JP2008297629A - Titanium material, its production method and exhaust pipe - Google Patents

Titanium material, its production method and exhaust pipe Download PDF

Info

Publication number
JP2008297629A
JP2008297629A JP2008161950A JP2008161950A JP2008297629A JP 2008297629 A JP2008297629 A JP 2008297629A JP 2008161950 A JP2008161950 A JP 2008161950A JP 2008161950 A JP2008161950 A JP 2008161950A JP 2008297629 A JP2008297629 A JP 2008297629A
Authority
JP
Japan
Prior art keywords
titanium material
layer
thickness
containing layer
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008161950A
Other languages
Japanese (ja)
Other versions
JP5097027B2 (en
Inventor
Kenji Yamamoto
兼司 山本
Wataru Urushibara
亘 漆原
Takashi Yashiki
貴司 屋敷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2008161950A priority Critical patent/JP5097027B2/en
Publication of JP2008297629A publication Critical patent/JP2008297629A/en
Application granted granted Critical
Publication of JP5097027B2 publication Critical patent/JP5097027B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a titanium material having excellent oxidation resistance, to provide the method of its production, and to provide the exhaust pipe. <P>SOLUTION: (1) A titanium material provided includes: a substrate of pure Ti or Ti alloy, and an Al-containing layer formed on the surface of the substrate, the Al-containing layer having a thickness no smaller than 1 μm and containing no less than 90 mass% Al or Al plus Si, wherein the Al-containing layer has a thickness such that, when the thickness is measured at three points (14 mm apart) selected in the lengthwise direction of the titanium material on the aluminum-containing layer, the difference between the thickness at the middle point and the thickness at the outer two points is no longer than 30% of the thickness at the middle point. (2) A titanium material provided includes: a substrate of pure Ti or Ti alloy; and an Al-containing layer formed on the surface of the substrate, the aluminum-containing layer having a thickness no smaller than 1 μm and containing no less than 90 mass% Al or Al plus Si, with a layer of Al-Ti intermetallic compound interposed between them; wherein the Al-containing layer has a thickness such that, when the thickness is measured at three points (14 mm apart) selected in the lengthwise direction of the titanium material on the Al-containing layer, the difference between the thickness at the middle point and the thickness at the outer two points is no longer than 30% of the thickness at the middle point. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、チタン材、その製造方法および排気管に関する技術分野に属し、特には、2輪車用または4輪車用の排気管の構成材料として用いられるチタン材に関する技術分野に属するものである。   The present invention belongs to a technical field related to a titanium material, a manufacturing method thereof, and an exhaust pipe, and particularly to a technical field related to a titanium material used as a constituent material of an exhaust pipe for a two-wheeled vehicle or a four-wheeled vehicle. .

チタン合金は一般的な鉄鋼材料に比較して、比強度が高く、軽量化が強く指向されている自動車を中心とする輸送機分野への適用が進んでいる。その中でエンジン周りの排気系の排気管材料としては、現在ステンレス鋼が主流であるが、上記軽量化の目的のために排気管のチタン化が検討されている。しかしながら、排気管の温度は部位によっては500 ℃以上になるために、未処理のチタン合金では酸化の進行が早く(耐酸化性が低くて不充分であり)、耐久性に問題がある。   Titanium alloys have a higher specific strength than common steel materials and are increasingly applied to the field of transportation equipment, particularly automobiles, which are strongly aimed at weight reduction. Among them, stainless steel is currently the mainstream as an exhaust pipe material for the exhaust system around the engine. However, for the purpose of reducing the weight, the use of titanium in the exhaust pipe is being studied. However, since the temperature of the exhaust pipe is 500 ° C. or higher depending on the part, oxidation of the untreated titanium alloy proceeds quickly (low oxidation resistance is insufficient), and there is a problem in durability.

チタン合金の耐酸化性向上のために、チタン合金表面にAl板をクラッド化した材料(特開平10-99976号公報)、Al−Ti系の蒸着めっきを施す方法(特開平6-88208 号公報)あるいはPVD法によりTiCrAlN 系皮膜を形成する方法(特開平9-256138号公報)などが提案されている。しかしながら、クラッド化する方法では、製造が大変であり、コストが高くて経済性が悪い。また、上記蒸着めっき(PVD法の一種)を施す方法や、PVD法による方法では、管内面への耐酸化性皮膜形成が困難であるという問題点がある。
特開平10−99976号公報 特開平6−88208号公報 特開平9−256138号公報
In order to improve the oxidation resistance of a titanium alloy, a material in which an Al plate is clad on the surface of a titanium alloy (Japanese Patent Laid-Open No. 10-99976), a method of performing Al-Ti-based vapor deposition plating (Japanese Patent Laid-Open No. 6-88208) Or a method of forming a TiCrAlN film by PVD method (JP-A-9-256138) has been proposed. However, the cladding method is difficult to manufacture, is expensive, and is not economical. In addition, there is a problem that it is difficult to form an oxidation-resistant film on the inner surface of the pipe by the method of performing vapor deposition plating (a kind of PVD method) or the method by the PVD method.
Japanese Patent Laid-Open No. 10-99976 JP-A-6-88208 JP-A-9-256138

本発明はこのような事情に鑑みてなされたものであって、その目的は、前記従来の技術の有する問題点を改善し、耐酸化性に優れたチタン材、その製造方法および排気管を提供しようとするものである。   The present invention has been made in view of such circumstances, and an object thereof is to provide a titanium material excellent in oxidation resistance, a method for manufacturing the same, and an exhaust pipe by improving the problems of the prior art. It is something to try.

本発明者らは、上記目的を達成するため、鋭意研究を行なった結果、本発明を完成するに至った。本発明によれば上記目的を達成することができる。   In order to achieve the above object, the present inventors have intensively studied, and as a result, completed the present invention. According to the present invention, the above object can be achieved.

このようにして完成され上記目的を達成することができた本発明は、チタン材、その製造方法および排気管に係わり、これは請求項1〜7記載のチタン材(第1〜7発明に係るチタン材)、請求項8〜9記載のチタン材の製造方法(第8〜9発明に係るチタン材の製造方法)、請求項10記載の排気管(第10発明に係る排気管)であり、それは次のような構成としたものである。   The present invention thus completed and capable of achieving the above object relates to a titanium material, a method for producing the same, and an exhaust pipe. This is a titanium material according to claims 1 to 7 (according to the first to seventh inventions). A titanium material), a method for producing a titanium material according to claims 8 to 9 (a method for producing a titanium material according to the eighth to ninth inventions), an exhaust pipe according to claim 10 (an exhaust pipe according to the tenth invention), It has the following configuration.

即ち、請求項1記載のチタン材は、純TiまたはTi基合金よりなる基材上に、AlまたはAl及びSiを90質量%以上含有する厚さ1μm以上のAl含有層が形成されているチタン材であって、チタン材の長手方向に14mm間隔で3点をとり、この3点の中の中心の点におけるAl含有層の膜厚と、他の2点におけるAl含有層の膜厚との差が、前記中心の点におけるAl含有層の膜厚に対して30%以内であることを特徴とするチタン材である〔第1発明〕。   That is, the titanium material according to claim 1 is titanium in which an Al-containing layer having a thickness of 1 μm or more and containing 90% by mass or more of Al or Al and Si is formed on a substrate made of pure Ti or a Ti-based alloy. 3 points are taken at intervals of 14 mm in the longitudinal direction of the titanium material, and the film thickness of the Al-containing layer at the central point among the three points and the film thickness of the Al-containing layer at the other two points The titanium material is characterized in that the difference is within 30% with respect to the film thickness of the Al-containing layer at the center point [first invention].

請求項2記載のチタン材は、純TiまたはTi基合金よりなる基材上に、AlまたはAl及びSiを90質量%以上含有する厚さ1μm以上のAl含有層が、Al−Ti金属間化合物層を介して形成されているチタン材であって、チタン材の長手方向に14mm間隔で3点をとり、この3点の中の中心の点におけるAl含有層の膜厚と、他の2点におけるAl含有層の膜厚との差が、前記中心の点におけるAl含有層の膜厚に対して30%以内であることを特徴とするチタン材である〔第2発明〕。   The titanium material according to claim 2, wherein an Al-containing layer having a thickness of 1 μm or more containing 90 mass% or more of Al or Al and Si on a substrate made of pure Ti or a Ti-based alloy is an Al—Ti intermetallic compound. The titanium material is formed through layers, and three points are taken at intervals of 14 mm in the longitudinal direction of the titanium material, and the film thickness of the Al-containing layer at the central point among these three points and the other two points The titanium material is characterized in that the difference from the film thickness of the Al-containing layer in the film is within 30% with respect to the film thickness of the Al-containing layer at the center point [second invention].

請求項3記載のチタン材は、前記Al−Ti金属間化合物がAl3 Tiである請求項2記載のチタン材である〔第3発明〕。 The titanium material according to claim 3 is the titanium material according to claim 2, wherein the Al—Ti intermetallic compound is Al 3 Ti [third invention].

請求項4記載のチタン材は、前記Al−Ti金属間化合物層の厚さが平均0.5μm以上15μm以下である請求項2または3記載のチタン材である〔第4発明〕。   The titanium material according to claim 4 is the titanium material according to claim 2 or 3, wherein the average thickness of the Al—Ti intermetallic compound layer is 0.5 μm or more and 15 μm or less [fourth invention].

請求項5記載のチタン材は、前記基材に0.5〜10質量%のAlが含有されている請求項1〜4のいずれかに記載のチタン材である〔第5発明〕。   The titanium material according to claim 5 is the titanium material according to any one of claims 1 to 4, wherein 0.5 to 10% by mass of Al is contained in the base material [fifth invention].

請求項6記載のチタン材は、前記基材が実質的にAlおよびTiからなる請求項5記載のチタン材である〔第6発明〕。   The titanium material according to claim 6 is the titanium material according to claim 5, wherein the substrate is substantially made of Al and Ti [Sixth Invention].

請求項7記載のチタン材は、前記Al含有層が溶融めっき法により形成されている請求項1〜6記載のチタン材である〔第7発明〕。   The titanium material according to claim 7 is the titanium material according to claims 1 to 6, wherein the Al-containing layer is formed by a hot dipping method [seventh invention].

請求項8記載のチタン材の製造方法は、請求項1〜7のいずれかに記載のチタン材の製造方法であって、Al含有層の形成を溶融めっき法により行い、この際に、溶融めっき浴からのチタン基材の引き上げ速度を1〜20cm/秒とすることを特徴とするチタン材の製造方法である〔第8発明〕。   The method for producing a titanium material according to claim 8 is the method for producing a titanium material according to any one of claims 1 to 7, wherein an Al-containing layer is formed by a hot dipping method. A method for producing a titanium material, characterized in that the pulling rate of the titanium base material from the bath is 1 to 20 cm / second [8th invention].

請求項9記載のチタン材の製造方法は、請求項1〜7のいずれかに記載のチタン材の製造方法であって、Al含有層の形成を溶融めっき法により行い、この後に、硬質粒子によるブラスト処理を施すことを特徴とするチタン材の製造方法である〔第9発明〕。   The method for producing a titanium material according to claim 9 is the method for producing a titanium material according to any one of claims 1 to 7, wherein an Al-containing layer is formed by a hot dipping method, and thereafter, hard particles are used. A titanium material production method characterized by performing a blast treatment [9th invention].

請求項10記載の排気管は、請求項1〜9のいずれかに記載のチタン材を用いて作製された2輪車用または4輪車用の排気管である〔第10発明〕。   An exhaust pipe according to claim 10 is an exhaust pipe for a two-wheeled vehicle or a four-wheeled vehicle manufactured using the titanium material according to any one of claims 1 to 9 [10th invention].

本発明に係るチタン材は、耐酸化性に優れており、また、管内面等のような複雑形状部への適用も容易である。従って、2輪車用または4輪車用の排気管の構成材料として好適に用いることができ、その耐久性の向上がはかれるようになるという効果を奏する。   The titanium material according to the present invention is excellent in oxidation resistance, and can be easily applied to a complicated shape portion such as an inner surface of a pipe. Therefore, it can be suitably used as a constituent material of an exhaust pipe for a two-wheeled vehicle or a four-wheeled vehicle, and there is an effect that the durability can be improved.

本発明に係る2輪車用または4輪車用の排気管は、上記チタン材を用いて作製されているので、軽量化がはかれるだけでなく、耐酸化性に優れて耐久性の向上がはかれる。   Since the exhaust pipe for a two-wheeled vehicle or four-wheeled vehicle according to the present invention is manufactured using the titanium material, not only is the weight reduced, but the oxidation resistance is excellent and the durability is improved. .

本発明に係るチタン材の製造方法によれば、耐酸化性に優れたチタン材を得ることができる。   According to the method for producing a titanium material according to the present invention, a titanium material excellent in oxidation resistance can be obtained.

本発明に係るチタン材において、その第1発明に係るチタン材は、純TiまたはTi基合金よりなる基材上に、AlまたはAl及びSiを90質量%以上含有する厚さ1μm以上のAl含有層が形成されているチタン材であって、チタン材の長手方向に14mm間隔で3点をとり、この3点の中の中心の点におけるAl含有層の膜厚と、他の2点におけるAl含有層の膜厚との差が、前記中心の点におけるAl含有層の膜厚に対して30%以内であることを特徴とするチタン材であることとしている〔第1発明〕。   In the titanium material according to the present invention, the titanium material according to the first invention contains Al or Al and Si containing 90% by mass or more of Al on a substrate made of pure Ti or a Ti-based alloy. A titanium material on which a layer is formed, and three points are taken at intervals of 14 mm in the longitudinal direction of the titanium material, and the film thickness of the Al-containing layer at the central point among these three points and the Al at the other two points The titanium material is characterized in that the difference from the film thickness of the containing layer is within 30% with respect to the film thickness of the Al-containing layer at the center point [first invention].

このAl含有層は、耐酸化性を有して耐酸化性を向上させる層(耐酸化性向上層)である。この耐酸化性向上層としては、上記のように純TiまたはTi基合金よりなる基材上にAlまたはAl+Si(Al及びSi)を90質量%以上含有する層(Al含有層)を厚さ1μm以上形成することが必要である。この理由としては、このようにAl或いは高濃度でAlを含有する合金(層)は、高温酸化雰囲気中においては生成自由エネルギーが負の大きな値をとる緻密なアルミ酸化物が優先的に生成され、これが保護被膜となって以降の酸化を抑制するためである。なお、Siは耐酸化性を向上させる元素であり、Al含有層にSiが含有されていると耐酸化性が向上することから良い。Al含有層にSiも含有する場合、このAl含有層中のAl量とSi量との合計量を90質量%以上とする。   This Al-containing layer is a layer (oxidation resistance improving layer) that has oxidation resistance and improves oxidation resistance. As this oxidation resistance improving layer, a layer (Al-containing layer) containing 90% by mass or more of Al or Al + Si (Al and Si) on the substrate made of pure Ti or Ti-based alloy as described above has a thickness of 1 μm. It is necessary to form the above. The reason for this is that Al or an alloy (layer) containing Al at a high concentration preferentially produces a dense aluminum oxide having a large negative free energy in a high-temperature oxidizing atmosphere. This is because this becomes a protective film and suppresses subsequent oxidation. Si is an element that improves the oxidation resistance. If Si is contained in the Al-containing layer, the oxidation resistance is improved. When Si is also contained in the Al-containing layer, the total amount of Al and Si in the Al-containing layer is 90% by mass or more.

このとき、Al含有層(耐酸化性向上層)中のAlあるいはAl+Siの濃度は、90質量%以上である必要があり、90質量%未満では耐酸化性向上効果が低いことから、90質量%(重量%)を下限とした。   At this time, the concentration of Al or Al + Si in the Al-containing layer (oxidation resistance improving layer) needs to be 90% by mass or more, and if it is less than 90% by mass, the effect of improving oxidation resistance is low. (Wt%) was the lower limit.

Al+Siの量に占めるSiの割合は、1〜20質量%が好ましい。Siが1質量%未満では耐酸化性向上効果が低い。Siを20質量%を超えて含有させると、Al含有層の形成を溶融めっきにより行う際に、溶融めっきが困難となる。かかる点から、Al+Siの量に占めるSiの割合は、10%前後が最も好ましい。   The ratio of Si in the amount of Al + Si is preferably 1 to 20% by mass. When Si is less than 1% by mass, the effect of improving oxidation resistance is low. When Si is contained in excess of 20% by mass, hot dip plating becomes difficult when the Al-containing layer is formed by hot dip plating. From this point, the ratio of Si in the amount of Al + Si is most preferably around 10%.

Al含有層(AlまたはAl+Siを含有する層)において、Al、Si以外の元素としては、通常の溶融めっき法で入る可能性のあるMg,Cu,Fe等が含有され、また、基材(純TiまたはTi基合金)からTi等が含有される。   In the Al-containing layer (a layer containing Al or Al + Si), as elements other than Al and Si, Mg, Cu, Fe, etc. which may enter by a normal hot dipping method are contained, and a base material (pure Ti or the like is contained from Ti or Ti-based alloy).

また、Al含有層の厚みに関しては、1μm以上でないと、ピンホールなどの欠陥により、基材が酸化される。耐酸化性の効果は、ピンホール等の欠陥がない場合、厚いほうが向上することから、厚みの上限は定めないが、厚すぎると基材の加工性を損なうことから、100μm程度以下が目安となる。なお、Al含有層の厚さは、チタン材の断面を任意の複数個所、例えば三ヶ所測定して求められる各厚さの平均値により求める。   If the thickness of the Al-containing layer is not 1 μm or more, the substrate is oxidized due to defects such as pinholes. The effect of oxidation resistance is that if there are no defects such as pinholes, the thicker one improves, so the upper limit of the thickness is not set, but if it is too thick, the workability of the substrate is impaired, so about 100 μm or less is a guide Become. In addition, the thickness of the Al-containing layer is obtained by an average value of thicknesses obtained by measuring the cross section of the titanium material at an arbitrary plurality of places, for example, three places.

Al含有層(耐酸化性向上層)を形成する方法としては、溶融めっき法等が代表的な方法として推奨される。溶融めっき法では、内面などの複雑形状にも均一に層を形成することが可能であり、かつ、安価であって経済性に優れているためである。また、溶融めっき法によれば、溶融Alに漬浸時に溶融Alと基材(純TiまたはTi基合金)表面の自然酸化膜が還元されるために、Al含有層と基材との密着性が良好となるからである。溶融めっきの条件としては、浴温度700〜800℃で漬浸時間5〜20分が推奨されるが、基材の熱容量や材種により変化する。   As a method for forming the Al-containing layer (oxidation resistance improving layer), a hot dipping method or the like is recommended as a typical method. This is because the hot dipping method can form a layer even on a complicated shape such as the inner surface, and is inexpensive and economical. In addition, according to the hot dipping method, the adhesion between the Al-containing layer and the base material is reduced because the natural oxide film on the surface of the molten Al and the base material (pure Ti or Ti-based alloy) is reduced when immersed in the molten Al. Is better. As conditions for hot dipping, a bath temperature of 700 to 800 ° C. and a soaking time of 5 to 20 minutes are recommended, but they vary depending on the heat capacity of the substrate and the type of material.

この他に、Alフレークを含有する有機系塗料を基材に塗布する方法でも、Al含有層を形成することが可能である。   In addition to this, an Al-containing layer can be formed also by a method in which an organic paint containing Al flakes is applied to a substrate.

本発明の第1発明に係るチタン材は、上記のことからわかるように、耐酸化性に優れており、また、管内面等のような複雑形状部でも耐酸化性向上層を容易に形成することができると共に安価に経済性に優れて形成することが可能な溶融めっき法等の表面処理法により得ることができる。即ち、前記従来技術の有する問題点を改善することができ、しかも優れた耐酸化性を有することができる〔第1発明〕。
また、チタン材の長手方向に14mm間隔で3点をとり、この3点の中の中心の点におけるAl含有層の膜厚と、他の2点におけるAl含有層の膜厚との差が、前記中心の点におけるAl含有層の膜厚に対して30%以内であることとしていることにより、Al含有層の膜厚の均一性に優れており、ひいてはチタン材の耐酸化性の均一性に優れると共にチタン材の板厚の寸法精度に優れている。
As can be seen from the above, the titanium material according to the first invention of the present invention is excellent in oxidation resistance, and easily forms an oxidation resistance improving layer even in complicated shapes such as the inner surface of the pipe. In addition, it can be obtained by a surface treatment method such as a hot dipping method that can be formed at low cost and excellent in economic efficiency. That is, it is possible to improve the problems of the prior art and to have excellent oxidation resistance [first invention].
In addition, three points are taken at intervals of 14 mm in the longitudinal direction of the titanium material, and the difference between the film thickness of the Al-containing layer at the central point among these three points and the film thickness of the Al-containing layer at the other two points is By being within 30% of the film thickness of the Al-containing layer at the center point, the film thickness of the Al-containing layer is excellent, and as a result, the oxidation resistance of the titanium material is uniform. It excels in dimensional accuracy of plate thickness of titanium material.

基材〔純TiまたはTi基合金(以下、チタンともいう)〕上に密着性に優れたAl含有層を形成する場合、まず、基材の表面に存在する酸化皮膜を除去する必要がある。チタン表面の自然酸化皮膜は、厚みが通常数十nm程度であり、高温の溶融Al中にチタンを浸漬することにより、3TiO2 +2Al→2Al2 3 +3Tiの反応により還元除去される。しかしながら、これだけでは密着性が十分でない場合がある。このような場合、自然酸化皮膜の還元除去の後に連続して溶融Alめっき中に浸漬することにより、溶融AlとTiの反応により形成されるAl−Ti金属間化合物層により、より高い密着性が得られることを見出した。即ち、基材上にAl−Ti金属間化合物層が形成され、その上にAl含有層が形成される(つまり、基材上にAl含有層がAl−Ti金属間化合物層を介して形成されている)ようにすると、このAl−Ti金属間化合物層により、基材とAl含有層との密着性がより高くなることがわかった。 When forming an Al-containing layer having excellent adhesion on a substrate [pure Ti or Ti-based alloy (hereinafter also referred to as titanium)], it is first necessary to remove the oxide film present on the surface of the substrate. The natural oxide film on the titanium surface has a thickness of about several tens of nanometers, and is reduced and removed by the reaction of 3TiO 2 + 2Al → 2Al 2 O 3 + 3Ti by immersing titanium in high-temperature molten Al. However, this alone may not provide sufficient adhesion. In such a case, the Al-Ti intermetallic compound layer formed by the reaction between molten Al and Ti is continuously immersed in molten Al plating after the reduction and removal of the natural oxide film, thereby providing higher adhesion. It was found that it can be obtained. That is, an Al-Ti intermetallic compound layer is formed on a base material, and an Al-containing layer is formed thereon (that is, an Al-containing layer is formed on the base material via an Al-Ti intermetallic compound layer). It was found that the adhesion between the base material and the Al-containing layer was further improved by the Al—Ti intermetallic compound layer.

そこで、本発明の第2発明に係るチタン材は、純TiまたはTi基合金よりなる基材上に、AlまたはAl及びSiを90質量%以上含有する厚さ1μm以上のAl含有層が、Al−Ti金属間化合物層を介して形成されているチタン材であって、チタン材の長手方向に14mm間隔で3点をとり、この3点の中の中心の点におけるAl含有層の膜厚と、他の2点におけるAl含有層の膜厚との差が、前記中心の点におけるAl含有層の膜厚に対して30%以内であることを特徴とするチタン材であることとしている〔第2発明〕。このチタン材は、上記のことからわかるように、前記第1発明に係るチタン材の場合に比較し、基材とAl含有層との密着性に優れ、密着性が十分でない場合が少なくなり、より確実に(高い水準で)優れた密着性を有することができる。   Therefore, the titanium material according to the second invention of the present invention is an Al-containing layer having a thickness of 1 μm or more containing Al or Al and Si by 90 mass% or more on a substrate made of pure Ti or a Ti-based alloy. A titanium material formed through a Ti intermetallic compound layer, and three points are taken at intervals of 14 mm in the longitudinal direction of the titanium material, and the film thickness of the Al-containing layer at the central point among these three points The titanium material is characterized in that the difference from the film thickness of the Al-containing layer at the other two points is within 30% with respect to the film thickness of the Al-containing layer at the center point. 2 invention]. As can be seen from the above, this titanium material is superior in the adhesion between the base material and the Al-containing layer compared to the case of the titanium material according to the first invention, and the adhesion is not sufficient. It can more reliably (at a high level) have excellent adhesion.

前記Al−Ti金属間化合物(前記Al−Ti金属間化合物層のAl−Ti金属間化合物)がAl3 Tiである場合に、特に優れた密着性が得られることを見出した。そこで、本発明の第3発明に係るチタン材は、前記第2発明に係るチタン材においてAl−Ti金属間化合物(Al−Ti金属間化合物層のAl−Ti金属間化合物)がAl3 Tiであることとしている〔第3発明〕。このチタン材は、上記のことからわかるように、特に優れた密着性を有するものである。 It has been found that particularly excellent adhesion can be obtained when the Al—Ti intermetallic compound (Al—Ti intermetallic compound in the Al—Ti intermetallic compound layer) is Al 3 Ti. Therefore, in the titanium material according to the third invention of the present invention, in the titanium material according to the second invention, the Al—Ti intermetallic compound (Al—Ti intermetallic compound of the Al—Ti intermetallic compound layer) is Al 3 Ti. It is supposed to be [third invention]. As can be seen from the above, this titanium material has particularly excellent adhesion.

なお、Al−Ti化合物としてはTi3 Al、TiAlおよびAl3 Tiが知られているが、この中、前2者のAl−Ti化合物(Ti3 Al、TiAl)はもろくて割れやすいので、この化合物層がAl含有層と基材〔チタン(純TiまたはTi基合金)〕の界面に形成された場合、この化合物層中にて割れが発生し、密着性不良の原因となる。これまでにも、Ti板上にAl箔をクラッドし、熱処理による固相反応によって界面に化合物を形成し、密着性を高める方法は知られていたが、固相反応の場合、界面でのTi3 AlやTiAl層の形成を抑制することが出来ず、密着性不良の原因となっていた。 As Al—Ti compounds, Ti 3 Al, TiAl, and Al 3 Ti are known. Of these, the former two Al—Ti compounds (Ti 3 Al, TiAl) are fragile and easily broken. When the compound layer is formed at the interface between the Al-containing layer and the base material [titanium (pure Ti or Ti-based alloy)], cracks occur in the compound layer, causing poor adhesion. In the past, there has been known a method in which an Al foil is clad on a Ti plate, a compound is formed at the interface by a solid-phase reaction by heat treatment, and the adhesion is improved. 3 The formation of Al or TiAl layers could not be suppressed, causing poor adhesion.

前記第3発明においては、基材(チタン)上、即ち、基材とAl含有層との界面に、Al3 Ti層が形成される必要があるので、このようなAl3 Ti層の形成をすることができる必要がある。本発明者らは、このようなAl3 Ti層の形成をすることができた。即ち、このようなAl3 Ti層の形成のメカニズムは明確ではないが、本発明者らは溶融Al法を使用して、浸漬時間、浴温度を適切に設定することにより、基材とAl含有層との界面にAl3 Tiのみ(Ti3 AlやTiAlを含まない)からなるAl3 Ti層を形成することに成功した。このとき、溶融Alの温度(浴温度)や浸漬時間は、被処理体(チタン)の質量により異なるが、おおむね浴温度:700〜800℃の間、浸漬時間:2〜10分程度が目安となる。 In the third invention, since it is necessary to form an Al 3 Ti layer on the base material (titanium), that is, at the interface between the base material and the Al-containing layer, such an Al 3 Ti layer is formed. Need to be able to. The inventors have been able to form such an Al 3 Ti layer. That is, although the mechanism of formation of such an Al 3 Ti layer is not clear, the present inventors use the molten Al method, and appropriately set the immersion time and bath temperature, so that the substrate and the Al content are contained. The present inventors succeeded in forming an Al 3 Ti layer made of only Al 3 Ti (not containing Ti 3 Al or TiAl) at the interface with the layer. At this time, the temperature of the molten Al (bath temperature) and the immersion time vary depending on the mass of the object to be treated (titanium), but the approximate bath temperature is between 700 to 800 ° C. and the immersion time is about 2 to 10 minutes. Become.

前記Al−Ti金属間化合物層の厚さに関しては、平均0.5μm以上15μm以下であることが望ましい〔第4発明〕。Al3 Ti層等のAl−Ti金属間化合物層の厚みは、溶融めっきの際の浴温度や浸漬時間により制御可能であり、浴温度が高いほど、また、浸漬時間が長いほど、厚くなる傾向を示すが、厚すぎた場合には耐酸化性を担うAl含有層が基材(チタン)と相互拡散し、薄くなり、また、Al含有層の密着性も低下する傾向を示すことから、前記Al−Ti金属間化合物層の厚さの上限を15μmとした。一方、前記Al−Ti金属間化合物層の厚さが薄すぎた場合、その密着性の向上効果が減少してなくなることから、前記Al−Ti金属間化合物層の厚さの下限を0.5μmとした。なお、Al−Ti金属間化合物層の厚さは、チタン材の断面を任意の複数個所、例えば三ヶ所測定して求められる各厚さの平均値により求める。この測定は、例えば5000倍のSEM観察により行うことができる。Al−Ti金属間化合物層のAlとTiの量(ひいては、金属間化合物の組成)は、例えばEPMAにより測定することができる。上記Al−Ti金属間化合物層の厚さは、更には平均1μm超5μm以下であることが望ましい。 The thickness of the Al—Ti intermetallic compound layer is desirably 0.5 μm or more and 15 μm or less on average [fourth invention]. The thickness of the Al—Ti intermetallic compound layer such as the Al 3 Ti layer can be controlled by the bath temperature and immersion time during hot dipping, and the higher the bath temperature and the longer the immersion time, the thicker the tendency However, when it is too thick, the Al-containing layer responsible for oxidation resistance is interdiffused with the base material (titanium) and becomes thin, and the adhesion of the Al-containing layer also tends to be reduced. The upper limit of the thickness of the Al—Ti intermetallic compound layer was 15 μm. On the other hand, if the thickness of the Al—Ti intermetallic compound layer is too thin, the effect of improving the adhesion is not reduced, so the lower limit of the thickness of the Al—Ti intermetallic compound layer is 0.5 μm. It was. The thickness of the Al—Ti intermetallic compound layer is determined by the average value of the thicknesses obtained by measuring the cross section of the titanium material at an arbitrary plurality of locations, for example, three locations. This measurement can be performed by, for example, 5000 times SEM observation. The amount of Al and Ti in the Al—Ti intermetallic compound layer (and hence the composition of the intermetallic compound) can be measured by, for example, EPMA. The thickness of the Al—Ti intermetallic compound layer is preferably more than 1 μm and 5 μm or less on average.

本発明において基材(純TiまたはTi基合金)としては特には限定されず、種々のものを用いることができるが、基材にAlが含有されている場合にAl含有層(耐酸化性向上層)と基材の密着性が更に向上し、Al含有層の形成後に、曲げ加工などを行っても剥離などの問題がないことを見いだした。このように密着性を向上させるために必要な基材中のAl含有量は0.5質量%以上であり、これ以下(0.5質量%未満)では密着性向上効果は低い。Al含有量:0.5質量%以上の場合において、Al量により密着性は大きく変化しないが、Al含有量が多くなり過ぎると、基材が割れやすくなるなどの問題があり、この点から10質量%以下とすることが望ましい。従って、基材としては、0.5〜10質量%のAlが含有されているものを用いることが望ましい〔第5発明〕。   In the present invention, the base material (pure Ti or Ti-based alloy) is not particularly limited, and various materials can be used, but when the base material contains Al, an Al-containing layer (improves oxidation resistance). The adhesion between the layer) and the substrate was further improved, and it was found that there was no problem such as peeling even if bending was performed after the formation of the Al-containing layer. Thus, Al content in a base material required in order to improve adhesiveness is 0.5 mass% or more, and the adhesive improvement effect is low below this (less than 0.5 mass%). In the case where the Al content is 0.5% by mass or more, the adhesion does not change greatly depending on the Al content. However, if the Al content is excessively large, there is a problem that the base material is easily cracked. It is desirable to set it as mass% or less. Accordingly, it is desirable to use a substrate containing 0.5 to 10% by mass of Al as the substrate [fifth invention].

このように基材に0.5〜10質量%のAlが含有されている場合に、更にチタン材の加工性の点を考慮に入れると、Al以外の残部は実質的にTiであることが好ましい。即ち、チタン材の加工性の点から、前記基材が実質的にAlおよびTiからなることが望ましい〔第6発明〕。なお、基材が実質的にAlおよびTiからなることとは、基材がAlおよび不可避的不純物を含有するTi合金からなることをいう。   Thus, when 0.5-10 mass% Al is contained in a base material, when the point of the workability of a titanium material is further taken into consideration, the remainder other than Al may be substantially Ti. preferable. That is, from the viewpoint of workability of the titanium material, it is desirable that the substrate is substantially made of Al and Ti [Sixth Invention]. In addition, that a base material consists of Al and Ti substantially means that a base material consists of Ti alloy containing Al and an unavoidable impurity.

本発明において、Al含有層(耐酸化性向上層)を形成する方法としては、表面処理法を用いる。換言すれば、本発明に係るチタン材は、表面処理チタン材である。この表面処理法としては、その種類は特には限定されず、種々の表面処理法を適用することができ、例えば、溶融めっき法や前述したようなAlフレークを含有する有機系塗料を塗布する方法を適用することができる。なお、Al板をクラッドする方法は表面処理法に該当せず、上記表面処理法には含まれない。このようにAl含有層を形成するための表面処理法としては種々の表面処理法を適用することができるが、中でも溶融めっき法を推奨することができる。溶融めっき法では、前述のように、内面などの複雑形状にも均一に層を形成することが可能であり、かつ、安価であって経済性に優れている。また、溶融めっき法によれば、溶融Alに漬浸時に基材(純Ti又はTi合金)表面の自然酸化膜が還元されるために、Al含有層と基材との密着性が良好となる。更に、溶融Alめっき中への浸漬時間等のめっき条件によって基材上にAl−Ti金属間化合物層を形成することができるので、第2発明に係るチタン材あるいは更に第3〜4発明に係るチタン材を溶融めっき法という1工程で得ることができる。かかる点から、Al含有層は溶融めっき法により形成されることが望ましい〔第7発明〕。   In the present invention, a surface treatment method is used as a method for forming the Al-containing layer (oxidation resistance improving layer). In other words, the titanium material according to the present invention is a surface-treated titanium material. The surface treatment method is not particularly limited, and various surface treatment methods can be applied. For example, a hot dipping method or a method of applying an organic paint containing Al flakes as described above. Can be applied. Note that the method of cladding the Al plate does not correspond to the surface treatment method and is not included in the surface treatment method. As described above, various surface treatment methods can be applied as the surface treatment method for forming the Al-containing layer, and among them, a hot dipping method can be recommended. In the hot dipping method, as described above, a layer can be uniformly formed even on a complicated shape such as an inner surface, and it is inexpensive and excellent in economic efficiency. In addition, according to the hot dipping method, the natural oxide film on the surface of the base material (pure Ti or Ti alloy) is reduced when immersed in molten Al, so that the adhesion between the Al-containing layer and the base material is improved. . Furthermore, since the Al—Ti intermetallic compound layer can be formed on the substrate depending on the plating conditions such as the immersion time in the molten Al plating, the titanium material according to the second invention or further according to the third to fourth inventions. A titanium material can be obtained in one step called a hot dipping method. From this point, it is desirable that the Al-containing layer be formed by a hot dipping method [seventh invention].

本発明においてはAl含有層を形成する方法の1態様として、溶融めっき法(溶融Alめっき法)を好ましい形態として推奨している。溶融めっき法においてはAl含有層との密着性を左右する溶融めっき浴へのチタン基材の浸漬時間に加えて、溶融めっき浴からのチタン基材の引き上げ時の速度(引き上げ速度)により、形成されるAl含有層の特性が影響される。この溶融めっき浴からのチタン基材の引き上げ速度としては1〜20cm/秒が好適である〔第8発明〕。この理由を以下に説明する。   In the present invention, as one aspect of the method for forming the Al-containing layer, a hot dipping method (hot Al plating method) is recommended as a preferred mode. In the hot dipping method, in addition to the immersion time of the titanium base material in the hot dipping bath that affects the adhesion with the Al-containing layer, it is formed by the speed at which the titanium base material is lifted from the hot dipping bath (lifting speed) The properties of the Al-containing layer to be affected are affected. The pulling rate of the titanium substrate from the hot dipping bath is preferably 1 to 20 cm / second [8th invention]. The reason for this will be described below.

溶融めっき法においては浴から基材を引き上げる際に、引き上げ速度が速すぎると、形成されたAl含有層の膜厚が引き上げた基体の上部と下部で大きく異なる。浴からの引き上げ時には表面に付着したAlは固化せずに浴の外に引き上げられ、その後冷却されるまでに下部へと移動し、結果として下部には上部より厚い膜が形成される。   In the hot dip plating method, when the substrate is lifted from the bath, if the pulling rate is too fast, the thickness of the formed Al-containing layer is greatly different between the upper portion and the lower portion of the pulled substrate. At the time of pulling up from the bath, Al adhering to the surface is pulled out of the bath without solidifying, and then moves to the lower part before being cooled, resulting in the formation of a thicker film at the lower part than the upper part.

これに対して、20cm/秒以下に引き上げ速度を制御した場合、Alの移動速度は引き上げ速度以上の大きさの速度であり、下部に移動したAlはそのままAl浴へと吸収される。従って、上部と下部における膜厚差は生じない。この点から、引き上げ速度:20cm/秒以下とすることが望ましい。   On the other hand, when the pulling speed is controlled to 20 cm / second or less, the moving speed of Al is a speed larger than the pulling speed, and the Al moved to the lower part is absorbed into the Al bath as it is. Therefore, there is no difference in film thickness between the upper part and the lower part. From this point, it is desirable that the pulling rate is 20 cm / second or less.

引き上げ速度が1cm/秒の場合、例えば1mの長さの板を引き上げるのに100秒かかり、通常浸漬時間は1〜2分で十分であることから、1cm/秒未満の引き上げ速度では上部と下部では浸漬時間が大きく異なってしまう。この場合、Alとチタン基材の反応が進みすぎ、チタン材の板厚が薄くなる可能性もある。かかる点から、引き上げ速度:1cm/秒以上とすることが望ましい。   When the pulling speed is 1 cm / sec, for example, it takes 100 seconds to pull up a 1 m long plate, and usually 1 to 2 minutes is sufficient for the dipping time. Then, the immersion time differs greatly. In this case, there is a possibility that the reaction between Al and the titanium base material proceeds excessively and the plate thickness of the titanium material becomes thin. From this point, it is desirable that the pulling rate is 1 cm / second or more.

なお、上記のような点から更に引き上げ速度を2〜15cm/秒とすることが一層望ましい。そうすると、上記のような膜厚差がより小さくなり、また、チタン材の板厚が薄くなる可能性がより小さくなる。   In view of the above, it is more desirable that the pulling rate is 2 to 15 cm / second. If it does so, the above film thickness differences will become smaller, and the possibility that the plate | board thickness of a titanium material will become thin becomes smaller.

上記のように溶融めっき浴からのチタン基材の引き上げ速度を1〜20cm/秒とした場合、上部と下部でのAl含有層の膜厚差が小さいものが得られる。例えば、チタン材の長手方向に14mm間隔で3点をとり、この3点の中の中心の点におけるAl含有層の膜厚と、他の2点におけるAl含有層の膜厚との差が、前記中心の点におけるAl含有層の膜厚に対して30%以内であるチタン材が得られる。このチタン材は、Al含有層の膜厚の均一性に優れており、ひいてはチタン材の耐酸化性の均一性に優れると共にチタン材の板厚の寸法精度に優れている。   When the pulling speed of the titanium substrate from the hot dipping bath is 1 to 20 cm / second as described above, a film having a small difference in film thickness between the upper and lower Al-containing layers is obtained. For example, three points are taken at intervals of 14 mm in the longitudinal direction of the titanium material, and the difference between the film thickness of the Al-containing layer at the central point among these three points and the film thickness of the Al-containing layer at the other two points is A titanium material that is within 30% of the thickness of the Al-containing layer at the center point is obtained. This titanium material is excellent in the uniformity of the film thickness of the Al-containing layer. As a result, it is excellent in the uniformity of the oxidation resistance of the titanium material and the dimensional accuracy of the thickness of the titanium material.

溶融Alめっき法によるAl含有層の形成においては、溶融めっき浴からの基体の引き上げ条件や基体の状態によってはめっき層中に空隙やめっきが形成されない部分が生じることがある。また、溶融Alがチタン基材上で固化するとき、最表面には大気との反応により、薄い酸化被膜が形成されることから、表面の光沢が失われることがある。本発明者らは、これらの問題を解決すべく鋭意検討した結果、Al含有層形成後に、ガラスあるいは金属球などの硬質粒子でブラスト処理することにより、Al層中に生じる空隙やめっきが形成されない部分を埋めて無くすことができ、耐酸化性をより高めることができることを見出した。また、同時にブラスト処理により表面の酸化皮膜が除去され、金属光沢を有する美麗な表面を呈するようになることもわかった。ここで、除去される酸化膜は溶融Alめっき浴から引き上げ時に、浴の表面に形成された酸化膜を巻き込んでいるので、自然酸化膜よりかなり厚くなっている。ブラスト処理によりこれらの厚い酸化皮膜を除去すると、薄い自然酸化膜は形成されるが、非常に薄いので、光沢を有する美麗な表面性状を損なうことはない。   In the formation of the Al-containing layer by the hot-dip Al plating method, there may be a portion where no voids or plating is formed in the plating layer depending on the pulling-up conditions of the base from the hot-dip plating bath and the state of the base. Further, when molten Al is solidified on the titanium base material, a thin oxide film is formed on the outermost surface due to reaction with the atmosphere, so that the gloss of the surface may be lost. As a result of intensive studies to solve these problems, the present inventors do not form voids or plating generated in the Al layer by blasting with hard particles such as glass or metal spheres after forming the Al-containing layer. It was found that the portion can be filled and eliminated, and the oxidation resistance can be further improved. At the same time, it was also found that the oxide film on the surface was removed by the blast treatment, and a beautiful surface having a metallic luster was exhibited. Here, the oxide film to be removed is considerably thicker than the natural oxide film because the oxide film formed on the surface of the bath is involved when the oxide film is pulled up from the molten Al plating bath. When these thick oxide films are removed by blasting, a thin natural oxide film is formed, but it is very thin and does not impair the glossy and beautiful surface properties.

従って、溶融めっき法によりAl含有層を形成した後、硬質粒子によるブラスト処理を施すようにすることが望ましい〔第9発明〕。このようにブラスト処理をした場合、溶融めっき法で形成されたAl含有層に空隙やめっきが形成されない部分が生じた場合でも、これらを埋めて無くすことができ、ひいては耐酸化性をより高めることができ、また、表面の酸化皮膜が除去され、金属光沢を有する美麗な表面のものを得ることができる。   Therefore, it is desirable to perform blasting with hard particles after forming the Al-containing layer by hot dipping method [9th invention]. When blasting is performed in this way, even when a gap or plating is not formed in the Al-containing layer formed by the hot dipping method, these can be filled and eliminated, and as a result, oxidation resistance can be further improved. In addition, the surface oxide film is removed, and a beautiful surface having a metallic luster can be obtained.

上記ブラスト処理には、Alよりも高硬度の硬質粒子を使用する。しかし、硬すぎるとAl含有層が削られるため、アルミナ以下の硬度のものを使用することが望ましく、ガラス以下の硬度の硬質粒子を使用することが一層望ましい。硬質粒子の大きさに関しては、通常ブラスト処理に使用される#100番程度の大きさのものが使用できる。粒径でいえば、数百μm のものが使用できる。粒径があまり小さいと、衝突により空孔を埋める効果が小さいので、10μm以上のものが好ましい。ブラストの方法としては、空気圧により硬質粒子を投射する方法が最も簡便であり、その点で推奨されるが、空気圧が高すぎるとAl含有層が除去されるので、空気圧は5kg・cm2 以下が推奨される。好ましくは3kg・cm2 以下である。 For the blast treatment, hard particles having a hardness higher than that of Al are used. However, if it is too hard, the Al-containing layer is scraped, so it is desirable to use a material having a hardness of alumina or less, and it is more desirable to use hard particles having a hardness of glass or less. Regarding the size of the hard particles, those having a size of about # 100 which is usually used for blasting can be used. In terms of particle size, those having a size of several hundred μm can be used. If the particle size is too small, the effect of filling the pores by collision is small, so that the particle size is preferably 10 μm or more. As a blasting method, the method of projecting hard particles by air pressure is the simplest and recommended in that respect, but if the air pressure is too high, the Al-containing layer is removed, so the air pressure should be 5 kg · cm 2 or less. Recommended. Preferably, it is 3 kg · cm 2 or less.

本発明に係るチタン材(第1〜第7発明に係るチタン材)は、以上のように、耐酸化性に優れており、また、管内面等のような複雑形状部でも耐酸化性向上層を容易に形成することができると共に安価に経済性に優れて形成することが可能な溶融めっき法等の表面処理法により得ることができる。従って、2輪車用または4輪車用の排気管の構成材料として好適に用いることができ、その耐久性の向上がはかれる〔第10発明〕。   As described above, the titanium material according to the present invention (the titanium materials according to the first to seventh inventions) is excellent in oxidation resistance, and also has an oxidation resistance improving layer even in complicated shapes such as the inner surface of the pipe. Can be easily formed, and can be obtained by a surface treatment method such as a hot dipping method that can be formed inexpensively and economically. Therefore, it can be suitably used as a constituent material of exhaust pipes for two-wheeled vehicles or four-wheeled vehicles, and the durability is improved [10th invention].

本発明の実施例および比較例を以下説明する。なお、本発明はこの実施例に限定されるものではなく、本発明の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。   Examples of the present invention and comparative examples will be described below. The present invention is not limited to this embodiment, and can be implemented with appropriate modifications within a range that can be adapted to the gist of the present invention, all of which are within the technical scope of the present invention. include.

〔参考例1、比較例1〕
基材として純チタン(JIS1種、厚さ1mm)を使用し、溶融めっき法、蒸着法、あるいは、Al粒子を含有するものをスプレーするスプレー法により、基材上に表1に示す組成のAl含有層(耐酸化性層)を形成し、これにより本発明の参考例および比較例に係るチタン材を得た。このとき、溶融めっき法においては、浴温度:700〜750℃、漬浸時間:5〜20分の範囲という条件で、基材を漬浸し、Al含有層の形成を行った。
[Reference Example 1, Comparative Example 1]
Using pure titanium (JIS 1 type, thickness 1 mm) as a base material, Al of the composition shown in Table 1 is formed on the base material by a hot dipping method, a vapor deposition method, or a spray method of spraying a material containing Al particles. The containing layer (oxidation-resistant layer) was formed, thereby obtaining titanium materials according to the reference examples and comparative examples of the present invention. At this time, in the hot dipping method, the base material was immersed under conditions of bath temperature: 700 to 750 ° C. and immersion time: 5 to 20 minutes to form an Al-containing layer.

上記チタン材には、基材とAl含有層との界面にAl−Ti金属間化合物層が形成されているものと形成されていないものとがある。この確認のため、EPMAによる元素の定量分析を実施し、Al−Ti金属間化合物層の有無を調べた。   The titanium materials include those in which an Al—Ti intermetallic compound layer is formed at the interface between the base material and the Al-containing layer and those in which no Al-Ti intermetallic compound layer is formed. In order to confirm this, quantitative analysis of elements by EPMA was performed, and the presence or absence of an Al—Ti intermetallic compound layer was examined.

なお、表1において、組成の欄はAl含有層(耐酸化性層)の組成を示すものである。この組成の欄において、No.2〜3 のAl100は、Al量:100質量%のことであり、Alおよび不可避的不純物からなることを示すものである。No.4のAl95Ti5は、Al量:95質量%、Ti量:5質量%のことであり、Al:95質量%とTi:5質量%と不可避的不純物からなることを示すものである。No.6のAl95Si5は、Al量:95質量%、Si量:5質量%のことであり、Al:95質量%とSi:5質量%と不可避的不純物からなることを示すものである。これら以外のものについても、上記と同様の読み方をするものとし、後述の表2以降の各組成の欄においても、上記と同様の読み方をするものとする。   In Table 1, the composition column indicates the composition of the Al-containing layer (oxidation resistant layer). In the column of this composition, Al100 of No. 2 to No. 3 is an Al amount: 100% by mass, and indicates that it consists of Al and inevitable impurities. No. 4 Al95Ti5 has an Al content of 95% by mass and a Ti content of 5% by mass, and indicates that Al: 95% by mass and Ti: 5% by mass are inevitable impurities. No. 6 Al95Si5 has an Al content of 95% by mass and an Si content of 5% by mass, indicating that Al: 95% by mass and Si: 5% by mass are unavoidable impurities. Other than these, the same reading as described above shall be performed, and the same reading as described above shall be performed in the columns of each composition after Table 2 described later.

このようにして得られたチタン材について、800℃の大気雰囲気下に100時間さらすという高温酸化試験を行い、この高温酸化試験前後の肉厚を測定し、この高温酸化試験での酸化による肉厚減少量を求め、これにより耐酸化性を評価した。また、純チタン(純Ti)について、上記と同様の高温酸化試験を行い、同様の方法により、耐酸化性を評価した。   The titanium material thus obtained is subjected to a high-temperature oxidation test in which it is exposed to an air atmosphere at 800 ° C. for 100 hours, the thickness before and after the high-temperature oxidation test is measured, and the thickness due to oxidation in the high-temperature oxidation test is measured. The amount of decrease was determined, and thereby the oxidation resistance was evaluated. Further, pure titanium (pure Ti) was subjected to the same high-temperature oxidation test as described above, and the oxidation resistance was evaluated by the same method.

この結果を表1に示す。表1からわかるように、純Ti(No.1)の場合は、高温酸化試験での酸化による肉厚減少量が200μmと大きく、耐酸化性がよくない。No.5の比較例に係るチタン材は、肉厚減少量が150μmであり、耐酸化性が少し向上するが、その向上の程度は小さい。   The results are shown in Table 1. As can be seen from Table 1, in the case of pure Ti (No. 1), the thickness reduction due to oxidation in the high-temperature oxidation test is as large as 200 μm, and the oxidation resistance is not good. The titanium material according to the comparative example of No. 5 has a thickness reduction amount of 150 μm, and the oxidation resistance is slightly improved, but the degree of improvement is small.

これに対し、No.7の本発明の参考例に係るチタン材は、肉厚減少量が小さく、耐酸化性に優れており、更に、No.2〜4 、No.6およびNo.8の本発明の参考例に係るチタン材は、肉厚減少量が極めて小さく、耐酸化性に著しく優れている。   In contrast, the titanium material according to the reference example of the present invention of No. 7 has a small thickness reduction amount and excellent oxidation resistance, and further, No. 2-4, No. 6 and No. 8 The titanium material according to the reference example of the present invention has a very small thickness reduction amount and is extremely excellent in oxidation resistance.

No.2〜4 、No.6およびNo.8の本発明の参考例に係るチタン材において、Al含有層中でのAl量とSi量の合計量(Siなしの場合は、Al量)が大きい場合の方が肉厚減少量が小さく、耐酸化性に優れている。   In the titanium materials according to the reference examples of the present invention of No. 2-4, No. 6 and No. 8, the total amount of Al and Si in the Al-containing layer (the amount of Al in the case of no Si) is When it is large, the thickness reduction amount is small and the oxidation resistance is excellent.

〔参考例2〕
基材として純チタン(JIS1種、厚さ1mm)、及び、Alを含有するTi基合金(Al量:それぞれ異なる)を用い、溶融めっき法により、基材上にAl含有層(耐酸化性層)を形成し、これにより本発明の参考例に係るチタン材を得た。なお、このAl含有層の組成は、表2に示すように、いずれの場合もAl100(Al量:100質量%)である。溶融めっき法の条件は、参考例1の場合と同様である。表2の基材の欄において、Ti−1.5Alは、Ti−1.5質量%Alのことであり、Al:1.5質量%を含有し、残部が不可避的不純物からなるTi基合金であることを示すものである。これら以外のものについても、上記と同様の読み方をするものとし、後述の表3以降の各基材の欄においても、上記と同様の読み方をするものとする。
[Reference Example 2]
Using pure titanium (JIS 1 type, thickness 1 mm) as a base material and Ti-based alloys containing Al (Al amount: different), an Al-containing layer (oxidation-resistant layer) is formed on the base material by hot dipping. Thus, a titanium material according to a reference example of the present invention was obtained. In addition, as shown in Table 2, the composition of the Al-containing layer is Al100 (Al content: 100% by mass) in any case. The conditions of the hot dipping method are the same as those in Reference Example 1. In the column of the base material of Table 2, Ti-1.5Al is Ti-1.5% by mass Al, and contains Ti: 1.5% by mass, and the balance is a Ti-based alloy consisting of inevitable impurities. It shows that it is. Other than these, the same reading as described above is performed, and the same reading as described above is also performed in the column of each base material after Table 3 described later.

このようにして得られたチタン材について、90°曲げ試験を行い、コーナー部の剥離状況によりAl含有層と基材との密着性を評価した。   The titanium material thus obtained was subjected to a 90 ° bending test, and the adhesion between the Al-containing layer and the substrate was evaluated based on the peeling state of the corner portion.

更に、上記曲げ試験後のチタン材について、参考例1の場合と同様の高温酸化試験を行い、同様の評価方法により耐酸化性を評価した。   Further, the titanium material after the bending test was subjected to the same high-temperature oxidation test as in Reference Example 1, and the oxidation resistance was evaluated by the same evaluation method.

この結果を表2に示す。表2からわかるように、基材がTi−15Al合金(Al量:15質量%のTi合金)の場合には、曲げ試験において基材に割れが発生している(No.6)。基材が純チタンの場合には、曲げ試験において基材割れは発生していないものの、剥離が発生している。   The results are shown in Table 2. As can be seen from Table 2, when the substrate is a Ti-15Al alloy (Al content: Ti alloy having a mass of 15% by mass), the substrate is cracked in the bending test (No. 6). In the case where the base material is pure titanium, the base material is not cracked in the bending test, but peeling occurs.

これに対し、基材としてAlを含有するTi合金でAl量がAl量:0.5〜10質量%を充たすTi合金を用いた場合には、曲げ試験において剥離が発生しなくて、Al含有層と基材との密着性に優れている(No.2〜5 )。   On the other hand, when a Ti alloy containing Al as a base material and an Al amount satisfying Al amount: 0.5 to 10% by mass is used, peeling does not occur in the bending test, and Al content is included. Excellent adhesion between layer and substrate (No. 2-5).

なお、耐酸化性に関しては、No.2〜5 のチタン材は、いずれも肉厚減少量が小さく、耐酸化性に優れている。これらのチタン材は、肉厚減少量に大きな差はなく、耐酸化性は同程度の水準にある。   As for oxidation resistance, the No. 2 to 5 titanium materials all have a small reduction in thickness and are excellent in oxidation resistance. These titanium materials have no significant difference in thickness reduction, and the oxidation resistance is at the same level.

〔参考例3、比較例2〕
基材として純Ti(JIS1種、厚さ1mm)を用い、溶融めっき法により、基材上にAl含有層(耐酸化性層)を形成し、これによりチタン材を得た。このとき、溶融めっき法においては、浴温度:750℃、漬浸時間:0.1〜60分の範囲という条件で、基材を漬浸し、Al含有層の形成を行った。なお、上記チタン材には、基材とAl含有層との界面にAl−Ti金属間化合物層が形成されているものと形成されていないものとがある。この確認のため、参考例1の場合と同様の方法(EPMAによる元素の定量分析)により、Al−Ti金属間化合物層の有無を調べた。
[Reference Example 3, Comparative Example 2]
Pure Ti (JIS 1 type, thickness 1 mm) was used as the base material, and an Al-containing layer (oxidation resistant layer) was formed on the base material by a hot dipping method, thereby obtaining a titanium material. At this time, in the hot dipping method, the base material was immersed under conditions of bath temperature: 750 ° C. and immersion time: 0.1 to 60 minutes to form an Al-containing layer. In addition, the said titanium material has the thing in which the Al-Ti intermetallic compound layer is formed in the interface of a base material and an Al content layer, and the thing which is not formed. For this confirmation, the presence or absence of an Al—Ti intermetallic compound layer was examined by the same method as in Reference Example 1 (quantitative elemental analysis by EPMA).

また、純Ti表面にAl板をクラッド化した材料(Alクラッドチタン材)を、作製した。そして、このAlクラッドチタン材について、大気中で500℃で60分加熱する熱処理を行い、これにより、基材(純Ti)とAl板との界面にAl−Ti化合物層を形成した。この確認のため、上記と同様の方法(EPMAによる元素の定量分析)により、Al−Ti金属間化合物層の有無を調べた。   Further, a material (Al clad titanium material) in which an Al plate was clad on a pure Ti surface was produced. And this Al clad titanium material was heat-processed by heating at 500 degreeC in air | atmosphere for 60 minutes, and, thereby, the Al-Ti compound layer was formed in the interface of a base material (pure Ti) and an Al board. For this confirmation, the presence or absence of an Al—Ti intermetallic compound layer was examined by the same method as described above (quantitative elemental analysis by EPMA).

このようにして得られたチタン材について、90°曲げ試験を行い、曲げ部の剥離状況によりAl含有層あるいはAl板と基材との密着性を評価した。   The titanium material thus obtained was subjected to a 90 ° bending test, and the adhesion between the Al-containing layer or Al plate and the substrate was evaluated according to the peeled state of the bent portion.

更に、上記曲げ試験後のチタン材について、参考例1の場合と同様の高温酸化試験(大気雰囲気下、800℃×100時間)を行い、曲げ部についての高温酸化試験での酸化による肉厚減少量を求め、これにより耐酸化性を評価した。   Further, the titanium material after the bending test was subjected to the same high-temperature oxidation test as in Reference Example 1 (in the atmosphere, 800 ° C. × 100 hours), and the thickness was reduced by oxidation in the high-temperature oxidation test for the bent portion. The amount was determined and the oxidation resistance was evaluated.

この結果を表4に示す。また、チタン材(溶融めっき後曲げ試験前)の基材とAl含有層との界面およびその近傍についての電子顕微鏡写真の一例を、図1に示す。この図1は、表4のNo.3のチタン材(溶融めっき後曲げ試験前)についてのものである。このチタン材の場合、図1からわかるように、基材(Ti材)とAl含有層(Al層)との界面にAl3 Ti層(Al3Ti層)が形成されている。 The results are shown in Table 4. Moreover, an example of the electron micrograph about the interface of the base material of titanium material (after a hot-dip plating before a bending test) and an Al content layer and its vicinity is shown in FIG. FIG. 1 is for No. 3 titanium material in Table 4 (after hot dipping and before bending test). In the case of this titanium material, as can be seen from FIG. 1, an Al 3 Ti layer (Al3Ti layer) is formed at the interface between the base material (Ti material) and the Al-containing layer (Al layer).

表4からわかるように、基材(純Ti)の溶融めっき浴への漬浸時間が0.1分の場合は、基材とAl含有層との界面にAl−Ti金属間化合物層が形成されておらず、また、基材表面に酸化膜が残留している(No.1)。   As can be seen from Table 4, when the immersion time of the base material (pure Ti) in the hot dipping bath is 0.1 minutes, an Al-Ti intermetallic compound layer is formed at the interface between the base material and the Al-containing layer. No oxide film remains on the surface of the substrate (No. 1).

これに対し、基材の溶融めっき浴への漬浸時間が長くなると、基材とAl含有層との界面にAl3 Ti(表ではAl3Tiと表示)層が形成されている(No.2〜6 、No.8)。このとき、上記漬浸時間が長くなるに伴い、Al3 Ti層の厚みが厚くなっている。 In contrast, when the immersion time of the base material in the hot dipping bath is increased, an Al 3 Ti (shown as Al 3 Ti in the table) layer is formed at the interface between the base material and the Al-containing layer (No. 2 to 6, No. 8). At this time, as the immersion time becomes longer, the thickness of the Al 3 Ti layer is increased.

上記チタン材(No.1〜6 、No.8)において、No.1のものは、前述のように基材とAl含有層との界面にAl−Ti金属間化合物層が形成されておらず、曲げ試験において剥離が発生している。これに対して、No.2〜6 のものは、基材とAl含有層との界面にAl3 Ti層が形成され、その厚みは1〜10.5μm(平均0.5〜15μmを充たす)であり、曲げ試験において剥離が発生しておらず、Al含有層と基材との密着性に優れている。No.8のものは、基材とAl含有層との界面に形成されたAl3 Ti層の厚みが20μm(平均0.5〜15μmを充たさない)であって更に厚く、曲げ試験において一部剥離が発生している。 In the above titanium materials (No. 1-6, No. 8), No. 1 has no Al-Ti intermetallic compound layer formed at the interface between the base material and the Al-containing layer as described above. In the bending test, peeling occurred. In contrast, those of No.2~6, Al 3 Ti layer is formed at the interface between the substrate and the Al-containing layer, the thickness (satisfy average 0.5~15μm) 1~10.5μm No peeling occurred in the bending test, and the adhesion between the Al-containing layer and the substrate is excellent. In No. 8, the thickness of the Al 3 Ti layer formed at the interface between the base material and the Al-containing layer is 20 μm (which does not satisfy an average of 0.5 to 15 μm) and is thicker, and partly in the bending test. Peeling has occurred.

No.7のものはAlクラッドチタン材であって基材(純Ti)とAl板との界面にTi3 Al、TiAl、Al3 Tiを含むAl−Ti金属間化合物層(厚み8.6μm)を形成したものである。このAlクラッドチタン材も、曲げ試験において一部剥離が発生している。 No. 7 is an Al-clad titanium material, and an Al-Ti intermetallic compound layer (thickness: 8.6 μm) containing Ti 3 Al, TiAl, Al 3 Ti at the interface between the base material (pure Ti) and the Al plate. Is formed. This Al clad titanium material also partially peeled in the bending test.

曲げ試験後のチタン材についての高温酸化試験の結果は、表4に示すとおりであり、Alクラッドチタン材の場合に比べて、No.2〜6 のチタン材の場合は、高温酸化試験での酸化による肉厚減少量が小さく、耐酸化性に優れている。従って、No.2〜6 のチタン材は、Al含有層と基材との密着性に優れていると共に耐酸化性に優れている。   The results of the high-temperature oxidation test on the titanium material after the bending test are as shown in Table 4. Compared with the case of the Al-clad titanium material, the titanium materials of No. 2 to 6 have a high-temperature oxidation test result. The reduction in thickness due to oxidation is small, and it has excellent oxidation resistance. Therefore, the titanium materials No. 2 to 6 are excellent in adhesion between the Al-containing layer and the base material and excellent in oxidation resistance.

上記No.2〜6 のチタン材の中でも、No.3〜4 のチタン材(Al3 Ti層の厚みが2.5〜4.5μmであって1μm超5μm以下を充たすもの)は特に耐酸化性に優れている。従って、No.3〜4 のチタン材は、特に、Al含有層と基材との密着性に優れていると共に耐酸化性に優れている。 Among the No. 2-6 titanium materials, the No. 3-4 titanium materials (thickness of Al 3 Ti layer is 2.5-4.5 μm and more than 1 μm and less than 5 μm) are particularly oxidation resistant. Excellent in properties. Therefore, the titanium materials No. 3 to 4 are particularly excellent in the adhesion between the Al-containing layer and the base material and also in the oxidation resistance.

上記No.2〜4 のチタン材において、Al3 Ti層の厚みが厚い方が耐酸化性に優れている。 In the above No. 2 to No. 4 titanium materials, the thicker the Al 3 Ti layer is, the better the oxidation resistance is.

なお、表4のNo.1のチタン材は、表2のNo.1のチタン材や、表1のNo.3〜5 のチタン材と構成が同様もしくはほぼ同様であるので、Al含有層の形成後(溶融めっき後)曲げ試験前においては、表2のNo.1のチタン材や、表1のNo.3〜5 のチタン材と同等の耐酸化性を示すものであり、耐酸化性に優れている。しかし、曲げ試験後のチタン材(No.1)についての高温酸化試験の結果は、表4に示すとおりであり、高温酸化試験での酸化による肉厚減少量が大きく、耐酸化性に優れていない結果となっている。これは、前述のように曲げ試験において剥離が発生し、この剥離部を対象としての高温酸化試験を行った(この剥離部についての高温酸化試験での酸化による肉厚減少量を求めた)からである。   The No. 1 titanium material in Table 4 has the same or almost the same structure as the No. 1 titanium material in Table 2 and No. 3 to 5 in Table 1. After forming (after hot dipping) and before the bending test, it shows oxidation resistance equivalent to that of No.1 titanium material in Table 2 and No.3 to 5 in Table 1. Is excellent. However, the results of the high-temperature oxidation test on the titanium material (No. 1) after the bending test are as shown in Table 4. The thickness reduction due to oxidation in the high-temperature oxidation test is large, and the oxidation resistance is excellent. No results. This is because peeling occurred in the bending test as described above, and a high temperature oxidation test was performed on the peeled portion (the amount of thickness reduction due to oxidation in the high temperature oxidation test for this peeled portion was obtained). It is.

〔実施例1、比較例3〕
浴温度700℃の純Al溶湯(不純物として2%程度のFeを含む)に1分間純チタン板(形状30cm×10cm、厚み1mm)を浸漬し、その後、このチタン板について長手方向に0.05〜50cm/秒の引き上げ速度にて引き上げを行った。このようにして得られたチタン材について、上部(上端より1cmの個所)、中央(上端より15cmの個所)、下部(上端より29cmの個所)の部分のAl含有層(Al層)の膜厚を調査した。
[Example 1, Comparative Example 3]
A pure titanium plate (shape: 30 cm × 10 cm, thickness: 1 mm) is immersed for 1 minute in a pure Al molten metal (containing about 2% Fe as impurities) at a bath temperature of 700 ° C., and then 0.05 mm in the longitudinal direction of the titanium plate. Lifting was performed at a pulling rate of ˜50 cm / sec. About the titanium material thus obtained, the film thickness of the Al-containing layer (Al layer) in the upper part (location 1 cm from the upper end), the center (location 15 cm from the upper end), and the lower portion (location 29 cm from the upper end). investigated.

この結果を表5に示す。表5からわかるように、溶融めっき浴(純Al溶湯)からのチタン基材(純チタン板)の引き上げ速度が速いほど、厚い膜(Al層)が形成されるが、引き上げ速度の増加に伴いAl層の膜厚が増加し、特に下部における膜厚が増加し、この下部でのAl層の膜厚の増加により、膜厚分布が大きくなる。即ち、上部、中央、下部でのAl層の膜厚の差が大きくなる。   The results are shown in Table 5. As can be seen from Table 5, the higher the pulling speed of the titanium base material (pure titanium plate) from the hot dipping bath (pure Al molten metal), the thicker the film (Al layer) is formed. The film thickness of the Al layer increases, particularly the film thickness in the lower part, and the film thickness distribution increases as the film thickness of the Al layer in the lower part increases. That is, the difference in film thickness of the Al layer at the top, center, and bottom is increased.

引き上げ速度:50cm/秒の場合、中央でのAl層の膜厚と上部でのAl層の膜厚との差(中央と上部でのAl層の膜厚の差)は中央でのAl層の膜厚に対して31.2%〔=100×(80−55)/80〕であり、中央でのAl層の膜厚と下部でのAl層の膜厚の差(中央と下部でのAl層の膜厚の差)は中央でのAl層の膜厚に対して150%である。引き上げ速度:30cm/秒の場合、中央と上部でのAl層の膜厚の差は中央でのAl層の膜厚に対して27.7%であり、中央と下部でのAl層の膜厚の差は中央でのAl層の膜厚に対して38.5%である。   When the lifting speed is 50 cm / sec, the difference between the thickness of the Al layer at the center and the thickness of the Al layer at the top (the difference in the thickness of the Al layer at the center and the top) is the difference between the thickness of the Al layer at the center. 31.2% of the film thickness [= 100 × (80−55) / 80], and the difference between the film thickness of the Al layer in the center and the film thickness of the Al layer in the lower part (Al in the center and the lower part) The difference in layer thickness is 150% with respect to the thickness of the Al layer at the center. When the pulling rate is 30 cm / sec, the difference in the thickness of the Al layer between the center and the top is 27.7% with respect to the thickness of the Al layer at the center, and the thickness of the Al layer between the center and the bottom. The difference is 38.5% with respect to the film thickness of the Al layer at the center.

引き上げ速度:15cm/秒の場合、中央と上部でのAl層の膜厚の差は中央でのAl層の膜厚に対して20%〔=100×(55−44)/55〕であり、中央と下部でのAl層の膜厚の差は中央でのAl層の膜厚に対して18.2%である。これらは上記引き上げ速度:50cm/秒の場合に比較して小さく、引き上げ速度:15cm/秒の場合に比較しても小さい。   When the pulling speed is 15 cm / sec, the difference in the thickness of the Al layer between the center and the top is 20% [= 100 × (55−44) / 55] with respect to the thickness of the Al layer at the center. The difference between the thickness of the Al layer at the center and the lower portion is 18.2% with respect to the thickness of the Al layer at the center. These are small as compared with the above-mentioned case of the lifting speed: 50 cm / sec, and are small even when compared with the case of the pulling speed: 15 cm / sec.

引き上げ速度:10cm/秒の場合、中央でのAl層の膜厚に対する中央と上部でのAl層の膜厚の差の割合も、中央と下部でのAl層の膜厚の差の割合も、上記引き上げ速度:15cm/秒の場合に比較して小さい。引き上げ速度:2cm/秒の場合、中央でのAl層の膜厚に対する中央と上部でのAl層の膜厚の差の割合も、中央と下部でのAl層の膜厚の差の割合も、上記引き上げ速度:10cm/秒の場合に比較して小さい。   Pulling speed: In the case of 10 cm / second, the ratio of the difference in the thickness of the Al layer at the center and the upper part with respect to the thickness of the Al layer at the center, the ratio of the difference in the thickness of the Al layer at the center and the lower part, The pulling speed is smaller than that in the case of 15 cm / sec. Lifting speed: In the case of 2 cm / sec, the ratio of the difference in the thickness of the Al layer at the center and the upper part relative to the thickness of the Al layer at the center, the ratio of the difference in the thickness of the Al layer at the center and the lower part, The pulling speed is smaller than that in the case of 10 cm / second.

上記引き上げ速度が15cm/秒の場合、10cm/秒の場合、2cm/秒の場合は、いずれの場合も「溶融めっき浴からのチタン基材の引き上げ速度を1〜20cm/秒とする」という条件(第8発明に係る要件)を満たしている。そして、この場合、前述のことや表5からわかるように、「チタン材の長手方向に14mm間隔で3点をとり、この3点の中の中心の点におけるAl含有層の膜厚と、他の2点におけるAl含有層の膜厚との差が前記中心の点におけるAl含有層の膜厚に対して30%以内である」という条件(第1発明、第2発明に係る要件)を満たすものが得られている。   When the pulling speed is 15 cm / sec, 10 cm / sec, 2 cm / sec, in any case, “the pulling speed of the titanium substrate from the hot dipping bath is 1-20 cm / sec” (Requirements concerning the eighth invention) are satisfied. And in this case, as can be seen from the foregoing and Table 5, “three points are taken at intervals of 14 mm in the longitudinal direction of the titanium material, the film thickness of the Al-containing layer at the center point among these three points, and the like. The difference between the film thickness of the Al-containing layer at the two points is within 30% with respect to the film thickness of the Al-containing layer at the central point "(requirements relating to the first and second inventions) Things have been obtained.

なお、引き上げ速度:0.05cm/秒の場合、中央と上部でのAl層の膜厚の差は中央でのAl層の膜厚に対して2%であり、中央と下部でのAl層の膜厚の差は中央でのAl層の膜厚に対して6.1%であり、Al含有層の膜厚の均一性に優れているが、上部と下部での浸漬時間が大きく異なり、Alとチタン基材の反応が進みすぎ、チタン材の板厚が薄くなってしまう場合があった。   When the pulling rate is 0.05 cm / sec, the difference in the thickness of the Al layer between the center and the top is 2% with respect to the thickness of the Al layer at the center, The difference in film thickness is 6.1% with respect to the film thickness of the Al layer at the center, which is excellent in the uniformity of the film thickness of the Al-containing layer. In some cases, the reaction of the titanium base material progresses too much, and the thickness of the titanium material becomes thin.

〔実施例2、比較例4〕
浴温度700℃の純Al溶湯(不純物として2%程度のFeを含む)に1分間純チタン板(形状30cm×10cm、厚み1mm)を浸漬し、その後、このチタン板について長手方向に3cm/秒の引き上げ速度にて引き上げを行った。このようにして得られたチタン材について、硬質粒子によるブラスト処理を施した。このとき、硬質粒子としてはガラスビーズを用いた。ブラスト処理の際の圧縮空気の圧力は2kg/cm2とし、ブラストの時間は10秒とした。
Example 2 and Comparative Example 4
A pure titanium plate (shape 30 cm × 10 cm, thickness 1 mm) is immersed for 1 minute in pure Al molten metal (containing about 2% Fe as impurities) at a bath temperature of 700 ° C., and then this titanium plate is 3 cm / second in the longitudinal direction. Lifting was performed at a lifting speed of. The titanium material thus obtained was blasted with hard particles. At this time, glass beads were used as the hard particles. The pressure of compressed air during blasting was 2 kg / cm 2 and the blasting time was 10 seconds.

上記ブラスト処理後のチタン材(以下、チタン材Aともいう)について、800℃の大気雰囲気下に100時間さらすという大気酸化試験を行い、この大気酸化試験前後の質量を測定し、この高温酸化試験での酸化による質量の増大量(酸化増量)を求め、これより耐酸化性を評価した。また、ブラスト処理を施さず、この点を除き上記と同様の方法により得られたチタン材(即ち、上記と同様の純Al溶湯から同様の引き上げ速度にて引き上げを行って得られたチタン材)(以下、チタン材Bともいう)について、上記と同様の大気酸化試験を行い、同様の方法により、耐酸化性を評価した。   The titanium material after the blast treatment (hereinafter also referred to as titanium material A) is subjected to an atmospheric oxidation test in which it is exposed to an air atmosphere at 800 ° C. for 100 hours, and the mass before and after the atmospheric oxidation test is measured. The amount of increase in mass (oxidation increase) due to oxidation at 1 was obtained, and the oxidation resistance was evaluated from this. Further, a titanium material obtained by the same method as described above except for this point (that is, a titanium material obtained by pulling up from the same pure Al molten metal as described above at the same pulling speed). For the following (also referred to as titanium material B), the same atmospheric oxidation test as described above was performed, and the oxidation resistance was evaluated by the same method.

この結果、チタン材B(ブラスト処理を施さなかったもの)の場合、酸化増量が3mg/cm2 であった。これに対し、チタン材A(ブラスト処理を施したもの)の場合、酸化増量が1.9mg/cm2 であり、耐酸化性に優れていた。 As a result, in the case of the titanium material B (not blasted), the increase in oxidation was 3 mg / cm 2 . On the other hand, in the case of the titanium material A (the one subjected to blasting), the increase in oxidation was 1.9 mg / cm 2 and was excellent in oxidation resistance.

上記チタン材Aおよびチタン材Bについて表面の観察を行ったところ、チタン材A(ブラスト処理を施したもの)は、金属光沢を有する美麗な表面を呈しており、チタン材B(ブラスト処理を施さなかったもの)に比べて表面が美麗であった。   When the surface of the titanium material A and the titanium material B was observed, the titanium material A (those subjected to the blasting treatment) had a beautiful surface having a metallic luster, and the titanium material B (the blasting treatment was performed). The surface was more beautiful than

Figure 2008297629
Figure 2008297629

Figure 2008297629
Figure 2008297629

Figure 2008297629
Figure 2008297629

Figure 2008297629
Figure 2008297629

本発明に係るチタン材は、耐酸化性に優れており、また、管内面等のような複雑形状部への適用も容易であるので、2輪車用または4輪車用の排気管の構成材料として好適に用いることができ、その軽量化がはかれるだけでなく、耐酸化性に優れて耐久性の向上がはかれる。   Since the titanium material according to the present invention is excellent in oxidation resistance and can be easily applied to complicated shapes such as the inner surface of the pipe, the configuration of the exhaust pipe for two-wheeled vehicles or four-wheeled vehicles It can be suitably used as a material, and not only can its weight be reduced, but also has excellent oxidation resistance and improved durability.

本発明の実施例に係る基材(Ti材)とAl含有層(Al層)との界面にAl3 Ti層(Al3Ti層)が形成されていることを示す図である。Interface Al 3 Ti layer of the substrate according to an embodiment of the present invention and (Ti material) Al-containing layer and the (Al layer) (Al 3 Ti layer) is a diagram showing that are formed.

Claims (10)

純TiまたはTi基合金よりなる基材上に、AlまたはAl及びSiを90質量%以上含有する厚さ1μm以上のAl含有層が形成されているチタン材であって、チタン材の長手方向に14mm間隔で3点をとり、この3点の中の中心の点におけるAl含有層の膜厚と、他の2点におけるAl含有層の膜厚との差が、前記中心の点におけるAl含有層の膜厚に対して30%以内であることを特徴とするチタン材。   A titanium material in which an Al-containing layer having a thickness of 1 μm or more containing 90% by mass or more of Al or Al and Si is formed on a substrate made of pure Ti or a Ti-based alloy, in the longitudinal direction of the titanium material Three points are taken at intervals of 14 mm, and the difference between the film thickness of the Al-containing layer at the central point among the three points and the film thickness of the Al-containing layer at the other two points is the Al-containing layer at the central point. Titanium material characterized by being within 30% of the film thickness. 純TiまたはTi基合金よりなる基材上に、AlまたはAl及びSiを90質量%以上含有する厚さ1μm以上のAl含有層が、Al−Ti金属間化合物層を介して形成されているチタン材であって、チタン材の長手方向に14mm間隔で3点をとり、この3点の中の中心の点におけるAl含有層の膜厚と、他の2点におけるAl含有層の膜厚との差が、前記中心の点におけるAl含有層の膜厚に対して30%以内であることを特徴とするチタン材。   Titanium in which an Al-containing layer having a thickness of 1 μm or more containing 90% by mass or more of Al or Al and Si is formed on a base material made of pure Ti or a Ti-based alloy via an Al—Ti intermetallic compound layer 3 points are taken at intervals of 14 mm in the longitudinal direction of the titanium material, and the film thickness of the Al-containing layer at the central point among the three points and the film thickness of the Al-containing layer at the other two points The titanium material, wherein the difference is within 30% with respect to the thickness of the Al-containing layer at the center point. 前記Al−Ti金属間化合物がAl3 Tiである請求項2記載のチタン材。 The titanium material according to claim 2, wherein Al-Ti intermetallic compound is Al 3 Ti. 前記Al−Ti金属間化合物層の厚さが平均0.5μm以上15μm以下である請求項2または3記載のチタン材。   The titanium material according to claim 2 or 3, wherein an average thickness of the Al-Ti intermetallic compound layer is 0.5 µm or more and 15 µm or less. 前記基材に0.5〜10質量%のAlが含有されている請求項1〜4のいずれかに記載のチタン材。   The titanium material according to claim 1, wherein 0.5 to 10% by mass of Al is contained in the base material. 前記基材が実質的にAlおよびTiからなる請求項5記載のチタン材。   The titanium material according to claim 5, wherein the base material is substantially made of Al and Ti. 前記Al含有層が溶融めっき法により形成されている請求項1〜6記載のチタン材。   The titanium material according to claim 1, wherein the Al-containing layer is formed by a hot dipping method. 請求項1〜7のいずれかに記載のチタン材の製造方法であって、Al含有層の形成を溶融めっき法により行い、この際に、溶融めっき浴からのチタン基材の引き上げ速度を1〜20cm/秒とすることを特徴とするチタン材の製造方法。   It is a manufacturing method of the titanium material in any one of Claims 1-7, Comprising: Formation of an Al content layer is performed by the hot dipping method, The pulling-up speed of the titanium base material from a hot dipping bath is 1- A method for producing a titanium material, characterized by being 20 cm / second. 請求項1〜7のいずれかに記載のチタン材の製造方法であって、Al含有層の形成を溶融めっき法により行い、この後に、硬質粒子によるブラスト処理を施すことを特徴とするチタン材の製造方法。   It is a manufacturing method of the titanium material in any one of Claims 1-7, Comprising: Formation of an Al content layer is performed by the hot dipping method, The blast process by a hard particle is performed after this, The titanium material characterized by the above-mentioned Production method. 請求項1〜9のいずれかに記載のチタン材を用いて作製された2輪車用または4輪車用の排気管。   An exhaust pipe for a two-wheeled vehicle or a four-wheeled vehicle manufactured using the titanium material according to any one of claims 1 to 9.
JP2008161950A 2003-06-27 2008-06-20 Titanium material, manufacturing method thereof and exhaust pipe Expired - Fee Related JP5097027B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008161950A JP5097027B2 (en) 2003-06-27 2008-06-20 Titanium material, manufacturing method thereof and exhaust pipe

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003185309 2003-06-27
JP2003185309 2003-06-27
JP2008161950A JP5097027B2 (en) 2003-06-27 2008-06-20 Titanium material, manufacturing method thereof and exhaust pipe

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004133867A Division JP4189350B2 (en) 2003-06-27 2004-04-28 Titanium material, manufacturing method thereof and exhaust pipe

Publications (2)

Publication Number Publication Date
JP2008297629A true JP2008297629A (en) 2008-12-11
JP5097027B2 JP5097027B2 (en) 2012-12-12

Family

ID=40171404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008161950A Expired - Fee Related JP5097027B2 (en) 2003-06-27 2008-06-20 Titanium material, manufacturing method thereof and exhaust pipe

Country Status (1)

Country Link
JP (1) JP5097027B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013510945A (en) * 2009-12-28 2013-03-28 江▲蘇▼麟▲龍▼新材料股▲ふん▼有限公司 Aluminum-silicon-zinc-rare earth-magnesium-iron-copper-manganese-chromium-zirconia-containing hot-melt plating alloy and method for producing the same
WO2014013788A1 (en) * 2012-07-18 2014-01-23 独立行政法人産業技術総合研究所 Base material for hydrogen apparatus
CN115491625A (en) * 2022-09-23 2022-12-20 常州大学 Titanium and titanium alloy surface preoxidation modified hot-dip Ti-Al-Si coating and preparation method thereof

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58148220A (en) * 1982-02-26 1983-09-03 Honda Motor Co Ltd Exhaust system member
JPS6077966A (en) * 1983-10-05 1985-05-02 Nisshin Steel Co Ltd Method for preventing cracking of aluminized steel sheet during working
JPS61201722A (en) * 1985-03-02 1986-09-06 Nippon Steel Corp Manufacture of hot rolled steel material
JPS61257484A (en) * 1985-05-10 1986-11-14 Nippon Steel Corp Aluminized steel sheet having superior corrosion and heat resistance
JPH03105013A (en) * 1989-09-16 1991-05-01 Nisshin Steel Co Ltd Exhaust gas flow passage forming member
JPH03271355A (en) * 1990-03-22 1991-12-03 Toyota Motor Corp Titanium-aluminum alloy material excellent in oxidation resistance
JPH03274287A (en) * 1990-03-23 1991-12-05 Sumitomo Metal Ind Ltd Ti-based alloy having superior oxidation resistance and its production
JPH0584580A (en) * 1991-09-27 1993-04-06 Daido Steel Co Ltd Al or ti-based member and surface coating method thereof and cladding material for surface coating
JPH05345988A (en) * 1992-06-12 1993-12-27 Suzuki Motor Corp Method for plating titanium alloy material
JPH06240433A (en) * 1993-02-16 1994-08-30 Nisshin Steel Co Ltd Multilayer al alloy coated steel sheet and its production
JPH06264207A (en) * 1993-03-12 1994-09-20 Nippon Steel Corp Production of al-based intermetallic compound thin film excellent in oxidation resistance
JPH06272017A (en) * 1993-03-22 1994-09-27 Tosoh Corp Production of aluminum alloy coated heat resistant material
JPH07243014A (en) * 1994-03-07 1995-09-19 Hitachi Cable Ltd Hot dip metal coating to strip material, device therefor and production of clad material
JPH08319551A (en) * 1995-05-19 1996-12-03 Sumitomo Metal Ind Ltd Gas wiping nozzle
JPH0970604A (en) * 1995-07-05 1997-03-18 Nippon Steel Corp Manufacture of titanium-based seamless pipe excellent in prevention of occurrence of rolling flaw
JPH116047A (en) * 1997-06-12 1999-01-12 Mitsui Mining & Smelting Co Ltd Base metal for hot dip zinc alloy coating bath, hot dip coating bath, hot dip zinc alloy coated steel and its production

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58148220A (en) * 1982-02-26 1983-09-03 Honda Motor Co Ltd Exhaust system member
JPS6077966A (en) * 1983-10-05 1985-05-02 Nisshin Steel Co Ltd Method for preventing cracking of aluminized steel sheet during working
JPS61201722A (en) * 1985-03-02 1986-09-06 Nippon Steel Corp Manufacture of hot rolled steel material
JPS61257484A (en) * 1985-05-10 1986-11-14 Nippon Steel Corp Aluminized steel sheet having superior corrosion and heat resistance
JPH03105013A (en) * 1989-09-16 1991-05-01 Nisshin Steel Co Ltd Exhaust gas flow passage forming member
JPH03271355A (en) * 1990-03-22 1991-12-03 Toyota Motor Corp Titanium-aluminum alloy material excellent in oxidation resistance
JPH03274287A (en) * 1990-03-23 1991-12-05 Sumitomo Metal Ind Ltd Ti-based alloy having superior oxidation resistance and its production
JPH0584580A (en) * 1991-09-27 1993-04-06 Daido Steel Co Ltd Al or ti-based member and surface coating method thereof and cladding material for surface coating
JPH05345988A (en) * 1992-06-12 1993-12-27 Suzuki Motor Corp Method for plating titanium alloy material
JPH06240433A (en) * 1993-02-16 1994-08-30 Nisshin Steel Co Ltd Multilayer al alloy coated steel sheet and its production
JPH06264207A (en) * 1993-03-12 1994-09-20 Nippon Steel Corp Production of al-based intermetallic compound thin film excellent in oxidation resistance
JPH06272017A (en) * 1993-03-22 1994-09-27 Tosoh Corp Production of aluminum alloy coated heat resistant material
JPH07243014A (en) * 1994-03-07 1995-09-19 Hitachi Cable Ltd Hot dip metal coating to strip material, device therefor and production of clad material
JPH08319551A (en) * 1995-05-19 1996-12-03 Sumitomo Metal Ind Ltd Gas wiping nozzle
JPH0970604A (en) * 1995-07-05 1997-03-18 Nippon Steel Corp Manufacture of titanium-based seamless pipe excellent in prevention of occurrence of rolling flaw
JPH116047A (en) * 1997-06-12 1999-01-12 Mitsui Mining & Smelting Co Ltd Base metal for hot dip zinc alloy coating bath, hot dip coating bath, hot dip zinc alloy coated steel and its production

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013510945A (en) * 2009-12-28 2013-03-28 江▲蘇▼麟▲龍▼新材料股▲ふん▼有限公司 Aluminum-silicon-zinc-rare earth-magnesium-iron-copper-manganese-chromium-zirconia-containing hot-melt plating alloy and method for producing the same
WO2014013788A1 (en) * 2012-07-18 2014-01-23 独立行政法人産業技術総合研究所 Base material for hydrogen apparatus
CN115491625A (en) * 2022-09-23 2022-12-20 常州大学 Titanium and titanium alloy surface preoxidation modified hot-dip Ti-Al-Si coating and preparation method thereof

Also Published As

Publication number Publication date
JP5097027B2 (en) 2012-12-12

Similar Documents

Publication Publication Date Title
JP4189350B2 (en) Titanium material, manufacturing method thereof and exhaust pipe
KR102384674B1 (en) Plated steel sheet having excellent corrosion resistance, galling resistance, workability and surface property and method for manufacturing the same
JP6014681B2 (en) Hot-dip galvanized steel sheet with excellent cryogenic bonding properties and manufacturing method thereof
KR101568509B1 (en) HOT DIP Zn-Al-Mg ALLOY PLATED STEEL SHEET HAVING EXCELLENT CORROSION RESISTANCE AND METHOD FOR MANUFACTURING THE SAME
US8431231B2 (en) Titanium Material and Exhaust Pipe for Engine
WO2018181391A1 (en) Hot-dipped al coated steel sheet and method for producing hot-dipped al coated steel sheet
WO2014091724A1 (en) Hot-dip-galvanized steel sheet
JP4840089B2 (en) Manufacturing method of molded products
JP5097027B2 (en) Titanium material, manufacturing method thereof and exhaust pipe
JP2010144193A (en) Multilayer-plated steel sheet and method for manufacturing the same
US8012597B2 (en) Cast product having aluminum-based film and process for producing the same
JP6515379B2 (en) Low melting point molten metal processing member excellent in corrosion resistance and method for manufacturing the same
JP5597980B2 (en) Hot pressed member and method for manufacturing the same
JP2008231551A (en) Stainless steel product excellent in temper coloring resistance and method for manufacturing the same
JP2020523474A (en) Coated metal substrate and manufacturing method
JP2003328099A (en) Production method for high-strength hot-dip galvanized steel sheet
JPS61270363A (en) Diffused alloy steel foil
EP4036270A1 (en) Plated steel sheet having excellent corrosion resistance, galling resistance, workability and surface property and method for manufacturing same
JP2006009115A (en) Surface treated titanium material having excellent oxidation resistance, its production method and engine exhaust pipe
JPS62500574A (en) Method of applying coatings to metals and products obtained thereby
JP2011032498A (en) Surface-treated steel sheet for hot pressing and method for manufacturing hot-pressed member using the same
JP3580541B2 (en) Surface-treated steel sheet excellent in workability and corrosion resistance of processed part and method for producing the same
JP5494223B2 (en) Zinc-based two-layer plated steel material and manufacturing method thereof
JP5504854B2 (en) Hot pressed member and method for manufacturing the same
JP2003193213A (en) Hot dip galvanized steel sheet and galvannealed steel sheet

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110310

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110412

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120918

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120921

R150 Certificate of patent or registration of utility model

Ref document number: 5097027

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees