TW200846076A - Porous catalyst structure and its preparation method - Google Patents

Porous catalyst structure and its preparation method Download PDF

Info

Publication number
TW200846076A
TW200846076A TW97109738A TW97109738A TW200846076A TW 200846076 A TW200846076 A TW 200846076A TW 97109738 A TW97109738 A TW 97109738A TW 97109738 A TW97109738 A TW 97109738A TW 200846076 A TW200846076 A TW 200846076A
Authority
TW
Taiwan
Prior art keywords
metal
catalyst
porous
copper
catalyst structure
Prior art date
Application number
TW97109738A
Other languages
Chinese (zh)
Other versions
TWI365109B (en
Inventor
Min-Hon Rei
Shih-Chung Chen
Yu-Ling Kao
Original Assignee
Green Hydrotec Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Green Hydrotec Inc filed Critical Green Hydrotec Inc
Priority to KR1020080044299A priority Critical patent/KR100966992B1/en
Priority to US12/154,563 priority patent/US7833402B2/en
Priority to JP2008139310A priority patent/JP2008296212A/en
Publication of TW200846076A publication Critical patent/TW200846076A/en
Priority to US12/454,001 priority patent/US8084431B2/en
Application granted granted Critical
Publication of TWI365109B publication Critical patent/TWI365109B/en

Links

Landscapes

  • Catalysts (AREA)

Abstract

A porous catalyst structure with high specific surface area comprising a porous support with a catalyst layer thereon is provided. The porous catalyst structure can be prepared by a process comprising depositing a metal coating onto the surface of a porous, metallic substrate by electroplating, and optionally oxidizing the metal coating into a metal oxide coating. Any conductive porous metallic substrate can be used as the support of the subject invention, and the metal coating may comprise any suitable metal(s) and/or metal oxide(s) with desired catalytic function(s).

Description

200846076 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種具有高比表面積之多孔性觸媒結構,其包含 一多孔性金屬載體及一於該載體表面之金屬觸媒層。本發明尤其 關於其中該金屬觸媒層包含鋼鋅氡化物(Cu0Zn0)且該觸媒載體 包含多孔性不鏽鋼之多孔性結構,該觸媒層可視需要包含Al2〇3、 Zr〇2、及其組合。 【先前技術】 觸媒係一種藉由參與反應而提高反應速率,但本身在反應過程 中又不被消耗的物質。例如利用觸媒處理廢氣時,係透過觸媒反 應降低分解廢氣之反應所需的活化能,使廢氣中的有害氣體分子 能夠在較低的溫度下進行轉化反應。具體言之,觸媒通常可降低 所欲進行之反應的活化能,使反應於較低的能量需求下進行,提 升反應進行的可能性。 目前,已有許多無機金屬氧化物之觸媒問世,通常是經由先製 備活性成分金屬氧化物的細粒,再透過黏合步驟而製得。然而, 就一般使用固態觸媒的反應而言,催化反應通常是在觸媒表面進 行’因此,當反應物無法進入觸媒内部時,觸媒的利用率即大幅 降低’造成體積空間以及材料的浪費。此外,由於金屬氧化物一 般均屬絕緣材料且導熱性不佳,通常也限制/不利於其在加熱反應 的催化致能,甚至加速觸媒性能的衰退。 為改善傳統固態觸媒的效能,目前已有利用具有相對高比表面 5 200846076 積的蜂窩型結構載體來支撐觸媒,以增加觸媒與反應物的接觸面 積。舉例言之,JP52136S1所揭露的觸媒結構,係混合具有高比表 面積的陶究材料、無機纖維與無機黏合劑,透過模製或擠壓成形 而後煅燒的方式,以形成經纖維補強的蜂窩狀陶兗載體。 於上述蜂窩型觸媒中,可透過增加載體的比表面積以及降低觸 媒成分的粒徑與提高其分佈性,而提高觸媒的性能。惟,若欲透 過增加載體(通常為陶瓷材料氧化鋁)的用量來提高其比表面積, 則僅會提高陶瓷材料的厚度而未改善其接觸面積,甚而產生壓力 損耗的現象。緣此,許多針對蜂窩型觸媒載體結構(例如蜂窩形 狀、密度及壁厚等)的改良業已提出,例如jp1〇_263416。 JP2003-245547另揭露一種用以處理如低濃度一氧化碳(c〇) 之廢氣的蜂窩型觸媒結構,其蜂窩型載體亦係透過擠製具高比表 面積之材料,再進行煅燒而製得。其中,蜂窩型結構中各穿透孔 間之隔間壁的厚度、沿氣體流動方向之長度、以及開放面積比等, 皆控制在特定範圍内。此外,US 2006/0292340揭露另一種蜂窩型 # 觸媒結構,其係利用複數個分隔板在載體上分隔出複數個平行設 置的通孔,以提高載體的表面積。 蜂窝型觸媒結構之一商業化產品係飛特(PHITECS)公司所生 產的柴油三元觸媒轉化器(Diesel Three Way Catalyst,DTWC ), 其係使用每平方英吋 400 孔(4Q0 cells per square inch ( CPSI)) 的蜂窩狀觸媒載體。 綜上’蜂窩型載體結構主要是利用陶瓷材料,透過模製或擠壓 成形等方式,製成如蜂窩之形狀,以提高分布於載體表面上之活 6 200846076 性觸媒成分與反應物接觸的表面積。然而,此類蜂离型觸媒載體 通常具有較龐大的體積與重量,因而產生應用上的限制,例如不 易焊接至反應器等。同時,因陶瓷材料與金屬觸媒(例如選自把、 鉑等金屬)的附著性不佳所致之耐用性不足,亦為〜大隱憂。 目前’市面上已出現另一種以金屬材質為載體的蜂寓型觸媒, 例如利凱特環保公司(公司網址:www.reecat.com)所生產的金屬 蜂窩催化劑。一般而言’此類金屬蜂窩觸媒之製法係將浪板型的 金屬薄片加工捲捆為蜂窩型圓筒載體;接著先利用浸洗鍍法將陶 鲁 曼材料(如氧化銘、氧化石夕等)覆於該載體上,以形成一陶兗薄 層,再將具觸媒活性之金屬或金屬氧化物覆於該陶竟薄層上,最 後經過乾燥及煅燒程序以製得該蜂窩型觸媒,從而改善觸媒導熱 性及反應物於觸媒孔隙間的氣流動力,避免壓力損耗的發生。 然而,上述金屬蜂窩型觸媒構造由於受限於其成型技術,可形 成的孔密度有其上限(通常不超過1〇〇 CPSI),因此也侷限了所能 增加表面積的幅度;同時,因為其係利用浪板型的金屬薄片加工 φ 捲捆為蜂窩型圓筒載體,致使大部分反應物(例如有害氣體)駐 留於該全通式圓筒載體内,造成與觸媒分子接觸進行反應的時間 不足。此外,此類觸媒結構亦存在陶瓷材料與金屬觸媒附著性不 佳的問題。 有鑑於上述問題,本發明提供一種可同時具有高比表面積、良 好導熱性且能提供穩定附著性之觸媒載體,該觸媒載體甚至無需 占有龐大空間,從而提供一種能展現優異催化效能且具高度應用 性之多孔性觸媒結構。 7 200846076 【發明内容】 本發明之一目的在於提供一種具有高比表面積之多孔性觸媒結 構,其包含: - 一多孔性金屬載體;以及 一金屬觸媒層,其係位於該金屬載體表面。 本發明之另一目的在於提供一種製造具有高比.面積之多孔性 觸媒結構之方法,其包含: 提供一多孔性金屬載體;以及 電鍍一金屬觸媒層於該多孔性金屬載體表面。 在參閱圖式及隨後描述之實施方式後,本發明所屬技術領域中 具有通常知識者當可輕易瞭解本發明之基本精神及其他發明目 的,以及本發明所採用之技術手段與較佳實施態樣。 【實施方式】 本發明具高比表面積之多孔性觸媒結4係包含一多孔性金屬載 體及一位於該多孔性金屬載體表面之金屬觸媒層。多孔性金屬載 體之材料可為任何適合之導電多孔性金屬材料,較佳係選用鐵合 金,例如不鏽鋼。 任何具有所欲功能之金屬觸媒成分皆可應用於本發明多孔性觸 媒結構中。一般而言,金屬觸媒層係包含一觸媒成分,視多孔性 觸媒結構之用途或需求而定,該觸媒成分可為金屬、金屬合金、 金屬或金屬合金之氧化物、或前述之組合。較佳地,該觸媒成分 係選自以下群組:銅(Cu)、鋅(Zn)、鎂(Mg)、,(Al)、#(Zr)、 8 200846076 鎳(Ni)、鉑(Pt)、鈷(Co)、铑(Rh)、釕(Ru)、銖(Re)、鈦 (Ti)、鈀(Pd)、前述二或多者之合金、前述金屬或金屬合金之 氧化物、及前述之組合;更佳地,該觸媒成分係為金屬合金、金 屬氧化物、金屬合金之氧化物、或前述之組合。 根據本發明之一實施態樣,該觸媒成分係選自銅合金、含銅氧 化物、及其組合。其中,當應用於甲醇蒸氣重組反應時,較佳係 以銅鋅合金、銅鋅氧化物(CuOZnO)、或前述之組合作為金屬觸 媒層的觸媒成分,更佳係以銅鋅氧化物作為觸媒成分。於另一實 施態樣中,當用於處理如汽機車排放之廢氣時,則可選用鈀、铑、 鉑、或其組合所組成的觸媒作為金屬觸媒成分。於此,由於機車 引擎之運作溫度較低(約攝氏500度至攝氏650度),加上使用者 通常不太注意保養,使得引擎廢氣中除了二氧化碳以及、水分之 外,還含有一氧化碳與未燃燒的油氣,因此,可於機車排氣管内 採用包含鉑與鈀的觸媒,以將一氧化碳與油氣氧化成二氧化碳及 水氣,避免污染空氣。另一方面,汽車引擎則因運作溫度較高(攝 氏600度至攝氏750度),日常保養也較好,因此廢氣中的油氣較 少,但較高的運作溫度則另產生氧化氮(NOx)廢氣。為去除該 等廢氣,所採用的觸媒則以銘、妃與姥之合金為宜。其中,姥金 屬之使用可藉由油氣而將氧化氮還原為氮氣。而蜂窩型構造主要 是為了增加觸媒的分散面積,使廢氣與觸媒容易接觸,以快速完 成所需要的反應。 此外,為增加催化效能、用途及反應面積等,多孔性觸媒結構 所含之金屬觸媒層可更進一步包含一添加物。舉例言之,可採用 9 200846076 選自以下群組之添加物:喊粉末(如:氧化銘、氧化石夕、氧化 錯、氧化銳、氧化鈦、及其組合)、石墨、鐵氟龍、鑽石、纖維、 及其組合。一般而言,若金屬觸媒層包含該添加物時,其含量以 金屬觸媒層總量計,為10重量%至4〇重量%,較佳為15重量% 至25重量%。 該添加物之使用可提高金屬觸媒層的比表面積,增加反應物和 觸媒成分接觸的機率。此外,若使用具有酸性催化功能之添加物, 鲁例如氧化鋁、氧化矽以及鋁矽複合氧化物等,其在4〇〇它以上所顯 現出之酸度可與濃硫酸相比擬(但不具腐蝕性,也無安全或環保 上的問題),可進一步增加觸媒之用途及催化效能。 金屬觸媒層係位於多孔性金屬載體之表面。須說明者,此處所 指「表面」係包括多孔性金屬載體之表面及其表面開孔之孔壁。 金屬觸媒層之厚度以不會封閉多孔性金屬載體之所有孔洞為前 提。另一方面,鑑於催化反應係透過觸媒成分與反應物的接觸而 進行,因此金屬觸媒層無須太厚,否則因觸媒層表面下的觸媒成 φ 分無法與反應物接觸,反而造成物料的浪費。金屬觸媒層厚度— 般為〇·5微米至20微米,較佳為0.5微米至1〇微米,更佳為〇 5 微米至5微米。合宜觸媒層厚度之使用除可避免觸媒材料的浪費, 並能保持多孔性金屬載體的多孔性,維持較佳的氣體流率(此可 經由描述於後之空氣流率測試得知)。 多孔性觸媒結構可視需要包含一被膜,位於多孔性金屬载體與 金屬觸媒層之間。該被膜之使用可增加金屬觸媒層與多孔金屬载 體間的黏合強度,預防剝離現象,延長多孔性觸媒結構的使用壽 200846076 命。通常,被膜可包含選自以下群組之材料:鎳(Ni)、銅(Cu)、 銀(Ag )、金(Au )、前述之合金、及其組合;較佳為鎳。此外, 相較於金屬觸媒層的厚度,被膜的厚度宜更薄,以避免影響多孔 性金屬載體的多孔特性,例如,宜控制在0.2微米至1微米的範圍 内。 於本發明多孔性觸媒結構中,由於採用多孔性金屬材料作為支 撐觸媒成分之載體,其導熱速度遠超過傳統的陶瓷材料,故有利 於反應熱的熱傳效率,提高反應速率。同時,所採多孔性金屬載 體因具有良好的導電性,故可誘導電流至活性觸媒部位,賦予電 催化反應的可行性。 再者,如上所述,本發明多孔性觸媒結構中之金屬觸媒層,不 但覆蓋多孔性金屬載體之表面,亦覆蓋於表面開孔之壁面。因此, 除可提高其觸媒成分與反應物之接觸面積外,亦可節省物料且提 高結構的體積緻密度,即,不需要為了提高表面積而增加金屬載 體的整體體積。 本發明多孔性觸媒結構可經由簡易之電鍍方法而提供。具體言 之,可經由對一材質為例如不鏽鋼之多孔性金屬載體進行一電鍍 處理,以於該多孔性金屬載體上鍍覆一作為觸媒層之金屬層而達 成。於此,在進行電鍍之前,可視需要對多孔性金屬載體進行前 置處理,例如脫脂及酸洗等,以利於金屬觸媒層之鍍覆。舉例言 之,一般市售可得之多孔性金屬載體表面通常均沾有油污,將不 利於電鍍效果。因此,為免除因油污所致之不利影響,一般可利 用有機溶劑(例如甲苯或丙酮)以進行脫脂處理,清洗多孔性金 11 200846076 屬載體内外表面之油污。此外,可以例如3N至7N之氫氯酸(HCl) 溶液清洗多孔性金屬載體,以去除該金屬載體於製備或燒結時所 產生的氧化層並活化載體表面。 在完成上述脫脂及酸洗等視需要處理後,接著進行一電鍍步 驟,以於多孔性金屬載體表面形成一作為觸媒層之金屬鍍層。可 採用任何已知之合宜電鍍方式以鍍覆此一金屬層,例如旋轉、滾 鍍或掛鍍等方式。此外,視待鍍覆金屬之種類(例如單金屬層或 合金金屬層)與物種,以及金屬載體之尺寸等因素,來調整電鍍 液成分、電流大小及電鍍溫度等操作條件。 一般而言,電鍍液通常包含金屬鹽、錯合劑(例如酒石酸鹽)、 緩衝劑(例如氫氧化物)等。其中,與電鍍單一金屬相比較,同 時電鍍兩種(含)以上之金屬所需考量的因素較多,其中之一考 量因素即不同物種間的還原電位差。以電鍍銅鋅合金觸媒層為 例,由於此二金屬之還原電位相差1伏特以上(Cu2+/Cu=0.336V; Zn2+/Zn=-0.768V),因此很難在一般鍍浴中共沉積。習知技術多 0 以含氰化物之鍍浴進行(因於鹼性氰化物鍍浴中銅鋅之還原電位 會變得較為接近,Cu2+/Cu二-1.165V ; Zn2+/Zn=-1.227V),但氰化 物屬於管制性毒害物質,對環境及人體均有所危害。故較佳係採 用酒石酸系統來電鍍銅鋅合金觸媒層,例如使用含有硫酸銅、硫 酸辞、酒石酸鉀鈉及氫氧化鈉之電鍍液以進行電鍍。 電鍍操作一般係於10至TO mA/cm2,較佳於15至60 mA/cm2 範圍内之電流密度進行,電鍍浴之溫度通常控制於25°C至6{TC, 較佳為30°C至40°C。 12 200846076 此外如欲製備包含上述添加物之金屬觸媒層可 之方式,將添加物連同觸媒成分共祕多孔性金屬載體=兴鑛 二了於上述電鑛步驟進行時’在電鑛液中加入該添加物二 乳化銘)之粉末,藉由機械攪拌或添加懸浮劑等 · 於電鑛液中,並在電朗料藉由凡得瓦力簡録吏面懸從子 而使添加物粒子包含於金屬觸媒鑛層中。其中,為== 且不影響_成分之電鍍成效,財係錢 ^ (如陶聽末、石墨、鐵氣龍及鑽石等),微粒尺寸 米至10微米。 八了般為0·5微 視所製觸縣構之錢(尤其係m氣重岐應時),當所需 之觸媒層為金屬氧化物層時,可於完成⑽步驟 全 載體表面形成-金屬鑛層之後,進—步進行—氧化步驟,以= 該金屬鍍層,提供作為觸媒層之金屬氧化物層。舉例言之,可將 表面鑛覆有金屬層(視需要含有添加物)之多孔性金屬载體置於 加熱環境中’於升溫下持溫—段時間(例如氧化氧化銅鋅合金層 時’可通入熱空氣以加溫至3〇〇。。至4〇〇。。歷時2至3小時),以 ;載-表面形成一催化性之金屬氧化物層(及視情況選用之添加 物),提供所欲之多孔性觸媒結構。 可視而要在電鍍金屬觸媒層之前先形成—層被膜(例如錄層), 以改善载體_媒層_黏著性,強化其牢固性。例如在使用多 孔性不鑛鋼作W孔性金屬载料,可視情況先魏鎳,之後, 再進仃1¾金屬層之電鍍。此外’於此預鍍步驟中,可藉由調整 電鍍條件(諸如電流大小與電鑛溫度),以控制所預鍍之鑛層的厚 13 200846076 度在適當的範圍内(如0·2微米至1微米),維持被鏡體(即多孔 性金屬載體)的孔隙度。 有關鍛覆被膜的技術’可參見刊載於/oiima/ < Caia/jsfs,170, 1997,ρ· 181,Renouprez,1 J.F·等人所著之文章、刊載於/ ⑽ 153, 1999, ρ· 163 Seung-Exm Nam 等人所著之文 章、刊載於 o/MeWr⑽e Science,170,2000,ρ· 91[Technical Field] The present invention relates to a porous catalyst structure having a high specific surface area, comprising a porous metal carrier and a metal catalyst layer on the surface of the carrier. The invention relates in particular to a porous structure in which the metal catalyst layer comprises steel zinc telluride (Cu0Zn0) and the catalyst carrier comprises porous stainless steel, the catalyst layer optionally comprising Al2〇3, Zr〇2, and combinations thereof. . [Prior Art] A catalyst is a substance that increases the reaction rate by participating in a reaction, but is not consumed by itself during the reaction. For example, when the exhaust gas is treated by a catalyst, the activation energy required for the reaction of decomposing the exhaust gas is reduced by the catalytic reaction, so that the harmful gas molecules in the exhaust gas can be converted at a lower temperature. Specifically, the catalyst generally reduces the activation energy of the reaction to be carried out, allowing the reaction to proceed under lower energy requirements, and increasing the likelihood of the reaction proceeding. At present, many inorganic metal oxide catalysts have been introduced, usually by preparing fine particles of the active component metal oxide and then passing through a bonding step. However, in the case of reactions using solid-state catalysts, the catalytic reaction is usually carried out on the surface of the catalyst. Therefore, when the reactants cannot enter the interior of the catalyst, the utilization of the catalyst is greatly reduced, resulting in volume and material. waste. In addition, since metal oxides are generally insulating materials and have poor thermal conductivity, they generally also limit/disallow the catalytic activation of the heating reaction and even accelerate the degradation of catalyst performance. In order to improve the performance of conventional solid-state catalysts, a honeycomb-type structural carrier having a relatively high specific surface area of 5, 2008,460,76 has been used to support the catalyst to increase the contact area of the catalyst with the reactants. For example, the catalyst structure disclosed in JP52136S1 is a ceramic material having a high specific surface area, an inorganic fiber and an inorganic binder, which are molded or extruded and then calcined to form a fiber-reinforced honeycomb. Pottery carrier. In the above honeycomb type catalyst, the performance of the catalyst can be improved by increasing the specific surface area of the carrier and reducing the particle size of the catalyst component and improving the distribution thereof. However, if the specific surface area is increased by increasing the amount of the carrier (usually ceramic alumina), the thickness of the ceramic material is increased only without improving the contact area and even causing pressure loss. Accordingly, many improvements have been made to honeycomb-type catalyst carrier structures (e.g., honeycomb shape, density, wall thickness, etc.), such as jp1〇_263416. JP 2003-245547 further discloses a honeycomb type catalyst structure for treating an exhaust gas such as a low concentration of carbon monoxide (c〇), wherein the honeycomb type carrier is also obtained by extruding a material having a high specific surface area and then calcining. Among them, the thickness of the partition wall between the penetration holes in the honeycomb structure, the length along the gas flow direction, and the open area ratio are all controlled within a specific range. In addition, US 2006/0292340 discloses another honeycomb type catalyst structure which utilizes a plurality of separator plates to separate a plurality of parallelly disposed through holes on the carrier to increase the surface area of the carrier. One of the commercial products of the honeycomb-type catalyst structure is the Diesel Three Way Catalyst (DTWC) produced by PHITECS, which uses 400 holes per square inch (4Q0 cells per square). Inch (CPSI)) honeycomb catalyst carrier. In summary, the honeycomb-type carrier structure is mainly made of a ceramic material, and is formed into a shape such as a honeycomb by molding or extrusion molding to improve the distribution of the active catalyst component on the surface of the carrier. Surface area. However, such bee-type release catalyst carriers generally have a relatively large volume and weight, and thus have application limitations such as difficulty in soldering to a reactor or the like. At the same time, due to the poor durability of the ceramic material and the metal catalyst (for example, selected from metals such as platinum, platinum, etc.), it is also a big worry. At present, another metal-based bee-type catalyst has appeared on the market, such as the metal honeycomb catalyst produced by Likert Environmental Company (www.reecat.com). In general, the method of manufacturing such a metal honeycomb catalyst is to bundle a wave-plate type metal foil into a honeycomb-shaped cylindrical carrier; then, the ceramic material is firstly immersed by a dip-plating method (such as oxidation, oxidized stone, etc.) Covering the carrier to form a thin layer of ceramics, and then coating a catalytically active metal or metal oxide on the ceramic layer, and finally drying and calcining the catalyst to obtain the honeycomb catalyst. In order to improve the thermal conductivity of the catalyst and the flow of the reactants between the pores of the catalyst, and avoid the occurrence of pressure loss. However, the above-mentioned metal honeycomb type catalyst structure is limited by the molding technique, and the hole density which can be formed has an upper limit (usually not exceeding 1 〇〇 CPSI), and thus limits the range of surface area which can be increased; Processing a φ bundle into a honeycomb-type cylindrical carrier by using a corrugated metal foil, so that most of the reactants (for example, harmful gases) reside in the all-round cylindrical carrier, resulting in insufficient reaction time with the contact of the catalyst molecules. . In addition, such catalyst structures also suffer from poor adhesion of ceramic materials to metal catalysts. In view of the above problems, the present invention provides a catalyst carrier which can simultaneously have a high specific surface area, good thermal conductivity and can provide stable adhesion, and the catalyst carrier does not even need to occupy a large space, thereby providing an excellent catalyst performance. Highly applicable porous catalyst structure. 7 200846076 SUMMARY OF THE INVENTION An object of the present invention is to provide a porous catalyst structure having a high specific surface area, comprising: - a porous metal support; and a metal catalyst layer on the surface of the metal support . Another object of the present invention is to provide a method of fabricating a porous catalyst structure having a high specific area, comprising: providing a porous metal support; and plating a metal catalyst layer on the surface of the porous metal support. The basic spirit and other objects of the present invention, as well as the technical means and preferred embodiments of the present invention, can be readily understood by those skilled in the art in view of the drawings and the embodiments described hereinafter. . [Embodiment] The porous catalyst junction 4 having a high specific surface area of the present invention comprises a porous metal carrier and a metal catalyst layer on the surface of the porous metal carrier. The material of the porous metal support may be any suitable conductive porous metal material, preferably an iron alloy such as stainless steel. Any metal catalyst component having the desired function can be applied to the porous catalyst structure of the present invention. In general, the metal catalyst layer comprises a catalyst component, depending on the use or needs of the porous catalyst structure, which may be an oxide of a metal, a metal alloy, a metal or a metal alloy, or the foregoing. combination. Preferably, the catalyst component is selected from the group consisting of copper (Cu), zinc (Zn), magnesium (Mg), (Al), #(Zr), 8 200846076 nickel (Ni), platinum (Pt ), cobalt (Co), rhodium (Rh), ruthenium (Ru), rhenium (Re), titanium (Ti), palladium (Pd), an alloy of two or more of the foregoing, an oxide of the foregoing metal or metal alloy, and More preferably, the catalyst component is a metal alloy, a metal oxide, an oxide of a metal alloy, or a combination thereof. According to one embodiment of the invention, the catalyst component is selected from the group consisting of copper alloys, copper-containing oxides, and combinations thereof. Wherein, when applied to the methanol vapor recombination reaction, copper-zinc alloy, copper-zinc oxide (CuOZnO), or a combination thereof is preferably used as a catalyst component of the metal catalyst layer, and more preferably copper-zinc oxide is used as the catalyst component. Catalyst ingredients. In another embodiment, when used to treat exhaust gases such as locomotive emissions, a catalyst comprising palladium, rhodium, platinum, or a combination thereof may be selected as the metal catalyst component. Here, because the operating temperature of the locomotive engine is low (about 500 degrees Celsius to 650 degrees Celsius), and the user usually pays less attention to maintenance, the engine exhaust contains carbon monoxide and unburned in addition to carbon dioxide and moisture. The oil and gas, therefore, can use platinum and palladium catalyst in the exhaust pipe of the locomotive to oxidize carbon monoxide and oil and gas into carbon dioxide and water gas to avoid polluting the air. On the other hand, car engines have higher operating temperatures (600 degrees Celsius to 750 degrees Celsius) and better daily maintenance, so there is less oil and gas in the exhaust gas, but higher operating temperatures produce nitrogen oxides (NOx). Exhaust gas. In order to remove these exhaust gases, the catalyst used is preferably an alloy of Ming, 妃 and 姥. Among them, the use of ruthenium metal can reduce nitrogen oxide to nitrogen by oil and gas. The honeycomb structure is mainly for increasing the dispersed area of the catalyst, so that the exhaust gas and the catalyst are easily contacted to quickly complete the desired reaction. Further, in order to increase catalytic efficiency, use, reaction area, and the like, the metal catalyst layer contained in the porous catalyst structure may further contain an additive. For example, 9 200846076 may be used as an additive selected from the group consisting of shouting powders (eg, oxidized, oxidized stone, oxidized, oxidized, titanium oxide, and combinations thereof), graphite, Teflon, diamonds , fibers, and combinations thereof. In general, if the metal catalyst layer contains the additive, the content thereof is from 10% by weight to 4% by weight, based on the total amount of the metal catalyst layer, preferably from 15% by weight to 25% by weight. The use of the additive increases the specific surface area of the metal catalyst layer and increases the probability of contact between the reactant and the catalyst component. In addition, if an additive having an acidic catalytic function is used, such as alumina, yttria, and aluminum lanthanum composite oxide, the acidity exhibited above 4 〇〇 can be compared with concentrated sulfuric acid (but not corrosive). There is also no safety or environmental problems, which can further increase the use and catalytic performance of the catalyst. The metal catalyst layer is on the surface of the porous metal support. It should be noted that the term "surface" as used herein includes the surface of a porous metal support and the pore walls of the surface openings. The thickness of the metal catalyst layer is pre-empted by not sealing all the pores of the porous metal support. On the other hand, since the catalytic reaction is carried out by the contact of the catalyst component with the reactant, the metal catalyst layer does not need to be too thick, otherwise the catalyst under the surface of the catalyst layer may not be in contact with the reactant, thereby causing Waste of materials. The thickness of the metal catalyst layer is generally from 5 μm to 20 μm, preferably from 0.5 μm to 1 μm, more preferably from 5 μm to 5 μm. The use of a suitable catalyst layer thickness avoids waste of the catalyst material and maintains the porosity of the porous metal support, maintaining a preferred gas flow rate (this can be seen by the air flow rate test described later). The porous catalyst structure may optionally comprise a film between the porous metal support and the metal catalyst layer. The use of the film increases the bonding strength between the metal catalyst layer and the porous metal carrier, prevents peeling, and prolongs the life of the porous catalyst structure. Generally, the film may comprise a material selected from the group consisting of nickel (Ni), copper (Cu), silver (Ag), gold (Au), the foregoing alloys, and combinations thereof; preferably nickel. Further, the thickness of the film is preferably thinner than the thickness of the metal catalyst layer to avoid affecting the porous characteristics of the porous metal support, for example, preferably in the range of 0.2 μm to 1 μm. In the porous catalyst structure of the present invention, since the porous metal material is used as a support for supporting the catalyst component, the heat conduction rate is much higher than that of the conventional ceramic material, so that the heat transfer efficiency of the reaction heat is favored, and the reaction rate is improved. At the same time, the porous metal carrier can induce current to the active catalyst site and impart the feasibility of electrocatalytic reaction because of its good electrical conductivity. Further, as described above, the metal catalyst layer in the porous catalyst structure of the present invention covers not only the surface of the porous metal support but also the wall surface of the surface opening. Therefore, in addition to increasing the contact area between the catalyst component and the reactant, it is also possible to save material and increase the volume density of the structure, i.e., it is not necessary to increase the overall volume of the metal carrier in order to increase the surface area. The porous catalyst structure of the present invention can be provided by a simple plating method. Specifically, it can be achieved by subjecting a porous metal carrier such as stainless steel to a plating treatment to plate a porous metal carrier as a metal layer of a catalyst layer. Here, before the electroplating, the porous metal carrier may be subjected to a pretreatment such as degreasing and pickling as needed to facilitate plating of the metal catalyst layer. For example, the surface of a commercially available porous metal support is generally oily and will be detrimental to the plating effect. Therefore, in order to avoid the adverse effects due to oil stains, an organic solvent (e.g., toluene or acetone) can be generally used for degreasing treatment to clean the porous gold 11 200846076 as an oil stain on the inner and outer surfaces of the carrier. Further, the porous metal support may be washed, for example, with a 3N to 7N hydrochloric acid (HCl) solution to remove the oxide layer produced by the metal support during preparation or sintering and activate the surface of the support. After the above-described degreasing and pickling treatment as necessary, a plating step is subsequently performed to form a metal plating layer as a catalyst layer on the surface of the porous metal support. The metal layer may be plated by any known suitable plating method such as spinning, rolling or hanging. In addition, depending on factors such as the type of metal to be plated (for example, a single metal layer or an alloy metal layer) and the size of the metal carrier, the operating conditions such as plating composition, current magnitude, and plating temperature are adjusted. In general, the plating solution usually contains a metal salt, a complexing agent (for example, a tartrate), a buffering agent (for example, a hydroxide), and the like. Among them, compared with electroplating a single metal, there are many factors that need to be considered for electroplating two or more metals at the same time, one of which is the reduction potential difference between different species. Taking the copper-zinc alloy catalyst layer as an example, since the reduction potentials of the two metals differ by more than 1 volt (Cu2+/Cu = 0.336 V; Zn2+/Zn = -0.768 V), it is difficult to co-deposit in a general plating bath. The conventional technique is mostly carried out in a plating bath containing cyanide (since the reduction potential of copper and zinc in the alkaline cyanide plating bath will become closer, Cu2+/Cu two-1.165V; Zn2+/Zn=-1.227V) However, cyanide is a regulated toxic substance that is harmful to the environment and the human body. Therefore, it is preferred to use a tartaric acid system to electroplate a copper-zinc alloy catalyst layer, for example, using a plating solution containing copper sulfate, sulfuric acid, sodium potassium tartrate, and sodium hydroxide for electroplating. The plating operation is generally carried out at a current density of 10 to TO mA/cm2, preferably in the range of 15 to 60 mA/cm2, and the temperature of the plating bath is usually controlled from 25 ° C to 6 {TC, preferably 30 ° C to 40 ° C. 12 200846076 In addition, if the metal catalyst layer containing the above additive is prepared, the additive and the catalyst component are combined with the porous metal carrier=Xing ore 2 in the above-mentioned electric ore step, 'in the electro-mineral liquid Adding the additive to the powder of the second emulsion, by mechanical stirring or adding a suspending agent, etc. in the electro-mineral liquid, and in the electric material, the particles are suspended by the van der Waals. It is included in the metal catalyst ore layer. Among them, == does not affect the electroplating effect of the _ component, the financial system ^ (such as Tao listening, graphite, iron gas and diamonds, etc.), the particle size is up to 10 microns. Eight kinds of money for the construction of the county is 0. 5 micro-vision (especially when the gas is heavy), when the required catalyst layer is a metal oxide layer, the surface of the carrier can be formed in step (10). After the metal ore layer, the oxidation step is further carried out to = the metal plating layer to provide a metal oxide layer as a catalyst layer. For example, a porous metal support having a surface layer coated with a metal layer (optionally containing an additive) may be placed in a heated environment to hold the temperature at elevated temperature for a period of time (for example, when oxidizing a copper-zinc alloy layer) Passing hot air to warm up to 3 〇〇 to 4 〇〇.. 2 to 3 hours), to form a catalytic metal oxide layer (and optionally additives) Providing the desired porous catalyst structure. It is obvious that a layer of a film (for example, a recording layer) is formed before the plating of the metal catalyst layer to improve the carrier-vehicle layer adhesion and to enhance its firmness. For example, in the case of using a porous non-mineral steel as a W-porous metal carrier, it is possible to first promote nickel, and then, to electroplating a 13⁄4 metal layer. In addition, in this pre-plating step, the plating conditions (such as current magnitude and electric ore temperature) can be adjusted to control the thickness of the pre-plated ore layer 13 200846076 degrees in an appropriate range (eg, 0.2 micron to 1 micron) maintains the porosity of the mirror body (ie, the porous metal carrier). The technique for forging a film is described in /oiima/ < Caia/jsfs, 170, 1997, ρ·181, Renouprez, 1 JF· et al., published in / (10) 153, 1999, ρ· 163 Seung-Exm Nam et al., published in o/MeWr(10)e Science, 170, 2000, ρ·91

Seimg-Eun Nam等人所著之文章、及刊載於^ ce,192, 2001,ρ· 177 Semig-Eun Nam 等人所著之文章,該等 文章之全文均併於此處以供參考。 本發明利用電鍍方式,可將金屬觸媒層形成於多孔性金屬載體 表面(含其内部之孔道表面),提高觸媒與反應物的接觸面積。此 外’金屬觸媒層之厚度可控制在〇.5微米至20微米之間,以避免 物料的浪費並展現良好的氣體流通率,提高多孔性觸媒結構的整 體效能。再者,利用電鍍方式所形成之觸媒鍍層與多孔性金屬載 體間的接附力良好,可防止剝離現象,延長多孔性觸媒結構的使 用壽命。 為進一步說明本發明,茲以實施例例示說明如下。 【實施例1】:電鍍銅辞合金層 (多孔性不鏽铜之前置處理) 所採用之商購多孔性316不鏽鋼濾管(美國莫特股份有限公司 (Mott Corp·)製造,網址:http:yywww.mottcorp.com/)之外徑及 内控各為10.0亳米及6毫米,過濾等級ο』微米及開孔尺寸約〇·2 微米(表面可能存在部份尺寸為50至100微米之較大坑洞)。將 200846076 該不鏽鋼濾管裁切成75毫米的長度,透過焊接方式與一般不鏽鋼 管(外徑為10.0毫米且長度為4〇毫米)連接後,並將一尾端封 端’形成如第1圖所示之不鏽鋼濾管。 (預鍍鎳) 接著,以白金鈦網(Pt_C〇ated Ti mesh )作為陽極,使用包含25〇 克/升之瓜酸鎳、45克/升之氣化鎳及克/升之硼酸的水性電鍍 液,並在電鍍液溫度為4〇至5(rc且電流密度為5〇mA/cm2之條件 • 下,預進行電賴時1()分鐘,以於該經前置處理之不鏽鋼濾、管表 面鍍覆一鎳層。所得鎳層之厚度約為〇·5微米至ΐ·〇微米。 (電鑛鋼辞合金) ^後使用如第2圖所示之旋轉柱狀電極(EG&G 636)系統21 ”電原供應器22,進行電鑛。該經預鑛錄之不鏽鋼載體24係連接 至與電源供應器22陰極相連之旋轉柱狀電極23,並保持不鏽鋼載 、、2轉迷為約1〇 rpm,並使用銅鋅合金作為陽極25以補充電 =知耗之銅鋅離子。此外,同時裝設一與空氣攪拌器28 鲁相連接之夕孔性氣泡石27於鍍液槽中,藉此打入空氣以進行氣體 、\人電也夜保持句態。n在與預鑛鎳相同之電鍍條件下, 〇 έ 克/升之硫酸銅、12克/升之硫酸鋅、100克/升之酒石 酸鈉鉀(potaSsium s〇diumtartrate)及45克/升之氮氧化鈉的電錢 液,進行電鑛歷時30分鐘。所得銅鋅觸媒層之厚度約為15微米, 體積約為 3·8 立方公分( = 7·5χ3·1416 (1·〇2_〇 62) /4)。 (電鑛合金層結構型貌與組成分析) 最後將電錢元成之不鏽鋼濾管以丙酮浸泡,並經超音波震盪 15 200846076 機清洗5分鐘後取出烘乾,得到載有銅鋅合金層之不鏽鋼濾管。 所得不鏽鋼濾管之外觀係如第3圖所示,第4圖及第5圖分別為 多孔性不鏽鋼未經電鍍及經電鍍後之掃描電子顯微圖(ScanningAn article by Seimg-Eun Nam et al. and published in ce, 192, 2001, ρ. 177 Semig-Eun Nam et al., the entire contents of which are hereby incorporated by reference. According to the present invention, the metal catalyst layer can be formed on the surface of the porous metal carrier (including the inner channel surface) to increase the contact area between the catalyst and the reactant. Further, the thickness of the metal catalyst layer can be controlled between 微米5 μm and 20 μm to avoid waste of materials and to exhibit good gas flow rate, thereby improving the overall efficiency of the porous catalyst structure. Further, the adhesion between the catalyst plating layer formed by the plating method and the porous metal carrier is good, and the peeling phenomenon can be prevented, and the service life of the porous catalyst structure can be prolonged. In order to further illustrate the present invention, the following is exemplified by the following examples. [Example 1]: Electroplated copper alloy layer (porous stainless copper pretreatment) Commercially available porous 316 stainless steel filter tube (manufactured by Mott Corp., http://www.mott Corp.) :yywww.mottcorp.com/) The outer diameter and internal control are 10.0 mm and 6 mm, respectively. The filter grade is ο”micron and the opening size is about 〇·2 μm (the surface may have some dimensions of 50 to 100 μm). Tai Hang Cave). The 200846076 stainless steel filter tube was cut to a length of 75 mm, and connected to a general stainless steel tube (outer diameter of 10.0 mm and length of 4 mm) by welding, and the end of one end was formed as shown in Fig. 1. Stainless steel filter tube as shown. (Pre-nickel plating) Next, a Pt_C〇ated Ti mesh was used as the anode, and an aqueous plating containing 25 g/L of nickel citrate, 45 g/L of vaporized nickel, and g/L of boric acid was used. Liquid, and in the case of a plating bath temperature of 4 〇 to 5 (rc and a current density of 5 〇 mA / cm 2 ), pre-electrical immersion for 1 () minutes, for the pre-treated stainless steel filter, tube The surface is plated with a nickel layer. The thickness of the obtained nickel layer is about 微米·5 μm to ΐ·〇μm. (Electrical ore steel alloy) ^After using the rotating columnar electrode as shown in Fig. 2 (EG&G 636 The system 21" electric source supplier 22 performs electric ore. The pre-mineralized stainless steel carrier 24 is connected to the rotating columnar electrode 23 connected to the cathode of the power supply 22, and is kept in stainless steel, and 2 turns into a About 1 rpm, and a copper-zinc alloy is used as the anode 25 to supplement the copper-zinc ion of the electricity consumption. In addition, a fumed bubble stone 27 connected to the air agitator 28 is simultaneously installed in the plating bath. In this way, the air is blown in for the gas, and the human power is also kept in a state of mind. n Under the same plating conditions as the pre-mineral nickel, 〇έg/ Copper sulphate, 12 g/l zinc sulphate, 100 g/l sodium potassium tartrate (potaSsium s〇diumtartrate) and 45 g/l sodium oxynitride in electroplating for 30 minutes. The thickness of the catalyst layer is about 15 microns, and the volume is about 3·8 cubic centimeters (= 7·5χ3·1416 (1·〇2_〇62) /4). (Structure and composition analysis of the structure of the electric ore alloy layer) Finally, the stainless steel filter tube of the electric money Yuancheng was soaked in acetone, and after being cleaned for 5 minutes by ultrasonic vibration, the machine was taken out and dried to obtain a stainless steel filter tube carrying a copper-zinc alloy layer. The appearance of the obtained stainless steel filter tube was as follows. Figure 3, Figure 4 and Figure 5 are scanning electron micrographs of porous stainless steel after electroplating and electroplating, respectively.

Electron Microscope,SEM)。 之後’以能譜散佈分析儀(£nergy-disper$ive Spectrometer,EDS ) 及X光繞射(X-ray Diffraction,XRD)分析所得銅辞合金鍍層之 組成成分,分別如第6圖與第7圖所示。由分析結果可知,銅與 鋅確實已沉積於多孔性不鏽鋼載體上且所形成之銅鋅層為一合金 ® 相(Cu6Zn4 )。 I實施例2】:電鍍銅辞合金層 以與實施例1相同之方法與材料,惟改變電鏡液中銅鋅離子濃 度,電鍍具有CusZn5相之鋼鋅合金層於不鏽鋼載體上。 此外,將未經電鍍多孔性不鏽鋼濾管及經本實施例所得經電鍍 多孔性不鏽鋼濾、管各自以垂直於中心軸的方向切開,對其金屬環 狀部位之剖面拍攝SEM圖,如第8圖(未經電鍍處理)及第9圖 φ (經電鍍處理)所不。第8圖可見電鍍前之多孔性不鏽鋼濾管的 多孔性結構;第9圖則可觀察到,銅鋅合金層係鍍覆於多孔性不 鏽鋼之開孔孔壁上且不會封閉開孔,從而可提高所得觸媒結構之 比表面積並保持氣體流通率(如實施例3所顯示)。 [實施例3]:氣體流率測試 以如第10圖所示之裝置對實施例丨與實施例2所得之载有銅鋅 合金層之不鏽鋼濾官82進行氣體流率測試。其中,第1〇圖乃、八 裝置中心轴方向切開之剖面圖。將實施例〗與實施例2中未麫。 16 200846076 =銅辞合金層處理之不軸濾管置於一中空管體81中,中空管體 由二二84及視㈣…口(未_,於本測試中, 由中工吕㈣的底部入口84引入2gfW的 出口 83處測試氣體户i r 在愿s W之 行測❹此外Γ^ Γ,於未開Γ空管體81之情況下進 f為多孔性杯 與實施例得之不鱗鋼慮管82(中 雜,結果==為—般(相對緻密)部份821)重複進 表1Electron Microscope, SEM). Then, the components of the copper alloy coating were analyzed by the energy spectrum dispersive analyzer (EDS) and X-ray diffraction (XRD), as shown in Fig. 6 and Fig. 7, respectively. The figure shows. From the analysis results, it is known that copper and zinc have indeed been deposited on the porous stainless steel support and the formed copper-zinc layer is an alloy ® phase (Cu6Zn4). I. Example 2: Electroplated copper alloy layer In the same manner and in the same manner as in Example 1, except that the concentration of copper and zinc ions in the electron microscope liquid was changed, a steel-zinc alloy layer having a CusZn5 phase was electroplated on a stainless steel carrier. In addition, the unplated porous stainless steel filter tube and the plated porous stainless steel filter and tube obtained in the present embodiment are each cut in a direction perpendicular to the central axis, and an SEM image of the cross section of the metal annular portion is taken, as shown in FIG. (Not plated) and Figure 9 φ (by plating). Figure 8 shows the porous structure of the porous stainless steel filter tube before plating; in Figure 9, it can be observed that the copper-zinc alloy layer is plated on the opening of the porous stainless steel wall and does not close the opening, thereby The specific surface area of the resulting catalyst structure can be increased and the gas flow rate maintained (as shown in Example 3). [Example 3]: Gas flow rate test The gas flow rate test of the stainless steel filter 82 carrying the copper-zinc alloy layer obtained in Example 丨 and Example 2 was carried out by the apparatus shown in Fig. 10. In the first diagram, the sectional view of the central axis of the device is cut. The examples are the same as those in the second embodiment. 16 200846076=The non-axis filter tube treated by the copper alloy layer is placed in a hollow tube body 81. The hollow tube body is composed of two two 84 and four (four) ports (not _, in this test, by Zhonggong Lu (four) The bottom inlet 84 is introduced into the outlet 83 of 2gfW to test the gas household ir. In the case of the wishing s W, the Γ^ Γ, in the case of the unopened hollow body 81, the f is the porous cup and the embodiment is not scaled. Steel tube 82 (medium, result == for general (relatively dense) part 821) repeated into Table 1

____電鍍前 级電錢鋼辞合金層後 ___ 15.9 ___14.8 __ 15.5 14.5 流速(升y^) 實施例 、、心檟鯽鲜&隹層傻之多孔性不鏽鋼濾管 的耽體/瓜率’相較於未纟 、電鍍者並無明顯差異。此可說明,本終 明方法利用電鍍方式所 x 4積之金屬合金層,不會不當阻塞多孔 金屬載體之孔道保持复教髀4 夕孔眭 、虱體>爪通率,且可維持所欲之接觸面積。 【實施例41··金屬氧化物層 、 將實施例1所得载有鋼 卜 一 a金層之夕孔性不鑛鋼濾管置於25赛 米内徑之套管反應器中, 笔 並將空氣導入濾管與套管間的區域, 3 50 C之溫度下持續25 ϊ时 小時,以將銅辞合金氧化為銅鋅氧 (Cu0Zn0),最後製得之金屬氧化物層簡稱為CuB]。層 以實施例2所得載有鋼鋅合金層之多孔性不鐘鋼滤管重覆 步驟’所製得之金屬氧化物層簡稱為CuB-2。 " 【實施例5]:多成分觸媒層 17 200846076 重複實施例!所述之前置處理與預鍍鎳程序, 合金時’添—之氧化銘於實施例丨所用之電 電鍍銅鋅合金與氧脑;I (Cu6Zn4/Al2(>3) '、 :時:分鐘,所_之_為_^ i =圖與跳分析結果分別示於第11圖及第圖, 其顯不乳化鋁顆粒均勻地分布在鋼辞合金層中。 口 重覆上述步驟,惟電鑛鋼鋅合金時’添加2〇克 施例!所用之電鏟液中。最後製得之銅鋅合金氧之= 示於第13圖。表2鹿+八⑴”…本 1 表2顯不分別以10克/升之氧化紹及20克/升氧化 銘所形成之_合錄㈣層的㈣分析糾。 乳 表2 3化贿度10克/升^____Electroplating pre-level electric money steel after the alloy layer ___ 15.9 ___14.8 __ 15.5 14.5 flow rate (liter y ^) Example, heart 槚鲫 fresh & 隹 傻 layer of silly porous stainless steel filter tube body / There is no significant difference in the rate of melons compared to those of the unfinished and electroplated. This shows that the method of the present invention utilizes the metal alloy layer of the electroplating method, and does not improperly block the pores of the porous metal carrier to maintain the re-education, the corpuscle, and the claw pass rate, and can maintain the The area of contact with the desire. [Example 41················································································ The area between the filter tube and the sleeve is introduced, and the temperature of 3 50 C is continued for 25 ϊ hours to oxidize the copper alloy to copper zinc oxide (Cu0Zn0), and the metal oxide layer finally obtained is referred to as CuB]. Layer The metal oxide layer obtained by repeating the step of the porous steel ball tube carrying the steel-zinc alloy layer obtained in Example 2 was simply referred to as CuB-2. "Example 5]: Multi-component catalyst layer 17 200846076 Repeat the example! The pre-treatment and pre-nickel plating process, the alloy is added to the electro-plated copper-zinc alloy and oxygen brain used in the embodiment; I (Cu6Zn4/Al2(>3) ', :: Minutes, _ _ is _ ^ i = graph and jump analysis results are shown in Figure 11 and Figure, respectively, the non-emulsified aluminum particles are evenly distributed in the steel alloy layer. The mouth repeats the above steps, but the electricity In the case of mineral steel zinc alloy, 'add 2 gram of application! In the electric shovel used. The copper and zinc alloy oxygen finally obtained is shown in Fig. 13. Table 2 deer + eight (1)"... This table 2 shows According to the analysis of (4) of the _ co-recorded (four) layer formed by the oxidation of 10 g / liter and 20 g / liter of oxidation, the milk table 2 3 bribe degree 10 g / l ^

,由表2曰中結果可知,當渡浴中的氧化銘含量増加時,鍍層中的 氧化銘含莖亦會隨之增加。 接:,將使用2〇克,升氧化銘所得之栽有鋼鋅合金氧化銘之不 备鋼慮官置於25亳米内徑之套管反應器中,並將空氣導入爐管與 =間的區域’在3耽之溫度下持續25小時,以將崎合金氧 化為銅辞氧化層(Cu0Zn0)。最後製得之金屬觸媒層簡稱為 18 200846076From the results in Table 2, it can be seen that when the content of the oxidation in the bath is increased, the oxidation of the stem in the coating will also increase. Connection:, will use 2 grams, the oxidation of the steel-zinc alloy oxidized Ming is not placed in the casing reactor of 25 mm inner diameter, and the air is introduced into the furnace tube and = The region 'lasts for 25 hours at a temperature of 3 Torr to oxidize the Samarium alloy to a copper oxide layer (Cu0Zn0). The finally obtained metal catalyst layer is referred to as 18 200846076

Cu20A-l 重覆上述程序,惟電鍍銅鋅合金時,添加20克/升之氧化鋁於 實施例2所用之電鍍液中,最後製得之金屬觸媒層簡稱為 Cu20A-2 〇 I實施例6】:多成分觸媒層 重覆實施例5之步驟,惟電鍍銅鋅合金時,添加40克/升之氧化 鋁於實施例1所用之電鍍液中,最後製得之金屬觸媒層簡稱為 Cu40A-l 〇 另,重覆實施例5之步驟,惟電鍍銅鋅合金時,添加40克/升之 氧化鋁於實施例2所用之電鍍液中,最後製得之金屬觸媒層簡稱 為 Cu40A-2。 [實施例7]:多成分觸媒層 重覆實施例5之步驟,惟電鍍銅鋅合金時,添加20克/升之氧化 锆於實施例1所用之電鍍液中,最後製得之金屬觸媒層簡稱為 Cu20Z-卜 另,重覆實施例5之步驟,惟電鐘銅鋅合金時,添加20克/升之 氧化鍅於實施例2所用之電鍍液中,最後製得之金屬觸媒層簡稱 為 Cu20Z-2。 【實施例81 :多成分觸媒層 重覆實施例5之步驟,惟電鍍銅鋅合金時,添加20克/升之氧化 鈮於實施例1所用之電鍍液中,最後製得之金屬觸媒層簡稱為 Cu20N-l。 I實施例9]:蒸氣重組反應 200846076 將實施例4至8所得之載有各種觸媒層之不鏽鋼濾管置於如第 10圖(剖面圖)所示之中空管體81中,組裝得一套管反應器,將 進料改為甲醇及水混和物(甲醇/水=1.1 ),以〇.35ce/min、0.7cc/min 或L7cc/min之速率,亦即單位小時單位體積之空間流速 (Volumetric Hourly Space Velocity,VHSV) 4350 hr·1、8700 hr’1 或10600 hr·1,經入口 84通入濾管82與中空管體81間的區域進 行重組反應,並將反應溫度設定為350°C,以進行甲醇蒸氣重組。 自出口 83所得產物包含氫氣(H2)、一氧化碳(CO)、及二氧化 碳(C〇2),紀錄重組反應結果如表3所示。 表3 觸媒 VHSV, hr1 % mol轉化率 %,mol選擇率 H2 CO C〇2 CuB-1 10600 73 76.1 17.2 6.7 CuB-2 8700 33 70.38 23 6.52 Cu20A-l 8700 44.4 68.6 19.2 11.6 Cu20A - 2 4350 57.6 69.8 16.8 12,8 Cu40A-l 8700 15.6 70.4 22.7 6.7 Cu40A-2 4350 22.0 68.2 22,7 9.0 Cu20Z-l 8700 37.1 67,0 93 18.5 Cu20Z_2 4350 6U 66.6 8.4 18.9 Cu20N-l 8700 13 69.3 23 7.6 表3結果顯示,本發明觸媒結構確實可催化所欲進行之反應 20 200846076 顯示結構上所具之金屬觸媒層確具所欲效能。此外,藉由添加適 合的添加物於金屬觸媒層中,可有效提升供曱醇蒸氣重組反應用 之金屬觸媒得效能,降低有毒物質co的選擇率。 由於多孔觸媒結構之多孔性,使得本發明之觸媒具有相當高的 比表面積,因此能在更小的體積下提供較大的反應面積,而達到 觸媒微型化的效果,此係習知之蜂窩型觸媒結構顯然無法達到 者。據此,本發明不論在其效能、大小、及傳導性等均有顯著的 改良,而能為業界所利用。 上述實施例僅為例示性說明本發明之原理及其功效,並闡述本 發明之技術特徵,而非用於限制本發明之保護範疇。任何熟悉本 技術者在不違背本發明之技術原理及精神下,可輕易完成之改變 或安排,均屬本發明所主張之範圍。因此,本發明之權利保護範 圍係如後附申請專利範圍所列。 【圖式簡單說明】 第1圖係一多孔性不鏽鋼(PSS)濾管經焊接程序後之表面影像 圖; 第2圖係本發明說明書中實施例所用電鍍設備之示意圖; 第3圖係經銅鋅合金電鍍之PSS濾管之外觀圖; 第4圖未經電鍍處理之PSS濾管表面之SEM圖(放大500倍); 第5圖係經銅鋅合金電鍍之PSS濾管表面之SEM圖(放大5⑽ 倍); 第6圖顯示第5圖PSS濾管之銅鋅合金層之EDS分析結果,其 中X轴係能階電位(kev),Y轴係能量強度; 21 200846076 第7圖顯示以xRD所得到之第5圖PPS濾管之鋼辞合金層之元 素分析結果,其中X轴係兩倍入射角,γ轴係繞射波強度; 弟8圖係未經電鍍處理之PSS濾、管之金屬環狀部分剖面的 圖(放大500倍); 第9圖係經鋼鋅合金(CwZn5相)電鍍之pss濾管之金屬環狀 部分剖面的SEM圖(放大500倍); 第圖係氣體流率測量裝置之剖面示意圖; 第11圖係經鋼辞合金氧化鋁(CuZnAl203)複合電鍍之PSS濾 官表面的SEM圖(放大35〇〇倍;所用氧化鋁濃度為1〇克/升); 榮 1 圖係第11圖PPS濾管之銅鋅合金氧化鋁層之EDS分析結 果;以及 第13 pi广 ^ 圖係經鋼鋅合金氧化鋁(CuZnAl203)複合電鍍之PSS濾 管的 SEM iB f ‘ t 口、放大1000倍;所用氧化鋁濃度為20克/升)。 21 23 25 27 81 821 【主要元件符號說明】 旋轉桎狀電極系統 22 旋轉桎狀電極 24 陽極(鋼鋅合金) 26 多孔性氣泡石 28 中空管體 82 不鏽輞濾管緻密部份 823 出〇 84 入口Cu20A-l repeats the above procedure, except that 20 g/L of alumina is added to the plating solution used in Example 2 when electroplating the copper-zinc alloy, and the finally obtained metal catalyst layer is abbreviated as Cu20A-2 〇I. 6]: The multi-component catalyst layer repeats the steps of Example 5, except that when the copper-zinc alloy is electroplated, 40 g/liter of alumina is added to the plating solution used in the first embodiment, and the metal catalyst layer finally obtained is referred to as abbreviated. For the Cu40A-l, the procedure of Example 5 was repeated. However, when the copper-zinc alloy was electroplated, 40 g/liter of alumina was added to the plating solution used in Example 2, and the metal catalyst layer finally obtained was simply referred to as Cu40A-2. [Example 7]: The multi-component catalyst layer was repeated in the procedure of Example 5 except that 20 g/L of zirconia was added to the plating solution used in Example 1 when the copper-zinc alloy was electroplated, and finally the metal contact was obtained. The medium layer is abbreviated as Cu20Z-b, and the steps of the fifth embodiment are repeated. In the case of the electric clock copper-zinc alloy, 20 g/liter of cerium oxide is added to the plating solution used in the second embodiment, and finally the metal catalyst is obtained. The layer is abbreviated as Cu20Z-2. [Example 81: The multi-component catalyst layer was repeated in the procedure of Example 5 except that 20 g/liter of cerium oxide was added to the plating solution used in Example 1 when the copper-zinc alloy was electroplated, and finally the metal catalyst was obtained. The layer is abbreviated as Cu20N-l. I Example 9]: Vapor Recombination Reaction 200846076 The stainless steel filter tubes of the various catalyst layers obtained in Examples 4 to 8 were placed in a hollow tube body 81 as shown in Fig. 10 (cross-sectional view), and assembled. A casing reactor, the feed is changed to methanol and water mixture (methanol / water = 1.1), at a rate of 35.35ce / min, 0.7cc / min or L7cc / min, that is, the unit volume per unit volume Volumetric Hourly Space Velocity (VHSV) 4350 hr·1, 8700 hr'1 or 10600 hr·1, through the inlet 84 into the region between the filter tube 82 and the hollow tube 81 for recombination reaction, and set the reaction temperature At 350 ° C for methanol vapor recombination. The product obtained from the outlet 83 contained hydrogen (H2), carbon monoxide (CO), and carbon dioxide (C〇2), and the results of the recombination reaction were recorded as shown in Table 3. Table 3 Catalyst VHSV, hr1 % mol conversion %, mol selectivity H2 CO C〇2 CuB-1 10600 73 76.1 17.2 6.7 CuB-2 8700 33 70.38 23 6.52 Cu20A-l 8700 44.4 68.6 19.2 11.6 Cu20A - 2 4350 57.6 69.8 16.8 12,8 Cu40A-l 8700 15.6 70.4 22.7 6.7 Cu40A-2 4350 22.0 68.2 22,7 9.0 Cu20Z-l 8700 37.1 67,0 93 18.5 Cu20Z_2 4350 6U 66.6 8.4 18.9 Cu20N-l 8700 13 69.3 23 7.6 Table 3 Results It is shown that the catalyst structure of the present invention does catalyze the desired reaction. 20 200846076 It is shown that the metal catalyst layer on the structure has the desired performance. In addition, by adding a suitable additive to the metal catalyst layer, the effectiveness of the metal catalyst for the recombination reaction of the sterol vapor can be effectively improved, and the selectivity of the toxic substance co can be lowered. Due to the porosity of the porous catalyst structure, the catalyst of the present invention has a relatively high specific surface area, so that a larger reaction area can be provided in a smaller volume to achieve the effect of catalyst miniaturization. The honeycomb type catalyst structure is clearly not reachable. Accordingly, the present invention can be utilized by the industry regardless of its significant improvement in performance, size, and conductivity. The above embodiments are merely illustrative of the principles and effects of the present invention, and are illustrative of the technical features of the present invention and are not intended to limit the scope of the present invention. Any changes or arrangements that can be easily made by those skilled in the art without departing from the technical principles and spirit of the invention are within the scope of the invention. Therefore, the scope of the invention is set forth in the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a surface image of a porous stainless steel (PSS) filter tube after a welding procedure; Fig. 2 is a schematic view of an electroplating apparatus used in an embodiment of the present specification; The appearance of the PSS filter tube of copper-zinc alloy plating; Figure 4 SEM image of the surface of the PSS filter tube without electroplating treatment (magnification 500 times); Figure 5 is the SEM image of the surface of PSS filter tube electroplated with copper-zinc alloy (magnification 5 (10) times); Figure 6 shows the results of EDS analysis of the copper-zinc alloy layer of the PSS filter tube of Fig. 5, where the X-axis energy level potential (kev), Y-axis energy intensity; 21 200846076 Figure 7 shows The elemental analysis results of the alloy layer of the PPS filter tube of the 5th image obtained by xRD, wherein the X-axis system has twice the incident angle and the γ-axis is the diffraction wave intensity; the 8th image is the unplated PSS filter and tube. A cross-sectional view of a metal ring portion (magnification 500 times); Figure 9 is an SEM image of a metal ring portion of a pss filter tube plated with a steel-zinc alloy (CwZn5 phase) (magnification 500 times); Schematic diagram of the flow rate measuring device; Figure 11 is the steel alloy alumina (CuZnA) L203) SEM image of PSS filter surface of composite plating (magnification 35 times; alumina concentration used is 1 gram / liter); Rong 1 Figure 11 Figure PPS filter tube copper zinc alloy aluminum oxide layer EDS The results of the analysis; and the 13th pi wide image of the steel-zinc alloy alumina (CuZnAl203) composite plating PSS filter tube SEM iB f 't mouth, magnification 1000 times; the alumina concentration used is 20 g / liter). 21 23 25 27 81 821 [Description of main components] Rotary braided electrode system 22 Rotating braided electrode 24 Anode (steel-zinc alloy) 26 Porous bubble stone 28 Hollow tube 82 Stainless steel filter tube dense part 823 〇84 entrance

電源供應器 不鏽鋼載體 電鍍液 空氣攪拌器 不鏽鋼濾管 不鏽鋼濾管多孔性部份 22 83Power supply Stainless steel carrier Plating solution Air agitator Stainless steel filter tube Stainless steel filter tube porous part 22 83

Claims (1)

200846076 十、申請專利範圍: 1. 一種具有高比表面積之多孔性觸媒結構,其包含: 一多孔性金屬載體;以及 一金屬觸媒層,其係位於該多孔性金屬載體表面。 2. 如請求項1所述之觸媒結構,其中該多孔性金屬載體係不鏽 鋼。 3. 如請求項1或2所述之觸媒結構,其中該金屬觸媒層係包含 選自以下群組之觸媒成分:銅(Cii)、鋅(Zn)、鎂(Mg)、 • 铭"(A1)、锆(Z〇、鎳(Ni)、鉑(?〇、鈷(0>)、鍺(1〇1)、 釕(Ru)、銖(Re)、鈦(Ti)、鈀(Pd)、前述二或多者之合 金、前述金屬或合金之氧化物、及前述之組合。 4. 如請求項3所述之觸媒結構,其中該觸媒成分係金屬合金、 金屬或金屬合金之氧化物、或前述之組合。 5· 如請求項3所述之觸媒結構,其中該觸媒成分係選自以下群 組:銅合金、含銅氧化物、及前述之組合。 ^ 6. 如請求項3所述之觸媒結構,其中該觸媒成分係選自以下群 組:銅辞合金、銅鋅氧化物(CuOZnO )、及前述之組合。 7. 如請求項3所述之觸媒結構,其中當該觸媒成分係金屬或其 合金時,該金屬觸媒層係藉由電鍍而形成於該多孔性金屬載 體表面。 8. 如請求項3所述之觸媒結構,其中當該觸媒成分係氧化物時, 該金屬觸媒層係藉由電鍍及後續之氧化步驟而形成於該多孔 性金屬載體表面。 9. 如請求項1所述之觸媒結構,其中該金屬觸媒層更包含一選 23 200846076 自以下群組之添加物:陶瓷粉末、石墨、鐵氟龍、鑽石、纖 維、及前述之組合。 10.如請求項9所述之觸媒結構,其中該陶瓷粉末係選自以下群 組:氧化鋁、氧化矽、氧化锆、氧化鈮、氧化鈦、及前述之 組合。 11·如請求項9所述之觸媒結構,其中該添加物之含量,以該金 屬觸媒層總量計,為10重量%至40重量%。 12. 如請求項11所述之觸媒結構,其中該添加物之含量,以該金 ® 屬觸媒層總量計,為15重量%至25重量%。 13. 如請求項1所述之觸媒結構,其更包含一被膜,位於該多孔 性金屬載體與該金屬觸媒層之間。 14. 如請求項13所述之觸媒結構,其中該被膜係包含選自以下群 組之材料:鎳(Ni)、銅(Cu)、銀(Ag)、金(Au)、前述之 合金、及前述之組合。 15. 如請求項13所述之觸媒結構,其中該被膜之厚度為0.2微米 鲁 至1微米。 16·如請求項1所述之觸媒結構,其中該金屬觸媒層之厚度為0.5 微米至20微米。 17·如請求項16所述之觸媒結構,其中該金屬觸媒層之厚度為0.5 微米至5微米。 18. —種製造具有高比表面積之多孔性觸媒結構之方法,其包含: 提供一多孔性金屬載體;以及 電鍍一金屬觸媒層於該多孔性金屬載體表面。 24 200846076 19. 如請求項18所述之方法,其中該多孔性金屬載體係一不鏽鋼 載體,且該電鍍步驟係包含電鍍一金屬觸媒層於該不鏽鋼載 體表面。 20. 如請求項18所述之方法,其中該電鍍步驟係使用一含一或多 種選自以下群組之金屬之電鍍液:銅(Cu)、鋅(Zn)、鎂(Mg)、 鋁(A1)、锆(Zr)、鎳(Ni)、鉑(Pt)、鈷(Co)、铑(Rh)、 釕(Ru)、鍊(Re)、鈦(Ti)、及鈀(Pd)。 21. 如請求項20所述之方法,其中該電鍍步驟係使用一含二或多 種金屬之電鍍液。 22. 如請求項21所述之方法,其中該電鍍步驟係使用一含銅及鋅 之電鍍液。 23. 如請求項21所述之方法,其中該電鍍步驟係使用一含酒石酸 鹽之電鍍液。 24. 如請求項20所述之方法,其中該電鍍步驟係使用一包含一選 自以下群組之添加物之電鍍液:陶瓷粉末、石墨、鐵氟龍、 鑽石、纖維、及前述之組合。 25. 如請求項24所述之方法,其中該陶瓷粉末係選自以下群組·· 氧化铭、氧化碎、氧化錯、氧化銳、氧化鈦、及前述之組合。 26. 如請求項18所述之方法,其中於該電鍍步驟之後,進一步包 含一氧化步驟以氧化該金屬觸媒層。 27. 如請求項18所述之方法,其中係於該電鍍步驟之前,先於該 多孔性金屬載體上形成一被膜,該被膜係由選自以下群組之 材料所組成:鎳(Ni)、銅(Cu)、銀(Ag)、金(Au)、前述 25 200846076 之合金、及前述之組合。200846076 X. Patent application scope: 1. A porous catalyst structure having a high specific surface area, comprising: a porous metal carrier; and a metal catalyst layer on the surface of the porous metal carrier. 2. The catalyst structure of claim 1, wherein the porous metal support is stainless steel. 3. The catalyst structure according to claim 1 or 2, wherein the metal catalyst layer comprises a catalyst component selected from the group consisting of copper (Cii), zinc (Zn), magnesium (Mg), and "(A1), Zirconium (Z〇, Nickel (Ni), Platinum (?〇, Cobalt (0>), 锗(1〇1), 钌(Ru), 铢(Re), Titanium(Ti), Palladium (Pd), an alloy of two or more of the foregoing, an oxide of the foregoing metal or alloy, and a combination thereof. 4. The catalyst structure according to claim 3, wherein the catalyst component is a metal alloy, a metal or a metal The oxide of the alloy, or a combination of the foregoing. The catalyst structure of claim 3, wherein the catalyst component is selected from the group consisting of copper alloys, copper-containing oxides, and combinations thereof. The catalyst structure according to claim 3, wherein the catalyst component is selected from the group consisting of copper alloy, copper zinc oxide (CuOZnO), and combinations thereof. a catalyst structure, wherein when the catalyst component is a metal or an alloy thereof, the metal catalyst layer is formed on the surface of the porous metal carrier by electroplating. The catalyst structure according to Item 3, wherein when the catalyst component is an oxide, the metal catalyst layer is formed on the surface of the porous metal carrier by electroplating and a subsequent oxidation step. 1 The catalyst structure, wherein the metal catalyst layer further comprises an additive 23 200846076 from the following group of additives: ceramic powder, graphite, Teflon, diamond, fiber, and combinations thereof. The catalyst structure according to Item 9, wherein the ceramic powder is selected from the group consisting of alumina, yttria, zirconia, yttria, titania, and combinations thereof. 11. The touch as claimed in claim 9 a catalyst structure, wherein the content of the additive is from 10% by weight to 40% by weight based on the total of the metal catalyst layer. 12. The catalyst structure according to claim 11, wherein the content of the additive is The total amount of the catalyst layer is from 15% by weight to 25% by weight. The catalyst structure according to claim 1, further comprising a film located on the porous metal carrier and the metal catalyst. Between the layers 14. The catalyst junction as described in claim 13 The film comprising a material selected from the group consisting of nickel (Ni), copper (Cu), silver (Ag), gold (Au), alloys of the foregoing, and combinations thereof. The catalyst structure, wherein the film has a thickness of 0.2 μm to 1 μm. The catalyst structure according to claim 1, wherein the metal catalyst layer has a thickness of 0.5 μm to 20 μm. The catalyst structure of claim 16, wherein the metal catalyst layer has a thickness of from 0.5 micrometers to 5 micrometers. 18. A method of fabricating a porous catalyst structure having a high specific surface area, comprising: providing one more a porous metal support; and plating a metal catalyst layer on the surface of the porous metal support. The method of claim 18, wherein the porous metal support is a stainless steel support, and the electroplating step comprises plating a metal catalyst layer on the surface of the stainless steel support. 20. The method of claim 18, wherein the electroplating step uses a plating solution comprising one or more metals selected from the group consisting of copper (Cu), zinc (Zn), magnesium (Mg), aluminum ( A1), zirconium (Zr), nickel (Ni), platinum (Pt), cobalt (Co), rhodium (Rh), ruthenium (Ru), chain (Re), titanium (Ti), and palladium (Pd). 21. The method of claim 20, wherein the electroplating step uses a plating solution containing two or more metals. 22. The method of claim 21, wherein the electroplating step uses a plating solution comprising copper and zinc. 23. The method of claim 21, wherein the electroplating step uses a plating solution containing tartaric acid. 24. The method of claim 20, wherein the electroplating step uses a plating solution comprising an additive selected from the group consisting of ceramic powder, graphite, Teflon, diamond, fiber, and combinations thereof. 25. The method of claim 24, wherein the ceramic powder is selected from the group consisting of Oxidation, Oxidation, Oxidation, Oxidation, Titanium, and combinations thereof. 26. The method of claim 18, wherein after the electroplating step, an oxidation step is further included to oxidize the metal catalyst layer. 27. The method of claim 18, wherein before the electroplating step, a film is formed on the porous metal support, the film consisting of a material selected from the group consisting of nickel (Ni), Copper (Cu), silver (Ag), gold (Au), the alloy of the aforementioned 25 200846076, and combinations thereof. 26 200846076 七、指定代表圖: (一) 本案指定代表圖為:第(6)圖。 (二) 本代表圖之元件符號簡單說明: (無)26 200846076 VII. Designated representative map: (1) The representative representative of the case is: figure (6). (2) A brief description of the symbol of the representative figure: (none) 八、本案若有化學式時,請揭示最能顯示發明特徵的化學式: (無)8. If there is a chemical formula in this case, please disclose the chemical formula that best shows the characteristics of the invention: (none)
TW097109738A 2007-05-31 2008-03-19 Porous catalyst structure and its preparation method TWI365109B (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020080044299A KR100966992B1 (en) 2007-05-31 2008-05-14 Porous catalyst structure and its manufacturing method
US12/154,563 US7833402B2 (en) 2007-05-31 2008-05-23 Porous catalyst structure and its manufacturing method
JP2008139310A JP2008296212A (en) 2007-05-31 2008-05-28 Porous catalyst structure and method for producing the same
US12/454,001 US8084431B2 (en) 2008-03-19 2009-05-11 Method for inhibiting activation of macrophages, inhibiting formation of osteoclasts, inhibiting function of osteoclasts, and/or activating osteoblasts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US94116507P 2007-05-31 2007-05-31

Publications (2)

Publication Number Publication Date
TW200846076A true TW200846076A (en) 2008-12-01
TWI365109B TWI365109B (en) 2012-06-01

Family

ID=40105376

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097109738A TWI365109B (en) 2007-05-31 2008-03-19 Porous catalyst structure and its preparation method

Country Status (2)

Country Link
CN (1) CN101314140B (en)
TW (1) TWI365109B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI473760B (en) * 2009-01-23 2015-02-21 Green Hydrotec Inc Membrane tube composite and apparatus for generating high purity hydrogen gas using the same
CN104807031A (en) * 2015-03-09 2015-07-29 上海万寅安全环保科技有限公司 Hydrogen combustion-supporting device and method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102151439B (en) * 2011-02-25 2013-07-24 长沙力元新材料有限责任公司 Filtering material for oil-smoke separation and oil-gas separation
CN103861612A (en) * 2012-12-14 2014-06-18 上海郎特汽车净化器有限公司 Catalyst used for diesel engine tail gas soot collection catalysis
CN103977801B (en) * 2014-05-13 2016-02-24 中国科学院山西煤炭化学研究所 A kind of high-termal conductivity Co based Fischer-Tropsch synthesis catalyst and method for making and application
TWI695914B (en) * 2019-05-29 2020-06-11 揚技實業有限公司 Manufacturing method of photocatalyst filter and air purification device composed of photocatalyst filter
CN113290231B (en) * 2021-05-31 2022-07-05 华中科技大学 Method for compounding aluminum-magnesium bimetal by lost foam casting liquid-liquid and aluminum-magnesium bimetal

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6479428B1 (en) * 1998-07-27 2002-11-12 Battelle Memorial Institute Long life hydrocarbon conversion catalyst and method of making

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI473760B (en) * 2009-01-23 2015-02-21 Green Hydrotec Inc Membrane tube composite and apparatus for generating high purity hydrogen gas using the same
CN104807031A (en) * 2015-03-09 2015-07-29 上海万寅安全环保科技有限公司 Hydrogen combustion-supporting device and method

Also Published As

Publication number Publication date
CN101314140B (en) 2011-08-03
TWI365109B (en) 2012-06-01
CN101314140A (en) 2008-12-03

Similar Documents

Publication Publication Date Title
KR100966992B1 (en) Porous catalyst structure and its manufacturing method
TW200846076A (en) Porous catalyst structure and its preparation method
Meille Review on methods to deposit catalysts on structured surfaces
JP2013536065A (en) Hollow nanoparticles that are highly active and highly durable catalysts and methods for producing the same
JP5568865B2 (en) Gas decomposition element
JP2007519165A (en) Nanostructured metal-carbon composite for electrode catalyst of fuel cell and production method thereof
US10682608B2 (en) Base material-integrated nanocrystalline metal oxide composite-containing catalyst, method for manufacturing the same, and catalyst component
JP2012102345A (en) Method for producing core-shell particle
JP2010539332A (en) Porous electroless plating
JP4753180B2 (en) Hydrogen separation material and method for producing the same
JP2018177625A (en) Method of forming magnesium-containing layer of surface of metal support, catalyst support containing its coating layer, and catalyst device
CN109772305A (en) A kind of metallic substrates carried noble metal integral catalyzer and its one-step preppn process and application
Zhou et al. Nanostructured platinum catalyst coating on diesel particulate filter with a low-cost electroless deposition approach
CN100357027C (en) Metal carrier for automobile tail gas purifier catalyst and its prepn
JP2007069207A (en) Hydrogen separating composite and its production process
JP2005528981A (en) Hydrometallurgical process for the production of supported catalysts
EP2318565A1 (en) A formation ventilation gas purification coating structure using inorganic membrane, and method for manufacturing thereof
JP2008106355A (en) Hydrophilic porous metal member and manufacturing method therefor
JP3568889B2 (en) Catalyst formed on metal surface and method for forming catalyst on metal surface
CN102925935B (en) Preparation method and application of nickel-copper-aluminum oxide catalysis separation composite membrane
US20180100241A1 (en) Metallic Coating With Macro-Pores
JP6668115B2 (en) Ammonia production equipment, NOx purification equipment
JP5880909B2 (en) Method for producing metal catalyst carrier and method for producing metal catalyst body
JPWO2020054170A1 (en) Porous metal, steam reformer using it, and method for producing porous metal
CN102974352B (en) Nickel-aluminum oxide catalysis complex membrane, preparation method thereof and application thereof

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees