ。その結果、前記境界面に前記使用環境下で形成される余剰拡散を予防するべく、予め拡散抑止層を形成することが有効との結論に至り、本発明を完成した。  Based on such use condition, the present inventor pays attention to the interface between the heat generating core wire material and the covering metal layer that encapsulates the surface, and in particular, prevents the excessive diffusion generated with the use. We worked to improve the heat resistant life so as to be suitable for long-term stable use. As a result, in order to prevent the excessive diffusion formed in the use environment at the interface, it is concluded that it is effective to form a diffusion inhibiting layer in advance, and the present invention has been completed.

このように、本発明は、所定の使用加熱環境下でかつ長期に亙って加熱使用される複合ワイヤー型の触媒部材において、予めその構造界面部に前記余剰拡散を予防する為の拡散抑止層を設けることで、この拡散抑止層をバリヤーとして必要以上の余剰拡散を防ぐものとし、前記耐熱寿命の向上に寄与する触媒部材と、これを用いた水素製造用の触媒反応器の提供を目的とする。  Thus, according to the present invention, in the composite wire type catalyst member which is heated and used under a predetermined heating environment for a long period of time, a diffusion inhibiting layer for preventing the excessive diffusion in the structural interface portion in advance. By providing the diffusion preventing layer as a barrier to prevent excess diffusion beyond necessity, and to provide a catalyst member contributing to the improvement of the heat resistant life and a catalyst reactor for hydrogen production using the same. Do.

すなわち、本願請求項1に係る発明は、
a)通電によって所定温度に加熱発熱する金属製の発熱線と、
b)該発熱線を被包し、かつ該発熱線とは異種の第二金属材料でなる被覆金属層と、
c)その被覆金属層の外周面に、所定の触媒物質を担持する触媒担持層を備えるとともに、
d)該触媒担持層に担持された前記触媒物質を含み、
e)前記発熱線及び被覆金属層の界面は、使用に伴い形成される前記発熱線と被覆金属層同士の余剰拡散を抑える拡散抑止層を、その周方向に沿って非平滑な凹凸状態に備えることを特徴とする複合ワイヤー型触媒部材である。
That is, the invention according to claim 1 of the present application is
a) A metal heating wire that generates heat by heating to a predetermined temperature by energization;
b) a coated metal layer which encapsulates the heating wire and which is made of a second metal material different from the heating wire;
c) providing a catalyst supporting layer supporting a predetermined catalytic substance on the outer peripheral surface of the coated metal layer;
d) containing the catalyst substance supported on the catalyst supporting layer,
e) The interface between the heating wire and the covering metal layer is provided with a diffusion inhibiting layer for suppressing excessive diffusion between the heating wire and the covering metal layer formed along with use in a non-smooth uneven state along the circumferential direction It is a composite wire type catalyst member characterized by the above.

また、本発明は、前記拡散抑止層は、融点が1500℃以上の高融点金属の第三被覆層である。また、請求項2に係る発明は、前記拡散抑止層は、モリブデン、バナジウム、ニオブ、クロム又はタンタルを含むことを特徴とし、請求項3に係る発明は、前記発熱線はニッケル金属、前記被覆金属層はアルミニウム金属で構成されることを特徴とする。Further, in the present invention, the diffusion inhibiting layer is a third coating layer of a high melting point metal having a melting point of 1500 ° C. or more. The invention according to claim 2 is characterized in that the diffusion preventing layer contains molybdenum, vanadium, niobium, chromium or tantalum, and in the invention according to claim 3, the heating wire is nickel metal, and the coated metal is The layer is characterized by being composed of aluminum metal.

請求項に係る発明は、その拡散抑止層は、その形成厚さが60μm以下のものとし、請求項に係る発明は、その構成厚さの中央位置が描く横断面面積から算出される見掛け上の周長に対して、1.02〜1.4倍の実周長を備える前記凹凸状をなすものである。
In the invention according to claim 4 , the diffusion inhibiting layer has a formation thickness of 60 μm or less, and according to the invention according to claim 5 , the apparent thickness calculated from the cross-sectional area drawn by the central position of the constituent thickness With respect to the upper circumference, it makes the above-mentioned concavo-convex shape provided with 1.02-1.4 times the actual circumference.

更に、請求項に係る該触媒部材の発明は、更にコイル掛けによって密着状に巻回されたコイル部を備えるもの、請求項に係る発明は、該コイル部は、その平面視で70°以下の傾斜角(α)で一定方向に斜め巻きされたものであることも特徴とする。
Furthermore, the invention of the catalyst member according to claim 6 further comprises a coil portion wound in a close contact manner by coiling, and in the invention according to claim 7 , the coil portion is 70 ° in plan view. It is also characterized in that it is obliquely wound in a fixed direction at the following inclination angle (α).

他方、請求項8に係る発明は、水素製造用の触媒反応器の発明を対象とし、前記いずれかに記載の触媒部材の複数を、所定の触媒反応室内に供給される被処理流体の流通方向に沿って複数段に積層配置するとともに、該触媒部材の前記発熱線に各々通電加熱する電気回路を備えることを特徴とする。
On the other hand, the invention according to claim 8 is directed to the invention of a catalytic reactor for producing hydrogen, and the flow direction of the to-be-treated fluid supplied to a predetermined catalytic reaction chamber with a plurality of catalyst members described in any of the above. And an electric circuit for electrically heating each of the heating wires of the catalyst member.

本願請求項1の発明によれば、通電加熱される複合ワイヤー型の触媒部材として、前記発熱線とその表面を被包する被覆金属層との境界面に、予め拡散抑止の層を形成しておくことで、これを使用する際の触媒反応の為の加熱環境下ではそれ以上の余剰拡散の進行を防ぎ、またその境界面を非平滑な凹凸状に形成することで、仮に所定以上に層厚な拡散層が生じた場合も、該凹凸部同士が相互に係合して表面被覆層の部分剥離や断線が防止される。  According to the invention of claim 1 of the present application, as the composite wire type catalyst member to be electrically heated, a layer for preventing diffusion is formed in advance on the boundary surface between the heating wire and the covering metal layer covering the surface thereof. By setting the layer, it is possible to prevent the progress of excess diffusion further in the heating environment for the catalytic reaction when using it, and to form the boundary surface in a non-smooth uneven shape, so that the layer temporarily exceeds a predetermined level. Also in the case where a thick diffusion layer is produced, the uneven portions are engaged with each other to prevent partial peeling or breakage of the surface coating layer.

また、請求項2〜7の発明によれば、該拡散抑止層を好適に形成することで、前記余剰拡散の影響を軽減するとともに、両者金属材料同士の係合を更に強めることができる。また請求項の発明によれば、複数の該触媒部材を複数段に載置され、かつ該発熱線の各々を通電加熱可能に電気回路が形成されることから、耐熱寿命性に優れ、かつ省スペース化可能な触媒反応器を提供できる。 According to the inventions of claims 2 to 7 , by suitably forming the diffusion inhibiting layer, the influence of the excessive diffusion can be reduced and the engagement between the two metal materials can be further strengthened. Further, according to the invention of claim 8 , a plurality of the catalyst members are mounted in a plurality of stages, and an electric circuit is formed so that each of the heating wires can be energized and heated. It is possible to provide a space-saving catalytic reactor.

本発明に係る複合ワイヤー型触媒部材の一例を示す斜視図である。  It is a perspective view showing an example of a composite wire type catalyst member concerning the present invention. 図1の触媒部材における、複合ワイヤーの積層構造を拡大する断面図の一例である。  It is an example of sectional drawing which expands the laminated structure of the composite wire in the catalyst member of FIG. 形状品として、他の形態の触媒部材を示す平面図である。  It is a top view which shows the catalyst member of another form as a shaped article. 図3aの側面図である。  Fig. 3b is a side view of Fig. 3a. 触媒反応器の一形態を示す断面図である。  It is sectional drawing which shows one form of a catalytic reactor. 水素製造のシステム図である。  It is a system diagram of hydrogen production.

以下、本発明の好ましい形態を添付図面とともに説明する。
本発明に係る複合ワイヤー型の触媒部材(以下、単に触媒部材という)は、前記するように通電によって所定温度に加熱発熱する線状の金属製発熱線1A(以下、単に発熱線とも言う)と、これを被包し、該発熱線とは異なる第二金属材料でなる被覆金属層1Bと、更に、その表面側に積層形成される触媒担持層1Cを備える複合型線材で構成され、該触媒担持層1Cにはその表面上に予め設定される所定の触媒物質Xが担持されてなる。
Hereinafter, preferred embodiments of the present invention will be described with reference to the attached drawings.
The catalyst member of the composite wire type according to the present invention (hereinafter referred to simply as the catalyst member) is a linear metal heating wire 1A (hereinafter referred to simply as the heating wire) which heats to heat to a predetermined temperature by energization. A composite metal wire including a covering metal layer 1B which is encapsulated and is made of a second metal material different from the heating wire, and a catalyst supporting layer 1C laminated on the surface side of the covering metal layer 1B; The support layer 1C is loaded with a predetermined catalyst substance X set in advance on the surface thereof.

このような複合ワイヤー型の触媒部材1において、本願発明は、前記発熱線1A及び被覆金属層1Bとの界面に、その使用に伴い形成される前記発熱線及び前記第二金属材料の被覆金属層との余剰拡散を抑える拡散抑止層Yを備えるとともに、この抑止層Yを周方向に沿って非平滑な凹凸状に形成したことを特徴とする。  In the composite wire type catalyst member 1 as described above, the present invention relates to the heating wire and the covering metal layer of the second metal material formed along with the use at the interface between the heating wire 1A and the covering metal layer 1B. And the suppression layer Y is formed in a non-smooth concavo-convex shape along the circumferential direction.

一例として、図1は前記所定の等価線径dを持つように調整された前記複合クラッド構造の細線材Wを、更にその全長にわたって、例えば5〜20mm程度の平均コイル径Dを持つように密着巻きされたコイル部2を備えるものを示している。その構成は、前記先行特許文献2及び3によって理解できるように、例えば軸芯の中心部に配した前記発熱線1Aと、この発熱線を被包する第二金属材料でなる被覆金属層1B、例えば金属アルミニウム層と、更にその外表面に形成された触媒担持層1Cを備えるとともに、該担持層1Cには予め設定された触媒物質Xを担持してなる複合クラッド構造のワイヤー状触媒部材と理解される。なお、該触媒担持層1Cは、例えば前記被覆金属層がアルミニウム金属による場合は、その陽極酸化で得られるアルマイト層がこれに該当する。  As an example, FIG. 1 is in close contact with the thin wire material W of the composite clad structure adjusted to have the predetermined equivalent wire diameter d so as to have an average coil diameter D of, for example, about 5 to 20 mm over the entire length. It shows what is provided with the wound coil part 2. As the configuration can be understood by the above-mentioned Patent Documents 2 and 3, for example, the heating wire 1A disposed at the center of the axial core, and the covering metal layer 1B made of a second metal material for covering the heating wire, For example, it is understood as a wire-like catalyst member having a composite clad structure comprising a metal aluminum layer and a catalyst supporting layer 1C formed on the outer surface of the metal supporting layer 1C and supporting the catalyst substance X set in advance on the supporting layer 1C. Be done. The catalyst supporting layer 1C corresponds to, for example, an alumite layer obtained by anodic oxidation when the covering metal layer is made of aluminum metal.

触媒部材1の断面形状は、通常の金属線材のような断面円形形状のものだけに限らず、楕円や角型、帯型等のような非円形形状の長尺条材であってもよく、またこれを図1のようにコイル状に成形したものを対象とする。その線径表示は、例えば該細線Wの任意横断面面積から算出される等価線径dで示すことができ、本形態では、その線径dは例えば0.3〜2.0mm程度とされる。  The cross-sectional shape of the catalyst member 1 is not limited to a circular cross-sectional shape like a normal metal wire, but may be a long strip material having a non-circular shape such as an oval, square or band. Moreover, it shape | molds this in coil shape like FIG. 1 is made into object. The wire diameter indication can be indicated by, for example, an equivalent wire diameter d calculated from an arbitrary cross-sectional area of the thin wire W, and in the present embodiment, the wire diameter d is, for example, about 0.3 to 2.0 mm. .

前記構造の細線材Wにおいて、発熱線1Aは、通電によって所定温度に加熱発熱し得る比較的電気抵抗の大な金属材料が選択され、例えばニッケルやクロム,鉄などによる金属材料をはじめ、ニッケルクロム合金、鉄クロム合金、ステンレス鋼、その他種々の合金材料も採用し得る。より好ましくは、電気抵抗率が5μΩ・cm以上、例えば5〜200μΩ・cmを備えるものが推奨され、例えば前記各特許文献が開示するニクロム、タングステン、モリブデン等の電熱用線材をはじめ、特許文献2,3に示すようにニッケル金属線が好適する。  In the thin wire material W of the above-mentioned structure, the heating wire 1A is selected from a metal material having a relatively large electric resistance which can heat and generate heat to a predetermined temperature by energization. For example, nickel chromium and metal materials such as nickel, chromium and iron Alloys, iron-chromium alloys, stainless steels, and various other alloy materials may also be employed. More preferably, one having an electric resistivity of 5 μΩ · cm or more, for example, 5 to 200 μΩ · cm is recommended, and for example, a wire material for electroheating such as nichrome, tungsten, molybdenum disclosed in each of the above patent documents is disclosed Nickel metal wire is preferred as shown in.

特に、図1,2のような細線材Wをクラッド方法で加工する場合、前記発熱線1Aをニッケル金属により、またその表面を被包する第二金属材料がアルミニウム金属によるものでは、両者の加工性が近似し細径化に好適する。これに限らず、発熱線1Aはその反応使用温度300〜500℃程度に容易に通電加熱し得る特性を持つ前記例示の金属線材が採用される。  In particular, in the case where the fine wire material W as shown in FIGS. 1 and 2 is processed by the cladding method, when the heating wire 1A is made of nickel metal and the second metal material which encapsulates the surface is made of aluminum metal The characteristics are similar and suitable for reduction in diameter. The heating wire 1A is not limited to this, and the metal wire of the above-described example having a characteristic that can be easily heated by current to a reaction use temperature of about 300 to 500 ° C. is adopted.

また、被覆金属層1Bについては、これを構成する第二金属材料として、前記先行特許文献が開示するように、例えば陽極酸化処理によってその表面上に多数の微小細孔を持つ多孔質構造を形成する前記アルミニウム金属が好適する。しかし、本発明はこれに限らず、同様に微小細孔が形成できるものが採用される。例えばチタン、亜鉛、マグネシウム、ジルコニウム等の金属材料も、その処理溶液や条件によって同様に採用し得る。また、該金属層1Bの形成厚さは特に限定するものではなく、使用条件によって適宜設定される。例えば、該金属層1Bと最外装の触媒担持層1Cを含む外装材1Xの容積が該触媒部材の全容積(A0)に対する比(1X/A0)で、70%以下(例えば20%以上)になるように設定される。  In addition, as the second metal material constituting the covering metal layer 1B, as disclosed in the prior patent document, a porous structure having a large number of micropores is formed on the surface, for example, by anodizing treatment. Said aluminum metal is preferred. However, the present invention is not limited to this, and similarly, one capable of forming micropores is adopted. For example, metallic materials such as titanium, zinc, magnesium, zirconium and the like may be adopted similarly depending on the processing solution and conditions. Moreover, the formation thickness of the metal layer 1B is not particularly limited, and is appropriately set according to the use conditions. For example, the volume of the exterior material 1X including the metal layer 1B and the outermost catalyst supporting layer 1C is 70% or less (eg, 20% or more) in ratio (1X / A0) to the total volume (A0) of the catalyst member Is set to be

このような複合構造の触媒部材1において、本発明は図2に示すように、前記金属発熱線と被覆金属層との界面に、前記拡散抑止層Yを備えるものとしている。該抑止層Yは、これを使用する際の使用温度への加熱に伴って、前記発熱線1Aと被覆金属層1Bとの熱反応で生成する余剰拡散を抑える、すなわち防止し乃至減少する機能を有するもので、その周方向に沿って非平滑な凹凸状に形成している。  In the catalyst member 1 having such a composite structure, as shown in FIG. 2, the present invention includes the diffusion inhibiting layer Y at the interface between the metal heating wire and the covering metal layer. The suppression layer Y suppresses, that is, prevents or reduces the excessive diffusion generated by the thermal reaction between the heating wire 1A and the covering metal layer 1B when it is heated to the use temperature at the time of using it. It is formed in a non-smooth uneven shape along the circumferential direction.

この凹凸状は、例えば前記各先行文献が開示するように、前記発熱線1Aの為の第一金属の線材と、その表面を前記被覆金属層1Bの為の第二金属材料を金属メッキやクラッド法によって被覆形成した複合線を原材料として用い、その密着性を高めるように減寸加工を行いながら目標線径に細径化することで得られ、更に陽極酸化処理による最表面側の多孔質構造と、その細孔内に所定の触媒担持層Yを担持することができる。その表面処理は、例えば特開平2−144154号公報、特開平8−246190号公報をはじめ、種々文献が開示する所定電解液中(例えば、硫酸やシュウ酸など)での電気化学処理により行われ、一般的に350〜600℃程度の加熱焼成処理が採用される。  For example, as disclosed in the respective prior documents, this uneven shape is formed by metal plating or cladding a first metal wire for the heating wire 1A, and a second metal material for the covering metal layer 1B on the surface thereof. Obtained by using a composite wire coated by the method as a raw material and reducing the diameter to a target wire diameter while performing reduction processing so as to enhance the adhesion, and further, the porous structure on the outermost surface side by anodizing treatment Also, a predetermined catalyst supporting layer Y can be supported in the pores. The surface treatment is carried out by electrochemical treatment in a predetermined electrolytic solution (eg, sulfuric acid, oxalic acid, etc.) disclosed in various documents including, for example, JP-A-2-144154 and JP-A-8-246190. Generally, a heating and baking process at about 350 to 600 ° C. is employed.

また前記拡散抑止層Yは、その素材段階で前記発熱線1Aと被覆金属層1Bとの界面に、例えば融点が1500℃以上の高融点金属の膜材を配してクラッド構造にしたもの、又は前記発熱線1Aと被覆金属層1Bとの被覆複合線の中間乃至最終段階での熱処理により生成する、層状の金属間化合物による前駆拡散層で構成することができる。  Further, the diffusion inhibiting layer Y is a clad structure in which a film material of high melting point metal having a melting point of 1500 ° C. or more is disposed at the interface between the heating wire 1A and the covering metal layer 1B at the material stage. It can be comprised by the precursor diffusion layer by the layered intermetallic compound produced | generated by the heat processing in the intermediate | middle thru | or the last step of the coated composite wire of the said exothermic wire 1A and the coating metal layer 1B.

その拡散抑止層Yの構成厚さは、例えば60μm以下が好ましい。これを超えるような厚い被覆状態にしたものでは、層剥離を起こしたり加工性を減ずること、また触媒部材1の製品機能に影響することが懸念される。また、必要以上に薄いものではその効果が得られず、より好ましくは1〜30μmである。  The thickness of the diffusion inhibiting layer Y is preferably, for example, 60 μm or less. In the case of a thick coating state exceeding this, there is concern that delamination may occur, the processability may be reduced, and the product function of the catalyst member 1 may be affected. If the thickness is thinner than necessary, the effect can not be obtained, and more preferably 1 to 30 μm.

なお、前者の高融点金属の膜材によるものでは、例えばモリブデン、バナジウム、ニオブ、クロム、タンタル等の各種金属材料の他、これに若干の第三元素(例えば10質量%以下のW,Y2O3など)を添加した種々の合金材料が選択される。特に、加工性に優れたクロム、モリブデンなどは融点が比較的高く好適する。  In the case of the former high melting point metal film material, in addition to various metal materials such as molybdenum, vanadium, niobium, chromium and tantalum, some third elements (for example, W, Y2O3 of 10 mass% or less, etc.) ) Are selected. In particular, chromium, molybdenum and the like which are excellent in processability preferably have a relatively high melting point.

また後者の前駆拡散層によるものとしては、例えば該発熱線1AをNiの金属線とし、前記被覆金属層1Bがアルミニウム金属による場合は、その製造段階において、これを使用する際の例えば400℃以上の過大熱処理条件(温度及び加熱時間)で処理することで、比較的安定した前記化合物層を形成することができる。その一例として、例えばNiAl,Ni3Al,Ni5Al3、Ni2Al3等のNi−Al系金属間化合物が例示される。これら金属間化合物による拡散抑止層Yによれば、その拡散状態は通常の使用温度以上での熱反応で得られるもので、実際の使用温度はこれより低い温度環境状態に維持されることから、該拡散抑止層は比較的安定したバリアー層として作用し、実質的な拡散現象の増大が抑制される。その為、例えば発熱線1Aが前記拡散によって発熱機能を減ずることが防止される。  When the heating wire 1A is a metal wire of Ni, for example, and the covering metal layer 1B is made of aluminum metal, the latter due to the precursor diffusion layer is, for example, 400.degree. The relatively stable compound layer can be formed by treating under the above-mentioned excessive heat treatment conditions (temperature and heating time). As an example, Ni-Al based intermetallic compounds such as NiAl, Ni3Al, Ni5Al3, Ni2Al3 etc. are illustrated. According to the diffusion inhibiting layer Y by these intermetallic compounds, the diffusion state is obtained by thermal reaction above the normal use temperature, and the actual use temperature is maintained at a temperature environment lower than this. The diffusion inhibiting layer acts as a relatively stable barrier layer, and the increase of the substantial diffusion phenomenon is suppressed. Therefore, for example, the heating wire 1A is prevented from reducing the heat generation function by the diffusion.

これら拡散抑止層Yは、前記図2に見られるように、前記両者金属の境界面に沿って非平滑な凹凸状に形成されることが有効である。その凹凸部は、その両側に位置する前記発熱線1Aとアルミニウム層1Bとの間で相互に係合し一体強固な複合ワイヤーをもたらし、長寿命化に寄与する。  It is effective that the diffusion inhibiting layer Y is formed in a non-smooth uneven shape along the interface between the two metals as seen in FIG. The concavo-convex portion mutually engages between the heating wire 1A and the aluminum layer 1B located on the both sides to provide an integral and strong composite wire, which contributes to prolonging the life.

その凹凸状態は、例えばその拡散抑止層Yの厚さ中央位置、すなわち中点が描く区画領域の面積に相当する仮想等価円が示す見掛け上の周長と実周長との比で示すことができる。本発明は、前記凹凸によって、前記実周長は前記見掛け周長の1.02〜1.4倍、好ましくは1.05〜1.35倍、更に好ましくは1.08〜1.3倍とする。  The uneven state can be indicated, for example, by the thickness center position of the diffusion suppression layer Y, that is, the ratio of the apparent circumference to the actual circumference indicated by a virtual equivalent circle corresponding to the area of the section area drawn by the middle point. it can. In the present invention, the actual circumferential length is 1.02 to 1.4 times, preferably 1.05 to 1.35 times, and more preferably 1.08 to 1.3 times the apparent circumferential length by the unevenness. Do.

このような凹凸状態は、例えばその複合ワイヤーの成形加工において、比較的太径段階でクラッドしたものを用いるとともに、これを加工率80%以上、より好ましくは85%以上の強度の伸線加工を行うことで得ることができる。すなわち、伸線加工ではその加工歪が軸心方向に絞られることから、その加工程度に伴って前記境界面は不規則な凹凸面を形成することとなる。  Such a concavo-convex state uses, for example, a relatively large diameter clad in the forming process of the composite wire, and a wire drawing process with a processing rate of 80% or more, more preferably 85% or more. It can be obtained by doing. That is, in the wire drawing process, since the processing strain is narrowed in the axial direction, the boundary surface forms an irregular asperity surface along with the processing degree.

したがって、前者の高融点金属による場合も、その素材段階での境界面に予め所定の金属膜材を介在させておくことで同様の凹凸状態が得られ、また後者拡散抑止層Yによる場合は、その中間乃至最終段階での熱処理において、その加熱温度を通常の処理温度より高くしたり加熱時間を長くすることで、両者の熱化学反応を高めることが推奨される。  Therefore, even in the case of the former high melting point metal, the same concavo-convex state can be obtained by interposing a predetermined metal film material in advance in the interface at the material stage, and in the case of the latter diffusion inhibiting layer Y, In the heat treatment in the middle to the final stage, it is recommended to enhance the thermochemical reaction of the both by raising the heating temperature higher than the normal processing temperature or prolonging the heating time.

その加熱条件は用いる材料の種類や形状によって適宜設定され、例えば前記ニッケルとアルミニウムの場合は、融点以下の例えば400〜650℃程度の設定温度で、かつ0.1〜30分程度の範囲で設定される。特に、加熱温度が650℃を超えるような高温加熱では、実質的にアルミニウムの融点に近づき、偏心などの問題を招き満足な複合ワイヤーが得ら難い。逆に400℃未満の低温加熱処理では十分な軟質化が得られず、また前記拡散抑止層Yの形成も長時間を要すこととなる。好ましくは、前記低融点側の金属材料の融点の70〜98%、例えば温度500〜630℃で設定される。  The heating conditions are appropriately set according to the type and shape of the material to be used. For example, in the case of nickel and aluminum, they are set at a set temperature of about 400 to 650.degree. C. below the melting point and in the range of about 0.1 to 30 minutes. Be done. In particular, high temperature heating where the heating temperature exceeds 650 ° C. substantially approaches the melting point of aluminum, causing problems such as eccentricity, making it difficult to obtain a satisfactory composite wire. On the other hand, low-temperature heat treatment at less than 400 ° C. can not achieve sufficient softening, and the formation of the diffusion inhibiting layer Y also requires a long time. Preferably, it is set to 70 to 98% of the melting point of the low melting point side metal material, for example, at a temperature of 500 to 630 ° C.

他方、前記触媒担持層1Cは、本形態では前記被覆金属層1Bを酸化処理、例えば陽極酸化処理によって、その表面層に微細な有底細孔を備える多孔質構造とするもので、前記アルミニウムの被覆層ではアルマイト層と説明される。その細孔は、例えば孔径1〜200nm、深さ0.1〜500μm(好ましくは300μm以下)の有底形状の微細孔を蜂の巣状(亀甲のメソポーラス構造)に備えるもので、必要ならば、所定のポアワイドリング処理や焼成処理の後処理によって、その細孔のアスペクト比(深さ/開口径)が50〜2000程度に設定することができる。その詳細は、例えば前記先行文献2乃至4により理解され得る。  On the other hand, in the present embodiment, the catalyst supporting layer 1C has a porous structure including fine bottomed pores in its surface layer by oxidation treatment, for example, anodizing treatment, in the present embodiment, the aluminum coating The layer is described as an alumite layer. The pores are, for example, provided with micropores of a bottomed shape with a pore diameter of 1 to 200 nm and a depth of 0.1 to 500 μm (preferably 300 μm or less) in a honeycomb shape (mesoporous structure of turtle shell), if necessary The aspect ratio (depth / opening diameter) of the pores can be set to about 50 to 2000 by post-processing of the pore wide ring process or the baking process. The details thereof can be understood, for example, by the above-mentioned prior documents 2 to 4.

このような多孔質構造によって、所定の触媒物質Xはその細孔内に高密度に担持でき、単位面積当たりの触媒担持量を高め、触媒反応が促進される。また該アルマイト層1Cは、その反応母材の酸化処理で得られることから、ベースのアルミニウム層1Bと強固に結合成形される。その微細孔は、例えば陽極酸化処理中の電圧制御により適宜調整可能であり、上記寸法の例示はその一例である。  With such a porous structure, a predetermined catalyst substance X can be supported at a high density in its pores, the amount of supported catalyst per unit area can be increased, and catalytic reaction is promoted. Further, since the alumite layer 1C is obtained by the oxidation treatment of the reaction base material, it is firmly bonded and formed with the base aluminum layer 1B. The fine pores can be appropriately adjusted, for example, by voltage control during anodizing treatment, and the above-mentioned example of the dimensions is an example thereof.

この担持層1Cは、電気的にも非導電性の絶縁性被膜となる。このように絶縁性被膜で覆われた複合ワイヤーでなる触媒部材1は、その使用時に他の部材(ハウジング容器など)との接触による電気的短絡を防止でき、また、その多孔質構造は、非常に微細かつ硬質であるため、微細開口の変形や封孔を防止して所定の触媒物質Xを適正に担持できる。収容された触媒物質Xは、使用時における他の部材との接触や摩擦等による離脱、脱落を防ぐことができる。  The carrier layer 1C is an electrically nonconductive insulating film. Thus, the catalyst member 1 made of the composite wire covered with the insulating film can prevent an electrical short circuit due to contact with other members (housing container etc.) at the time of use, and its porous structure is very Since the catalyst is fine and hard, it is possible to properly support the predetermined catalyst substance X by preventing deformation and sealing of the fine opening. The catalyst substance X contained can be prevented from coming off or coming off due to contact with another member at the time of use, friction or the like.

前記触媒物質Xは、その使用目的に応じて種々のものが選択され、特に限定されないが、例えば白金(白金族金属及びその合金を含む)が好適である。また、白金以外にも、ロジウム、レニウム、ニッケル、チタン、マグネシウム、亜鉛、ジルコニウム、モリブデン及びタングステンからなる群から選択される1以上の遷移金属が好適である。  The catalyst substance X may be variously selected depending on the purpose of use, and is not particularly limited. For example, platinum (including platinum group metals and their alloys) is preferable. In addition to platinum, at least one transition metal selected from the group consisting of rhodium, rhenium, nickel, titanium, magnesium, zinc, zirconium, molybdenum and tungsten is preferable.

触媒物質Xの担持処理は、前記金属、例えば白金を含む白金溶液を多孔質構造のアルマイト層1Cに塗布し、圧力をかけて前記有底細孔H内に圧入浸透させる担持法によって長尺細線Wに担持される。前記白金溶液としては、例えばヘキサクロロ白金(IV)酸六水和液、ジニトロジアンミン白金(II)硝酸溶液、ヘキサアンミン白金(IV)クロライド溶液又はテトラアンミン白金(II)水酸塩溶液等が好適に用いられる。また、白金及び/又は前記遷移金属塩溶液は、ワイヤー本体Wを通電又は電磁誘導加熱しながら所定の温度域で、浸漬、滴下、塗布又は噴霧等の方法で同時あるいは逐次担持させることもできる。更に、アルミニウムの最外表面側に陽極酸化処理でアルマイト層を積層形成して微細孔を構成し、この微細開口に触媒物質を担持する触媒担持層について説明したが、これに限らず、例えば酸化皮膜表面に微細な切込みを入れて細孔を形成し、この細孔に触媒物質を担持する触媒担持層とする方法でも良い。  In the supporting treatment of the catalyst substance X, a platinum solution containing the metal, for example, platinum, is applied to the alumite layer 1C having a porous structure, and pressure is applied to cause penetration into the bottomed pores H. Carried by As the platinum solution, for example, hexachloroplatinate (IV) hexahydrate solution, dinitrodiammineplatinum (II) nitric acid solution, hexaammineplatinum (IV) chloride solution, tetraammineplatinum (II) hydrate solution, etc. are suitably used. Be The platinum and / or the transition metal salt solution may be simultaneously or sequentially supported by a method such as immersion, dropping, coating or spraying in a predetermined temperature range while the wire body W is energized or electromagnetically heated. Furthermore, although the alumite layer is laminatedly formed on the outermost surface side of aluminum by lamination to form micropores, and the catalyst supporting layer supporting the catalyst substance on the micropores has been described, the present invention is not limited thereto. A fine cut may be made on the surface of the film to form pores, and a catalyst support layer may be used to support the catalyst material on the pores.

この他にも、触媒物質Xは、Pt(CO)Cl,Rh(CO12,Ni(CO),Re(CO)などの金属カルボニル化合物やCpTiCl(Cp=シクロペンタヂエニル)、Mo(CO)などを用いる化学気相固定法(Chemical Vapor Deposition)により適宜担持され、担持後、必要ならば酸素含有雰囲気中での250〜600℃の温度域での段階的な焼成、さらに水素ガス雰囲気下で100〜450℃の温度域で段階的に昇温することにより活性化処理を行うことが好ましい。Besides this, the catalyst substance X may be a metal carbonyl compound such as Pt (CO) 2 Cl, Rh 4 (CO 12 , Ni (CO) 4 , Re 2 (CO) 7 or CpTiCl 2 (Cp = cyclopentadienyl). ), Mo (CO) 6 etc. by Chemical Vapor Deposition, and after loading, stepwise calcination in a temperature range of 250 to 600 ° C. in an oxygen-containing atmosphere if necessary. Furthermore, it is preferable to perform the activation treatment by raising the temperature stepwise in a temperature range of 100 to 450 ° C. in a hydrogen gas atmosphere.

こうして複合型ワイヤー1は、図1に示されるように、前記巻径Dで巻回されたコイル部2を有するものとし、そのコイル線の両端部(本形態では非コイル状部)には、前記担持層1Cを具えず金属製発熱線1Aが露出する接続部3a、3bを具えるものとしている。その接続部3a、3bは、更に系外の外部電源に接続され、通電によって所定温度に加熱される。  Thus, as shown in FIG. 1, the composite wire 1 has the coil portion 2 wound with the winding diameter D, and both ends of the coil wire (in the present embodiment, non-coiled portions) The supporting layer 1C is not provided and the connecting portions 3a and 3b to which the metal heating wire 1A is exposed are provided. The connection portions 3a and 3b are further connected to an external power supply outside the system and heated to a predetermined temperature by energization.

前記コイル部2の加工乃至巻回形状や成形寸法等は、該触媒部材1の線径d及び表面の前記触媒担持層1Cを考慮して実施することが望ましく、前記特許文献2及び3はその全長に亙って密着状に巻回したコイル品を開示する。その場合、該コイル部2はほぼ同径の幅とコイル高さを有するとともに、そのコイル部の内部は実質的に空洞状態であることから、触媒物質を十分に有効な収容率とすることはできない。また同特許文献3のように、大小異なるコイル線体同士を挿通するものでは、その点数が増して在庫管理上でも煩雑となり、そうした点を解消するものとして、例えば図3a及び3bのように一方向に傾斜させた状態に斜め巻きしたコイル線が好適する。図3aはその平面図を示し、図3bは側面図を示す。  It is preferable to carry out the processing or winding shape, molding dimension, etc. of the coil portion 2 in consideration of the wire diameter d of the catalyst member 1 and the catalyst supporting layer 1C on the surface, and the Patent Documents 2 and 3 Disclosed is a coiled product wound tightly around its entire length. In that case, since the coil portion 2 has a width and a coil height of approximately the same diameter and the inside of the coil portion is substantially hollow, it is possible to make the catalyst material sufficiently effective storage ratio Can not. Further, as in Patent Document 3, in the case of inserting coil wires of different sizes, the number of points is increased and it becomes complicated in inventory control, and as such a point is eliminated, for example, as shown in FIGS. 3a and 3b. A coil wire wound obliquely in a state of being inclined in the direction is suitable. FIG. 3a shows its plan view and FIG. 3b shows a side view.

その触媒部材は、その平面視で傾斜角(α)を持った一定方向に傾斜させることで構成され、傾斜角αは、例えば70°以下、好ましくは30〜60°程度の範囲に設定される。このように傾斜したコイル線体2では、その構成高さhは幅寸法に比して小さく、すなわち肉薄に形成できることから、これを例えば多段に積み重ねて使用する場合はその全体厚さを大幅に減少し、コイル部2同士の絡み合いを防ぐとともに、各巻線同士の間には被処理流体が十分に流通する隙間流路が得られることから、良好な触媒反応をもたらすものとなる。  The catalyst member is configured to be inclined in a fixed direction having an inclination angle (α) in plan view, and the inclination angle α is set to, for example, 70 ° or less, preferably about 30 to 60 °. . In the coil wire body 2 thus inclined, the height h of the structure can be made smaller than the width, that is, it can be formed thin, so when using it stacked in multiple stages, for example, its entire thickness is greatly increased As a result, the entanglement between the coil portions 2 can be prevented, and a gap flow path through which the fluid to be treated can sufficiently flow can be obtained between the respective windings, which leads to a good catalytic reaction.

その巻回形状については、例えば前記複合ワイヤーを用いて通常の密着真円形状に巻回してなるコイル部2を、更に斜め方向に前記所定角度αになるように押し潰したものと説明することができる。このような巻回成形は、該アルマイト層1Cの表面処理前に行うことが望ましい。また、こうして扁平化されたコイル部2は、その巻回幅に相当する平均コイル径Dは、その複合ワイヤーの前記等価線径dの3倍以上、例えば3〜20倍、さらに好ましくは5〜15倍と比較的大きく設定され、かつ前記傾斜角(α)を持つように斜め巻きされる。そのコイル部の長さは特に制限されず、任意に設定可能であるが、通電加熱の使用形態から見て、通常100cm程度以下、例えば5〜50cm程度のものが比較的良好に用い得る。  Regarding the winding shape, for example, it is described that the coil portion 2 which is wound in a normal close-contact perfect circular shape using the composite wire is further squeezed in the oblique direction so as to be the predetermined angle α. Can. It is desirable that such winding formation be performed before the surface treatment of the alumite layer 1C. Further, in the coil portion 2 thus flattened, the average coil diameter D corresponding to the winding width is 3 times or more, for example 3 to 20 times, preferably 5 to 5 times the equivalent wire diameter d of the composite wire. It is set so as to be relatively large, such as 15 times, and is diagonally wound so as to have the inclination angle (α). The length of the coil portion is not particularly limited and can be set arbitrarily, but generally about 100 cm or less, for example, about 5 to 50 cm, for example, can be used relatively favorably in view of the usage of electric heating.

前記触媒部材1の水素製造用の触媒反応器への材用については、例えば、その複数を所定の反応室内に供給される被処理流体の流通方向に沿って多段に配置することができ、該触媒部材1の前記発熱線1Aを各々通電加熱する電気回路を構成し、使用される。その使用形態は例えば、前記各特許文献によるものの他、例えば特開2014−177360号公報が示し、また図4及び図5に見るように多段積層型に構成したものが好適する。  With regard to the material for the catalyst reactor for hydrogen production of the catalyst member 1, for example, a plurality thereof can be disposed in multiple stages along the flow direction of the fluid to be treated supplied into a predetermined reaction chamber, The electric circuit which electrically heats the said exothermic line 1A of the catalyst member 1, respectively is comprised and used. For example, in addition to the above-mentioned patent documents, JP-A-2014-177360 shows its use form, and one having a multi-stage laminated type as shown in FIGS. 4 and 5 is preferable.

図4はその代表例として、反応器10は例えば上・下端面に配管フランジ11A,11Bを設けた太径のハウジング容器12内に、やや小径の中容器13を設けて、その容器内に前記触媒部材のコイル線体15の複数本を順次収容した、例えば平板状の収容ホルダー14を用いるカセット型として、またこれを多段に配置することで構成している。  As a representative example, FIG. 4 shows that the reactor 10 has a slightly small diameter middle container 13 in a large diameter housing container 12 provided with piping flanges 11A and 11B at the upper and lower end surfaces, for example, As a cassette type using, for example, a flat-plate-like accommodation holder 14 in which a plurality of coil wires 15 of the catalyst member are sequentially accommodated, it is configured by arranging it in multiple stages.

そして、各コイル線体15は各々系外の外部電源27(Dw)に接続され、所定温度に通電加熱可能に電気回路を形成しており、また必要ならば、前記ハウジング容器12と中容器13との間の空室内に、供給口16A及び排出口16Bによって予め所定温度に加熱した加熱流体を供給する間接加熱型として用いることもできる。  Each coil wire body 15 is connected to an external power supply 27 (Dw) outside the system, and forms an electric circuit capable of conducting heating to a predetermined temperature, and if necessary, the housing container 12 and the middle container 13 It can also be used as an indirect heating type that supplies a heating fluid that has been heated to a predetermined temperature in advance by the supply port 16A and the outlet 16B in the empty space between them.

また、水素製造の被処理流体は、図5のシステムフロー図に示すように例えばメチルシクロヘキサン(MCH)液を原料の被処理流体として用い、上流側の気化器23によって予め加熱噴霧化され、これを反応器20内に供給することで触媒反応が発生する。すなわち、該ラインは、前記MCHを貯留する貯槽21と、送給用ポンプ22、前記気化器23を経て触媒反応器24で生成した反応ガスを次の冷却器25で気液分離し、分離生成したガス体は水素として、また液体分は例えばトルエンとして回収層30に回収されるシステムである。なお、この形態で前記気化器23には、MCHの供給背圧と反応装置の触媒物質の酸化劣化を防止する為の還元性の随伴用ガス、例えば水素が用いられる。  Further, as shown in the system flow diagram of FIG. 5, for example, methylcyclohexane (MCH) solution is used as the raw fluid to be treated, and the fluid to be treated for hydrogen production is preheated and atomized by the vaporizer 23 on the upstream side. The catalyst reaction occurs by feeding the catalyst into the reactor 20. That is, in the line, the reaction gas generated in the catalytic reactor 24 through the storage tank 21 storing the MCH, the feed pump 22 and the vaporizer 23 is separated into gas and liquid by the next cooler 25 to separate and generate In the system, the recovered gas is recovered as hydrogen and the liquid as, for example, toluene in the recovery layer 30. In this embodiment, the vaporizer 23 uses a reducing back pressure gas such as hydrogen for preventing the supply back pressure of MCH and the oxidation deterioration of the catalyst substance of the reaction apparatus.

また必要ならば、前記反応器24内の各触媒部材が常に所定温度になるように、熱電対Thが所定位置に設置され、温度計Tmによって温度管理される。こうして、前記被処理流体は図4の上方側から、分散多孔板17を介してその供給量がその全面を通じてほぼ平均化できるように整流調整され、流下に伴って順次触媒反応が発生する。
以下、更に次の実施例により本発明を説明する。
Further, if necessary, the thermocouple Th is installed at a predetermined position so that each catalyst member in the reactor 24 always has a predetermined temperature, and the temperature is controlled by a thermometer Tm. Thus, the fluid to be treated is rectified and adjusted from the upper side of FIG. 4 so that the supply amount can be substantially averaged over the entire surface through the dispersed porous plate 17, and catalytic reactions occur sequentially as it flows down.
Hereinafter, the present invention will be further described by the following examples.

[アルミニウムクラッドコイル細線の製造]
通電加熱機能を有するニッケル線(純度99%)をアルミニウム(純度99.9%)の帯材で被包し、線径12mmのアルミクラッド線材(複合線)の母線材を出発材料として用いた。そして、この母線材に対して、温度620℃×5minの条件での中間熱処理後、最終加工率88%の冷間伸線加工によって細径化し、最終的に線径0.7mmφの複合細線を得た。
[Production of aluminum clad coil fine wire]
A nickel wire (purity 99%) having an electric heating function was encapsulated with a band material of aluminum (purity 99.9%), and a base material of an aluminum clad wire (composite wire) with a wire diameter of 12 mm was used as a starting material. Then, after intermediate heat treatment under the conditions of a temperature of 620 ° C. × 5 min, the base wire is reduced in diameter by cold drawing at a final working ratio of 88%, and finally a composite fine wire having a wire diameter of 0.7 mmφ is obtained. Obtained.

その複合細線は、前記アルミニウム層を含む外装材1Xの平均厚さが100μmで、またその横断面を顕微鏡観察したところ、前記芯材Ni材とクラッド材アルミニウム層との境界面において、平均23μm厚さの化合物層が認められ、その化合物層についてX線回析したところ実質的にNiAlであることが確認された。  The composite thin line has an average thickness of 100 μm of the packaging material 1X including the aluminum layer, and the cross section thereof is microscopically observed to have an average thickness of 23 μm on the interface between the core material Ni and the cladding material aluminum layer. The compound layer was observed and X-ray diffraction of the compound layer confirmed that it was substantially NiAl.

この化合物層は、本実施例では前記熱処理を従来に増して長時間加熱によるものと推測され、またその境界面は図2に示すような断面非円形の凹凸状をなすもので、その実質的な周長は、該化合物層の中点が描く区画領域の面積に相当する換算等価円の周長、すなわち見掛け上の周長の約1.08倍の長さを持つ非平滑な凹凸部を備え、両者は強固に複合一体化されるものであった。  In this embodiment, the compound layer is presumed to be caused by heating for a long time more than the heat treatment in the prior art, and the boundary surface thereof is uneven with a non-circular cross section as shown in FIG. The peripheral length is a non-smooth uneven portion having a peripheral length of a reduced equivalent circle equivalent to the area of the sectioned area drawn by the middle point of the compound layer, that is, a length of about 1.08 times the apparent peripheral length. The two were firmly integrated together.

次に、この複合細線をコイリングマシンにセットして、巻回平均径Dが10mm、長さ300mmの密着巻きされたコイル線体を得た。コイル線体は前記複合細線の線径dの1.01倍程度に密着した密着コイル線で、アルミニウム層には、剥離などの欠陥は見られず、良好なコイル状態を具えるものであった。  Next, this composite fine wire was set in a coiling machine to obtain a tightly wound coil wire body having a winding average diameter D of 10 mm and a length of 300 mm. The coil wire was a close contact coil wire closely attached to about 1.01 times the wire diameter d of the composite fine wire, and no defect such as peeling was observed in the aluminum layer, and the coil had a good coil state. .

[複合細線のアルマイト処理]
次に、コイル線に対して、温度35℃の4wt%しゅう酸水溶液、電流密度60A/mの条件で陽極酸化処理が行なわれた。その後、同種のしゅう酸処理液に6時間浸漬したままで酸処理をし、ポアサイズの拡幅処理をして大気中で乾燥させた。次に、400℃で約1時間の焼成処理をした後、80℃以上で約2時間水和処理を行なって乾燥させた。その後、さらに500℃で3時間焼成し、表面に細孔を持つ多孔質構造のアルマイト層の具えるアルマイトクラッド金属細線とし、更にこれを次の触媒処理によって、表面に白金の触媒物質を担持させた。
[Alumite treatment of composite thin line]
Next, the coil wire was subjected to anodizing treatment under the conditions of a 4 wt% aqueous solution of oxalic acid at a temperature of 35 ° C. and a current density of 60 A / m 2 . Then, it was acid-treated while being immersed in the same type of oxalic acid-treated solution for 6 hours, and the pore size was broadened and dried in the air. Next, after baking treatment at 400 ° C. for about 1 hour, hydration treatment was carried out at 80 ° C. or more for about 2 hours and dried. Thereafter, it is further calcined at 500 ° C. for 3 hours to form an alumite clad metal fine wire provided with an alumite layer having a porous structure having pores on the surface, and this is further subjected to the following catalyst treatment to support platinum catalyst substance on the surface. The

触媒処理は、触媒物質の白金塩を用い、塩化白金酸HPtCl6HOを用いてエタノールにそれぞれ溶解した塩化白金酸溶液中に前記アルマイトクラッド細線を浸漬し行ったもので、その担持量は溶解溶液中のイオン量から3gPt/m2のものと検出された。The catalyst treatment was performed by immersing the alumite clad fine wire in a chloroplatinic acid solution which was respectively dissolved in ethanol using chloroplatinic acid H 2 PtCl 6 6H 2 O using a platinum salt of a catalytic substance, and the supporting thereof was carried The amount was detected from the amount of ions in the dissolution solution as 3 g Pt / m 2.

[反応器]
次に、このコイル線体の8本を直列につないで単位ブロックとして、その三組を各々別製の支持ホルダーに順次組み込みすることで、合計24本のコイル線体を備える触媒ユニットとしている。
[Reactor]
Next, eight of the coiled wire bodies are connected in series to form a unit block, and the three sets are sequentially incorporated into separate support holders to form a catalyst unit having a total of 24 coiled wire bodies.

支持ホルダーは、アルミ合金製の押し出し成形により300×300mmの大きさの板状成形品で、その片面側には高さ10mmの隔壁を12mm間隔で平行に設けたもので、その隔壁間の室内に沿って前記コイル線体を順次組み込みするとともに、各回路ブロック毎の両端末は、該ホルダーの先端側1部に絶縁状態で付設した継電端子に各々つながれ、系外の供給電力を受ける受電部をなすもので、またその底面には、該処理流体を流通する為の流通孔が、孔径:10mmで、5mm間隔に設けられている。  The support holder is a plate-shaped molded product of 300 × 300 mm in size by extrusion of aluminum alloy, and 10 mm high partition walls are provided in parallel at intervals of 12 mm on one side of the support holder. The coil wire body is sequentially incorporated along the circuit, and both terminals of each circuit block are respectively connected to relay terminals attached in an insulated state to one end of the holder and receive power supplied from outside the system. In the bottom surface, there are provided through holes at a distance of 5 mm, with a hole diameter of 10 mm, for passing the processing fluid.

この得られた触媒ユニットを合計10段用意して、各々電気配線して触媒反応器を構成し、図4の水素製造システムによって水素生成試験を行なった。
試験は、被処理流体にメチルシクロヘキサン(MCH)を用いた脱水素特性の良否について、水素発生量及びメチルシクロヘキサンのトルエン転化率のガスクロマトグラフィーにより分析・測定するもので、各触媒エレメントのコイル線体は、前記受電部を通じて各々500Wの電気量を付加し、約3分で目的の350℃の温度に加熱することができた。その温度計測は、各単位ブロック毎に設けた温度センサーによって自動制御したものである。
A total of 10 stages of the obtained catalyst units were prepared, each was electrically connected to constitute a catalytic reactor, and a hydrogen generation test was conducted by the hydrogen production system of FIG.
In the test, the quality of dehydrogenation characteristics using methylcyclohexane (MCH) as the fluid to be treated is analyzed and measured by gas chromatography of the amount of hydrogen generation and the toluene conversion of methylcyclohexane, and the coil wire of each catalyst element The body was able to add 500 W of electricity each through the power receiving unit and heat it to the target temperature of 350 ° C. in about 3 minutes. The temperature measurement is automatically controlled by a temperature sensor provided for each unit block.

被処理流体は、その上流側からパルス型噴霧ノズルよりメチルシクロヘキサンを水素気流中、流量12L/分、噴霧時間0.5秒(1回噴霧量30gr)、噴霧間隔10及び20秒で供給して水素生成するもので、その触媒反応を2000時間に亙って性能評価し、またその加熱に伴う前記触媒部材の材料拡散の状況を調査した。  The fluid to be treated is supplied methylcyclohexane from the upstream side from a pulse spray nozzle in a hydrogen stream at a flow rate of 12 L / min, a spray time of 0.5 seconds (a single spray amount of 30 gr), and a spray interval of 10 and 20 seconds. The catalyst reaction was evaluated for performance over 2000 hours for hydrogen generation, and the state of material diffusion of the catalyst member accompanying the heating was investigated.

評価は、同反応により得られる水素生成量と、副次物中の純度を示すメチルシクロヘキサン転化率,トルエン選択率で評価し、平均的にメチルシクロヘキサン転化率が92%、トルエン選択率が98%で、かつその平均水素生成量は147L/分の結果が得られ、有効に水素製造するものであることが確認された。  The evaluation is based on the amount of hydrogen produced by the reaction, the conversion of methylcyclohexane showing the purity in the by-products, and the selectivity to toluene, and the conversion to methylcyclohexane is 92% on average, 98% on toluene selectivity The average hydrogen production amount was 147 L / min, and it was confirmed that hydrogen production was effective.

また、前記長時間の通電加熱に伴う材料拡散の影響調査についても、使用後の触媒部材について任意に採取して5点の試料を用いて、各々その横断面の顕微鏡観察を行ったもので、その芯材(Ni線)と被覆アルミニウム層との境界部について組織観察し、未使用の原線状態のものとの拡散層の増大有無を比較した。しかしながら、本実施例材ではその加工段階で比較的高温処理で形成していたNiAl相がバリヤー層となって、それ以上の金属反応を抑えることができ、経時変化が少なく十分な有効性が得られた。  Moreover, also about the influence investigation of the material diffusion accompanying the said long-time current heating, in the catalyst member after use, it extract | collected arbitrarily and performed microscopic observation of the cross section each using five samples, The structure of the boundary part between the core material (Ni wire) and the coated aluminum layer was observed, and the increase or absence of the diffusion layer was compared with that of the unused original wire state. However, in the material of this example, the NiAl phase formed by the relatively high temperature treatment in the processing step becomes a barrier layer, and further metal reactions can be suppressed, and the change with time is small, and sufficient effectiveness is obtained. It was done.

通電加熱機能を有する線径8mmのニッケル線(純度99%)を芯材として、これを電気クロムメッキ法によって厚さ50μmのクロム層を形成するとともに、更にこれをAl製パイプ内に挿入し、3層構造の複合線を凖備した。  Using a nickel wire (purity 99%) with a wire diameter of 8 mm having a current-carrying heating function as a core material, this is used to form a 50 μm-thick chromium layer by electrochromic plating and further inserted into an Al pipe, A three-layered composite wire was provided.

そして、この母線材に対して、最終加工率88%の冷間伸線加工と、温度620℃×1minの条件で中間熱処理を介しながら細径化し、最終的に線径0.9mmφの複合細線を得た。  Then, the base wire material is reduced in diameter through cold drawing at a final working ratio of 88% and intermediate heat treatment under conditions of a temperature of 620 ° C. × 1 min, and finally a composite fine wire with a wire diameter of 0.9 mmφ. I got

その複合細線は、前記アルミニウム層の平均厚さが100μmで、またその横断面を顕微鏡観察したところ、前記芯材Ni材とクラッド材アルミニウム層との境界面に、厚さ5μmの前記クロム層を備えるもので、前記クロム層は、前記冷間加工によってその横断面視での算出周長に対して1.04倍の実質周長を持つ凹凸状をなすものであった。  When the average thickness of the aluminum layer is 100 μm, and the cross section of the composite fine wire is observed microscopically, the chromium layer with a thickness of 5 μm is formed at the interface between the core Ni material and the clad aluminum layer. The chromium layer has a concavo-convex shape having a substantial circumferential length of 1.04 times the calculated circumferential length in the cross-sectional view due to the cold working.

この複合線を用いて、前記実施例1と同様に外径10mmの密着コイル巻きしたコイル線体を得て、これを触媒反応器に組込んで、1500時間に亙って連続通電加熱を行ない、その横断面の組織状態を同様に顕微鏡で観察した。その加熱温度は、使用状態に習って還元性雰囲気中で加熱温度340℃にセットしたものであるが、その程度の加熱温度では実質的な拡散は認められず、前記クロム層は十分なバリア効果があることが確認された。  By using this composite wire, a coiled wire wound with a close-contact coil and having an outer diameter of 10 mm is obtained in the same manner as in Example 1 and incorporated into a catalytic reactor to carry out continuous current heating for 1500 hours. The tissue condition of the cross section was similarly observed with a microscope. The heating temperature is set to 340 ° C. in a reducing atmosphere as in use conditions, but no substantial diffusion is observed at that heating temperature, and the chromium layer has a sufficient barrier effect. Was confirmed.

前記発熱線と被覆金属層について、更に他の金属材料による場合を評価した。
ここでは、発熱線は0.6mmのニクロム(Ni−Cr合金)線により、また被覆金属層はチタン金属により厚さ0.1mmを被覆したもので、その界面に、前記実施例1と同様に中間熱処理によってTiNiの前駆化合物層を介在させ、また更に触媒担持等についても同様に行ったものを用いた。
評価は、これを380℃の使用想定温度に加熱するとともに、800時間連続処理に伴う前記発熱線と被覆金属層との界面の変化を見たもので、結果は良好であった。
The heating wire and the coated metal layer were further evaluated in the case of other metal materials.
Here, the heating wire is a Nichrome (Ni-Cr alloy) wire of 0.6 mm and the covering metal layer is a titanium metal covering 0.1 mm in thickness, and the interface thereof is the same as in Example 1. A precursor compound layer of TiNi was intervened by intermediate heat treatment, and further, the same was applied to catalyst loading and the like.
The evaluation was made by heating this to the use assumed temperature of 380 ° C. and observing the change in the interface between the exothermic line and the coated metal layer during the continuous treatment for 800 hours, and the results were good.

産業上の利用分野Industrial application field

本発明に係る触媒部材は、通電加熱型の触媒ワイヤーとして特に金属拡散に伴う材料特性への影響を低減させることができ、その製品寿命の向上を図るもので、特にメンテナンスフリーの触媒部材として幅広い用途への期待でき、水素を燃料とする自動車、船舶用等のエネルギー分野に広く利用され得るものである。  The catalyst member according to the present invention can reduce the influence on the material characteristics especially due to metal diffusion as a catalyst wire of electric heating type, and aim at the improvement of the product life, and is particularly wide as a maintenance-free catalyst member. It can be expected for applications and can be widely used in the energy field of hydrogen fueled cars, ships and the like.

1 触媒部材
2 コイル部
1A 発熱線
1B 被覆金属層
1C 触媒担持層
X 触媒物質
Y 拡散抑止層
Reference Signs List 1 catalyst member 2 coil portion 1A heating wire 1B coating metal layer 1C catalyst supporting layer X catalyst substance Y diffusion inhibiting layer

Claims (8)

通電によって所定温度に加熱発熱する金属製の発熱線と、
該発熱線を被包し、かつ該発熱線とは異種の第二金属材料でなる被覆金属層と、
その被覆金属層の外周面に、所定の触媒物質を担持する触媒担持層と、
該触媒担持層に担持された前記触媒物質とを含み、
前記発熱線及び被覆金属層の界面は、使用に伴い形成される前記発熱線と被覆金属層同士の余剰拡散を抑える拡散抑止層を、その周方向に沿って非平滑な凹凸状に備え、
前記拡散抑止層は、融点が1500℃以上の高融点金属材料でなる第三被覆層であることを特徴とする複合ワイヤー型触媒部材。
A metal heating wire that generates heat by heating to a predetermined temperature by energization;
A coated metal layer which encapsulates the heating wire and which is made of a second metal material different from the heating wire;
A catalyst supporting layer for supporting a predetermined catalyst substance on the outer peripheral surface of the coated metal layer ;
And a said catalytic material supported on the catalyst supporting layer,
The interface of the heating wire and the covering metal layer is provided with a diffusion inhibiting layer for suppressing excessive diffusion of the heating wire and the covering metal layer formed along with use in a non-smooth uneven shape along the circumferential direction ,
The composite wire type catalyst member characterized in that the diffusion inhibiting layer is a third covering layer made of a high melting point metal material having a melting point of 1500 ° C. or higher .
前記拡散抑止層は、モリブデン、バナジウム、ニオブ、クロム又はタンタルを含む、請求項1に記載の複合ワイヤー型触媒部材。The composite wire type catalyst member according to claim 1, wherein the diffusion inhibiting layer contains molybdenum, vanadium, niobium, chromium or tantalum. 前記発熱線はニッケル金属、前記被覆金属層はアルミニウム金属で構成されものである請求項1又は2に記載の複合ワイヤー型触媒部材。 The heating wire is a nickel metal, the coating metal layer is a composite wire catalyst member according to claim 1 or 2 are those that consists of aluminum metal. 前記拡散抑止層は、その構成厚さが60μm以下のものである請求項1〜3のいずれかに記載の複合ワイヤー型触媒部材。The composite wire type catalyst member according to any one of claims 1 to 3, wherein the diffusion inhibiting layer has a thickness of 60 μm or less. 前記拡散抑止層は、その構成厚さの中央位置が描く横断面面積から算出される見掛け周長に対して、1.02〜1.4倍の実周長を備える前記凹凸状をなすものである請求項1〜4のいずれかに記載の複合ワイヤー型触媒部材。The diffusion inhibiting layer has the concavo-convex shape having an actual circumferential length of 1.02 to 1.4 times the apparent circumferential length calculated from the cross sectional area drawn by the central position of the constituent thickness. The composite wire type catalyst member according to any one of claims 1 to 4. 前記触媒部材は、更にコイル掛けによって密着状に巻回されたコイル部を備えるものである請求項1〜5のいずれかに記載の複合ワイヤー型触媒部材。The composite wire type catalyst member according to any one of claims 1 to 5, wherein the catalyst member further comprises a coil portion wound tightly in a coiled manner. 前記コイル部は、その平面視で70°以下の傾斜角(α)で一定方向に斜め巻きされたものである請求項6に記載の複合ワイヤー型触媒部材。The composite wire type catalyst member according to claim 6, wherein the coil portion is obliquely wound in a predetermined direction at an inclination angle (α) of 70 ° or less in a plan view thereof. 請求項1〜7のいずれかに記載の触媒部材の複数を、所定の触媒反応室内に供給される被処理流体の流通方向に沿って複数段に積層配置するとともに、該触媒部材の前記発熱線に各々通電加熱する電気回路を備えることを特徴とする水素製造用の触媒反応器。A plurality of catalyst members according to any one of claims 1 to 7 are stacked and arranged in a plurality of stages along the flow direction of the fluid to be treated supplied into a predetermined catalytic reaction chamber, and the heating wire of the catalyst member A catalytic reactor for hydrogen production, comprising:
JP2015125137A 2015-06-04 2015-06-04 Composite wire type catalyst member and catalytic reactor for hydrogen production using the same Active JP6527398B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015125137A JP6527398B2 (en) 2015-06-04 2015-06-04 Composite wire type catalyst member and catalytic reactor for hydrogen production using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015125137A JP6527398B2 (en) 2015-06-04 2015-06-04 Composite wire type catalyst member and catalytic reactor for hydrogen production using the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2018240759A Division JP6783292B2 (en) 2018-12-25 2018-12-25 Composite wire type catalyst member and catalyst reactor for hydrogen production using this

Publications (2)

Publication Number Publication Date
JP2017001006A JP2017001006A (en) 2017-01-05
JP6527398B2 true JP6527398B2 (en) 2019-06-05

Family

ID=57753211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015125137A Active JP6527398B2 (en) 2015-06-04 2015-06-04 Composite wire type catalyst member and catalytic reactor for hydrogen production using the same

Country Status (1)

Country Link
JP (1) JP6527398B2 (en)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49117311A (en) * 1973-03-12 1974-11-09
JPS54106091A (en) * 1978-02-08 1979-08-20 Riken Keikinzoku Kogyo Kk Manufacture of catalyst body
JP3030927B2 (en) * 1990-06-06 2000-04-10 大同特殊鋼株式会社 High temperature corrosion resistant member and method of manufacturing the same
JP2959092B2 (en) * 1990-10-09 1999-10-06 大同特殊鋼株式会社 Corrosion-resistant and heat-resistant metal composite material and its manufacturing method
JP3460071B2 (en) * 1993-12-09 2003-10-27 治郎 笹岡 Gas-liquid contact treatment and solid separation equipment
JPH09260030A (en) * 1996-03-21 1997-10-03 Japan Metals & Chem Co Ltd Porous metal of ni-cr-al
JP5369126B2 (en) * 2010-04-28 2013-12-18 日本精線株式会社 Wire catalyst molded products for hydrogenation / dehydrogenation reactions
WO2012090326A1 (en) * 2010-12-28 2012-07-05 日本精線株式会社 Catalyst structure and hydrogen reaction module using same
JP5789129B2 (en) * 2011-05-09 2015-10-07 日本精線株式会社 Catalyst carrier and catalyst product and catalyst module using the same
JP2015172212A (en) * 2012-07-18 2015-10-01 国立研究開発法人産業技術総合研究所 Base material for hydrogen device
JP5995322B2 (en) * 2013-03-13 2016-09-21 日本精線株式会社 Reactor for hydrogen generation and control method thereof

Also Published As

Publication number Publication date
JP2017001006A (en) 2017-01-05

Similar Documents

Publication Publication Date Title
JP5632836B2 (en) Catalyst structure and hydrogen reaction module using the same
US9180438B2 (en) Wire catalyst for hydrogenation/dehydrogenation reaction and manufacturing method therefor
JP5272320B2 (en) HYDROGEN SUPPLY DEVICE, ITS MANUFACTURING METHOD, AND DISTRIBUTED POWER SUPPLY AND AUTOMOBILE
JP2008296212A (en) Porous catalyst structure and method for producing the same
JPWO2018155503A1 (en) Anode, anode for water electrolysis, electrolysis cell, and method for producing hydrogen
JP2008004498A (en) Composite layer-covered metal plate with less ncreases in contact resistance even if exposed to oxidative environment for long period
JP2008004492A (en) Composite layer-covered porous plate with less increases in contact resistance even if exposed to oxidative environment for long period
JP2007283184A (en) Hydrogen separation thin membrane and manufacturing method
JP6783292B2 (en) Composite wire type catalyst member and catalyst reactor for hydrogen production using this
JP6321946B2 (en) Catalytic reaction system and catalytic reaction apparatus
JP6527398B2 (en) Composite wire type catalyst member and catalytic reactor for hydrogen production using the same
JP5620077B2 (en) Hydrogen catalyst material
JP4848677B2 (en) Hydrogen production apparatus and production method thereof
JP5789129B2 (en) Catalyst carrier and catalyst product and catalyst module using the same
JP5995322B2 (en) Reactor for hydrogen generation and control method thereof
JP5880909B2 (en) Method for producing metal catalyst carrier and method for producing metal catalyst body
JP5888718B2 (en) Catalytic body and method of chemical reaction of substance using the catalytic body
JP6450247B2 (en) Catalyst carrier and catalyst member using the same
JP5210782B2 (en) Anodized substrate and catalyst body using the same
JPWO2018150823A1 (en) Method for producing structure catalyst, and method for producing hydrogen using structure catalyst
US20200303748A1 (en) Nanomanufacturing of metallic glasses for energy conversion and storage
JPH02143010A (en) Oxidation combustion with the use of heat conductivity catalyst
WO2017154582A1 (en) Catalyst-carrying hydrogen permeable membrane, method for producing same, catalyst-carrying hydrogen permeable membrane module, device for adding hydrogen and device for regenerating lubricating oil
CN116529195A (en) Liquid cold welding method and apparatus
JP2004068127A (en) Electrode for electrolysis, method for manufacturing the same, and electrolytic cell having this electrode for electrolysis

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20170518

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190510

R150 Certificate of patent or registration of utility model

Ref document number: 6527398

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250