JP2017001006A - Composite wire type catalyst member, and catalyst reactor for hydrogen production using the same - Google Patents

Composite wire type catalyst member, and catalyst reactor for hydrogen production using the same Download PDF

Info

Publication number
JP2017001006A
JP2017001006A JP2015125137A JP2015125137A JP2017001006A JP 2017001006 A JP2017001006 A JP 2017001006A JP 2015125137 A JP2015125137 A JP 2015125137A JP 2015125137 A JP2015125137 A JP 2015125137A JP 2017001006 A JP2017001006 A JP 2017001006A
Authority
JP
Japan
Prior art keywords
layer
wire
catalyst
diffusion
heating wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015125137A
Other languages
Japanese (ja)
Other versions
JP6527398B2 (en
Inventor
常夫 飽浦
Tsuneo Akiura
常夫 飽浦
遼一 安次嶺
Ryoichi Ajimine
遼一 安次嶺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Seisen Co Ltd
Original Assignee
Nippon Seisen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Seisen Co Ltd filed Critical Nippon Seisen Co Ltd
Priority to JP2015125137A priority Critical patent/JP6527398B2/en
Publication of JP2017001006A publication Critical patent/JP2017001006A/en
Application granted granted Critical
Publication of JP6527398B2 publication Critical patent/JP6527398B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a composite wire type catalyst member contributing to prevention of excessive diffusion and improvement of heat resistance life by setting up a diffusion suppressing layer between a core wire for heat generation and a clad layer as a barrier, and to provide a catalyst reactor for hydrogen production using the same.SOLUTION: A composite wire type catalyst member 1 comprises: a) a linear metallic heating wire 1A heated to a prescribed temperature by energization to generate heat; b) a clad layer 1B comprising a second metallic material encapsulating the heating wire 1A and being a type different from the heating wire 1A; and c) a catalyst carrier layer 1C carrying a prescribed catalytic substance X on the outer peripheral face of the clad layer 1B, and d) the catalyst member is composed including the catalytic substance X carried by the catalyst carrier layer 1C and also e) the boundary face of the heating wire 1A and the clad layer 1B has a diffusion suppressing layer Y suppressing excessive diffusion of the heating wire 1A and clad layer 1B formed with use along a circumferential direction in a nonsmooth irregular state. A catalyst reactor for hydrogen production equipped with plural catalyst members lamination-disposed in a multistage form and an electric heating circuit is also provided.SELECTED DRAWING: Figure 2

Description

発明の詳細な説明Detailed Description of the Invention

本発明は、例えば芳香族化合物への水素化反応、又はその逆反応である脱水素反応用の触媒部材として、特にその反応温度を該部材の通電加熱によって行うとともに長寿命化に寄与する複合ワイヤー型の触媒部材と、これを用いた水素製造用の触媒反応器に関する。  The present invention is a composite wire that, for example, is used as a catalyst member for a hydrogenation reaction to an aromatic compound, or a dehydrogenation reaction that is the reverse reaction thereof, particularly by conducting the reaction temperature by energization heating of the member and contributing to a longer life. The present invention relates to a catalyst member of a type and a catalytic reactor for hydrogen production using the same.

近年、地球環境に及ぼす温暖化が指摘され、これまでの化石燃料に代わる新たなクリーンエネルギーとして、燃料電池システムが注目されている。この燃料電池はその燃料として水素が用いられ、また水素は、その他分野のエネルギー源としての需要も高まる中で、安定かつ効率的な水素製造技術の確立が急がれている。  In recent years, global warming affecting the global environment has been pointed out, and fuel cell systems are attracting attention as new clean energy alternatives to conventional fossil fuels. In this fuel cell, hydrogen is used as the fuel, and the demand for hydrogen as an energy source in other fields is increasing, and therefore, establishment of a stable and efficient hydrogen production technique is urgently required.

その水素製造について従来から種々方法が試みられているが、規模的には比較的少量タイプのものが中心で、例えば水素ステーション用とするような大流量用プラントに好適する製造システムとしては未だ開発段階にある。その代表的なものとして、例えば水の電気分解によるもの、水素を含む種々混合流体から水素のみを分離生成する分離膜によるもの、更にその他触媒技術によるなどを挙げることができる。また、後者触媒技術に関するものとして、例えば特許文献1は、通電加熱用のニクロム線を芯線とし、更に表面にアルミニウム金属膜を被覆して陽極酸化処理を施し、触媒物質を担持する複合型触媒ワイヤーを、別製の上下型枠内流路に沿って配置することを開示している。  Various methods have been tried for hydrogen production in the past, but the production system suitable for a large flow rate plant such as for a hydrogen station is still in development, mainly on a relatively small scale type. In the stage. Typical examples thereof include those based on electrolysis of water, those based on separation membranes that separate and produce only hydrogen from various mixed fluids containing hydrogen, and those based on other catalytic techniques. Further, as for the latter catalyst technology, for example, Patent Document 1 discloses a composite type catalyst wire that carries a catalytic substance by using a nichrome wire for electric heating as a core wire, and further coating the surface with an aluminum metal film to perform anodization. Is disposed along a separate flow path in the upper and lower molds.

また、本出願人らは、このような複合型ワイヤーについて、更にその単位容積当たりにおける触媒担持量の増大を図るべく、表面積向上の為に該ワイヤーをコイル状に巻回成形したコイル線体(特許文献2〜4)を提供し、その効率向上に取り組みしている。  In addition, the applicants of the present invention have also proposed a coil wire body in which the wire is wound into a coil to improve the surface area of the composite wire in order to increase the amount of catalyst supported per unit volume ( Patent documents 2 to 4) are provided to improve the efficiency.

特開2005−246115号公報  JP 2005-246115 A 特開2011−245475号公報  JP 2011-245475 A 国際公開WO2012−090326号公報  International Publication WO2012-090326 特開2012−236182号公報  JP 2012-236182 A

このように、前記各先行特許文献は、いずれも複合ワイヤー型の触媒部材を対象として、その軸芯に通電加熱用の発熱線を配置するとともに、表面にアルミニウム被覆層を介して多孔質なアルマイト層を形成し被包するものとしている。すなわち、前記発熱線とアルミニウム層、及び触媒物質を担持するアルマイト層を備える三層構造の複合ワイヤー構造にすることで、この触媒部材は加熱応答性、すなわち所定温度への制御と応答速度のレスポンス性が促進されるものとなる。  As described above, each of the above prior patent documents is directed to a composite wire type catalyst member, and a heating wire for energization heating is arranged on the shaft core, and a porous alumite is provided on the surface via an aluminum coating layer. A layer is formed and encapsulated. That is, by making the composite wire structure of the three-layer structure including the heating wire, the aluminum layer, and the alumite layer supporting the catalyst material, the catalyst member has a heat responsiveness, that is, a control to a predetermined temperature and a response speed response. Sexuality will be promoted.

しかし該触媒部材は、前記アルマイト層の多孔質構造部に所定の触媒物質を担持するもので、その触媒反応は例えば温度300〜500℃程度に加熱した状態で行われることから、該触媒部材の前記発熱線とアルミニウム被覆層との境界面での相互拡散は避けられない。特に、その使用が例えば10000時間以上、好ましくは3年以上のような長期に亙って連続乃至断続的に加熱・冷却を繰り返しながら使用する場合においては、前記拡散影響部が増大して、発熱線の通電性能を低下させたり、時に層剥離や断線を引き起こすことが懸念され、この問題を未然に予防することが求められている。  However, the catalyst member carries a predetermined catalyst substance on the porous structure portion of the alumite layer, and the catalytic reaction is performed at a temperature of about 300 to 500 ° C., for example. Interdiffusion at the interface between the heating wire and the aluminum coating layer is inevitable. In particular, in the case of using the product while repeating heating and cooling continuously or intermittently over a long period of time such as 10,000 hours or more, preferably 3 years or more, the diffusion-affected zone increases and heat is generated. There is a concern that the current-carrying performance of the wire may be reduced, and sometimes delamination or disconnection may occur, and there is a need to prevent this problem.

本発明者は、こうした使用状態を前提として、前記発熱用の芯線材料と、その表面を被包する被覆金属層との境界面に着目し、特に使用に伴って生成する余剰拡散を阻止して長期間の安定使用に適するように耐熱寿命の向上を図ることとし改善に取り組んだ。その結果、前記境界面に前記使用環境下で形成される余剰拡散を予防するべく、予め拡散抑止層を形成することが有効との結論に至り、本発明を完成した。  The present inventor, on the premise of such a use state, pays attention to the boundary surface between the core material for heat generation and the coating metal layer encapsulating the surface, and particularly prevents the excessive diffusion generated with use. We tried to improve the heat-resistant life to be suitable for long-term stable use. As a result, the present inventors have concluded that it is effective to form a diffusion suppressing layer in advance in order to prevent excessive diffusion formed in the use environment on the boundary surface.

このように、本発明は、所定の使用加熱環境下でかつ長期に亙って加熱使用される複合ワイヤー型の触媒部材において、予めその構造界面部に前記余剰拡散を予防する為の拡散抑止層を設けることで、この拡散抑止層をバリヤーとして必要以上の余剰拡散を防ぐものとし、前記耐熱寿命の向上に寄与する触媒部材と、これを用いた水素製造用の触媒反応器の提供を目的とする。  As described above, the present invention provides a diffusion-inhibiting layer for preventing the excessive diffusion in the structural interface portion in advance in a composite wire-type catalyst member that is heated and used for a long time under a predetermined heating environment. In order to provide a catalyst member that contributes to the improvement of the heat-resistant life and a catalyst reactor for hydrogen production using the catalyst member, the diffusion inhibiting layer is used as a barrier to prevent excessive diffusion more than necessary. To do.

すなわち、本願請求項1に係る発明は、
a)通電によって所定温度に加熱発熱する金属製の発熱線と、
b)該発熱線を被包し、かつ該発熱線とは異種の第二金属材料でなる被覆金属層と、
c)その被覆金属層の外周面に、所定の触媒物質を担持する触媒担持層を備えるとともに、
d)該触媒担持層に担持された前記触媒物質を含み、
e)前記発熱線及び被覆金属層の界面は、使用に伴い形成される前記発熱線と被覆金属層同士の余剰拡散を抑える拡散抑止層を、その周方向に沿って非平滑な凹凸状態に備えることを特徴とする複合ワイヤー型触媒部材である。
That is, the invention according to claim 1 of the present application is
a) a metal heating wire that generates heat by energization to a predetermined temperature;
b) a coating metal layer encapsulating the heating wire and made of a second metal material different from the heating wire;
c) A catalyst support layer for supporting a predetermined catalyst substance is provided on the outer peripheral surface of the coated metal layer, and
d) containing the catalyst material supported on the catalyst support layer;
e) The interface between the heating wire and the coating metal layer is provided with a diffusion suppressing layer that suppresses excessive diffusion between the heating wire and the coating metal layer formed in use in a non-smooth uneven state along the circumferential direction. This is a composite wire type catalyst member.

また、請求項2に係る発明は、前記拡散抑止層は、融点が1500℃以上の高融点金属の第三被覆層、又は発熱線H及び前記被覆金属層Cの相互拡散で予め形成した前駆拡散層のいずれかによるもの、請求項3に係る発明は、前記前駆拡散層は、前記発熱線と被覆金属層との被覆複合線の製造段階での熱処理に伴い層状に形成される金属間化合物によるもの、請求項4に係わる発明は、前記発熱線はニッケル金属、前記被覆金属層はアルミニウム金属で構成され、前記前駆拡散層は、前記前駆拡散層は、前記ニッケル金属と前記アルミニウム金属との熱反応により生成されるNi−Al系金属間化合物層で構成されるものであることを各々特徴とする。  In the invention according to claim 2, the diffusion suppression layer is a third diffusion layer of a refractory metal having a melting point of 1500 ° C. or higher, or a precursor diffusion formed in advance by mutual diffusion of the heating wire H and the coating metal layer C. According to a third aspect of the present invention, in the invention according to claim 3, the precursor diffusion layer is formed of an intermetallic compound that is formed in a layer form with a heat treatment in a production step of a coated composite wire of the heating wire and the coated metal layer. In the invention according to claim 4, the heating wire is made of nickel metal, the covering metal layer is made of aluminum metal, the precursor diffusion layer is made of heat of the nickel metal and the aluminum metal. It is characterized by being comprised by the Ni-Al type | system | group intermetallic compound layer produced | generated by reaction, respectively.

請求項5に係る発明は、その拡散抑止層は、その形成厚さが60μm以下のものとし、請求項6に係る発明は、その構成厚さの中央位置が描く横断面面積から算出される見掛け上の周長に対して、1.02〜1.4倍の実周長を備える前記凹凸状をなすものである。  In the invention according to claim 5, the diffusion suppressing layer has a thickness of 60 μm or less, and the invention according to claim 6 is an apparent calculation calculated from the cross-sectional area drawn by the center position of the constituent thickness. The concavo-convex shape having an actual circumferential length of 1.02 to 1.4 times the upper circumferential length.

更に、請求項7に係る該触媒部材の発明は、更にコイル掛けによって密着状に巻回されたコイル部を備えるもの、請求項8に係る発明は、該コイル部は、その平面視で70°以下の傾斜角(α)で一定方向に斜め巻きされたものであることも特徴とする。  Furthermore, the invention of the catalyst member according to claim 7 further includes a coil portion wound tightly by coiling, and the invention according to claim 8 is that the coil portion is 70 ° in plan view. It is also characterized by being wound obliquely in a certain direction at the following inclination angle (α).

他方、請求項9はこれを用いた水素製造用の触媒反応器の発明を対象とし、前記いずれかに記載の触媒部材の複数を、所定の触媒反応室内に供給される被処理流体の流通方向に沿って複数段に積層配置するとともに、該触媒部材の前記発熱線に各々通電加熱する電気回路を備えることを特徴とする。  On the other hand, claim 9 is directed to an invention of a catalytic reactor for hydrogen production using the same, and a flow direction of a fluid to be treated supplied to a plurality of catalyst members according to any one of the foregoing in a predetermined catalytic reaction chamber And an electric circuit for energizing and heating each of the heating lines of the catalyst member.

本願請求項1の発明によれば、通電加熱される複合ワイヤー型の触媒部材として、前記発熱線とその表面を被包する被覆金属層との境界面に、予め拡散抑止の層を形成しておくことで、これを使用する際の触媒反応の為の加熱環境下ではそれ以上の余剰拡散の進行を防ぎ、またその境界面を非平滑な凹凸状に形成することで、仮に所定以上に層厚な拡散層が生じた場合も、該凹凸部同士が相互に係合して表面被覆層の部分剥離や断線が防止される。  According to the invention of claim 1 of the present application, as a composite wire type catalyst member that is energized and heated, a diffusion suppression layer is formed in advance on the boundary surface between the heating wire and the covering metal layer encapsulating the surface. Therefore, it is possible to prevent further excessive diffusion in the heating environment for the catalytic reaction when using this, and to form a non-smooth uneven surface on the boundary surface. Even when a thick diffusion layer is formed, the concavo-convex portions engage with each other to prevent partial peeling or disconnection of the surface coating layer.

また、請求項2〜8の発明によれば、該拡散抑止層を好適に形成することで、前記余剰拡散の影響を軽減するとともに、両者金属材料同士の係合を更に強めることができる。また請求項9の発明によれば、複数の該触媒部材を複数段に載置され、かつ該発熱線の各々を通電加熱可能に電気回路が形成されから、耐熱寿命性に優れ、かつ省スペース化可能な触媒反応器を提供できる。  Moreover, according to the invention of Claims 2-8, while forming the said diffusion suppression layer suitably, while reducing the influence of the said excess diffusion, the engagement of both metal materials can be strengthened further. According to the invention of claim 9, the plurality of catalyst members are placed in a plurality of stages, and an electric circuit is formed so that each of the heating wires can be heated by energization. Can be provided.

本発明に係る複合ワイヤー型触媒部材の一例を示す斜視図である。  It is a perspective view which shows an example of the composite wire type | mold catalyst member which concerns on this invention. 図1の触媒部材における、複合ワイヤーの積層構造を拡大する断面図の一例である。  It is an example of sectional drawing which expands the laminated structure of the composite wire in the catalyst member of FIG. 形状品として、他の形態の触媒部材を示す平面図である。  It is a top view which shows the catalyst member of another form as a shape article. 図3aの側面図である。  FIG. 3b is a side view of FIG. 3a. 触媒反応器の一形態を示す断面図である。  It is sectional drawing which shows one form of a catalytic reactor. 水素製造のシステム図である。  It is a system diagram of hydrogen production.

以下、本発明の好ましい形態を添付図面とともに説明する。
本発明に係る複合ワイヤー型の触媒部材(以下、単に触媒部材という)は、前記するように通電によって所定温度に加熱発熱する線状の金属製発熱線1A(以下、単に発熱線とも言う)と、これを被包し、該発熱線とは異なる第二金属材料でなる被覆金属層1Bと、更に、その表面側に積層形成される触媒担持層1Cを備える複合型線材で構成され、該触媒担持層1Cにはその表面上に予め設定される所定の触媒物質Xが担持されてなる。
Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings.
The composite wire-type catalyst member (hereinafter simply referred to as catalyst member) according to the present invention is a linear metal heating wire 1A (hereinafter also simply referred to as a heating wire) that heats and heats to a predetermined temperature when energized as described above. The composite metal wire 1B includes a covering metal layer 1B made of a second metal material different from the heating wire, and a catalyst support layer 1C formed on the surface of the coating metal layer 1B. A predetermined catalyst material X set in advance is supported on the surface of the support layer 1C.

このような複合ワイヤー型の触媒部材1において、本願発明は、前記発熱線1A及び被覆金属層1Bとの界面に、その使用に伴い形成される前記発熱線及び前記第二金属材料の被覆金属層との余剰拡散を抑える拡散抑止層Yを備えるとともに、この抑止層Yを周方向に沿って非平滑な凹凸状に形成したことを特徴とする。  In such a composite wire type catalyst member 1, the present invention relates to the heating wire and the coating metal layer of the second metal material formed at the interface between the heating wire 1 </ b> A and the coating metal layer 1 </ b> B. In addition, a diffusion suppression layer Y that suppresses excessive diffusion is provided, and the suppression layer Y is formed in a non-smooth uneven shape along the circumferential direction.

一例として、図1は前記所定の等価線径dを持つように調整された前記複合クラッド構造の細線材Wを、更にその全長にわたって、例えば5〜20mm程度の平均コイル径Dを持つように密着巻きされたコイル部2を備えるものを示している。その構成は、前記先行特許文献2及び3によって理解できるように、例えば軸芯の中心部に配した前記発熱線1Aと、この発熱線を被包する第二金属材料でなる被覆金属層1B、例えば金属アルミニウム層と、更にその外表面に形成された触媒担持層1Cを備えるとともに、該担持層1Cには予め設定された触媒物質Xを担持してなる複合クラッド構造のワイヤー状触媒部材と理解される。なお、該触媒担持層1Cは、例えば前記被覆金属層がアルミニウム金属による場合は、その陽極酸化で得られるアルマイト層がこれに該当する。  As an example, FIG. 1 shows that the fine wire W having the composite clad structure adjusted to have the predetermined equivalent wire diameter d is further adhered over the entire length so as to have an average coil diameter D of, for example, about 5 to 20 mm. The thing provided with the coil part 2 wound is shown. As can be understood from the above-mentioned prior patent documents 2 and 3, for example, the heating wire 1A disposed at the center of the shaft core, and the coated metal layer 1B made of a second metal material encapsulating the heating wire, For example, it is understood to be a wire-shaped catalyst member having a composite clad structure in which a metallic aluminum layer and a catalyst supporting layer 1C formed on the outer surface thereof are further provided, and the supporting material 1C supports a predetermined catalyst substance X. Is done. For example, when the coating metal layer is made of aluminum metal, the catalyst support layer 1C corresponds to an alumite layer obtained by anodic oxidation.

触媒部材1の断面形状は、通常の金属線材のような断面円形形状のものだけに限らず、楕円や角型、帯型等のような非円形形状の長尺条材であってもよく、またこれを図1のようにコイル状に成形したものを対象とする。その線径表示は、例えば該細線Wの任意横断面面積から算出される等価線径dで示すことができ、本形態では、その線径dは例えば0.3〜2.0mm程度とされる。  The cross-sectional shape of the catalyst member 1 is not limited to a circular cross-sectional shape such as a normal metal wire, and may be a non-circular long strip material such as an ellipse, a square shape, a belt shape, Further, this is intended to be formed into a coil shape as shown in FIG. The wire diameter display can be represented by, for example, an equivalent wire diameter d calculated from an arbitrary cross-sectional area of the thin wire W. In this embodiment, the wire diameter d is set to about 0.3 to 2.0 mm, for example. .

前記構造の細線材Wにおいて、発熱線1Aは、通電によって所定温度に加熱発熱し得る比較的電気抵抗の大な金属材料が選択され、例えばニッケルやクロム,鉄などによる金属材料をはじめ、ニッケルクロム合金、鉄クロム合金、ステンレス鋼、その他種々の合金材料も採用し得る。より好ましくは、電気抵抗率が5μΩ・cm以上、例えば5〜200μΩ・cmを備えるものが推奨され、例えば前記各特許文献が開示するニクロム、タングステン、モリブデン等の電熱用線材をはじめ、特許文献2,3に示すようにニッケル金属線が好適する。  In the thin wire W having the above structure, the heating wire 1A is selected from a metal material having a relatively large electrical resistance that can be heated and heated to a predetermined temperature by energization. For example, nickel, chromium, iron, etc. Alloys, iron-chromium alloys, stainless steel, and other various alloy materials can also be employed. More preferably, those having an electrical resistivity of 5 μΩ · cm or more, for example, 5 to 200 μΩ · cm, are recommended. For example, electric wires such as Nichrome, Tungsten, and Molybdenum disclosed in each of the above-mentioned patent documents, Patent Document 2 , 3, a nickel metal wire is preferable.

特に、図1,2のような細線材Wをクラッド方法で加工する場合、前記発熱線1Aをニッケル金属により、またその表面を被包する第二金属材料がアルミニウム金属によるものでは、両者の加工性が近似し細径化に好適する。これに限らず、発熱線1Aはその反応使用温度300〜500℃程度に容易に通電加熱し得る特性を持つ前記例示の金属線材が採用される。  In particular, when the thin wire W as shown in FIGS. 1 and 2 is processed by the cladding method, if the heating wire 1A is made of nickel metal and the second metal material encapsulating the surface is made of aluminum metal, both processes It is suitable for narrowing the diameter. Not only this but 1 A of exothermic wires employ | adopt the said exemplary metal wire which has the characteristic which can carry out an electric heating easily about the reaction use temperature 300-500 degreeC.

また、被覆金属層1Bについては、これを構成する第二金属材料として、前記先行特許文献が開示するように、例えば陽極酸化処理によってその表面上に多数の微小細孔を持つ多孔質構造を形成する前記アルミニウム金属が好適する。しかし、本発明はこれに限らず、同様に微小細孔が形成できるものが採用される。例えばチタン、亜鉛、マグネシウム、ジルコニウム等の金属材料も、その処理溶液や条件によって同様に採用し得る。また、該金属層1Bの形成厚さは特に限定するものではなく、使用条件によって適宜設定される。例えば、該金属層1Bと最外装の触媒担持層1Cを含む外装材1Xの容積が該触媒部材の全容積(A0)に対する比(1X/A0)で、70%以下(例えば20%以上)になるように設定される。  As for the covering metal layer 1B, a porous structure having a large number of micropores on its surface is formed by, for example, anodizing as the second metal material constituting the covering metal layer 1B, as disclosed in the above-mentioned prior patent document. The aluminum metal is preferred. However, the present invention is not limited to this, and those capable of forming micropores are also employed. For example, metal materials such as titanium, zinc, magnesium, and zirconium can be similarly employed depending on the treatment solution and conditions. Moreover, the formation thickness of this metal layer 1B is not specifically limited, It sets suitably by use conditions. For example, the volume of the exterior material 1X including the metal layer 1B and the outermost catalyst support layer 1C is 70% or less (for example, 20% or more) as a ratio (1X / A0) to the total volume (A0) of the catalyst member. Is set to be

このような複合構造の触媒部材1において、本発明は図2に示すように、前記金属発熱線と被覆金属層との界面に、前記拡散抑止層Yを備えるものとしている。該抑止層Yは、これを使用する際の使用温度への加熱に伴って、前記発熱線1Aと被覆金属層1Bとの熱反応で生成する余剰拡散を抑える、すなわち防止し乃至減少する機能を有するもので、その周方向に沿って非平滑な凹凸状に形成している。  In the catalyst member 1 having such a composite structure, according to the present invention, as shown in FIG. 2, the diffusion suppressing layer Y is provided at the interface between the metal heating wire and the coated metal layer. The suppression layer Y has a function of suppressing, that is, preventing or reducing, the excessive diffusion generated by the thermal reaction between the heating wire 1A and the covering metal layer 1B with heating to the use temperature when using this. It has a non-smooth uneven shape along its circumferential direction.

この凹凸状は、例えば前記各先行文献が開示するように、前記発熱線1Aの為の第一金属の線材と、その表面を前記被覆金属層1Bの為の第二金属材料を金属メッキやクラッド法によって被覆形成した複合線を原材料として用い、その密着性を高めるように減寸加工を行いながら目標線径に細径化することで得られ、更に陽極酸化処理による最表面側の多孔質構造と、その細孔内に所定の触媒担持層Yを担持することができる。その表面処理は、例えば特開平2−144154号公報、特開平8−246190号公報をはじめ、種々文献が開示する所定電解液中(例えば、硫酸やシュウ酸など)での電気化学処理により行われ、一般的に350〜600℃程度の加熱焼成処理が採用される。  For example, as disclosed in each of the above-mentioned prior art documents, the unevenness is formed by applying a first metal wire for the heating wire 1A and a second metal material for the covering metal layer 1B on the surface thereof by metal plating or cladding. It is obtained by using composite wire coated by the method as a raw material and reducing it to the target wire diameter while reducing the size so as to enhance its adhesion, and further the porous structure on the outermost surface side by anodizing treatment A predetermined catalyst support layer Y can be supported in the pores. The surface treatment is performed by electrochemical treatment in a predetermined electrolyte solution (for example, sulfuric acid, oxalic acid, etc.) disclosed in various documents such as Japanese Patent Application Laid-Open Nos. 2-144154 and 8-246190. Generally, a heat baking treatment at about 350 to 600 ° C. is employed.

また前記拡散抑止層Yは、その素材段階で前記発熱線1Aと被覆金属層1Bとの界面に、例えば融点が1500℃以上の高融点金属の膜材を配してクラッド構造にしたもの、又は前記発熱線1Aと被覆金属層1Bとの被覆複合線の中間乃至最終段階での熱処理により生成する、層状の金属間化合物による前駆拡散層で構成することができる。  The diffusion suppression layer Y has a clad structure in which, for example, a refractory metal film material having a melting point of 1500 ° C. or higher is arranged at the interface between the heating wire 1A and the covering metal layer 1B at the material stage, or It can be composed of a precursor diffusion layer made of a layered intermetallic compound that is generated by heat treatment in the middle or final stage of the coated composite wire of the heating wire 1A and the coated metal layer 1B.

その拡散抑止層Yの構成厚さは、例えば60μm以下が好ましい。これを超えるような厚い被覆状態にしたものでは、層剥離を起こしたり加工性を減ずること、また触媒部材1の製品機能に影響することが懸念される。また、必要以上に薄いものではその効果が得られず、より好ましくは1〜30μmである。  The constituent thickness of the diffusion suppressing layer Y is preferably 60 μm or less, for example. In the case of a thick coating state exceeding this, there is a concern that delamination may occur, workability may be reduced, and the product function of the catalyst member 1 may be affected. Moreover, the effect is not acquired in the thing thinner than necessary, More preferably, it is 1-30 micrometers.

なお、前者の高融点金属の膜材によるものでは、例えばモリブデン、バナジウム、ニオブ、クロム、タンタル等の各種金属材料の他、これに若干の第三元素(例えば10質量%以下のW,Y2O3など)を添加した種々の合金材料が選択される。特に、加工性に優れたクロム、モリブデンなどは融点が比較的高く好適する。  In the former case of the refractory metal film material, in addition to various metal materials such as molybdenum, vanadium, niobium, chromium and tantalum, there are some third elements (for example, W, Y 2 O 3 of 10% by mass or less). ) Are selected. In particular, chromium, molybdenum, and the like excellent in workability are preferable because of their relatively high melting points.

また後者の前駆拡散層によるものとしては、例えば該発熱線1AをNiの金属線とし、前記被覆金属層1Bがアルミニウム金属による場合は、その製造段階において、これを使用する際の例えば400℃以上の過大熱処理条件(温度及び加熱時間)で処理することで、比較的安定した前記化合物層を形成することができる。その一例として、例えばNiAl,Ni3Al,Ni5Al3、Ni2Al3等のNi−Al系金属間化合物が例示される。これら金属間化合物による拡散抑止層Yによれば、その拡散状態は通常の使用温度以上での熱反応で得られるもので、実際の使用温度はこれより低い温度環境状態に維持されることから、該拡散抑止層は比較的安定したバリアー層として作用し、実質的な拡散現象の増大が抑制される。その為、例えば発熱線1Aが前記拡散によって発熱機能を減ずることが防止される。  Further, as the latter due to the precursor diffusion layer, for example, when the heating wire 1A is a Ni metal wire and the covering metal layer 1B is made of aluminum metal, when it is used, for example, 400 ° C. or higher By treating under the excessive heat treatment conditions (temperature and heating time), a relatively stable compound layer can be formed. As an example, Ni-Al based intermetallic compounds such as NiAl, Ni3Al, Ni5Al3, Ni2Al3 are exemplified. According to the diffusion suppression layer Y by these intermetallic compounds, the diffusion state is obtained by a thermal reaction at a temperature higher than the normal use temperature, and the actual use temperature is maintained in a temperature environment state lower than this, The diffusion inhibiting layer acts as a relatively stable barrier layer, and a substantial increase in the diffusion phenomenon is suppressed. For this reason, for example, the heating wire 1A is prevented from deteriorating the heating function due to the diffusion.

これら拡散抑止層Yは、前記図2に見られるように、前記両者金属の境界面に沿って非平滑な凹凸状に形成されることが有効である。その凹凸部は、その両側に位置する前記発熱線1Aとアルミニウム層1Bとの間で相互に係合し一体強固な複合ワイヤーをもたらし、長寿命化に寄与する。  As shown in FIG. 2, it is effective that these diffusion suppression layers Y are formed in a non-smooth uneven shape along the boundary surface between the two metals. The concavo-convex portions engage with each other between the heating wire 1A and the aluminum layer 1B located on both sides of the concavo-convex portion to provide a solid composite wire, which contributes to a long life.

その凹凸状態は、例えばその拡散抑止層Yの厚さ中央位置、すなわち中点が描く区画領域の面積に相当する仮想等価円が示す見掛け上の周長と実周長との比で示すことができる。本発明は、前記凹凸によって、前記実周長は前記見掛け周長の1.02〜1.4倍、好ましくは1.05〜1.35倍、更に好ましくは1.08〜1.3倍とする。  The uneven state can be indicated by, for example, the ratio of the apparent circumferential length and the actual circumferential length indicated by the virtual equivalent circle corresponding to the center position of the thickness of the diffusion suppression layer Y, that is, the area of the partition region drawn by the midpoint. it can. In the present invention, due to the unevenness, the actual circumference is 1.02 to 1.4 times, preferably 1.05 to 1.35 times, more preferably 1.08 to 1.3 times the apparent circumference. To do.

このような凹凸状態は、例えばその複合ワイヤーの成形加工において、比較的太径段階でクラッドしたものを用いるとともに、これを加工率80%以上、より好ましくは85%以上の強度の伸線加工を行うことで得ることができる。すなわち、伸線加工ではその加工歪が軸心方向に絞られることから、その加工程度に伴って前記境界面は不規則な凹凸面を形成することとなる。  Such a concavo-convex state uses, for example, a material that is clad at a relatively large diameter in the forming process of the composite wire, and this is subjected to wire drawing with a processing rate of 80% or more, more preferably 85% or more. It can be obtained by doing. That is, in the wire drawing, the processing strain is reduced in the axial direction, so that the boundary surface forms an irregular concavo-convex surface with the degree of the processing.

したがって、前者の高融点金属による場合も、その素材段階での境界面に予め所定の金属膜材を介在させておくことで同様の凹凸状態が得られ、また後者拡散抑止層Yによる場合は、その中間乃至最終段階での熱処理において、その加熱温度を通常の処理温度より高くしたり加熱時間を長くすることで、両者の熱化学反応を高めることが推奨される。  Therefore, also in the case of the former refractory metal, a similar uneven state can be obtained by interposing a predetermined metal film material in advance at the interface at the material stage, and in the case of the latter diffusion suppression layer Y, In the heat treatment in the middle or final stage, it is recommended to increase the thermochemical reaction between the two by increasing the heating temperature above the normal processing temperature or extending the heating time.

その加熱条件は用いる材料の種類や形状によって適宜設定され、例えば前記ニッケルとアルミニウムの場合は、融点以下の例えば400〜650℃程度の設定温度で、かつ0.1〜30分程度の範囲で設定される。特に、加熱温度が650℃を超えるような高温加熱では、実質的にアルミニウムの融点に近づき、偏心などの問題を招き満足な複合ワイヤーが得ら難い。逆に400℃未満の低温加熱処理では十分な軟質化が得られず、また前記拡散抑止層Yの形成も長時間を要すこととなる。好ましくは、前記低融点側の金属材料の融点の70〜98%、例えば温度500〜630℃で設定される。  The heating condition is appropriately set depending on the type and shape of the material used. For example, in the case of nickel and aluminum, the heating condition is set at a set temperature of, for example, about 400 to 650 ° C. below the melting point and in the range of about 0.1 to 30 minutes. Is done. In particular, when the heating temperature is higher than 650 ° C., the temperature substantially approaches the melting point of aluminum, causing problems such as eccentricity and it is difficult to obtain a satisfactory composite wire. On the other hand, sufficient softening cannot be obtained by low-temperature heat treatment at less than 400 ° C., and the formation of the diffusion suppressing layer Y takes a long time. Preferably, it is set at 70 to 98% of the melting point of the metal material on the low melting point side, for example, at a temperature of 500 to 630 ° C.

他方、前記触媒担持層1Cは、本形態では前記被覆金属層1Bを酸化処理、例えば陽極酸化処理によって、その表面層に微細な有底細孔を備える多孔質構造とするもので、前記アルミニウムの被覆層ではアルマイト層と説明される。その細孔は、例えば孔径1〜200nm、深さ0.1〜500μm(好ましくは300μm以下)の有底形状の微細孔を蜂の巣状(亀甲のメソポーラス構造)に備えるもので、必要ならば、所定のポアワイドリング処理や焼成処理の後処理によって、その細孔のアスペクト比(深さ/開口径)が50〜2000程度に設定することができる。その詳細は、例えば前記先行文献2乃至4により理解され得る。  On the other hand, in the present embodiment, the catalyst-supporting layer 1C has a porous structure having fine bottomed pores on its surface layer by oxidizing the coated metal layer 1B, for example, anodizing treatment. The layer is described as an alumite layer. The pores have, for example, micropores with a bottomed shape having a pore diameter of 1 to 200 nm and a depth of 0.1 to 500 μm (preferably 300 μm or less) in a honeycomb shape (tortoise shell mesoporous structure). The pore aspect ratio (depth / opening diameter) can be set to about 50 to 2000 by the pore wide ring treatment or post-treatment of the firing treatment. The details can be understood from, for example, the above-mentioned prior art documents 2 to 4.

このような多孔質構造によって、所定の触媒物質Xはその細孔内に高密度に担持でき、単位面積当たりの触媒担持量を高め、触媒反応が促進される。また該アルマイト層1Cは、その反応母材の酸化処理で得られることから、ベースのアルミニウム層1Bと強固に結合成形される。その微細孔は、例えば陽極酸化処理中の電圧制御により適宜調整可能であり、上記寸法の例示はその一例である。  With such a porous structure, the predetermined catalyst substance X can be supported in the pores at a high density, the amount of catalyst supported per unit area is increased, and the catalytic reaction is promoted. Since the alumite layer 1C is obtained by oxidizing the reaction base material, the alumite layer 1C is strongly bonded to the base aluminum layer 1B. The fine holes can be adjusted as appropriate by voltage control during anodizing, for example, and the above dimensions are an example.

この担持層1Cは、電気的にも非導電性の絶縁性被膜となる。このように絶縁性被膜で覆われた複合ワイヤーでなる触媒部材1は、その使用時に他の部材(ハウジング容器など)との接触による電気的短絡を防止でき、また、その多孔質構造は、非常に微細かつ硬質であるため、微細開口の変形や封孔を防止して所定の触媒物質Xを適正に担持できる。収容された触媒物質Xは、使用時における他の部材との接触や摩擦等による離脱、脱落を防ぐことができる。  The carrier layer 1C becomes an electrically non-conductive insulating film. Thus, the catalyst member 1 composed of a composite wire covered with an insulating film can prevent an electrical short circuit due to contact with other members (such as a housing container) during use, and the porous structure is extremely Therefore, the predetermined catalytic substance X can be properly supported by preventing deformation and sealing of the fine openings. The accommodated catalyst substance X can prevent detachment and dropout due to contact with other members or friction during use.

前記触媒物質Xは、その使用目的に応じて種々のものが選択され、特に限定されないが、例えば白金(白金族金属及びその合金を含む)が好適である。また、白金以外にも、ロジウム、レニウム、ニッケル、チタン、マグネシウム、亜鉛、ジルコニウム、モリブデン及びタングステンからなる群から選択される1以上の遷移金属が好適である。  Various catalyst materials X are selected according to the purpose of use, and are not particularly limited. For example, platinum (including platinum group metals and alloys thereof) is preferable. In addition to platinum, one or more transition metals selected from the group consisting of rhodium, rhenium, nickel, titanium, magnesium, zinc, zirconium, molybdenum and tungsten are suitable.

触媒物質Xの担持処理は、前記金属、例えば白金を含む白金溶液を多孔質構造のアルマイト層1Cに塗布し、圧力をかけて前記有底細孔H内に圧入浸透させる担持法によって長尺細線Wに担持される。前記白金溶液としては、例えばヘキサクロロ白金(IV)酸六水和液、ジニトロジアンミン白金(II)硝酸溶液、ヘキサアンミン白金(IV)クロライド溶液又はテトラアンミン白金(II)水酸塩溶液等が好適に用いられる。また、白金及び/又は前記遷移金属塩溶液は、ワイヤー本体Wを通電又は電磁誘導加熱しながら所定の温度域で、浸漬、滴下、塗布又は噴霧等の方法で同時あるいは逐次担持させることもできる。更に、アルミニウムの最外表面側に陽極酸化処理でアルマイト層を積層形成して微細孔を構成し、この微細開口に触媒物質を担持する触媒担持層について説明したが、これに限らず、例えば酸化皮膜表面に微細な切込みを入れて細孔を形成し、この細孔に触媒物質を担持する触媒担持層とする方法でも良い。  The catalyst material X is supported by applying a platinum solution containing the metal, for example, platinum, to the porous alumite layer 1C and applying pressure to the bottomed pores H so as to infiltrate into the bottomed pores H. It is carried on. As the platinum solution, for example, hexachloroplatinic (IV) acid hexahydrate, dinitrodiammine platinum (II) nitric acid solution, hexaammine platinum (IV) chloride solution or tetraammine platinum (II) hydrochloride solution is preferably used. It is done. Moreover, platinum and / or the said transition metal salt solution can also be simultaneously or sequentially carried | supported by methods, such as immersion, dripping, application | coating, or spraying, in a predetermined temperature range, energizing or electromagnetic induction heating the wire main body W. Furthermore, an alumite layer is laminated on the outermost surface side of aluminum to form micropores, and a catalyst support layer for supporting a catalyst substance in this microscopic opening has been described. A method may be used in which fine cuts are made on the surface of the film to form pores, and a catalyst-carrying layer that carries a catalyst substance in the pores.

この他にも、触媒物質Xは、Pt(CO)Cl,Rh(CO12,Ni(CO),Re(CO)などの金属カルボニル化合物やCpTiCl(Cp=シクロペンタヂエニル)、Mo(CO)などを用いる化学気相固定法(Chemical Vapor Deposition)により適宜担持され、担持後、必要ならば酸素含有雰囲気中での250〜600℃の温度域での段階的な焼成、さらに水素ガス雰囲気下で100〜450℃の温度域で段階的に昇温することにより活性化処理を行うことが好ましい。In addition, the catalyst substance X may be a metal carbonyl compound such as Pt (CO) 2 Cl, Rh 4 (CO 12 , Ni (CO) 4 , Re 2 (CO) 7 , or CpTiCl 2 (Cp = cyclopentadienyl). ), Mo (CO) 6 or the like, which is appropriately supported by a chemical vapor deposition method, and if necessary, stepwise firing in a temperature range of 250 to 600 ° C. in an oxygen-containing atmosphere if necessary. Furthermore, it is preferable to perform the activation treatment by raising the temperature stepwise in a temperature range of 100 to 450 ° C. in a hydrogen gas atmosphere.

こうして複合型ワイヤー1は、図1に示されるように、前記巻径Dで巻回されたコイル部2を有するものとし、そのコイル線の両端部(本形態では非コイル状部)には、前記担持層1Cを具えず金属製発熱線1Aが露出する接続部3a、3bを具えるものとしている。その接続部3a、3bは、更に系外の外部電源に接続され、通電によって所定温度に加熱される。  Thus, as shown in FIG. 1, the composite wire 1 has a coil portion 2 wound with the winding diameter D, and both ends of the coil wire (non-coiled portion in this embodiment) The support layer 1C is not provided, but the connection portions 3a and 3b from which the metal heating wire 1A is exposed are provided. The connecting portions 3a and 3b are further connected to an external power source outside the system and heated to a predetermined temperature by energization.

前記コイル部2の加工乃至巻回形状や成形寸法等は、該触媒部材1の線径d及び表面の前記触媒担持層1Cを考慮して実施することが望ましく、前記特許文献2及び3はその全長に亙って密着状に巻回したコイル品を開示する。その場合、該コイル部2はほぼ同径の幅とコイル高さを有するとともに、そのコイル部の内部は実質的に空洞状態であることから、触媒物質を十分に有効な収容率とすることはできない。また同特許文献3のように、大小異なるコイル線体同士を挿通するものでは、その点数が増して在庫管理上でも煩雑となり、そうした点を解消するものとして、例えば図3a及び3bのように一方向に傾斜させた状態に斜め巻きしたコイル線が好適する。図3aはその平面図を示し、図3bは側面図を示す。  It is desirable that the processing, winding shape, molding size, and the like of the coil portion 2 be performed in consideration of the wire diameter d of the catalyst member 1 and the catalyst support layer 1C on the surface. A coil product wound in close contact over the entire length is disclosed. In this case, the coil portion 2 has a width and a coil height that are substantially the same diameter, and the inside of the coil portion is substantially in a hollow state. Can not. Further, in the case where the coil wires having different sizes are inserted as in Patent Document 3, the number of points increases and the inventory management becomes complicated. For example, as shown in FIGS. A coil wire wound obliquely in a state inclined in the direction is suitable. FIG. 3a shows the top view and FIG. 3b shows the side view.

その触媒部材は、その平面視で傾斜角(α)を持った一定方向に傾斜させることで構成され、傾斜角αは、例えば70°以下、好ましくは30〜60°程度の範囲に設定される。このように傾斜したコイル線体2では、その構成高さhは幅寸法に比して小さく、すなわち肉薄に形成できることから、これを例えば多段に積み重ねて使用する場合はその全体厚さを大幅に減少し、コイル部2同士の絡み合いを防ぐとともに、各巻線同士の間には被処理流体が十分に流通する隙間流路が得られることから、良好な触媒反応をもたらすものとなる。  The catalyst member is formed by inclining in a certain direction having an inclination angle (α) in a plan view, and the inclination angle α is set to a range of, for example, 70 ° or less, preferably about 30 to 60 °. . In the coil wire body 2 tilted in this way, the configuration height h is smaller than the width dimension, that is, it can be formed thin, so that, for example, when it is used by being stacked in multiple stages, the overall thickness is greatly increased. This reduces the entanglement between the coil portions 2 and provides a gap flow path through which the fluid to be treated sufficiently circulates between the windings, thereby providing a good catalytic reaction.

その巻回形状については、例えば前記複合ワイヤーを用いて通常の密着真円形状に巻回してなるコイル部2を、更に斜め方向に前記所定角度αになるように押し潰したものと説明することができる。このような巻回成形は、該アルマイト層1Cの表面処理前に行うことが望ましい。また、こうして扁平化されたコイル部2は、その巻回幅に相当する平均コイル径Dは、その複合ワイヤーの前記等価線径dの3倍以上、例えば3〜20倍、さらに好ましくは5〜15倍と比較的大きく設定され、かつ前記傾斜角(α)を持つように斜め巻きされる。そのコイル部の長さは特に制限されず、任意に設定可能であるが、通電加熱の使用形態から見て、通常100cm程度以下、例えば5〜50cm程度のものが比較的良好に用い得る。  Regarding the winding shape, for example, the coil portion 2 that is wound in a normal close-fitting circular shape using the composite wire is described as being further crushed to the predetermined angle α in an oblique direction. Can do. Such winding molding is desirably performed before the surface treatment of the alumite layer 1C. Further, the coil portion 2 thus flattened has an average coil diameter D corresponding to the winding width of 3 times or more, for example 3 to 20 times, more preferably 5 to the equivalent wire diameter d of the composite wire. It is set to a comparatively large value of 15 times and is wound obliquely so as to have the inclination angle (α). The length of the coil portion is not particularly limited and can be set arbitrarily. However, from the viewpoint of the use form of energization heating, a length of about 100 cm or less, for example, about 5 to 50 cm can be used relatively well.

前記触媒部材1の水素製造用の触媒反応器への材用については、例えば、その複数を所定の反応室内に供給される被処理流体の流通方向に沿って多段に配置することができ、該触媒部材1の前記発熱線1Aを各々通電加熱する電気回路を構成し、使用される。その使用形態は例えば、前記各特許文献によるものの他、例えば特開2014−177360号公報が示し、また図4及び図5に見るように多段積層型に構成したものが好適する。  Regarding the use of the catalyst member 1 as a material for a catalytic reactor for hydrogen production, for example, a plurality of the catalyst members 1 can be arranged in multiple stages along the flow direction of the fluid to be treated supplied into a predetermined reaction chamber, An electric circuit for energizing and heating each of the heating wires 1A of the catalyst member 1 is configured and used. For example, JP-A-2014-177360 shows a usage pattern other than those described in the above-mentioned patent documents, and a multi-layered type as shown in FIGS. 4 and 5 is suitable.

図4はその代表例として、反応器10は例えば上・下端面に配管フランジ11A,11Bを設けた太径のハウジング容器12内に、やや小径の中容器13を設けて、その容器内に前記触媒部材のコイル線体15の複数本を順次収容した、例えば平板状の収容ホルダー14を用いるカセット型として、またこれを多段に配置することで構成している。  FIG. 4 shows a typical example of the reactor 10. For example, the reactor 10 is provided with a small-diameter medium container 13 in a large-diameter housing container 12 provided with piping flanges 11A and 11B on the upper and lower end surfaces. For example, it is configured as a cassette type that uses a flat-shaped accommodation holder 14 that sequentially accommodates a plurality of coil members 15 of the catalyst member, and is arranged in multiple stages.

そして、各コイル線体15は各々系外の外部電源27(Dw)に接続され、所定温度に通電加熱可能に電気回路を形成しており、また必要ならば、前記ハウジング容器12と中容器13との間の空室内に、供給口16A及び排出口16Bによって予め所定温度に加熱した加熱流体を供給する間接加熱型として用いることもできる。  Each coil wire 15 is connected to an external power supply 27 (Dw) outside the system, and forms an electric circuit so that it can be heated to a predetermined temperature. If necessary, the housing container 12 and the intermediate container 13 are formed. It can also be used as an indirect heating type in which a heating fluid heated to a predetermined temperature in advance by the supply port 16A and the discharge port 16B is supplied into the empty space between the two.

また、水素製造の被処理流体は、図5のシステムフロー図に示すように例えばメチルシクロヘキサン(MCH)液を原料の被処理流体として用い、上流側の気化器23によって予め加熱噴霧化され、これを反応器20内に供給することで触媒反応が発生する。すなわち、該ラインは、前記MCHを貯留する貯槽21と、送給用ポンプ22、前記気化器23を経て触媒反応器24で生成した反応ガスを次の冷却器25で気液分離し、分離生成したガス体は水素として、また液体分は例えばトルエンとして回収層30に回収されるシステムである。なお、この形態で前記気化器23には、MCHの供給背圧と反応装置の触媒物質の酸化劣化を防止する為の還元性の随伴用ガス、例えば水素が用いられる。  Further, as shown in the system flow diagram of FIG. 5, the fluid to be processed for hydrogen production is preliminarily heated and atomized by the upstream vaporizer 23 using, for example, a methylcyclohexane (MCH) liquid as a raw material to be processed. Is fed into the reactor 20 to cause a catalytic reaction. That is, the line separates the reaction gas generated in the catalytic reactor 24 through the storage tank 21 for storing the MCH, the feed pump 22 and the vaporizer 23 by the next cooler 25, and separates the generated gas. In this system, the gas body is recovered as hydrogen, and the liquid component is recovered in the recovery layer 30 as, for example, toluene. In this embodiment, the vaporizer 23 uses a reducing accompanying gas such as hydrogen for preventing the MCH supply back pressure and the oxidative deterioration of the catalytic material of the reactor.

また必要ならば、前記反応器24内の各触媒部材が常に所定温度になるように、熱電対Thが所定位置に設置され、温度計Tmによって温度管理される。こうして、前記被処理流体は図4の上方側から、分散多孔板17を介してその供給量がその全面を通じてほぼ平均化できるように整流調整され、流下に伴って順次触媒反応が発生する。
以下、更に次の実施例により本発明を説明する。
If necessary, a thermocouple Th is installed at a predetermined position so that each catalyst member in the reactor 24 always has a predetermined temperature, and the temperature is controlled by a thermometer Tm. In this way, the fluid to be treated is rectified and adjusted from the upper side of FIG. 4 through the dispersed perforated plate 17 so that the supply amount can be almost averaged over the entire surface, and a catalytic reaction occurs sequentially as it flows down.
The following examples further illustrate the present invention.

[アルミニウムクラッドコイル細線の製造]
通電加熱機能を有するニッケル線(純度99%)をアルミニウム(純度99.9%)の帯材で被包し、線径12mmのアルミクラッド線材(複合線)の母線材を出発材料として用いた。そして、この母線材に対して、温度620℃×5minの条件での中間熱処理後、最終加工率88%の冷間伸線加工によって細径化し、最終的に線径0.7mmφの複合細線を得た。
[Manufacture of aluminum clad coil wire]
A nickel wire (purity 99%) having an electric heating function was encapsulated with a strip of aluminum (purity 99.9%), and a base wire of an aluminum clad wire (composite wire) having a wire diameter of 12 mm was used as a starting material. Then, after the intermediate heat treatment under the condition of a temperature of 620 ° C. × 5 min, the bus wire is thinned by cold wire drawing with a final working rate of 88%, and finally a composite thin wire having a wire diameter of 0.7 mmφ is formed. Obtained.

その複合細線は、前記アルミニウム層を含む外装材1Xの平均厚さが100μmで、またその横断面を顕微鏡観察したところ、前記芯材Ni材とクラッド材アルミニウム層との境界面において、平均23μm厚さの化合物層が認められ、その化合物層についてX線回析したところ実質的にNiAlであることが確認された。  The composite thin wire has an average thickness of 100 μm of the exterior material 1X including the aluminum layer, and when the cross section is observed with a microscope, an average thickness of 23 μm is obtained at the interface between the core material Ni material and the clad material aluminum layer. A compound layer was observed, and X-ray diffraction of the compound layer was confirmed to be substantially NiAl.

この化合物層は、本実施例では前記熱処理を従来に増して長時間加熱によるものと推測され、またその境界面は図2に示すような断面非円形の凹凸状をなすもので、その実質的な周長は、該化合物層の中点が描く区画領域の面積に相当する換算等価円の周長、すなわち見掛け上の周長の約1.08倍の長さを持つ非平滑な凹凸部を備え、両者は強固に複合一体化されるものであった。  In this embodiment, this compound layer is presumed to be caused by heating for a long time after the heat treatment as before, and the boundary surface has a non-circular uneven shape as shown in FIG. The perimeter is a non-smooth concavo-convex portion having a length of a converted equivalent circle corresponding to the area of the partition region drawn by the middle point of the compound layer, that is, a length of about 1.08 times the apparent perimeter. Both of them were firmly combined and integrated.

次に、この複合細線をコイリングマシンにセットして、巻回平均径Dが10mm、長さ300mmの密着巻きされたコイル線体を得た。コイル線体は前記複合細線の線径dの1.01倍程度に密着した密着コイル線で、アルミニウム層には、剥離などの欠陥は見られず、良好なコイル状態を具えるものであった。  Next, the composite thin wire was set in a coiling machine to obtain a coiled wire wound in close contact with a winding average diameter D of 10 mm and a length of 300 mm. The coil wire was a tightly coiled wire that was in close contact with the wire diameter d of the composite thin wire about 1.01 times, and the aluminum layer had no defects such as peeling and had a good coil state. .

[複合細線のアルマイト処理]
次に、コイル線に対して、温度35℃の4wt%しゅう酸水溶液、電流密度60A/mの条件で陽極酸化処理が行なわれた。その後、同種のしゅう酸処理液に6時間浸漬したままで酸処理をし、ポアサイズの拡幅処理をして大気中で乾燥させた。次に、400℃で約1時間の焼成処理をした後、80℃以上で約2時間水和処理を行なって乾燥させた。その後、さらに500℃で3時間焼成し、表面に細孔を持つ多孔質構造のアルマイト層の具えるアルマイトクラッド金属細線とし、更にこれを次の触媒処理によって、表面に白金の触媒物質を担持させた。
[Alumite treatment of composite thin wire]
Next, the coil wire was anodized under the conditions of a 4 wt% oxalic acid aqueous solution at a temperature of 35 ° C. and a current density of 60 A / m 2 . Then, the acid treatment was performed while immersed in the same kind of oxalic acid treatment solution for 6 hours, and the pore size was widened and dried in the atmosphere. Next, after baking at 400 ° C. for about 1 hour, hydration was performed at 80 ° C. or higher for about 2 hours and dried. After that, it is further calcined at 500 ° C. for 3 hours to form an alumite clad metal fine wire having a porous anodized layer with pores on the surface, and further, this is supported on the surface by a platinum catalyst material by the following catalyst treatment. It was.

触媒処理は、触媒物質の白金塩を用い、塩化白金酸HPtCl6HOを用いてエタノールにそれぞれ溶解した塩化白金酸溶液中に前記アルマイトクラッド細線を浸漬し行ったもので、その担持量は溶解溶液中のイオン量から3gPt/m2のものと検出された。The catalyst treatment was performed by immersing the alumite clad fine wire in a chloroplatinic acid solution dissolved in ethanol using a platinum salt of a catalyst substance and using chloroplatinic acid H 2 PtCl 6 6H 2 O, respectively. The amount was detected to be 3 g Pt / m 2 from the amount of ions in the lysis solution.

[反応器]
次に、このコイル線体の8本を直列につないで単位ブロックとして、その三組を各々別製の支持ホルダーに順次組み込みすることで、合計24本のコイル線体を備える触媒ユニットとしている。
[Reactor]
Next, eight of these coil wires are connected in series to form a unit block, and the three sets are sequentially incorporated into separate support holders, thereby forming a catalyst unit having a total of 24 coil wires.

支持ホルダーは、アルミ合金製の押し出し成形により300×300mmの大きさの板状成形品で、その片面側には高さ10mmの隔壁を12mm間隔で平行に設けたもので、その隔壁間の室内に沿って前記コイル線体を順次組み込みするとともに、各回路ブロック毎の両端末は、該ホルダーの先端側1部に絶縁状態で付設した継電端子に各々つながれ、系外の供給電力を受ける受電部をなすもので、またその底面には、該処理流体を流通する為の流通孔が、孔径:10mmで、5mm間隔に設けられている。  The support holder is a 300 × 300 mm plate-shaped product made by extrusion molding made of an aluminum alloy, and 10 mm high partition walls are provided in parallel at 12 mm intervals on one side, and the chamber between the partition walls The coil wire bodies are sequentially assembled along the two terminals, and both terminals of each circuit block are respectively connected to a relay terminal provided in an insulated state at one end portion of the holder, and receive power supplied from outside the system. The flow holes for flowing the processing fluid are provided at intervals of 5 mm at a hole diameter of 10 mm.

この得られた触媒ユニットを合計10段用意して、各々電気配線して触媒反応器を構成し、図4の水素製造システムによって水素生成試験を行なった。
試験は、被処理流体にメチルシクロヘキサン(MCH)を用いた脱水素特性の良否について、水素発生量及びメチルシクロヘキサンのトルエン転化率のガスクロマトグラフィーにより分析・測定するもので、各触媒エレメントのコイル線体は、前記受電部を通じて各々500Wの電気量を付加し、約3分で目的の350℃の温度に加熱することができた。その温度計測は、各単位ブロック毎に設けた温度センサーによって自動制御したものである。
A total of 10 stages of the obtained catalyst units were prepared, and each was electrically wired to constitute a catalyst reactor, and a hydrogen production test was conducted by the hydrogen production system of FIG.
In the test, the quality of dehydrogenation using methylcyclohexane (MCH) as the fluid to be treated is analyzed and measured by gas chromatography of hydrogen generation amount and toluene conversion rate of methylcyclohexane. The body was able to be heated to the target temperature of 350 ° C. in about 3 minutes by adding an amount of electricity of 500 W through the power receiving unit. The temperature measurement is automatically controlled by a temperature sensor provided for each unit block.

被処理流体は、その上流側からパルス型噴霧ノズルよりメチルシクロヘキサンを水素気流中、流量12L/分、噴霧時間0.5秒(1回噴霧量30gr)、噴霧間隔10及び20秒で供給して水素生成するもので、その触媒反応を2000時間に亙って性能評価し、またその加熱に伴う前記触媒部材の材料拡散の状況を調査した。  The fluid to be treated is supplied from the upstream side from a pulse type spray nozzle with methylcyclohexane in a hydrogen stream at a flow rate of 12 L / min, a spray time of 0.5 seconds (a single spray amount of 30 gr), and a spray interval of 10 and 20 seconds. The catalyst produced a hydrogen, and its catalytic reaction was evaluated for 2000 hours, and the state of material diffusion of the catalyst member accompanying the heating was investigated.

評価は、同反応により得られる水素生成量と、副次物中の純度を示すメチルシクロヘキサン転化率,トルエン選択率で評価し、平均的にメチルシクロヘキサン転化率が92%、トルエン選択率が98%で、かつその平均水素生成量は147L/分の結果が得られ、有効に水素製造するものであることが確認された。  The evaluation is based on the amount of hydrogen produced by the reaction, methylcyclohexane conversion indicating the purity of by-products, and toluene selectivity, with an average methylcyclohexane conversion of 92% and toluene selectivity of 98%. As a result, an average hydrogen production amount of 147 L / min was obtained, and it was confirmed that hydrogen was effectively produced.

また、前記長時間の通電加熱に伴う材料拡散の影響調査についても、使用後の触媒部材について任意に採取して5点の試料を用いて、各々その横断面の顕微鏡観察を行ったもので、その芯材(Ni線)と被覆アルミニウム層との境界部について組織観察し、未使用の原線状態のものとの拡散層の増大有無を比較した。しかしながら、本実施例材ではその加工段階で比較的高温処理で形成していたNiAl相がバリヤー層となって、それ以上の金属反応を抑えることができ、経時変化が少なく十分な有効性が得られた。  In addition, for the investigation of the influence of material diffusion associated with the long-time energization heating, a sample of the catalyst member after use was arbitrarily sampled and five points of samples were used, and the respective cross sections were observed with a microscope. The structure of the boundary portion between the core material (Ni wire) and the coated aluminum layer was observed, and the presence or absence of increase in the diffusion layer was compared with that in the unused original wire state. However, in this example material, the NiAl phase formed by the relatively high temperature treatment at the processing stage becomes a barrier layer, and further metal reaction can be suppressed, and sufficient effectiveness is obtained with little change over time. It was.

通電加熱機能を有する線径8mmのニッケル線(純度99%)を芯材として、これを電気クロムメッキ法によって厚さ50μmのクロム層を形成するとともに、更にこれをAl製パイプ内に挿入し、3層構造の複合線を凖備した。  A nickel wire (purity 99%) having a wire diameter of 8 mm having a current heating function is used as a core material, and a chromium layer having a thickness of 50 μm is formed by an electrochrome plating method, and further inserted into an Al pipe. A three-layer composite wire was prepared.

そして、この母線材に対して、最終加工率88%の冷間伸線加工と、温度620℃×1minの条件で中間熱処理を介しながら細径化し、最終的に線径0.9mmφの複合細線を得た。  Then, the wire rod is thinned through a cold wire drawing with a final working rate of 88% and an intermediate heat treatment under conditions of a temperature of 620 ° C. × 1 min, and finally a composite thin wire with a wire diameter of 0.9 mmφ Got.

その複合細線は、前記アルミニウム層の平均厚さが100μmで、またその横断面を顕微鏡観察したところ、前記芯材Ni材とクラッド材アルミニウム層との境界面に、厚さ5μmの前記クロム層を備えるもので、前記クロム層は、前記冷間加工によってその横断面視での算出周長に対して1.04倍の実質周長を持つ凹凸状をなすものであった。  The composite thin wire has an average thickness of the aluminum layer of 100 μm, and the cross section thereof was observed with a microscope. As a result, the chromium layer having a thickness of 5 μm was formed on the boundary surface between the core material Ni material and the clad material aluminum layer. The chrome layer has an uneven shape having a substantial circumferential length of 1.04 times the calculated circumferential length in a cross-sectional view by the cold working.

この複合線を用いて、前記実施例1と同様に外径10mmの密着コイル巻きしたコイル線体を得て、これを触媒反応器に組込んで、1500時間に亙って連続通電加熱を行ない、その横断面の組織状態を同様に顕微鏡で観察した。その加熱温度は、使用状態に習って還元性雰囲気中で加熱温度340℃にセットしたものであるが、その程度の加熱温度では実質的な拡散は認められず、前記クロム層は十分なバリア効果があることが確認された。  Using this composite wire, a coiled wire wound with a tightly wound coil having an outer diameter of 10 mm was obtained in the same manner as in Example 1, and this was incorporated into a catalytic reactor and subjected to continuous energization heating for 1500 hours. The structure of the cross section was similarly observed with a microscope. The heating temperature is set to a heating temperature of 340 ° C. in a reducing atmosphere according to the use state, but no substantial diffusion is observed at that heating temperature, and the chromium layer has a sufficient barrier effect. It was confirmed that there is.

前記発熱線と被覆金属層について、更に他の金属材料による場合を評価した。
ここでは、発熱線は0.6mmのニクロム(Ni−Cr合金)線により、また被覆金属層はチタン金属により厚さ0.1mmを被覆したもので、その界面に、前記実施例1と同様に中間熱処理によってTiNiの前駆化合物層を介在させ、また更に触媒担持等についても同様に行ったものを用いた。
評価は、これを380℃の使用想定温度に加熱するとともに、800時間連続処理に伴う前記発熱線と被覆金属層との界面の変化を見たもので、結果は良好であった。
The exothermic wire and the coated metal layer were further evaluated for other metal materials.
Here, the heating wire is a 0.6 mm nichrome (Ni—Cr alloy) wire, and the coated metal layer is coated with a titanium metal to a thickness of 0.1 mm, and the interface is the same as in the first embodiment. A TiNi precursor compound layer was interposed by an intermediate heat treatment, and the same catalyst loading was used.
In the evaluation, while heating this to an expected use temperature of 380 ° C., the change in the interface between the heating wire and the coating metal layer accompanying the continuous treatment for 800 hours was observed, and the result was good.

産業上の利用分野Industrial application fields

本発明に係る触媒部材は、通電加熱型の触媒ワイヤーとして特に金属拡散に伴う材料特性への影響を低減させることができ、その製品寿命の向上を図るもので、特にメンテナンスフリーの触媒部材として幅広い用途への期待でき、水素を燃料とする自動車、船舶用等のエネルギー分野に広く利用され得るものである。  The catalyst member according to the present invention can reduce the influence on the material properties particularly due to metal diffusion as an electrically heated catalyst wire, and can improve the product life, and is particularly wide as a maintenance-free catalyst member. It can be expected for use, and can be widely used in the energy field such as automobiles and ships using hydrogen as fuel.

1 触媒部材
2 コイル部
1A 発熱線
1B 被覆金属層
1C 触媒担持層
X 触媒物質
Y 拡散抑止層
DESCRIPTION OF SYMBOLS 1 Catalyst member 2 Coil part 1A Heating wire 1B Coated metal layer 1C Catalyst support layer X Catalyst substance Y Diffusion suppression layer

Claims (9)

通電によって所定温度に加熱発熱する金属製の発熱線と、
該発熱線を被包し、かつ該発熱線とは異種の第二金属材料でなる被覆金属層と、
その被覆金属層の外周面に、所定の触媒物質を担持する触媒担持層を備えるとともに、
該触媒担持層に担持された前記触媒物質を含み、
前記発熱線及び被覆金属層の界面は、使用に伴い形成される前記発熱線と被覆金属層同士の余剰拡散を抑える拡散抑止層を、その周方向に沿って非平滑な凹凸状に備えること
を特徴とする複合ワイヤー型触媒部材。
A metal heating wire that heats up to a predetermined temperature when energized,
A coating metal layer encapsulating the heating wire and made of a second metal material different from the heating wire;
On the outer peripheral surface of the coated metal layer is provided with a catalyst supporting layer for supporting a predetermined catalyst substance,
Including the catalyst material supported on the catalyst support layer;
The interface between the heating wire and the coating metal layer is provided with a non-smooth uneven shape along the circumferential direction, which includes a diffusion suppression layer that suppresses excessive diffusion between the heating wire and the coating metal layer that are formed with use. A composite wire-type catalyst member.
前記拡散抑止層は、融点が1500℃以上の高融点金属材料でなる第三被覆層、又は前記発熱線及び前記被覆金属層の相互拡散で予め形成した前駆拡散層のいずれかによるものである、請求項1に記載の複合ワイヤー型触媒部材。  The diffusion-inhibiting layer is either a third coating layer made of a refractory metal material having a melting point of 1500 ° C. or higher, or a precursor diffusion layer formed in advance by mutual diffusion of the heating wire and the coating metal layer. The composite wire-type catalyst member according to claim 1. 前記前駆拡散層は、前記発熱線と被覆金属層との被覆複合線の製造段階での熱処理に伴い層状に形成した金属間化合物によるものである、請求項2に記載の複合ワイヤー型触媒部材。  3. The composite wire type catalyst member according to claim 2, wherein the precursor diffusion layer is made of an intermetallic compound formed in a layer shape in accordance with a heat treatment in a production stage of a coated composite wire of the heating wire and the coated metal layer. 前記発熱線はニッケル金属、前記被覆金属層はアルミニウム金属で構成され、前記前駆拡散層は、前記ニッケル金属と前記アルミニウム金属との熱反応により生成されるNi−Al系金属間化合物で構成されるものである請求項3に記載の複合ワイヤー型触媒部材。  The heating wire is made of nickel metal, the covering metal layer is made of aluminum metal, and the precursor diffusion layer is made of a Ni—Al intermetallic compound generated by a thermal reaction between the nickel metal and the aluminum metal. The composite wire-type catalyst member according to claim 3, which is a thing. 前記拡散抑止層は、その構成厚さが60μm以下のものである請求項1〜4のいずれかに記載の複合ワイヤー型触媒部材。  The composite wire type catalyst member according to any one of claims 1 to 4, wherein the diffusion inhibiting layer has a constituent thickness of 60 µm or less. 前記拡散抑止層は、その構成厚さの中央位置が描く横断面面積から算出される見掛け周長に対して、1.02〜1.4倍の実周長を備える前記凹凸状をなすものである請求項1〜5のいずれかに記載の複合ワイヤー型触媒部材。  The diffusion-inhibiting layer has the concavo-convex shape having an actual circumference of 1.02 to 1.4 times the apparent circumference calculated from the cross-sectional area drawn by the center position of the constituent thickness. The composite wire-type catalyst member according to any one of claims 1 to 5. 前記触媒部材は、更にコイル掛けによって密着状に巻回されたコイル部を備えるものである請求項6に記載の複合ワイヤー型触媒部材。  The composite wire type catalyst member according to claim 6, wherein the catalyst member further includes a coil portion wound in close contact by coiling. 前記コイル部は、その平面視で70°以下の傾斜角(α)で一定方向に斜め巻きされたものである請求項7に記載の複合ワイヤー型触媒部材。  The composite wire-type catalyst member according to claim 7, wherein the coil portion is wound obliquely in a fixed direction at an inclination angle (α) of 70 ° or less in plan view. 請求項1〜8のいずれかに記載の触媒部材の複数を、所定の触媒反応室内に供給される被処理流体の流通方向に沿って複数段に積層配置するとともに、該触媒部材の前記発熱線に各々通電加熱する電気回路を備えることを特徴とする水素製造用の触媒反応器。  A plurality of catalyst members according to any one of claims 1 to 8 are stacked in a plurality of stages along a flow direction of a fluid to be treated supplied into a predetermined catalyst reaction chamber, and the heating wire of the catalyst member A catalytic reactor for producing hydrogen, characterized by comprising an electric circuit for heating and heating each.
JP2015125137A 2015-06-04 2015-06-04 Composite wire type catalyst member and catalytic reactor for hydrogen production using the same Active JP6527398B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015125137A JP6527398B2 (en) 2015-06-04 2015-06-04 Composite wire type catalyst member and catalytic reactor for hydrogen production using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015125137A JP6527398B2 (en) 2015-06-04 2015-06-04 Composite wire type catalyst member and catalytic reactor for hydrogen production using the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2018240759A Division JP6783292B2 (en) 2018-12-25 2018-12-25 Composite wire type catalyst member and catalyst reactor for hydrogen production using this

Publications (2)

Publication Number Publication Date
JP2017001006A true JP2017001006A (en) 2017-01-05
JP6527398B2 JP6527398B2 (en) 2019-06-05

Family

ID=57753211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015125137A Active JP6527398B2 (en) 2015-06-04 2015-06-04 Composite wire type catalyst member and catalytic reactor for hydrogen production using the same

Country Status (1)

Country Link
JP (1) JP6527398B2 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49117311A (en) * 1973-03-12 1974-11-09
JPS54106091A (en) * 1978-02-08 1979-08-20 Riken Keikinzoku Kogyo Kk Manufacture of catalyst body
JPH04146125A (en) * 1990-10-09 1992-05-20 Daido Steel Co Ltd Corrosion-resistant and heat-resistant metal composite material and manufacture thereof
JPH04235271A (en) * 1990-06-06 1992-08-24 Daido Steel Co Ltd High temperature corrosion resistant member and its manufacture
JPH07155523A (en) * 1993-12-09 1995-06-20 Jiro Sasaoka Gas-liquid contact treatment and solid separator
JPH09260030A (en) * 1996-03-21 1997-10-03 Japan Metals & Chem Co Ltd Porous metal of ni-cr-al
JP2011245475A (en) * 2010-04-28 2011-12-08 Nippon Seisen Co Ltd Wire catalyst for hydrogenation/dehydrogenation reaction, wire catalyst product, and method for producing them
WO2012090326A1 (en) * 2010-12-28 2012-07-05 日本精線株式会社 Catalyst structure and hydrogen reaction module using same
JP2012236182A (en) * 2011-05-09 2012-12-06 Nippon Seisen Co Ltd Catalyst carrier, catalyst product using the same, and catalyst module
WO2014013788A1 (en) * 2012-07-18 2014-01-23 独立行政法人産業技術総合研究所 Base material for hydrogen apparatus
JP2014177360A (en) * 2013-03-13 2014-09-25 Nippon Seisen Co Ltd Reaction vessel for hydrogen generation, and control method thereof

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49117311A (en) * 1973-03-12 1974-11-09
JPS54106091A (en) * 1978-02-08 1979-08-20 Riken Keikinzoku Kogyo Kk Manufacture of catalyst body
JPH04235271A (en) * 1990-06-06 1992-08-24 Daido Steel Co Ltd High temperature corrosion resistant member and its manufacture
JPH04146125A (en) * 1990-10-09 1992-05-20 Daido Steel Co Ltd Corrosion-resistant and heat-resistant metal composite material and manufacture thereof
JPH07155523A (en) * 1993-12-09 1995-06-20 Jiro Sasaoka Gas-liquid contact treatment and solid separator
JPH09260030A (en) * 1996-03-21 1997-10-03 Japan Metals & Chem Co Ltd Porous metal of ni-cr-al
JP2011245475A (en) * 2010-04-28 2011-12-08 Nippon Seisen Co Ltd Wire catalyst for hydrogenation/dehydrogenation reaction, wire catalyst product, and method for producing them
WO2012090326A1 (en) * 2010-12-28 2012-07-05 日本精線株式会社 Catalyst structure and hydrogen reaction module using same
JP2012236182A (en) * 2011-05-09 2012-12-06 Nippon Seisen Co Ltd Catalyst carrier, catalyst product using the same, and catalyst module
WO2014013788A1 (en) * 2012-07-18 2014-01-23 独立行政法人産業技術総合研究所 Base material for hydrogen apparatus
JP2014177360A (en) * 2013-03-13 2014-09-25 Nippon Seisen Co Ltd Reaction vessel for hydrogen generation, and control method thereof

Also Published As

Publication number Publication date
JP6527398B2 (en) 2019-06-05

Similar Documents

Publication Publication Date Title
JP5632836B2 (en) Catalyst structure and hydrogen reaction module using the same
US8709967B2 (en) Wire catalyst for hydrogenation/dehydrogenation reaction and manufacturing method therefor
US10618808B2 (en) Catalyst support, recycle reactor and method for releasing hydrogen
JP6113722B2 (en) Electrochemical reduction apparatus and method for producing hydrogenated product of aromatic hydrocarbon compound or nitrogen-containing heterocyclic aromatic compound
JP2007283184A (en) Hydrogen separation thin membrane and manufacturing method
JP2008004498A (en) Composite layer-covered metal plate with less ncreases in contact resistance even if exposed to oxidative environment for long period
JP6783292B2 (en) Composite wire type catalyst member and catalyst reactor for hydrogen production using this
JP6321946B2 (en) Catalytic reaction system and catalytic reaction apparatus
JP2008004492A (en) Composite layer-covered porous plate with less increases in contact resistance even if exposed to oxidative environment for long period
JP2017001006A (en) Composite wire type catalyst member, and catalyst reactor for hydrogen production using the same
JP5789129B2 (en) Catalyst carrier and catalyst product and catalyst module using the same
JP4534154B2 (en) Catalytic combustion device
Sun et al. Phase separation in electrodeposited Ag-Pd alloy films from acidic nitrate bath
JP5995322B2 (en) Reactor for hydrogen generation and control method thereof
JP3081785B2 (en) Catalytic reactor and catalytic reaction method using the same
JP5210782B2 (en) Anodized substrate and catalyst body using the same
US20200303748A1 (en) Nanomanufacturing of metallic glasses for energy conversion and storage
TW201840365A (en) Method for producing structured catalyst and method for producing hydrogen using structured catalyst
JP2794427B2 (en) Oxidation combustion method using heat conductive catalyst
JP5888718B2 (en) Catalytic body and method of chemical reaction of substance using the catalytic body
EP4184618A1 (en) Method for forming a catalytically-active membrane or a membrane-electrode-assembly
JP6450247B2 (en) Catalyst carrier and catalyst member using the same
JP2014030804A (en) Catalyst member and method for manufacturing the same
KR100679332B1 (en) Heat exchanger tube coated with porous metal substrate for fuel cell reforming
Saji Dealloyed nanoporous platinum alloy electrocatalysts

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20170518

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190510

R150 Certificate of patent or registration of utility model

Ref document number: 6527398

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250