JP2012234981A - Decompression processing container - Google Patents

Decompression processing container Download PDF

Info

Publication number
JP2012234981A
JP2012234981A JP2011102823A JP2011102823A JP2012234981A JP 2012234981 A JP2012234981 A JP 2012234981A JP 2011102823 A JP2011102823 A JP 2011102823A JP 2011102823 A JP2011102823 A JP 2011102823A JP 2012234981 A JP2012234981 A JP 2012234981A
Authority
JP
Japan
Prior art keywords
container body
inner container
outer container
container
processing container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011102823A
Other languages
Japanese (ja)
Other versions
JP5731270B2 (en
Inventor
Shinji Hayakawa
慎司 早川
Yasushi Kono
靖 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mirapro Co Ltd
Original Assignee
Mirapro Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mirapro Co Ltd filed Critical Mirapro Co Ltd
Priority to JP2011102823A priority Critical patent/JP5731270B2/en
Publication of JP2012234981A publication Critical patent/JP2012234981A/en
Application granted granted Critical
Publication of JP5731270B2 publication Critical patent/JP5731270B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a decompression processing container which has superior heat resistance, high intensity, and low heat capacity and can easily be carried.SOLUTION: A thin inner container 11 formed in a cylindrical shape by stainless steel and a thin outer container 17a which forms a vacuum insulation space 13 between the inner container 11 and the outer container, is formed in the cylindrical shape by the stainless steel, and in which a plurality of rib-like undulations 15 are formed on an outer peripheral face are bonded, and a dual structure is obtained. The structure uses a base plate 19 of a metallic material, especially the stainless steel, whose thickness is made to be not more than that of the inner container 11, which absorbs an interval change between the inner container 11 and the outer container 17a and has a U-shaped cross section, for example. The container has the low heat capacity, the superior heat resistance, and the high intensity.

Description

本発明は、低熱容量、かつ耐熱性に優れ、高強度な減圧処理容器に関するものである。   The present invention relates to a vacuum processing container having a low heat capacity, excellent heat resistance, and high strength.

従来、減圧処理装置、例えば半導体ウエハに膜付け処理を行う装置において、ウエハを多数枚搭載したボートを搬入して密閉し、所定真空度に真空引きを行い、その後プロセスガスを流入させて加熱下で膜付け処理を行っている。   Conventionally, in a vacuum processing apparatus, for example, an apparatus for performing a film deposition process on a semiconductor wafer, a boat loaded with a large number of wafers is loaded and sealed, evacuated to a predetermined degree of vacuum, and then a process gas is introduced and heated. The filming process is performed.

ここで、この種のウエハを密閉する減圧処理室(容器)は、石英等の石材により円筒状に成形され、この減圧処理室外方に、断熱材を配したケーシングを、被設させてある(特許文献1参照)。   Here, the decompression processing chamber (container) for sealing this kind of wafer is formed into a cylindrical shape by a stone material such as quartz, and a casing provided with a heat insulating material is provided outside the decompression processing chamber ( Patent Document 1).

この石英等の石材により円筒状に形成された減圧処理室は、耐熱性を向上させ、高強度となるよう、厚みのある均一な一体構造物であった。   The reduced-pressure processing chamber formed in a cylindrical shape with a stone material such as quartz was a uniform integrated structure having a thickness so as to improve heat resistance and to have high strength.

特許第3056776号公報Japanese Patent No. 3056776

特許文献1に開示された従来の減圧処理室によれば、減圧処理室の外側を、断熱材を配したケーシングにより被覆する必要がある。更に、減圧処理室が厚みのある石英等の石材による一体構造物であるため、熱容量が非常に大きくなる。熱容量が大きいと、熱しにくく冷めにくい特性となる。ウェハを処理するために、減圧処理室内部の空間の温度を均一に昇温するには、まず、減圧処理室自体の温度を上昇させる必要がある。しかし、熱容量が大きいため、温度上昇に時間がかかる。温度上昇を急速に行うためには、大電力を投入する必要があり、ランニングコストが上昇する。   According to the conventional decompression chamber disclosed in Patent Document 1, it is necessary to cover the outside of the decompression chamber with a casing provided with a heat insulating material. Furthermore, since the decompression chamber is an integral structure made of a thick stone such as quartz, the heat capacity becomes very large. When the heat capacity is large, it is difficult to heat and cool. In order to uniformly raise the temperature of the space inside the decompression processing chamber in order to process the wafer, it is necessary to first raise the temperature of the decompression processing chamber itself. However, since the heat capacity is large, it takes time to increase the temperature. In order to increase the temperature rapidly, it is necessary to input a large amount of power, which increases the running cost.

また、ウェハの処理が終了した後、ウェハを取り出すためには、減圧処理室の温度を低下させる必要がある。こちらも、熱容量が大きいため、温度の低下に時間がかかる。急速に温度を低下させるには、水冷設備が必要となり、設備コストと共に、ランニングコストも上昇する。   Further, in order to take out the wafer after the wafer processing is completed, it is necessary to lower the temperature of the decompression processing chamber. Again, because of the large heat capacity, it takes time to lower the temperature. In order to rapidly lower the temperature, a water cooling facility is required, and the running cost increases with the facility cost.

また、石英等の石材により成形してあるため、高コストとなり、加えてメンテナンスにおいても大掛かりとなり、その管理が非常に煩雑であった。   Further, since it is formed of a stone material such as quartz, the cost is high, and in addition, the maintenance is large, and the management is very complicated.

本発明はこのような欠点に鑑み、耐熱性に優れ、かつ高強度でありながら、低熱容量の減圧処理容器を提供することを目的とする。   In view of such drawbacks, an object of the present invention is to provide a reduced pressure treatment container having a low heat capacity while having excellent heat resistance and high strength.

本発明に係る減圧処理容器は、金属材料により円筒状に成形された薄肉の内容器体と、内容器体との間に真空の断熱空間を形成し、金属材料により円筒状に成形され、その外周面にリブ状の起伏部を多数形成してなる薄肉の外容器体と、を接合して二重構造としたことを特徴とするものである。   The vacuum processing container according to the present invention forms a vacuum heat insulation space between a thin inner container body formed into a cylindrical shape with a metal material and the inner container body, and is formed into a cylindrical shape with the metal material. A thin outer container body formed by forming a large number of rib-like undulations on the outer peripheral surface is joined to form a double structure.

本発明に係る減圧処理容器によれば、内容器体と外容器体とが金属材料により薄肉の円筒状に成形されているため、耐熱性に優れ、低熱容量で持ち運び易く、取り扱いが極めて容易となる。   According to the reduced pressure processing container according to the present invention, the inner container body and the outer container body are formed into a thin cylindrical shape from a metal material, so that they have excellent heat resistance, are easy to carry with a low heat capacity, and are extremely easy to handle. Become.

さらに、外容器体の外周面にはリブ状の起伏部が多数形成された状態で一体成形されているため、高強度で、耐久性に優れる。   Furthermore, since the outer container body is integrally formed with a large number of rib-like undulations formed on the outer peripheral surface thereof, it has high strength and excellent durability.

加えて、内容器体と外容器体とを接合して二重構造とし、その内部断熱空間を真空としてあるため、高断熱効果を奏し、高温、減圧下で半導体ウエハに膜付けする等の工程での使用に最適である。   In addition, the inner container body and the outer container body are joined to form a double structure, and the internal heat insulation space is in a vacuum, thereby providing a high heat insulation effect and forming a film on a semiconductor wafer under high temperature and reduced pressure. Ideal for use in.

本発明に係る一実施例の減圧処理容器の要部縦断面図である。It is a principal part longitudinal cross-sectional view of the pressure reduction processing container of one Example which concerns on this invention. 本発明に係る実施例の減圧処理容器の使用態様を示す要部縦断面図である。It is a principal part longitudinal cross-sectional view which shows the usage condition of the pressure reduction processing container of the Example which concerns on this invention. 本発明に係る他の実施例の減圧処理容器の様々な態様を示す要部縦断面図である。It is a principal part longitudinal cross-sectional view which shows the various aspects of the pressure reduction processing container of the other Example which concerns on this invention. 本発明に係るさらに他の実施例の減圧処理容器の様々な態様を示す要部縦断面図である。It is a principal part longitudinal cross-sectional view which shows the various aspects of the pressure reduction processing container of the further another Example which concerns on this invention. 本発明に係る一実施例の減圧処理容器の別の使用状態を示す断面図である。It is sectional drawing which shows another use condition of the pressure reduction processing container of one Example which concerns on this invention.

低熱容量、かつ耐熱性に優れ、高強度とし、種々の用途に転用可能とする目的を、金属材料により円筒状に成形された薄肉の内容器体と、内容器体との間に断熱空間を形成し、金属材料により円筒状に成形され、その外周面にリブ状の起伏部を多数形成してなる薄肉の外容器体と、を接合して二重構造とすること、により実現した。   A heat insulating space is provided between the inner container body and the thin inner container body formed into a cylindrical shape with a metal material for the purpose of having a low heat capacity, excellent heat resistance, high strength, and being divertable for various applications. This was realized by joining a thin outer container body formed by forming a metal material into a cylindrical shape and forming a large number of rib-like undulations on its outer peripheral surface to form a double structure.

図1を参照して本発明に係る実施例1の減圧処理容器について説明する。
本発明に係る実施例1の減圧処理容器の形状は、上下方向の上部を排気口とし、上下方向の下部をウェハ出入口、プロセスガス等の気体流入口とするため、下部が大きく開口し、上部には小孔が開口する形状の略円筒体である。
With reference to FIG. 1, the decompression processing container of Example 1 which concerns on this invention is demonstrated.
The shape of the decompression processing container of Example 1 according to the present invention is such that the upper part in the vertical direction is an exhaust port, and the lower part in the vertical direction is a wafer inlet / outlet and a gas inflow port for process gas, etc. Is a substantially cylindrical body with a small hole.

この減圧処理容器は、内容器体11と、外容器体17aと、からなる二重構造の容器体17である。金属材料、特にはステンレスにより円筒状に成形された薄肉の内容器体11と、金属材料、特にはステンレスにより円筒状に成形され、その外周面にリブ状の起伏部15を多数形成してなり、内容器体11との間に真空の断熱空間13を形成する薄肉の外容器体17aと、を接合して二重構造としてある。   The decompression processing container is a double-structured container body 17 including an inner container body 11 and an outer container body 17a. A thin inner container body 11 formed in a cylindrical shape with a metal material, particularly stainless steel, and a cylindrical shape formed with a metal material, particularly stainless steel, and a large number of rib-like undulations 15 are formed on the outer peripheral surface thereof. A thin outer container body 17a that forms a vacuum heat insulation space 13 between the inner container body 11 and the inner container body 11 is joined to form a double structure.

本例において、内容器体11の厚さは約1mm、外容器体17aの厚さは約1.5mmである。内外容器体11,17の厚さを1mm、1.5mmの薄肉とすることにより、材料コストを大幅に削減することができる。   In this example, the thickness of the inner container body 11 is about 1 mm, and the thickness of the outer container body 17a is about 1.5 mm. By making the thickness of the inner and outer container bodies 11 and 17 as thin as 1 mm and 1.5 mm, the material cost can be greatly reduced.

また、内容器体11の外径はφ650(直径650mm)、外容器体17aの外径は、ほぼφ730(直径730mm)としてある。内容器体11の外径をφ650としてあるのは、容器内部での半導体ウエハの膜付工程が行える最小の大きさであり、この大きさとすることにより材料コスト削減、最軽量化が実現できる。   The outer diameter of the inner container body 11 is φ650 (diameter 650 mm), and the outer diameter of the outer container body 17a is approximately φ730 (diameter 730 mm). The outer diameter of the inner container body 11 is set to φ650, which is the minimum size capable of performing the semiconductor wafer film forming process inside the container. By using this size, the material cost can be reduced and the lightest weight can be realized.

内容器体11は、内側が大気圧、外側が真空の環境となるため、内側から外側に1気圧で押し広げられる力を受ける。内容器体11は、この力に耐える必要がある。また、内容器体11は高温になるため、耐力の低下を考慮して板厚を選定する必要がある。
外容器体17aは、内側が真空、外側が大気圧の環境となるため、外側から内側に1気圧で押し潰す力を受ける。外容器体17aは、この力に耐える必要がある。
Since the inner container body 11 has an atmospheric pressure on the inner side and a vacuum environment on the outer side, the inner container body 11 receives a force that is pushed from the inner side to the outer side at 1 atm. The inner container body 11 needs to withstand this force. Moreover, since the inner container body 11 becomes high temperature, it is necessary to select a plate thickness in consideration of a decrease in yield strength.
Since the outer container body 17a is in an environment where the inside is vacuum and the outside is atmospheric pressure, the outer container body 17a receives a crushing force from outside to inside at 1 atmosphere. The outer container body 17a needs to withstand this force.

また、起伏部15の形状は外容器体17a外周面から外側へ突出する凸型または波型としてある。
この起伏部15により、外容器体17aを高強度とすることができ、このため外容器体17aが薄肉な約1.5mm厚としても十分な強度を維持することが可能となる。
ウェハ処理時、内容器体11は高温になるが、外容器体17aは真空断熱の効果で、あまり温度が上昇しない。このため、内容器体11には大きな熱伸びが発生し、外径寸法が増加する。外容器体17aは、小さな熱伸びのため、外径寸法はあまり増加しない。このため、内容器体11と外容器体17aとの隙間は、小さくなる。
Further, the shape of the undulating portion 15 is a convex shape or a wave shape protruding outward from the outer peripheral surface of the outer container body 17a.
The undulating portion 15 can increase the strength of the outer container body 17a. Therefore, even when the outer container body 17a has a thin thickness of about 1.5 mm, it is possible to maintain sufficient strength.
During the wafer processing, the inner container body 11 becomes high temperature, but the outer container body 17a does not rise so much due to the effect of vacuum insulation. For this reason, large thermal elongation occurs in the inner container body 11, and the outer diameter dimension increases. Since the outer container body 17a has a small thermal elongation, the outer diameter does not increase so much. For this reason, the clearance gap between the inner container body 11 and the outer container body 17a becomes small.

内容器体11と外容器体17aを接続する底板19は、この隙間の変化に耐えられる強度が必要になる。このため、図1(b)に示すように内容器体11や外容器体17aよりも肉厚な金属材料、特にはステンレス製の底板19により、強固に接合することが考えられる。しかし、底板19を肉厚にすると、内容器体11から外容器体17aに、底板19を通じて熱が大量に伝導してしまい、断熱効果が著しく低下する。
このため、図1(a)に示すように底板19は、内容器体11の肉厚以下とし、かつ、内容器体11と外容器体17aとの隙間変化を吸収する、金属材料、特にはステンレス製の、例えば、断面をU字型とした底板19を用いた構造とすることが望ましい。
The bottom plate 19 that connects the inner container body 11 and the outer container body 17a needs to be strong enough to withstand this gap change. For this reason, as shown in FIG.1 (b), it is possible to join firmly by the metal material thicker than the inner container body 11 and the outer container body 17a, especially the bottom plate 19 made from stainless steel. However, when the bottom plate 19 is made thick, heat is conducted in a large amount from the inner container body 11 to the outer container body 17a through the bottom plate 19, and the heat insulation effect is significantly reduced.
For this reason, as shown in FIG. 1 (a), the bottom plate 19 has a thickness less than the thickness of the inner container body 11, and absorbs a change in the gap between the inner container body 11 and the outer container body 17a. It is desirable to have a structure using a bottom plate 19 made of stainless steel, for example, having a U-shaped cross section.

本発明に係る減圧処理容器を使用して被加工物に熱酸化処理を行う工程を図2を参照して説明する。
まず、減圧処理容器の上部ポートに、図示しない真空排気用のポンプを設置し、下部開口Oの一部に、プロセスガスを流入させるための流入チューブ(図示略)、真空ポンプ(図示略)、空冷用ポート(図示略)、ゲートバルブ(図示略)などを設置する。
A process of performing a thermal oxidation process on a workpiece using the reduced pressure processing container according to the present invention will be described with reference to FIG.
First, an evacuation pump (not shown) is installed in the upper port of the decompression processing vessel, and an inflow tube (not shown) for letting process gas flow into a part of the lower opening O, a vacuum pump (not shown), An air cooling port (not shown), a gate valve (not shown), etc. are installed.

次に、減圧処理容器内に、被加工物Wを搬入した後、一旦、減圧処理容器内を真空にして不要なガスを除去し、減圧処理容器内に配置した加熱機構(図示略)により加熱し、内容器体11内部へプロセスガスを流入させることにより、減圧処理容器内に搬入した作業テーブルT上の被加工物Wへの熱酸化処理を行う。   Next, after carrying the workpiece W into the reduced pressure processing container, the inside of the reduced pressure processing container is evacuated to remove unnecessary gas and heated by a heating mechanism (not shown) disposed in the reduced pressure processing container. Then, by causing the process gas to flow into the inner container body 11, thermal oxidation is performed on the workpiece W on the work table T carried into the reduced pressure processing container.

この際、本発明に係る減圧処理容器の内容器体11の熱容量が小さいため、短時間で減圧処理容器内の温度が均一となる。同時に、真空断熱により減圧処理容器内の温度も維持されるため、ウェハの処理作業を確実に行うことが可能となる。
また、ウェハ処理終了後、減圧処理容器内に冷却ガスを導入することで、短時間にウェハと減圧処理容器の内容器体11の温度を下げることができる。ここで使用する冷却ガスは、ウェハに対して影響のないガスにする必要がある。例えば、アルゴンなどの不活性ガスにしてもよい。
At this time, since the heat capacity of the inner container body 11 of the reduced pressure processing container according to the present invention is small, the temperature in the reduced pressure processing container becomes uniform in a short time. At the same time, since the temperature in the reduced pressure processing container is also maintained by the vacuum insulation, the wafer processing operation can be reliably performed.
Moreover, the temperature of the wafer and the inner container body 11 of the reduced pressure processing container can be lowered in a short time by introducing the cooling gas into the reduced pressure processing container after completion of the wafer processing. The cooling gas used here must be a gas that does not affect the wafer. For example, an inert gas such as argon may be used.

図3に底板19の様々な態様を実施例2として示す。
図3(a)に示す底板19は、内容器体11の肉厚以下の肉厚の断面をU字型とした底板19を内容器体11と外容器体17aとの隙間の外方に向けて凸として配設した例である。図3(b)に示す底板19は、相互に一端を接合した底板片19aと底板片19bそれぞれの他端を、底板片19aは外容器体17a下端部側面に、底板片19bは内容器体11下端部側面に接合してなる。図3(c)に示す底板19は、一端を内容器体11下端部に接合した底板19の他端を、外容器体17a下端部側面に接合してなる。図3(d)に示す底板19は、一端を外容器体17a下端部に接合した底板19の他端を、内容器体11下端部側面に接合してなる。
FIG. 3 shows various embodiments of the bottom plate 19 as a second embodiment.
The bottom plate 19 shown in FIG. 3 (a) is directed so that the bottom plate 19 having a U-shaped cross section equal to or less than the thickness of the inner container body 11 faces the gap between the inner container body 11 and the outer container body 17a. This is an example in which it is arranged as a convex. The bottom plate 19 shown in FIG. 3B has the other ends of the bottom plate piece 19a and the bottom plate piece 19b joined at one end, the bottom plate piece 19a on the side of the lower end of the outer container body 17a, and the bottom plate piece 19b on the inner container body. 11 It joins to the lower end part side. The bottom plate 19 shown in FIG. 3C is formed by joining the other end of the bottom plate 19 with one end joined to the lower end of the inner container body 11 to the side surface of the lower end of the outer container body 17a. The bottom plate 19 shown in FIG. 3D is formed by joining the other end of the bottom plate 19 whose one end is joined to the lower end portion of the outer container body 17a to the side surface of the lower end portion of the inner container body 11.

図4に外容器体17aの他の態様を実施例3として示す。
この態様では外容器体17aは外容器体17aの内側に向けて凸となる形状の天井部17bを有する。外容器体17aと天井部17bとは別体に成形されて相互にその縁部が接合される。そのため天井部も含めて一体な外容器体17aに比べ効率よく製造することができる。
FIG. 4 shows another embodiment of the outer container body 17a as the third embodiment.
In this embodiment, the outer container body 17a has a ceiling portion 17b that is convex toward the inside of the outer container body 17a. The outer container body 17a and the ceiling portion 17b are formed separately and their edges are joined to each other. Therefore, it can manufacture efficiently compared with the integral outer container body 17a including a ceiling part.

図5に本発明に係る減圧処理容器の他の使用例を示す。
本例は、減圧処理容器内に、被加工物Wを搬入した後、減圧処理容器外側に配した加熱機構Hにより加熱し、容器内部へプロセスガスを流入させることにより、減圧処理容器内に搬入した作業テーブルT上の被加工物Wへの熱酸化処理を行うものであり、減圧処理容器の構成、作用は実施例1と同様である。
FIG. 5 shows another example of use of the vacuum processing container according to the present invention.
In this example, after the workpiece W is loaded into the reduced pressure processing container, it is heated by the heating mechanism H arranged outside the reduced pressure processing container, and the process gas is introduced into the container to be loaded into the reduced pressure processing container. The workpiece W on the work table T is subjected to thermal oxidation, and the configuration and operation of the decompression processing container are the same as those in the first embodiment.

本例は、内容器体11と外容器体17aとの間に形成される断熱空間13を真空とするのではなく、空気より熱伝導率が低いアルゴン、キセノン等の気体層としてある。   In this example, the heat insulating space 13 formed between the inner container body 11 and the outer container body 17a is not a vacuum, but is a gas layer such as argon or xenon having a lower thermal conductivity than air.

この断熱空間13を気体層としても、真空とした場合と同等の高断熱効果が得られる。
このため、断熱空間13を真空とすることに比し、作業効率、作業コストを低減することが可能となる。
Even if the heat insulating space 13 is a gas layer, the same high heat insulating effect as that obtained when a vacuum is applied can be obtained.
For this reason, it becomes possible to reduce work efficiency and work cost compared with making the heat insulation space 13 into a vacuum.

なお、両例において、内容器体11と外容器体17aの形状は、下部が大きく開口し、上部には小孔が開口する形状であるが、上下部の開口を同一径としてもよく、種々の径を組合せ使用する形態とすることは自明である。   In both examples, the shape of the inner container body 11 and the outer container body 17a is such that the lower part is largely open and the upper part has small holes, but the upper and lower parts may have the same diameter. It is self-evident to use a combination of the diameters.

また、内容器体11の厚さを約1mm、外容器体17aの厚さを約1.5mmとしてあるが、必ずしもこの厚さに限定されることはない。   Moreover, although the thickness of the inner container body 11 is about 1 mm and the thickness of the outer container body 17a is about 1.5 mm, it is not necessarily limited to this thickness.

また、外容器体17aの起伏部15の形状は外容器体17a外周面から外側へ突出する凸型または波型としてあるが、鋸刃型、螺旋型、その他の形状とすることは自明である。   In addition, the shape of the undulating portion 15 of the outer container body 17a is a convex shape or a corrugated shape protruding outward from the outer peripheral surface of the outer container body 17a, but it is obvious that the shape is a saw blade shape, a spiral shape, or other shapes. .

以上本発明の実施例について説明したが、本発明は実施例1−実施例5に何等限定されるものではなく、本発明の要旨を逸脱しない範囲において種々なる態様で実施し得ることはもちろんである。   Although the embodiment of the present invention has been described above, the present invention is not limited to the embodiment 1 to the embodiment 5 and can of course be implemented in various modes without departing from the gist of the present invention. is there.

本発明に係る減圧処理容器は、被加工物の熱酸化処理のみならず、半導体ウエハの膜付け処理、その他の処理工程並びに製品、溶剤等を封入してクリーンルーム内を移送するための移送用途にも適用できる。   The decompression processing container according to the present invention is not only used for thermal oxidation processing of a workpiece, but also for transferring a semiconductor wafer film, other processing steps, products, solvents and the like for transfer in a clean room. Is also applicable.

17 容器体
17a 外容器体
11 内容器体
13 断熱空間
15 起伏部
19 底板
T 作業テーブル
W 被加工物
H 加熱機構

17 Container body 17a Outer container body 11 Inner container body 13 Thermal insulation space 15 Unraveling portion 19 Bottom plate T Work table W Workpiece H Heating mechanism

Claims (5)

金属材料により円筒状に成形された薄肉の内容器体と、内容器体との間に真空の断熱空間を形成し、金属材料により円筒状に成形され、その外周面にリブ状の起伏部を多数形成してなる薄肉の外容器体と、を接合して二重構造としたことを特徴とする減圧処理容器。   A vacuum heat insulation space is formed between the thin inner container body formed into a cylindrical shape with a metal material and the inner container body, and is formed into a cylindrical shape with a metal material, and rib-like undulations are formed on the outer peripheral surface thereof. A reduced-pressure treatment container characterized by joining a thin outer container body formed in large numbers to form a double structure. 内容器体の肉厚は、外容器体の肉厚以下であることを特徴とする請求項1に記載の減圧処理容器。   The decompression processing container according to claim 1, wherein the inner container body has a wall thickness equal to or less than that of the outer container body. 内容器体と外容器体とを接合する底板は、内容器体と外容器体の隙間の変化を吸収する構造とすることを特徴とする請求項1または請求項2に記載の減圧処理容器。   The decompression processing container according to claim 1 or 2, wherein the bottom plate that joins the inner container body and the outer container body has a structure that absorbs a change in a gap between the inner container body and the outer container body. 前記の底板19は、内容器体の肉厚以下の厚みを持つ、U字型の部材を用いることを特徴とする請求項1乃至請求項3のいずれか一に記載の減圧処理容器。   The decompression processing container according to any one of claims 1 to 3, wherein the bottom plate 19 uses a U-shaped member having a thickness equal to or less than a thickness of the inner container body. 外容器体の金属材料がステンレススティールである請求項1乃至請求項4のいずれか一に記載の減圧処理容器。   The vacuum processing container according to any one of claims 1 to 4, wherein the metal material of the outer container body is stainless steel.
JP2011102823A 2011-05-02 2011-05-02 Vacuum processing container for semiconductor wafer processing Active JP5731270B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011102823A JP5731270B2 (en) 2011-05-02 2011-05-02 Vacuum processing container for semiconductor wafer processing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011102823A JP5731270B2 (en) 2011-05-02 2011-05-02 Vacuum processing container for semiconductor wafer processing

Publications (2)

Publication Number Publication Date
JP2012234981A true JP2012234981A (en) 2012-11-29
JP5731270B2 JP5731270B2 (en) 2015-06-10

Family

ID=47435017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011102823A Active JP5731270B2 (en) 2011-05-02 2011-05-02 Vacuum processing container for semiconductor wafer processing

Country Status (1)

Country Link
JP (1) JP5731270B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014167964A (en) * 2013-02-28 2014-09-11 Mirapuro:Kk Support member for temperature member and hot insulation transport pipe
JP2019094964A (en) * 2017-11-21 2019-06-20 トヨタ自動車株式会社 Double heat insulation wall structure

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58149127U (en) * 1982-03-31 1983-10-06 タイガー魔法瓶株式会社 stainless steel thermos
JPS63137416A (en) * 1986-11-29 1988-06-09 Furendotetsuku Kenkyusho:Kk Vacuum heat insulating furnace
JPH03258216A (en) * 1990-03-07 1991-11-18 Toho Sheet & Frame Co Ltd Cooking vessel having vacuum thermal-insulation mechanism
JPH05103972A (en) * 1990-11-28 1993-04-27 Plasma Syst:Kk Vacuum vessel
JPH06168899A (en) * 1992-11-27 1994-06-14 Kokusai Electric Co Ltd Heater unit for heating substrate
JPH0736975U (en) * 1993-12-22 1995-07-11 象印マホービン株式会社 Vacuum double structure
JPH07283160A (en) * 1994-04-12 1995-10-27 Tokyo Electron Ltd Heat treatment device
JP2003197552A (en) * 2001-12-26 2003-07-11 Koyo Thermo System Kk Heater for heat-treating furnace
JP2004214283A (en) * 2002-12-27 2004-07-29 Hitachi Kokusai Electric Inc Semiconductor device manufacturing apparatus
US20120052457A1 (en) * 2010-08-27 2012-03-01 Tokyo Electron Limited Thermal processing apparatus

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58149127U (en) * 1982-03-31 1983-10-06 タイガー魔法瓶株式会社 stainless steel thermos
JPS63137416A (en) * 1986-11-29 1988-06-09 Furendotetsuku Kenkyusho:Kk Vacuum heat insulating furnace
JPH03258216A (en) * 1990-03-07 1991-11-18 Toho Sheet & Frame Co Ltd Cooking vessel having vacuum thermal-insulation mechanism
JPH05103972A (en) * 1990-11-28 1993-04-27 Plasma Syst:Kk Vacuum vessel
JPH06168899A (en) * 1992-11-27 1994-06-14 Kokusai Electric Co Ltd Heater unit for heating substrate
JPH0736975U (en) * 1993-12-22 1995-07-11 象印マホービン株式会社 Vacuum double structure
JPH07283160A (en) * 1994-04-12 1995-10-27 Tokyo Electron Ltd Heat treatment device
US5567152A (en) * 1994-04-12 1996-10-22 Tokyo Electron Limited Heat processing apparatus
JP2003197552A (en) * 2001-12-26 2003-07-11 Koyo Thermo System Kk Heater for heat-treating furnace
JP2004214283A (en) * 2002-12-27 2004-07-29 Hitachi Kokusai Electric Inc Semiconductor device manufacturing apparatus
US20120052457A1 (en) * 2010-08-27 2012-03-01 Tokyo Electron Limited Thermal processing apparatus
JP2012049380A (en) * 2010-08-27 2012-03-08 Tokyo Electron Ltd Thermal processing apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014167964A (en) * 2013-02-28 2014-09-11 Mirapuro:Kk Support member for temperature member and hot insulation transport pipe
JP2019094964A (en) * 2017-11-21 2019-06-20 トヨタ自動車株式会社 Double heat insulation wall structure

Also Published As

Publication number Publication date
JP5731270B2 (en) 2015-06-10

Similar Documents

Publication Publication Date Title
CN102468208B (en) Chuck and semiconductor processing device
US8753447B2 (en) Heat shield for heater in semiconductor processing apparatus
JP4943669B2 (en) Vacuum device seal structure
JP4997842B2 (en) Processing equipment
JP5496828B2 (en) Heat treatment equipment
TWI710658B (en) Manufacturing chamber and heat treatment furnace for SiC high temperature oxidation process
KR20180055696A (en) Heat-radiation structure with high general performance and methods of preparation thereof
JP5731270B2 (en) Vacuum processing container for semiconductor wafer processing
US8752580B2 (en) Vacuum chamber for processing substrate and apparatus including the same
JP2008297615A (en) Substrate mounting mechanism and substrate treatment apparatus equipped with the substrate mounting mechanism
US10907252B2 (en) Horizontal heat choke faceplate design
KR20070013364A (en) Heater module of chemical vapor deposition apparatus
JP2010034283A (en) Substrate processing apparatus
JP4063661B2 (en) Semiconductor manufacturing apparatus and semiconductor manufacturing method
KR20090019788A (en) Heating apparatus
TWM512209U (en) Heater block of rapid thermal processing apparatus
JP2018138697A (en) High-temperature treatment chamber lid
JP2016211850A (en) Electron irradiation device
JP2005183823A5 (en)
CN109075109B (en) Full area counter flow heat exchange substrate support
CN105575873A (en) Press ring mechanism and semiconductor processing device
TW201321705A (en) Heat pipe and method for manufacturing the same
JP3789863B2 (en) Plasma processing equipment
TWD218017S (en) Reaction tubes for semiconductor manufacturing equipment (4)
TWD218015S (en) Reaction tubes for semiconductor manufacturing equipment (2)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150409

R150 Certificate of patent or registration of utility model

Ref document number: 5731270

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250