WO2014013788A1 - Base material for hydrogen apparatus - Google Patents

Base material for hydrogen apparatus Download PDF

Info

Publication number
WO2014013788A1
WO2014013788A1 PCT/JP2013/063856 JP2013063856W WO2014013788A1 WO 2014013788 A1 WO2014013788 A1 WO 2014013788A1 JP 2013063856 W JP2013063856 W JP 2013063856W WO 2014013788 A1 WO2014013788 A1 WO 2014013788A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
base material
test piece
aluminum
stainless steel
Prior art date
Application number
PCT/JP2013/063856
Other languages
French (fr)
Japanese (ja)
Inventor
村上 敬宜
松岡 三郎
純一郎 山辺
崇志 中村
豊 小嶋
Original Assignee
独立行政法人産業技術総合研究所
豊田通商株式会社
株式会社明豊エンジニアリング
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人産業技術総合研究所, 豊田通商株式会社, 株式会社明豊エンジニアリング filed Critical 独立行政法人産業技術総合研究所
Publication of WO2014013788A1 publication Critical patent/WO2014013788A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer

Definitions

  • the present invention relates to a base material for hydrogen equipment in which a base material is provided with a hydrogen-resistant multilayer coating having excellent hydrogen gas barrier properties.
  • SUS316L and 6061-T6 have low strength and high cost.
  • High-pressure hydrogen gas of up to 70 MPa (700 atm) is used in equipment in fuel cell vehicles and hydrogen infrastructure, and hydrogen equipment has high durability without causing hydrogen embrittlement under such usage conditions. In addition to being necessary, it is also required to minimize equipment manufacturing costs.
  • a material superior in both hydrogen embrittlement resistance and strength characteristics can be obtained at a lower cost than SUS316L, 6061-T6.
  • Hydrogen embrittlement is caused by hydrogen that has penetrated into the material. Therefore, hydrogen embrittlement may be suppressed if a technology for controlling hydrogen from entering the material in a high-pressure hydrogen gas environment can be developed. A surface film capable of suppressing hydrogen intrusion is expected to be one of the leading technologies for suppressing hydrogen embrittlement of materials.
  • the high-pressure hydrogen gas is a hydrogen gas pressure of atmospheric pressure (0.1 MPa) or more.
  • Patent Document 1 discloses that an alumina coating is formed on ferritic stainless steel as a component of a solid oxide fuel cell
  • Patent Document 2 discloses that for a fuel cell.
  • a hydrogen production apparatus an apparatus in which a catalyst-supporting layer of an alumina film is formed in a tunnel-like flow path in which a set of substrates is formed on a bonding surface is disclosed.
  • Patent Document 1 although crack generation due to thermal stress in a high temperature environment is prevented, hydrogen penetration into the base material is not prevented in a high temperature and high pressure environment.
  • Patent Document 2 the surface area of the catalyst support layer of the alumina coating is increased, and the catalyst support layer absorbs thermal distortion due to the difference in thermal expansion coefficient between the metal substrate and the catalyst. It cannot cope with preventing the base material from entering hydrogen below.
  • Patent Document 3 discloses a catalyst carrier having a layer of niobium, titanium, tantalum or the like between a stainless steel plate of a base material and a porous alumina layer formed by anodization in a dehydrogenation catalyst body of a hydrogen supply device. It is disclosed to use. This is intended to produce the anodic oxide film uniformly and to improve the high-temperature heat resistance, but does not prevent hydrogen from entering the base material.
  • a base material for a hydrogen device according to claim 1 of the present invention comprises an aluminum-based intermetallic compound layer, an aluminum layer, and an alumina layer on the surface of a base material. Are formed by sequentially forming a multilayer hetero film structure coating.
  • the base material for hydrogen equipment according to claim 2 of the present invention is such that the base material is metal, and the base material for hydrogen equipment according to claim 3 of the present invention is the base material.
  • the material is made of steel.
  • the base material for hydrogen equipment according to the present invention is obtained by forming a multilayer hetero-film structure coating in which an aluminum-based intermetallic compound layer, an aluminum layer, and an alumina layer are sequentially laminated on a base material.
  • a film obtained by further laminating a layer on the surface of the alumina layer is used as a base material for the hydrogen equipment of the present invention regardless of the material / structure.
  • FIG. 1 It is a figure which shows the layer structure of the hydrogen-resistant multilayer film which has a multilayer heterostructure in the case of using austenitic stainless steel SUS304 as a base material.
  • FIG. 1 It is a perspective view which shows the shape of the test piece used for the hydrogen exposure test, (a) is a cylindrical test piece, (b) shows a pipe test piece.
  • the hydrogen resistant multi-layer coating in the base material for hydrogen equipment of the present invention has a multi-layer heterostructure of an aluminum-based intermetallic compound layer, an aluminum layer, and an alumina layer (Al 2 O 3 ).
  • the material used as a base material is not particularly limited.
  • the material used as a base material is not particularly limited.
  • the base material is degreased, washed with water and pickled, then washed with water and dried.
  • the base material is immersed in a bath in which pure aluminum or an aluminum alloy is melted. After soaking for a predetermined time, post-treatment and finishing are performed.
  • the base material is austenitic stainless steel SUS304, the multilayer heterostructure coating shown in FIG. 1 is formed.
  • a hydrogen exposure test is performed on a test piece formed by applying a hydrogen resistant multilayer coating to a base material.
  • the hydrogen exposure test is a test in which a test piece is exposed to high-pressure hydrogen gas and the amount of hydrogen that has entered the test piece is measured using a temperature programmed desorption analyzer.
  • austenitic stainless steel SUS304 and precipitation hardening type martensitic steel SUS630 were used.
  • test pieces using SUS304 as a base material cylindrical test pieces and pipe test pieces having shapes as shown in FIG. 2 were prepared.
  • a cylindrical test piece having a shape as shown in FIG. 2 was prepared as a test piece using SUS630 as a base material.
  • (a) is a cylindrical test piece
  • (b) is a pipe test piece. Dimensions are shown in mm.
  • a plurality of cylindrical test pieces and pipe test pieces were prepared, and the cylindrical test pieces were prepared with a surface coating formed on the entire surface and those without a surface coating.
  • As the surface coating a hydrogen resistant multilayer coating (aluminum oxide multilayer heterostructure coating) and another elemental single layer oxide coating for comparison were prepared.
  • About the pipe test piece only what gave the hydrogen-resistant multilayer film was prepared.
  • the chemical components of austenitic stainless steel SUS304 and precipitation hardening martensitic steel SUS630 are as shown in Table 1.
  • the cylindrical test pieces were exposed to a hydrogen gas environment at an exposure pressure of 10 and 100 MPa and an exposure temperature of 270 ° C. for 200 hours, respectively.
  • the pipe specimen was exposed for 200 hours at an exposure pressure of 10, 40, 70, 100 MPa, an exposure temperature of 85 ° C., and 270 ° C.
  • Table 2 shows the exposure conditions.
  • a cylindrical test piece and a pipe test piece are cut into a disk shape each having a thickness of 0.5 mm to obtain a hydrogen amount measurement test piece.
  • the amount of hydrogen released from the test piece was measured at a temperature elevation rate of 100 ° C./h using a gas chromatographic temperature programmed desorption analyzer (TDA).
  • TDA gas chromatographic temperature programmed desorption analyzer
  • the hydrogen penetration amount of the test piece not provided with the unexposed surface film was 1.0 mass ppm.
  • the hydrogen penetration amount of the test piece not provided with the surface film was 26.3 mass ppm.
  • the hydrogen penetration amount of the test piece to which the other element-based single layer oxide film is applied is 3.6 mass ppm, which is smaller than the hydrogen penetration amount of the test piece to which the film is not applied, and suppresses hydrogen penetration by the oxide film. Is recognized.
  • the hydrogen penetration amount of the test piece provided with the hydrogen resistant multi-layer coating is 1.0 mass ppm, and under this hydrogen exposure condition, hydrogen does not substantially penetrate into the test piece.
  • the saturated hydrogen amount C S of hydrogen entering the steel material is generally calculated by the following equation using the exposure pressure p and the exposure temperature T.
  • the saturated hydrogen amount is the amount of hydrogen in an equilibrium state where the hydrogen concentration inside the test piece of the material determined by the external pressure and temperature is uniform.
  • f fugacity
  • k 0 and [Delta] H S is a coefficient determined depending on the material, it is described in HYDROGENIUS database.
  • FIG. 4 shows the hydrogen penetration amount of the test piece provided with the surface coating in the case of using austenitic stainless steel as a base material
  • the relationship between the hydrogen penetration amount and ⁇ f ⁇ exp ( ⁇ 1880 / RT) is shown.
  • the amount of hydrogen intrusion of the austenitic stainless steel SUS304 to which no surface film is applied substantially coincides with the calculated value in equation (2).
  • the hydrogen resistant multilayer coating has a high hydrogen penetration inhibiting effect under the conditions of 10 to 100 MPa and 85 to 270 ° C. regardless of the shape of the test piece.
  • the hydrogen penetration amount of the test piece not provided with the unexposed surface film was 0.05 mass ppm.
  • 3.7 mass ppm was obtained.
  • Examples of the base material of austenitic stainless steel SUS304 or the base material of precipitation hardening martensitic stainless steel SUS630 provided with a hydrogen-resistant multilayer coating are given as examples. Is not particularly limited to those using SUS304 and SUS630 as a base material. Austenitic stainless steel SUS304, precipitation-type martensitic stainless steel as long as aluminum oxide-based intermetallic compounds are formed by diffusion in the step of immersing in molten aluminum to form an aluminum oxide-based multilayer heterostructure coating. A wide range of materials including steel other than SUS630 or other metals can be used as the base material, and similarly, the material has excellent hydrogen gas barrier properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Fuel Cell (AREA)
  • Laminated Bodies (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

A base material for use in hydrogen apparatus which comprises a base and, formed on the surface thereof, a coating film of a hetero-multilayer structure, the coating film comprising an aluminum-based intermetallic compound layer, an aluminum layer, and an alumina layer in this order from the base side. The base is a material which, in the step of immersion in molten aluminum, forms an aluminum oxide-based intermetallic compound through diffusion and thus comes to have a coating film of an aluminum oxide-based hetero-multilayer structure. As the material is used any of austenitic stainless steel SUS304, precipitation hardening type martensitic stainless steel SUS630, carbon steels, steels including low-alloy steels, metals, and general industrial materials. Due to this, the base material, which is for use in hydrogen apparatus to be used in a high-pressure hydrogen environment, is prevented from suffering hydrogen embrittlement, has enhanced durability, and can be produced at a reduced cost.

Description

水素機器用の基材Base materials for hydrogen equipment
 本発明は、水素ガスバリア性に優れた耐水素多層皮膜を母材に付与した水素機器用の基材に関する。 The present invention relates to a base material for hydrogen equipment in which a base material is provided with a hydrogen-resistant multilayer coating having excellent hydrogen gas barrier properties.
 近年産業界においても環境保護の面から二酸化炭素等の地球温暖化ガスの発生を抑制することが求められ、自動車や輸送機器に関して水素を燃料とする燃料電池を電力源とするものが開発されてきている。燃料電池は水素を燃料として電力を発生させるもので、二酸化炭素を発生することがないとともに、エネルギー変換効率が高いことでも有力な電力源であると言える。自動車、輸送機器類が一般的に利用される上では、自動車等に水素を供給するための水素ステーションを設置するというようなインフラの整備が必要になり、そのための検討、対応がなされている。 In recent years, the industrial world has been required to suppress the generation of global warming gas such as carbon dioxide from the viewpoint of environmental protection, and fuel cells using hydrogen as fuel for automobiles and transportation equipment have been developed. ing. A fuel cell generates power using hydrogen as a fuel, does not generate carbon dioxide, and has high energy conversion efficiency, so it can be said that it is a powerful power source. When automobiles and transportation equipment are generally used, it is necessary to develop an infrastructure such as installing a hydrogen station for supplying hydrogen to the automobile and the like.
 水素を燃料とする燃料電池や、それに水素を供給するための水素ステーションを含む機器においては、水素を扱う構成部品が不可欠である。このように水素を扱う構成部品に利用する金属材料では、長期間水素に接触すると、材料内に水素が侵入し、侵入した水素によって、引張強度、伸びあるいは絞りなどが低下する現象が知られている。この現象は、一般に水素脆化と呼ばれている。現状では、水素エネルギーシステムを構成する機器には、水素脆化の問題から、日本自動車研究所技術標準JARIS001(2004)では、オーステナイト系ステンレス鋼SUS316Lとアルミ合金6061-T6のみの使用を規定している。 In a fuel cell using hydrogen as a fuel and equipment including a hydrogen station for supplying hydrogen to it, components that handle hydrogen are indispensable. In metal materials used for components that handle hydrogen in this way, it is known that when in contact with hydrogen for a long period of time, hydrogen penetrates into the material, and the tensile strength, elongation, squeeze, etc., decrease due to the invaded hydrogen. Yes. This phenomenon is generally called hydrogen embrittlement. At present, due to the problem of hydrogen embrittlement, the Japan Automobile Research Institute Technical Standard JARIS001 (2004) stipulates that only the austenitic stainless steel SUS316L and aluminum alloy 6061-T6 are used for the equipment that constitutes the hydrogen energy system. Yes.
 しかしながら、SUS316L、6061-T6は強度が低く、コストが高い。燃料電池自動車や水素インフラにおける機器では、最大70MPa(700気圧)の高圧水素ガスが使用され、水素機器としてはそのような使用条件において、水素脆化を生ずることなく、高い耐久性を有することが必要であるとともに、機器製造コストを極力抑えることも求められる。このように高圧水素ガスを利用する水素機器の安全性と経済性を両立させるために、SUS316L、6061-T6に代わる、耐水素脆化特性と強度特性にともに優れた材料をより低コストで得られるようにすることが水素機器製造に関して要求されている。 However, SUS316L and 6061-T6 have low strength and high cost. High-pressure hydrogen gas of up to 70 MPa (700 atm) is used in equipment in fuel cell vehicles and hydrogen infrastructure, and hydrogen equipment has high durability without causing hydrogen embrittlement under such usage conditions. In addition to being necessary, it is also required to minimize equipment manufacturing costs. Thus, in order to achieve both safety and economical efficiency of hydrogen equipment using high-pressure hydrogen gas, a material superior in both hydrogen embrittlement resistance and strength characteristics can be obtained at a lower cost than SUS316L, 6061-T6. There is a demand for hydrogen equipment manufacturing.
 水素脆化は材料中に侵入した水素によって引き起こされるため、高圧水素ガス環境下において材料内部に水素が侵入しないように制御する技術が開発できれば、水素脆化を抑えられる可能性がある。水素侵入を抑制することが可能な表面皮膜は、材料の水素脆化を抑制する有力な技術の一つであると期待される。ここで、高圧水素ガスとは大気圧(0.1MPa)以上の水素ガス圧力とする。 Hydrogen embrittlement is caused by hydrogen that has penetrated into the material. Therefore, hydrogen embrittlement may be suppressed if a technology for controlling hydrogen from entering the material in a high-pressure hydrogen gas environment can be developed. A surface film capable of suppressing hydrogen intrusion is expected to be one of the leading technologies for suppressing hydrogen embrittlement of materials. Here, the high-pressure hydrogen gas is a hydrogen gas pressure of atmospheric pressure (0.1 MPa) or more.
 水素機器に関して、例えば特許文献1には、固体酸化物形燃料電池の構成部品としてフェライト系ステンレス鋼にアルミナ被膜を形成したものを用いることが開示され、また、 特許文献2には、燃料電池用水素製造装置として、1組の基板が接合面に形成されたトンネル状流路にアルミナ皮膜の触媒担持層を形成したものが開示されている。特許文献1においては、高温環境での熱応力によるき裂発生を防止するものであるが、高温高圧環境下で母材への水素侵入を防止するものではない。特許文献2においては、アルミナ皮膜の触媒担持層の表面積を大きくすること、金属基板と触媒との熱膨張率の違いによる熱歪みを触媒担持層が吸収するものではあるが、高温・高圧水素環境下で母材の水素侵入を防止することには対応し得ない。 With regard to hydrogen equipment, for example, Patent Document 1 discloses that an alumina coating is formed on ferritic stainless steel as a component of a solid oxide fuel cell, and Patent Document 2 discloses that for a fuel cell. As a hydrogen production apparatus, an apparatus in which a catalyst-supporting layer of an alumina film is formed in a tunnel-like flow path in which a set of substrates is formed on a bonding surface is disclosed. In Patent Document 1, although crack generation due to thermal stress in a high temperature environment is prevented, hydrogen penetration into the base material is not prevented in a high temperature and high pressure environment. In Patent Document 2, the surface area of the catalyst support layer of the alumina coating is increased, and the catalyst support layer absorbs thermal distortion due to the difference in thermal expansion coefficient between the metal substrate and the catalyst. It cannot cope with preventing the base material from entering hydrogen below.
 特許文献3には、水素供給装置の脱水素触媒体において、基材のステンレス板と陽極酸化によって形成された多孔質アルミナ層との間にニオブ、チタン、タンタル等の層を有する触媒担持体を用いることが開示されている。これは陽極酸化膜を均一に作製すること、高温耐熱性を高めることを意図したものであるが、母材への水素侵入を防止するものではない。 Patent Document 3 discloses a catalyst carrier having a layer of niobium, titanium, tantalum or the like between a stainless steel plate of a base material and a porous alumina layer formed by anodization in a dehydrogenation catalyst body of a hydrogen supply device. It is disclosed to use. This is intended to produce the anodic oxide film uniformly and to improve the high-temperature heat resistance, but does not prevent hydrogen from entering the base material.
特開2006-236600号公報JP 2006-236600 A 特開2007-8731号公報JP 2007-8731 A 特開2010-82513号公報JP 2010-82513 A
 水素を用いる燃料電池や水素インフラの普及に応じて、高圧水素ガスが使用される水素機器の使用条件においても、水素脆化を生ずることなく、高い耐久性を有する水素機器用の耐水素被膜を低コストで得られるようにすることが求められているが、これまで水素機器の安全性と経済性を十分に両立させる耐水素被膜は提供されていなかった。そのため、高圧水素ガスが使用される水素機器を、水素脆化を防止し耐久性を高めた耐水素被膜を用いて構成し、機器製造コストをできるだけ抑えることが望まれている。 With the widespread use of hydrogen fuel cells and hydrogen infrastructure, even under the use conditions of hydrogen equipment where high-pressure hydrogen gas is used, a hydrogen resistant coating for hydrogen equipment that has high durability without causing hydrogen embrittlement. Although it is required to be obtained at a low cost, a hydrogen-resistant coating film that sufficiently satisfies both safety and economics of hydrogen equipment has not been provided so far. For this reason, it is desired that a hydrogen device using high-pressure hydrogen gas is configured using a hydrogen-resistant coating that prevents hydrogen embrittlement and has improved durability, thereby suppressing the device manufacturing cost as much as possible.
 本発明は、前述した課題を解決すべくなしたものであり、本発明の請求項1に係る水素機器用の基材は、母材の表面にアルミニウム系金属間化合物層、アルミニウム層、アルミナ層を順次積層した多層ヘテロ膜構造被膜を形成してなるものである。 The present invention has been made to solve the above-mentioned problems, and a base material for a hydrogen device according to claim 1 of the present invention comprises an aluminum-based intermetallic compound layer, an aluminum layer, and an alumina layer on the surface of a base material. Are formed by sequentially forming a multilayer hetero film structure coating.
 本発明の請求項2に係る水素機器用の基材は前記母材の材料が金属であるようにしたものであり、また、本発明の請求項3に係る水素機器用の基材は前記母材が鋼であるようにしたものである。 The base material for hydrogen equipment according to claim 2 of the present invention is such that the base material is metal, and the base material for hydrogen equipment according to claim 3 of the present invention is the base material. The material is made of steel.
 本発明による水素機器用の基材は、母材にアルミニウム系金属間化合物層、アルミニウム層、アルミナ層を順次積層した多層ヘテロ膜構造被膜を形成したものである。アルミナ層の表面に、材質・構成に関わらず、さらに層を積層した被膜も本発明の水素機器用の基材として用いられる。耐水素多層被膜の付与によって、高圧水素の環境下で使用される水素機器の母材への水素侵入を抑制し、水素脆化を実質的に生じないものとすることができる。母材の材料は特に限定されないので、比較的安価な材料を母材に用いることにより水素機器の製作コストを低く抑えることが可能になる。 The base material for hydrogen equipment according to the present invention is obtained by forming a multilayer hetero-film structure coating in which an aluminum-based intermetallic compound layer, an aluminum layer, and an alumina layer are sequentially laminated on a base material. A film obtained by further laminating a layer on the surface of the alumina layer is used as a base material for the hydrogen equipment of the present invention regardless of the material / structure. By providing a hydrogen-resistant multilayer coating, it is possible to suppress hydrogen intrusion into the base material of a hydrogen device used in a high-pressure hydrogen environment and substantially prevent hydrogen embrittlement. Since the material of the base material is not particularly limited, the manufacturing cost of the hydrogen equipment can be kept low by using a relatively inexpensive material for the base material.
オーステナイト系ステンレス鋼SUS304を母材とする場合の多層ヘテロ構造を有する耐水素多層被膜の層構造を示す図である。It is a figure which shows the layer structure of the hydrogen-resistant multilayer film which has a multilayer heterostructure in the case of using austenitic stainless steel SUS304 as a base material. 水素曝露試験に用いた試験片の形状を示す斜視図であり、(a)は円柱試験片、(b)はパイプ試験片を示すものである。It is a perspective view which shows the shape of the test piece used for the hydrogen exposure test, (a) is a cylindrical test piece, (b) shows a pipe test piece. オーステナイト系ステンレス鋼SUS304を母材とする表面皮膜を付与していない試験片並びに表面皮膜を付与した試験片について水素曝露試験を行った結果を示すグラフである。It is a graph which shows the result of having performed the hydrogen exposure test about the test piece which did not provide the surface film which used the austenitic stainless steel SUS304 as a base material, and the test piece which provided the surface film. オーステナイト系ステンレス鋼SUS304を母材とする表面皮膜を付与した試験片の水素侵入量に及ぼす曝露圧力と曝露温度の影響を示すグラフである。It is a graph which shows the influence of the exposure pressure and the exposure temperature on the hydrogen penetration | invasion amount of the test piece which provided the surface film which uses austenitic stainless steel SUS304 as a base material. 析出硬化型マルテンサイト系ステンレス鋼SUS630を母材とする表面皮膜を付与していない試験片並びに表面皮膜を付与した試験片について水素曝露試験を行った結果を示すグラフである。It is a graph which shows the result of having performed the hydrogen exposure test about the test piece which did not give the surface film which used precipitation hardening type martensitic stainless steel SUS630 as a base material, and the test piece which gave the surface film.
 高圧水素ガス環境下に晒された材料について、材料表面に皮膜を形成し、材料内部に水素が侵入するのを防止することにより、水素脆化を抑制できると考えられる。その場合、表面皮膜としては、使用条件下で水素ガスバリア性と耐久性にともに優れていることが重要である。 It is thought that hydrogen embrittlement can be suppressed by forming a film on the surface of a material exposed to a high-pressure hydrogen gas environment and preventing hydrogen from entering the material. In that case, it is important that the surface film is excellent in both hydrogen gas barrier properties and durability under the use conditions.
 本発明の水素機器用の基材における耐水素多層皮膜は、アルミニウム系金属間化合物層、アルミニウム層、アルミナ層(Al)の多層ヘテロ構造を有するものである。母材となる材料は特に限定されない。 The hydrogen resistant multi-layer coating in the base material for hydrogen equipment of the present invention has a multi-layer heterostructure of an aluminum-based intermetallic compound layer, an aluminum layer, and an alumina layer (Al 2 O 3 ). The material used as a base material is not particularly limited.
 本発明によるアルミ酸化物系多層ヘテロ構造被膜を有する耐水素多層被膜の形成方法について説明する。母材となる材料は特に限定されない。母材を脱脂し、水洗、酸洗を行った後、水洗、乾燥させる。純アルミニウムまたはアルミニウム合金を溶融した槽中に母材を浸漬する。所定時間浸漬後、後処理、仕上げを行う。以上の工程を経て、母材がオーステナイト系ステンレス鋼SUS304の場合、図1に示される多層ヘテロ構造被膜が形成される。 A method for forming a hydrogen-resistant multilayer coating having an aluminum oxide multilayer heterostructure coating according to the present invention will be described. The material used as a base material is not particularly limited. The base material is degreased, washed with water and pickled, then washed with water and dried. The base material is immersed in a bath in which pure aluminum or an aluminum alloy is melted. After soaking for a predetermined time, post-treatment and finishing are performed. Through the above steps, when the base material is austenitic stainless steel SUS304, the multilayer heterostructure coating shown in FIG. 1 is formed.
〔水素曝露試験〕
 母材に耐水素多層被膜を付与して形成された試験片について水素曝露試験を行う。水素曝露試験は、高圧水素ガス中に試験片を曝露し昇温脱離分析装置を用いて試験片内部に侵入した水素量を測定する試験である。水素曝露試験を行うために、オーステナイト系ステンレス鋼SUS304並びに析出硬化型マルテンサイト鋼SUS630を用いた。SUS304を母材とする試験片として、図2に示すような形状の円柱試験片及びパイプ試験片を作製した。また、SUS630を母材とする試験片としても、図2に示すような形状の円柱試験片を作製した。図2に示す試験片において、(a)は円柱試験片であり、(b)はパイプ試験片である。寸法はmmで示している。円柱試験片、パイプ試験片をそれぞれ複数本作成し、円柱試験片については、全表面に表面被膜を形成したものと、表面被膜を形成しないものを用意した。表面被膜は耐水素多層被膜(アルミ酸化物系多層ヘテロ構造皮膜)と、比較対象のための他元素系単層酸化物被膜を用意した。パイプ試験片については、耐水素多層被膜を付与したもののみを用意した。オーステナイト系ステンレス鋼SUS304と析出硬化型マルテンサイト鋼SUS630の化学成分は表1のようになっている。
[Hydrogen exposure test]
A hydrogen exposure test is performed on a test piece formed by applying a hydrogen resistant multilayer coating to a base material. The hydrogen exposure test is a test in which a test piece is exposed to high-pressure hydrogen gas and the amount of hydrogen that has entered the test piece is measured using a temperature programmed desorption analyzer. In order to perform a hydrogen exposure test, austenitic stainless steel SUS304 and precipitation hardening type martensitic steel SUS630 were used. As test pieces using SUS304 as a base material, cylindrical test pieces and pipe test pieces having shapes as shown in FIG. 2 were prepared. Also, a cylindrical test piece having a shape as shown in FIG. 2 was prepared as a test piece using SUS630 as a base material. In the test piece shown in FIG. 2, (a) is a cylindrical test piece, and (b) is a pipe test piece. Dimensions are shown in mm. A plurality of cylindrical test pieces and pipe test pieces were prepared, and the cylindrical test pieces were prepared with a surface coating formed on the entire surface and those without a surface coating. As the surface coating, a hydrogen resistant multilayer coating (aluminum oxide multilayer heterostructure coating) and another elemental single layer oxide coating for comparison were prepared. About the pipe test piece, only what gave the hydrogen-resistant multilayer film was prepared. The chemical components of austenitic stainless steel SUS304 and precipitation hardening martensitic steel SUS630 are as shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 水素曝露試験として、表2に示すように、円柱試験片については、それぞれ曝露圧力10、100MPa、曝露温度270℃の水素ガス環境中に200時間曝露した。また、パイプ試験片については、曝露圧力10、40、70、100MPa、曝露温度85℃、270℃で200時間曝露した。曝露条件は表2のようである。 As a hydrogen exposure test, as shown in Table 2, the cylindrical test pieces were exposed to a hydrogen gas environment at an exposure pressure of 10 and 100 MPa and an exposure temperature of 270 ° C. for 200 hours, respectively. The pipe specimen was exposed for 200 hours at an exposure pressure of 10, 40, 70, 100 MPa, an exposure temperature of 85 ° C., and 270 ° C. Table 2 shows the exposure conditions.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 オーステナイト系ステンレス鋼から作製した試験片を水素環境中に曝露した後、円柱試験片とパイプ試験片とをそれぞれ厚さ0.5mmの円板状に切り出して水素量測定用試験片とし、この水素量測定用試験片について、ガスクロマトグラフ式昇温脱離分析装置(TDA)を用いて、昇温速度100℃/hとして試験片から放出される水素量を測定した。測定で得られた水素量は試験片における水素侵入量を表すものであり、その結果を図3に示す。 After exposing a test piece made of austenitic stainless steel to a hydrogen environment, a cylindrical test piece and a pipe test piece are cut into a disk shape each having a thickness of 0.5 mm to obtain a hydrogen amount measurement test piece. About the quantity measurement test piece, the amount of hydrogen released from the test piece was measured at a temperature elevation rate of 100 ° C./h using a gas chromatographic temperature programmed desorption analyzer (TDA). The amount of hydrogen obtained by the measurement represents the amount of hydrogen penetration in the test piece, and the result is shown in FIG.
 図3に示すオーステナイト系ステンレス鋼を母材とした場合の結果において、未曝露の表面皮膜を付与していない試験片の水素侵入量は1.0 mass ppmであった。これに対して、10MPa、270℃の条件下で水素曝露した場合、表面皮膜を付与していない試験片の水素侵入量は26.3 mass ppmであった。また、他元素系単層酸化被膜を付与した試験片の水素侵入量は3.6 mass ppmであり、被膜を付与していない試験片の水素侵入量よりも少なく、酸化被膜による水素侵入の抑制が認められる。耐水素多層被膜を付与した試験片の水素侵入量は1.0 massppmであり、この水素曝露条件では試験片内部に水素が実質的に侵入していないものである。 In the results when the austenitic stainless steel shown in FIG. 3 was used as the base material, the hydrogen penetration amount of the test piece not provided with the unexposed surface film was 1.0 mass ppm. On the other hand, when hydrogen was exposed under conditions of 10 MPa and 270 ° C., the hydrogen penetration amount of the test piece not provided with the surface film was 26.3 mass ppm. In addition, the hydrogen penetration amount of the test piece to which the other element-based single layer oxide film is applied is 3.6 mass ppm, which is smaller than the hydrogen penetration amount of the test piece to which the film is not applied, and suppresses hydrogen penetration by the oxide film. Is recognized. The hydrogen penetration amount of the test piece provided with the hydrogen resistant multi-layer coating is 1.0 mass ppm, and under this hydrogen exposure condition, hydrogen does not substantially penetrate into the test piece.
〔実験結果に関する考察〕
(a)飽和水素量と曝露条件の関係
 鉄鋼材料に侵入する水素の飽和水素量Cは、一般に曝露圧力pと曝露温度Tを用いて次式で計算される。飽和水素量とは、外部圧力と温度によって決まる材料の試験片内部の水素濃度が一様となる平衡状態での水素量である。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
式(2)で、f:フガシティ、R:気体定数(=8.314J/mol・K)、b:定数(=15.84cm/mol)である(bについては、C.S.Marchi et al., International Journal of Hydrogen Energy, Vol. 32(2007), pp. 100-116)。kとΔHは材料に依存して決まる係数であり、HYDROGENIUSデータベースに記載されている。
[Consideration of experimental results]
(A) Relationship between saturated hydrogen amount and exposure condition The saturated hydrogen amount C S of hydrogen entering the steel material is generally calculated by the following equation using the exposure pressure p and the exposure temperature T. The saturated hydrogen amount is the amount of hydrogen in an equilibrium state where the hydrogen concentration inside the test piece of the material determined by the external pressure and temperature is uniform.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
In formula (2), f: fugacity, R: gas constant (= 8.314 J / mol · K), b: constant (= 15.84 cm 3 / mol) (for b, CSMarchi et al., International Journal of Hydrogen Energy, Vol. 32 (2007), pp. 100-116). k 0 and [Delta] H S is a coefficient determined depending on the material, it is described in HYDROGENIUS database.
 オーステナイト系ステンレス鋼SUS304の場合、k=47.7molH/m、ΔH=1.88kJ/molである。ただし、1massppm=3.9molH/mである。これらの値から、表面皮膜を付与していないオーステナイト系ステンレス鋼SUS304についての飽和水素量は、式(1)により、
Figure JPOXMLDOC01-appb-M000005
となる。
In the case of austenitic stainless steel SUS304, k 0 = 47.7 molH 2 / m 3 and ΔH S = 1.88 kJ / mol. However, 1 massppm = 3.9 molH 2 / m 3 . From these values, the saturated hydrogen amount for the austenitic stainless steel SUS304 not provided with a surface film is expressed by the equation (1):
Figure JPOXMLDOC01-appb-M000005
It becomes.
(b)表面皮膜を付与した試験片の水素侵入量に及ぼす曝露圧力と曝露温度の影響
 図4は、オーステナイト系ステンレス鋼を母材とした場合について、表面皮膜を付与した試験片の水素侵入量に及ぼす曝露圧力と曝露温度の影響を明らかにするために、水素侵入量と√f・exp(-1880/RT)の関係を示したものである。表面皮膜を付与していないオーステナイト系ステンレス鋼SUS304の水素侵入量は式(2)での計算値とほぼ一致している。100MPa、270℃の水素曝露条件では、他元素系単層酸化皮膜の水素侵入抑制効果はほとんど認められない。これに対し、耐水素多層被膜は試験片形状によらず、10~100MPa、85~270℃の条件下で高い水素侵入抑制効果を有することがわかる。
(B) Effects of exposure pressure and exposure temperature on the hydrogen penetration amount of the test piece provided with the surface coating FIG. 4 shows the hydrogen penetration amount of the test piece provided with the surface coating in the case of using austenitic stainless steel as a base material In order to clarify the effects of the exposure pressure and the exposure temperature on the temperature, the relationship between the hydrogen penetration amount and √f · exp (−1880 / RT) is shown. The amount of hydrogen intrusion of the austenitic stainless steel SUS304 to which no surface film is applied substantially coincides with the calculated value in equation (2). Under the hydrogen exposure conditions of 100 MPa and 270 ° C., the effect of suppressing the hydrogen penetration of the other element-based single layer oxide film is hardly observed. On the other hand, it can be seen that the hydrogen resistant multilayer coating has a high hydrogen penetration inhibiting effect under the conditions of 10 to 100 MPa and 85 to 270 ° C. regardless of the shape of the test piece.
 析出硬化型マルテンサイト系ステンレス鋼SUS630から作製した試験片を水素環境中に曝露した後、円柱試験片を厚さ5mmの円板状に切り出して水素量測定試験片とし、この水素量測定試験片について、ガスクロマトグラフ式昇温脱離分析装置(TDA)を用いて、昇温速度100℃/hとして試験片から放出される水素を測定した。測定で得られた水素量は試験片における水素侵入量を表すものであり、その結果を図5に示す。 After exposing a specimen made from precipitation hardening martensitic stainless steel SUS630 to a hydrogen environment, the cylindrical specimen was cut into a disk with a thickness of 5 mm to obtain a hydrogen quantity measuring specimen, and this hydrogen quantity measuring specimen The hydrogen released from the test piece was measured at a heating rate of 100 ° C./h using a gas chromatographic thermal desorption analyzer (TDA). The amount of hydrogen obtained by the measurement represents the amount of hydrogen penetration in the test piece, and the result is shown in FIG.
 図5に示す析出硬化型マルテンサイト系ステンレス鋼を母材とした場合の結果において、未曝露の表面皮膜を付与していない試験片の水素侵入量は、0.05 mass ppmであった。表面皮膜を付与していない水素曝露した試験片の水素侵入量については、宮本ら(宮本ら、材料, Vol.59 (2010), pp. 916-923)によって得られた式(2)の係数(k=2.87 mass ppm、ΔH=4.10kJ/mol)を用いて、式(1)により算出した。10MPa、270℃の条件下で水素曝露した場合の水素侵入量の計算値として、3.7 mass ppmが得られた。100MPa、270℃の条件下水素で曝露した場合の水素侵入量の計算値として、13.8 mass ppmが得られた。これに対して、水素曝露試験により得られた耐水素多層皮膜を付与した試験片の水素侵入量は、10MPa、270℃の曝露条件の場合には、0.1 mass ppmであった。一方、100MPa、270℃の曝露条件の場合には、1.0 mass ppmであった。表面皮膜なしの試験片に対して、耐水素多層皮膜を付与した試験片の水素侵入量は、極めて少なく、耐水素多層皮膜は、母材の種類によらず、高圧水素ガス環境(10~100MPa)において、高い水素侵入抑制効果を有することがわかる。 In the result when the precipitation hardening martensitic stainless steel shown in FIG. 5 was used as a base material, the hydrogen penetration amount of the test piece not provided with the unexposed surface film was 0.05 mass ppm. About the hydrogen penetration amount of the hydrogen-exposed specimen without surface coating, the coefficient of equation (2) obtained by Miyamoto et al. (Miyamoto et al., Materials, Vol.59 (2010), pp. 916-923) (K 0 = 2.87 mass ppm, ΔH S = 4.10 kJ / mol) was used, and the calculation was performed according to the equation (1). As a calculated value of the hydrogen penetration amount when exposed to hydrogen under conditions of 10 MPa and 270 ° C., 3.7 mass ppm was obtained. As a calculated value of the hydrogen penetration amount when exposed to hydrogen under conditions of 100 MPa and 270 ° C., 13.8 mass ppm was obtained. On the other hand, the hydrogen penetration | invasion amount of the test piece which provided the hydrogen-resistant multilayer film obtained by the hydrogen exposure test was 0.1 mass ppm in the case of the exposure conditions of 10 MPa and 270 degreeC. On the other hand, in the case of the exposure conditions of 100 MPa and 270 ° C., it was 1.0 mass ppm. The amount of hydrogen intrusion of the test piece provided with the hydrogen resistant multi-layer coating is extremely small compared to the test piece without the surface coating. ) Shows a high hydrogen penetration inhibiting effect.
 オーステナイト系ステンレス鋼SUS304の母材、あるいは、析出硬化型マルテンサイト系ステンレス鋼SUS630の母材に、耐水素多層被膜を付与したものについて例示したが、本発明の水素機器用の基材における母材は、特にSUS304、SUS630を母材とするものに限られない。溶融アルミニウム中に浸漬する工程において拡散によりアルミ酸化物系金属間化合物が生成し、アルミ酸化物系多層ヘテロ構造被膜を形成するものであれば、オーステナイト系ステンレス鋼SUS304、析出型マルテンサイト系ステンレス鋼SUS630以外の鋼、あるいは他の金属を含む広範な材料を母材として用いることができ、同様に水素ガスバリア性に優れた特性を有するものとなる。 Examples of the base material of austenitic stainless steel SUS304 or the base material of precipitation hardening martensitic stainless steel SUS630 provided with a hydrogen-resistant multilayer coating are given as examples. Is not particularly limited to those using SUS304 and SUS630 as a base material. Austenitic stainless steel SUS304, precipitation-type martensitic stainless steel as long as aluminum oxide-based intermetallic compounds are formed by diffusion in the step of immersing in molten aluminum to form an aluminum oxide-based multilayer heterostructure coating. A wide range of materials including steel other than SUS630 or other metals can be used as the base material, and similarly, the material has excellent hydrogen gas barrier properties.
 材料単体では耐水素脆化特性に劣る材料についても、本発明の耐水素多層被膜の付与により、強度、安全性を確保した幅広い高圧水素パイプ、高圧水素容器等の製作が可能となる。これにより、パイプ、容器等の本体には、オーステナイト系ステンレス鋼SUS304、析出型マルテンサイト系ステンレス鋼SUS630、 炭素綱、低合金鋼、あるいは他の金属等の低コストで高強度の材料を使用できる。 For materials that are inferior in hydrogen embrittlement resistance with a single material, it is possible to produce a wide range of high-pressure hydrogen pipes, high-pressure hydrogen containers, etc. that ensure strength and safety by applying the hydrogen-resistant multilayer coating of the present invention. As a result, low-cost, high-strength materials such as austenitic stainless steel SUS304, precipitation-type martensitic stainless steel SUS630, carbon steel, low alloy steel, or other metals can be used for the main body of pipes and containers. .

Claims (3)

  1.  母材の表面にアルミニウム系金属間化合物層、アルミニウム層、アルミナ層を順次積層した多層ヘテロ膜構造被膜を形成してなることを特徴とする水素機器用の基材。 A base material for a hydrogen device, characterized in that a multilayer hetero-film structure coating in which an aluminum-based intermetallic compound layer, an aluminum layer, and an alumina layer are sequentially laminated is formed on the surface of a base material.
  2.  前記母材の材料が金属であることを特徴とする請求項1に記載の水素機器用の基材。 The base material for hydrogen equipment according to claim 1, wherein the base material is a metal.
  3.  前記母材が鋼であることを特徴とする請求項1に記載の水素機器用の基材。 The base material for hydrogen equipment according to claim 1, wherein the base material is steel.
PCT/JP2013/063856 2012-07-18 2013-05-17 Base material for hydrogen apparatus WO2014013788A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-159276 2012-07-18
JP2012159276A JP2015172212A (en) 2012-07-18 2012-07-18 Base material for hydrogen device

Publications (1)

Publication Number Publication Date
WO2014013788A1 true WO2014013788A1 (en) 2014-01-23

Family

ID=49948624

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/063856 WO2014013788A1 (en) 2012-07-18 2013-05-17 Base material for hydrogen apparatus

Country Status (2)

Country Link
JP (1) JP2015172212A (en)
WO (1) WO2014013788A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015098981A1 (en) * 2013-12-27 2015-07-02 国立大学法人九州大学 Substrate for hydrogen equipment and method for manufacturing same
JP2017001006A (en) * 2015-06-04 2017-01-05 日本精線株式会社 Composite wire type catalyst member, and catalyst reactor for hydrogen production using the same
CN111151842A (en) * 2020-01-10 2020-05-15 安泰环境工程技术有限公司 Welding method of iron-aluminum-based intermetallic compound microporous material and welding part thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5141642A (en) * 1974-10-05 1976-04-08 Nippon Kokan Kk Kochoryokukobuzaino hyomenshorihoho
JP2004324800A (en) * 2003-04-25 2004-11-18 Nippon Steel Corp Tank for high pressure hydrogen gas, and piping
JP2004351460A (en) * 2003-05-29 2004-12-16 Neomax Co Ltd Stainless steel cladded with aluminum-nickel material, its manufacturing method, and battery case
JP2008297629A (en) * 2003-06-27 2008-12-11 Kobe Steel Ltd Titanium material, its production method and exhaust pipe

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5141642A (en) * 1974-10-05 1976-04-08 Nippon Kokan Kk Kochoryokukobuzaino hyomenshorihoho
JP2004324800A (en) * 2003-04-25 2004-11-18 Nippon Steel Corp Tank for high pressure hydrogen gas, and piping
JP2004351460A (en) * 2003-05-29 2004-12-16 Neomax Co Ltd Stainless steel cladded with aluminum-nickel material, its manufacturing method, and battery case
JP2008297629A (en) * 2003-06-27 2008-12-11 Kobe Steel Ltd Titanium material, its production method and exhaust pipe

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015098981A1 (en) * 2013-12-27 2015-07-02 国立大学法人九州大学 Substrate for hydrogen equipment and method for manufacturing same
JP2017001006A (en) * 2015-06-04 2017-01-05 日本精線株式会社 Composite wire type catalyst member, and catalyst reactor for hydrogen production using the same
CN111151842A (en) * 2020-01-10 2020-05-15 安泰环境工程技术有限公司 Welding method of iron-aluminum-based intermetallic compound microporous material and welding part thereof
CN111151842B (en) * 2020-01-10 2021-10-19 安泰环境工程技术有限公司 Welding method of iron-aluminum-based intermetallic compound microporous material and welding part thereof
US11878377B2 (en) 2020-01-10 2024-01-23 At&M Environmental Engineering Technology Co., Ltd. Method for welding iron-aluminum intermetallic compound microporous material and welded part made thereby

Also Published As

Publication number Publication date
JP2015172212A (en) 2015-10-01

Similar Documents

Publication Publication Date Title
Popov et al. Hydrogen permeation and hydrogen-induced cracking
WO2015098981A1 (en) Substrate for hydrogen equipment and method for manufacturing same
KR101568543B1 (en) Galvanized steel sheet having excellent resistance to crack by liquid metal embrittlement
Koivuluoto et al. Corrosion properties of cold-sprayed tantalum coatings
Campos et al. Evaluation of the corrosion resistance of iron boride coatings obtained by paste boriding process
Benamati et al. Development of tritium permeation barriers on Al base in Europe
CN104870674B (en) The ferritic stainless steel and its manufacture method for automobile exhaust system with excellent resistance to condensate liquid corrosivity, mouldability and high temperature oxidation resistance
JP5163310B2 (en) Method for producing steel material excellent in corrosion resistance and toughness in Z direction
Wen et al. Corrosion behaviour and characteristics of reforming chromized coatings on SS 420 steel in the simulated environment of proton exchange membrane fuel cells
BR112015001809B1 (en) hot-dip galvanized steel sheet and production method
JP2006299377A (en) Al-BASED PLATED STEEL SHEET HAVING EXCELLENT PAINT ADHESION AND CORROSION RESISTANCE AFTER COATING, AUTOMOBILE MEMBER USING THE SAME, AND METHOD FOR PRODUCING Al-BASED PLATED STEEL SHEET
WO2014013788A1 (en) Base material for hydrogen apparatus
Kannan et al. Corrosion behavior of twinning‐induced plasticity (TWIP) steel
CN105154878B (en) A kind of α-Al2O3The preparation method of hydrogen infiltration-resistant erosion resisting insulation layer
KR20190077200A (en) Galvannealed steel sheet having exellent hydrogen crack resistance and method for producing the same
JP5709602B2 (en) Stainless steel material with good insulation and its manufacturing method
Bai et al. The bipolar plate of AISI 1045 steel with chromized coatings prepared by low-temperature pack cementation for proton exchange membrane fuel cell
Chen et al. Growth of inter-metallic compound layers on CLAM steel by HDA and preparation of permeation barrier by oxidation
WO2013002356A1 (en) Surface-treated steel plate, fuel pipe, cell can
Sato et al. Development of a new bond coat “EQ coating” system
Ningshen et al. Pitting and intergranular corrosion resistance of AISI type 301LN stainless steels
JP6853536B2 (en) Stainless steel with hydrogen barrier function and its manufacturing method
Härkönen et al. AlxTayOz mixture coatings prepared using atomic layer deposition for corrosion protection of steel
Dryepondt et al. Creep and corrosion testing of aluminide coatings on ferritic–martensitic substrates
Awasthi et al. Corrosion characteristics of Ni-based Hardfacing alloy deposited on stainless steel substrate by laser cladding

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13819747

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13819747

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP