JP2004214283A - Semiconductor device manufacturing apparatus - Google Patents

Semiconductor device manufacturing apparatus Download PDF

Info

Publication number
JP2004214283A
JP2004214283A JP2002379618A JP2002379618A JP2004214283A JP 2004214283 A JP2004214283 A JP 2004214283A JP 2002379618 A JP2002379618 A JP 2002379618A JP 2002379618 A JP2002379618 A JP 2002379618A JP 2004214283 A JP2004214283 A JP 2004214283A
Authority
JP
Japan
Prior art keywords
vacuum
reaction tube
manufacturing apparatus
semiconductor manufacturing
vacuum vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002379618A
Other languages
Japanese (ja)
Other versions
JP4063661B2 (en
Inventor
Toshimitsu Miyata
敏光 宮田
Takenori Oka
威憲 岡
Shingo Yokoyama
真吾 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP2002379618A priority Critical patent/JP4063661B2/en
Publication of JP2004214283A publication Critical patent/JP2004214283A/en
Application granted granted Critical
Publication of JP4063661B2 publication Critical patent/JP4063661B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To economically manufacture a semiconductor device manufacturing apparatus and also to improve heat treatment efficiency within a reaction pipe, while improving heat insulation efficiency and reducing heat capacity of the heat shielding structure itself through introduction of a vacuum heat shielding structure. <P>SOLUTION: The semiconductor device manufacturing apparatus 1 is provided with a cylindrical reaction pipe 20 which integrally forms an upper surface and a side surface with the lower surface opened, a boat which is loaded with wafers and is accommodated within the reaction pipe 20, a heater 2 for heating the internal side of the reaction pipe, and a vacuum heat insulating layer 70 which is formed to cover the periphery of the reaction pipe 20. The vacuum heat shielding layer 70 is formed by combining, through close sealing at the lower ends and then setting the internal space thereof into the vacuum condition, a cylindrical vessel 73 which is formed by integrating the upper surface and side surface with the lower surface opened, and a cylindrical external vacuum vessel 74 which is formed by integrating the upper surface and side surface with the lower surface opened. The heater 2 is arranged between the vacuum heat shielding layer 70 and the reaction pipe 20. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、半導体製造装置に係り、特にシリコンウエハの酸化、拡散、CVD(Chemical Vapor Deposition)等の熱処理工程を行なう真空断熱層を備えた半導体製造装置に好適なものである。
【0002】
【従来の技術】
従来のこの種の半導体製造装置としては、特許文献1に開示された縦型加熱装置がある。この縦型加熱装置は、加熱処理される加熱物が収納される空間を周囲から囲むように立設された円筒形のインナーチューブと、このインナーチューブを囲むように立設され、内部を気密空間に保持するアウターチューブと、これらアウターチューブとインナーチューブの内部を加熱するヒータとを有する。そして、この縦型加熱装置においては、アウターチューブの周囲を囲むように配置されると共にアウターチューブ側を外気に対して気密にシールする二重壁の真空チューブを有している。この真空チューブの内部に外部に対して気密にシールされ且つ減圧可能な真空空間が形成され、この真空空間内にヒータが収納されている。また、二重壁の真空チューブは内側の真空チューブと外側の真空チューブとが一体に形成され、内側の真空チューブは下面が開口し、外側の真空チューブは上面が開口して形成されている。
【0003】
【特許文献1】
特開2001−102314号公報
【0004】
【発明が解決しようとする課題】
しかしながら上記従来技術では、二重壁の真空チューブが内側の真空チューブと外側の真空チューブとが一体に形成され、内側の真空チューブが下面に開口され、外側の真空チューブが上面に開口される、という複雑な構造になっているため、製作が難しくコスト高となってしまうという問題があった。また、ヒータが真空空間内に収納されているため、内側の真空チューブを介して、アウターチューブとインナーチューブの内部を加熱することとなり、その加熱効率が低いものとならざるを得ないという問題があった。しかも、内側の真空チューブはヒータの熱をアウターチューブ側に良好に伝えるのに適した材質にする必要があり、真空維持と熱伝達との両方に優れた材質にしなければならないという課題があった。
【0005】
本発明の目的は、真空断熱構造にすることで断熱効率の向上及び断熱構造自体の熱容量の低減を図りつつ、安価に製作することができると共に反応管内の加熱効率を向上できる半導体製造装置を提供することにある。
【0006】
なお、本発明のその他の目的と有利点は以下の記述から明らかにされる。
【0007】
【課題を解決するための手段】
上記目的を達成するために、本発明は、上面および側面を一体に形成し且つ下面を開口した筒状の反応管と、ウエハを装填して前記反応管内に収納されるボートと、前記反応管の内部を加熱するヒータと、前記反応管の上面および側面の周囲を覆うように形成される真空断熱層とを備え、前記真空断熱層は、上面および側面を一体に形成し且つ下面が開口した筒状の内側真空容器と、上面および側面を一体に形成し且つ下面が開口した筒状の外側真空容器とを下端部で密着シールして組み合わせ、その内部空間を真空状態とすることにより形成し、前記ヒータは前記真空断熱層と前記反応管との間に配置した構成としたものである。
【0008】
なお、本発明のその他の手段は以下の記述から明らかにされる。
【0009】
【発明の実施の形態】
以下、本発明の複数の実施例を、図を用いて説明する。各実施例の図における同一符号は同一物または相当物を示す。
【0010】
まず、本発明の第1実施例の縦型半導体製造装置を図1から図3を参照しながら説明する。
【0011】
縦型半導体製造装置は、上面および側面を一体に形成し且つ下面を開口した筒状の反応管20と、ウエハ41を装填して反応管20内に収納されるボート40と、反応管20の内部を加熱するヒータ2と、反応管20の上面および側面の周囲を覆うように形成される真空断熱層70とを備えて構成されている。
【0012】
半導体製造プロセスの一つとして、シリコンウエハの酸化、拡散、CVD等を行なう熱処理工程があり、この工程は係る縦型半導体製造装置1を使用して行われる。
【0013】
この縦型半導体製造装置1は、ヒータ2内に均熱管3が設けられ、均熱管3内に反応管20が設けられている。均熱管3は、熱伝導率の大きい材料(例えばSiC材)で構成され、反応管20内の温度均一性を保つために使用されている。均熱管3は、その上面および側面が一体に形成され且つ下面を開口した筒状に形成され、下端部に外方に延びるフランジが形成されている。
【0014】
ヒータ2の周囲は真空断熱層70で覆われている。ヒータ2は真空断熱層70と均熱管3との間に筒状に形成されて配置され、上下に複数に分割されている。また、ヒータ2は内側真空容器73の側面内側に取り付けられている。
【0015】
反応管20は、1本のガス導入管(ガス導入通路)5と、1本の排気管(ガス排気通路)6とが下部に備えられ、それぞれが内部空間に連通されている。そして、ガス導入管5は反応ガス供給源(図示せず)に接続され、排気管6は排気装置(図示せず)に各々接続される。
【0016】
反応管20は下端が開口して入口となっており、そこからボート40に水平姿勢で複数枚装填されたウエハ41が導入、導出されるようになっている。即ち、ボート40は、昇降機構(図示せず)で上昇させることで反応管20内に下方から導入され、また、下降させることで反応管20から取出される。
【0017】
また、反応管20の下端の周囲にはフランジ62が設けられており、フランジ62と炉口蓋61との間が炉口蓋61を閉じたときに気密シール(例えばOリング)63でシールされるようになっている。
【0018】
なお、均熱管3及び反応管20は、組立てやメンテナンス(クリーニング等)のために取り外せる構造となっている。均熱管3は真空断熱層70と気密シール(例えばOリング)65で、また反応管20は均熱管3と気密シール(例えばOリング66)で各々シールされるようになっている。
【0019】
ウエハ41のCVD処理を行なう場合、ヒータ2によりウエハ41を処理温度に加熱保持し、その状態で原料ガスをガス導入管5より反応管20に供給する。そして、原料ガスが反応して、ウエハ41の表面にCVD膜が形成される。反応後のガスは排気管6を介して排気される。
【0020】
また、ウエハ41の面内温度分布を均一にさせるため、ボート40を回転させる回転機構64が設置されている。さらに、ボート40の下部には複数枚の断熱板60(例えば石英板)が装填されている。この断熱板60は上部に配置したウエハ41の上下の温度分布の不均一化を防止するために設けられるものである。
【0021】
真空断熱層70は、上面および側面を一体に形成し且つ下面が開口した筒状の内側真空容器74と、上面および側面を一体に形成し且つ下面が開口した筒状の外側真空容器75とを下端部で密着シールして組み合わせ、その内部空間を真空状態とすることにより形成されている。即ち、縦型半導体製造装置1の側面及び上面は、内側真空容器73及び外側真空容器74で二重構造とした真空断熱層70で覆われている。
【0022】
真空断熱層70は、真空ポンプ71がバルブ81を介して接続されており、バルブ81を開けて真空ポンプ71で真空引きされることにより真空断熱機能を有する。
【0023】
輻射シールド72は真空断熱層70の側面部に断熱方向に隙間をあけて複数枚設けられ、真空容器73、74に支持体75で締結支持されている。また、真空断熱層70の上面部にも輻射シールド72が断熱方向に隙間をあけて複数枚設けられ、真空容器74に支持体100で締結支持されている。なお、輻射シールド72には、排気用の穴10が数箇所穿孔されている。
【0024】
支持体75、100は熱伝導率が低く、強度を有する材料が用いられている。例えばガラスファイバー繊維、もしくは炭素ファイバー繊維で作られた支持受けやネジを用いて支持体75、100が構成されている。
【0025】
内側真空容器73は下端部が外側に延びるフランジ76が形成され、外側真空容器74は下端部に外側に延びるフランジ77が形成されている。内側真空容器73と外側真空容器74とは、外側真空容器74の下方から内側真空容器73を挿入して二重構造とし、各々に設けたフランジ76、77間で気密シール(例えばOリング78)を介してシールされ、取り外し可能な構造となっている。
【0026】
また、均熱管3及び反応管20は、組立てやメンテナンス(クリーニング等)のために取り外せる構造となっており、均熱管3と真空容器73は、真空容器73のフランジ77とOリング67で、さらに反応管20と均熱管3はOリング66で各々シールされる。
【0027】
支持体75の構造について図2を参照しながら詳述する。輻射シールド72は、例えばガラスファイバー繊維材で作られた支持受け101の溝に嵌合されている。この支持受け101は、例えばガラスファイバー繊維材で作られたネジ102により、真空容器74に締結支持されている。この支持体75の構造は輻射シールド72の上下に同様な構造で適用されている。これによって輻射シールド72が外側真空容器74に断熱的に支持されている。支持受け101及びネジ102は熱伝導率が低いために断熱効果を有するが、さらに支持受け101の形状を図2に示すように、水平面の断面積を出来るだけ小さくして外側真空容器74に当接する事で、熱抵抗が大きく出来る。
【0028】
支持体100の構造について図3を参照しながら詳述する。支持体100は支持部103、ネジ102、104を備えて構成されている。支持部103は例えばガラスファイバー繊維材で作られ、ネジ102は例えばガラスファイバー繊維材で作られており、支持部103はネジ102により真空容器74に締結支持されている。そして、その支持部103を輻射シールド72の穿孔部に通し、例えば前述したガラスファイバー繊維材で作られたネジ104で外側真空容器74を受けるようになっている。こうすることで断熱効果の高い支持体100とすることが出来る。
【0029】
本実施例によれば、上面および側面を一体に形成し且つ下面を開口した筒状の反応管20と、反応管20の上面および側面の周囲を覆うように形成される真空断熱層70とを備え、真空断熱層70を、上面および側面を一体に形成し且つ下面が開口した筒状の内側真空容器73と、上面および側面を一体に形成し且つ下面が開口した筒状の外側真空容器74とを下端部で密着シールして組み合わせ、その内部空間を真空状態とすることにより形成しているので、反応管20、内側真空容器73および外側真空容器74を極めて簡単な構造で安価に容易に製作することができる。また、ヒータ2を真空断熱層70と反応管20との間に配置しているので、ヒータ2で反応管20内を加熱することに真空断熱層70が直接関係しないこととなり、真空断熱層70を構成する内側真空容器73の材質の制約をなくすことができる。これによって、内側真空容器73は真空断熱機能に適した材質を容易に採用することができる。
【0030】
さらには、外側真空容器74に対して内側真空容器73および反応管20を順に下方より着脱可能に取り付けているので、これらを極めて容易に製作することができる。特に、下端部に外側に延びるフランジ77を有する内側真空容器73を外側真空容器76内に下方より挿入してそのフランジ77を外側真空容器74の下端部に気密シール78を介して着脱可能に取付け、下端部に外側に延びるフランジ3aを有する均熱管3を内側真空容器73内に下方より挿入してそのフランジ3aを内側真空容器73のフランジ77に気密シール67を介して着脱可能に取付け、均熱管3に反応管20を下方より挿入して気密シール66を介して着脱可能に取り付けているので、これらを極めて容易に製作することができる。
【0031】
さらには、内側真空容器73と外側真空容器74とで形成される空間内に複数枚の輻射シールド72を断熱方向に隙間を空けて設けているので、真空断熱層70の断熱性能を大幅に向上することができる。
【0032】
次に、本発明の第2実施例を図4を用いて説明する。なお、第2実施例の説明において、第1実施例と共通する部分の重複する説明は省略する。この第2実施例のものにおいて、第1実施例と共通する構成においては同じ効果を奏するものである。
【0033】
この第2実施例は、第1実施例の構成に、急速昇降温機構を加えた実施例であり、真空断熱層70に冷却用気体を供給する装置を設けたものである。この冷却用気体の供給装置は冷却風流路80とバルブ82、83を備えている。昇温及び降温時は以下の手順で行なう。
【0034】
先ず昇温時は、バルブ82、83を閉じ、真空ポンプ71を作動させ、真空断熱層70内の空気110をバルブ81を開けて排気し、真空断熱層70を真空にする。そしてウエハ41の成膜処理が終わった後の降温時には、バルブ81を閉じ、バルブ82、83を開けて真空断熱層70及び冷却風流路80に冷却気体(例えば冷却空気)111を流して、急速に反応管20内を冷却する。そして再び温度を上げる場合は前記した手順を繰返す。こうすることで急速昇降温が効率良く出来る。
【0035】
なお、外側真空容器74に設けたバルブ82は冷却の均一化を図るために、周方向に複数個設けてもよい。また輻射シールド72に穿孔する穴10は、冷却時に冷却空気111を真空断熱層70内に均等に流すため、輻射シールド72の下部の部分の圧損を、上部の圧損と比して減らすように穿孔すれば良い(例えば輻射シールド72の下部に設ける穴10の直径を、上部と比して大きくするか、穴の数を増やす)。
【0036】
次に、本発明の第3実施例を図5を用いて説明する。なお、第3実施例の説明において、第1および第2実施例と共通する部分の重複する説明は省略する。この第3実施例のものにおいて、第1および第2実施例と共通する構成においては同じ効果を奏するものである。
【0037】
この第3実施例は、第2実施例の構成において、更なる急速の昇温及びウエハ列の温度分布均一化を図るために、炉内に天井及びキャップヒータを設けたものである。即ち、均熱管3上部と真空容器73に囲まれた部分に天井ヒータ90を設け、さらにウエハ41の列の下方と断熱板60の間にキャップヒータ91を設けている。そうすることで、ウエハ41を効率良く昇温でき、かつウエハ列の温度分布が均一となるので、膜厚均一製に優れた半導体デバイスが高効率で得られる。
【0038】
次に、本発明の第4実施例を図6を用いて説明する。なお、第4実施例の説明において、第1〜第3実施例と共通する部分の重複する説明は省略する。この第4実施例のものにおいて、第1〜第3実施例と共通する構成においては同じ効果を奏するものである。
【0039】
この第4実施例は、第3実施例の構成において、更なる断熱性能の向上を図るために、断熱板60の代りに真空断熱層キャップ79を設けたものである。真空断熱層キャップ79は例えば2重の石英ガラスの内部を真空封じして構成する。こうすることで、ウエハ列41の下方の放熱が抑えられるので、ウエハ41を効率良く昇温でき、かつウエハ列の温度分布が均一となるので、膜厚均一製に優れた半導体デバイスが高効率で得られる。
【0040】
【発明の効果】
以上の如く、本発明によれば、真空断熱構造にすることで断熱効率の向上及び断熱構造自体の熱容量の低減を図りつつ、安価に製作することができると共に反応管内の加熱効率を向上できる半導体製造装置を提供できる。
【図面の簡単な説明】
【図1】本発明の第1実施例を説明する半導体製造装置の縦断面図。
【図2】図1の半導体製造装置の側面に位置する輻射シールドの支持体を示す詳細断面図。
【図3】図1の半導体製造装置の上面に位置する輻射シールドの支持体を示す詳細断面図。
【図4】本発明の第2実施例の半導体製造装置の縦断面図。
【図5】本発明の第3実施例の半導体製造装置の縦断面図。
【図6】本発明の第3実施例の半導体製造装置の縦断面図。
【図7】従来の半導体製造装置を示す断面図。
【符号の説明】
1…縦型半導体製造装置、2…ヒータ、3…均熱管、4…断熱材、5…ガス導入管、6…排気管、7…排気管、10…穴、20…反応管、40…ボート、41…ウエハ、60…断熱板、61…炉口蓋、62…フランジ、63…Oリング、64…回転機構、65…Oリング、66…Oリング、67…Oリング、70…真空断熱層、71…真空ポンプ、72…輻射シールド、73…内側真空容器、74…外側真空容器、75…支持体、76…フランジ、77…フランジ、78…Oリング、79…真空断熱層キャップ、80…冷却風流路、81…バルブ、82…バルブ、83…バルブ、90…天井ヒータ、91…キャップヒータ、100…支持体、101…支持受け、102…ネジ、103…支持部、104…ネジ、110…空気、111…冷却空気。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a semiconductor manufacturing apparatus, and particularly to a semiconductor manufacturing apparatus having a vacuum heat insulating layer for performing a heat treatment process such as oxidation, diffusion, and CVD (Chemical Vapor Deposition) of a silicon wafer.
[0002]
[Prior art]
As a conventional semiconductor manufacturing apparatus of this type, there is a vertical heating apparatus disclosed in Patent Document 1. This vertical heating device has a cylindrical inner tube erected so as to surround a space in which a heated object to be heated is stored, and an erect space surrounding the inner tube, and has an airtight space inside. And a heater for heating the inside of the outer tube and the inner tube. The vertical heating device has a double-walled vacuum tube that is arranged so as to surround the outer tube and hermetically seals the outer tube side against the outside air. A vacuum space is formed inside the vacuum tube and hermetically sealed to the outside and can be decompressed. A heater is housed in the vacuum space. The double-walled vacuum tube is formed by integrally forming an inner vacuum tube and an outer vacuum tube, the inner vacuum tube is opened at a lower surface, and the outer vacuum tube is formed at an upper surface.
[0003]
[Patent Document 1]
JP 2001-102314 A
[Problems to be solved by the invention]
However, in the above prior art, the double-walled vacuum tube is formed integrally with the inner vacuum tube and the outer vacuum tube, the inner vacuum tube is opened on the lower surface, and the outer vacuum tube is opened on the upper surface, Therefore, there is a problem that manufacturing is difficult and cost is increased. In addition, since the heater is housed in the vacuum space, the inside of the outer tube and the inner tube is heated through the inner vacuum tube, and the heating efficiency has to be reduced. there were. Moreover, the inner vacuum tube needs to be made of a material suitable for transmitting the heat of the heater to the outer tube side, and has a problem that it must be made of a material excellent in both vacuum maintenance and heat transfer. .
[0005]
An object of the present invention is to provide a semiconductor manufacturing apparatus that can be manufactured at low cost and improve the heating efficiency in a reaction tube while improving the heat insulating efficiency and reducing the heat capacity of the heat insulating structure itself by using a vacuum heat insulating structure. Is to do.
[0006]
Other objects and advantages of the present invention will be apparent from the following description.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a tubular reaction tube having an upper surface and a side surface formed integrally and opening a lower surface, a boat loaded with a wafer and housed in the reaction tube, A heater for heating the inside of the reaction tube, and a vacuum heat insulating layer formed so as to cover the periphery of the upper surface and the side surface of the reaction tube, wherein the vacuum heat insulating layer integrally formed the upper surface and the side surface and the lower surface was opened. A cylindrical inner vacuum container and a cylindrical outer vacuum container having an upper surface and a side surface formed integrally and an open lower surface are tightly sealed at the lower end and combined to form a vacuum in the internal space. The heater is arranged between the vacuum heat insulating layer and the reaction tube.
[0008]
The other means of the present invention will be apparent from the following description.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a plurality of embodiments of the present invention will be described with reference to the drawings. The same reference numerals in the drawings of the respective embodiments indicate the same or corresponding components.
[0010]
First, a vertical semiconductor manufacturing apparatus according to a first embodiment of the present invention will be described with reference to FIGS.
[0011]
The vertical semiconductor manufacturing apparatus includes a tubular reaction tube 20 having an upper surface and a side surface formed integrally and an opening at a lower surface, a boat 40 loaded with a wafer 41 and housed in the reaction tube 20, It comprises a heater 2 for heating the inside and a vacuum heat insulating layer 70 formed so as to cover the periphery of the upper surface and side surfaces of the reaction tube 20.
[0012]
As one of the semiconductor manufacturing processes, there is a heat treatment step for performing oxidation, diffusion, CVD, and the like of a silicon wafer, and this step is performed using the vertical semiconductor manufacturing apparatus 1.
[0013]
In the vertical semiconductor manufacturing apparatus 1, a soaking tube 3 is provided in a heater 2, and a reaction tube 20 is provided in the soaking tube 3. The soaking tube 3 is made of a material having a high thermal conductivity (for example, a SiC material), and is used to maintain temperature uniformity in the reaction tube 20. The heat equalizing tube 3 has an upper surface and a side surface formed integrally and is formed in a cylindrical shape with an open lower surface, and a lower end portion is formed with an outwardly extending flange.
[0014]
The periphery of the heater 2 is covered with a vacuum heat insulating layer 70. The heater 2 is formed and arranged between the vacuum heat insulating layer 70 and the heat equalizing tube 3 in a cylindrical shape, and is vertically divided into a plurality. Further, the heater 2 is attached to the inner side surface of the inner vacuum vessel 73.
[0015]
The reaction tube 20 is provided with one gas introduction pipe (gas introduction passage) 5 and one exhaust pipe (gas exhaust passage) 6 at the lower part, and each is communicated with the internal space. The gas introduction pipe 5 is connected to a reaction gas supply source (not shown), and the exhaust pipe 6 is connected to an exhaust device (not shown).
[0016]
The lower end of the reaction tube 20 is open and serves as an entrance, from which a plurality of wafers 41 loaded in a boat 40 in a horizontal posture are introduced and led out. That is, the boat 40 is introduced into the reaction tube 20 from below by being raised by an elevating mechanism (not shown), and is taken out of the reaction tube 20 by being lowered.
[0017]
A flange 62 is provided around the lower end of the reaction tube 20, and a space between the flange 62 and the furnace head cover 61 is sealed by an airtight seal (for example, an O-ring) 63 when the furnace cover 61 is closed. It has become.
[0018]
The heat equalizing tube 3 and the reaction tube 20 have a structure that can be removed for assembling and maintenance (such as cleaning). The soaking tube 3 is sealed with a vacuum heat insulating layer 70 and a hermetic seal (for example, an O-ring) 65, and the reaction tube 20 is sealed with a soaking tube 3 and a hermetic seal (for example, an O-ring 66).
[0019]
When the CVD process is performed on the wafer 41, the wafer 41 is heated and maintained at the processing temperature by the heater 2, and in this state, the source gas is supplied from the gas introduction pipe 5 to the reaction pipe 20. Then, the source gas reacts to form a CVD film on the surface of the wafer 41. The gas after the reaction is exhausted through the exhaust pipe 6.
[0020]
Further, a rotation mechanism 64 for rotating the boat 40 is provided in order to make the in-plane temperature distribution of the wafer 41 uniform. Further, a plurality of heat insulating plates 60 (for example, quartz plates) are loaded in the lower part of the boat 40. The heat insulating plate 60 is provided to prevent the temperature distribution between the upper and lower portions of the wafer 41 disposed above from becoming uneven.
[0021]
The vacuum heat insulating layer 70 includes a cylindrical inner vacuum container 74 having an upper surface and a side surface formed integrally and having a lower surface opened, and a cylindrical outer vacuum container 75 having an upper surface and a side surface formed integrally and having a lower surface opened. It is formed by tightly sealing at the lower end and assembling, and making the internal space a vacuum state. That is, the side surface and the upper surface of the vertical semiconductor manufacturing apparatus 1 are covered with the vacuum heat insulating layer 70 having a double structure with the inner vacuum vessel 73 and the outer vacuum vessel 74.
[0022]
The vacuum heat insulating layer 70 is connected to a vacuum pump 71 via a valve 81, and has a vacuum heat insulating function by opening the valve 81 and evacuating by the vacuum pump 71.
[0023]
A plurality of radiation shields 72 are provided on the side surface of the vacuum heat-insulating layer 70 with a gap in the heat-insulating direction, and are fastened and supported by the support 75 to the vacuum vessels 73 and 74. A plurality of radiation shields 72 are also provided on the upper surface of the vacuum heat insulating layer 70 with a gap in the heat insulating direction, and are fastened and supported by the support 100 to the vacuum vessel 74. The radiation shield 72 has several holes 10 for exhaust.
[0024]
The supports 75 and 100 are made of a material having low heat conductivity and strength. For example, the supports 75 and 100 are configured using a support receiver or a screw made of glass fiber fiber or carbon fiber fiber.
[0025]
The inner vacuum vessel 73 is formed with a flange 76 whose lower end extends outward, and the outer vacuum vessel 74 is formed with a flange 77 that extends outward at its lower end. The inner vacuum vessel 73 and the outer vacuum vessel 74 have a double structure by inserting the inner vacuum vessel 73 from below the outer vacuum vessel 74, and hermetically seal (for example, an O-ring 78) between the flanges 76 and 77 provided respectively. And is detachable.
[0026]
The soaking tube 3 and the reaction tube 20 have a structure that can be removed for assembling and maintenance (cleaning and the like). The soaking tube 3 and the vacuum container 73 are separated by a flange 77 and an O-ring 67 of the vacuum container 73. The reaction tube 20 and the soaking tube 3 are sealed with an O-ring 66, respectively.
[0027]
The structure of the support 75 will be described in detail with reference to FIG. The radiation shield 72 is fitted in a groove of the support receiver 101 made of, for example, a glass fiber material. The support receiver 101 is fastened and supported to the vacuum vessel 74 by screws 102 made of, for example, a glass fiber material. The structure of the support 75 is applied in the same manner above and below the radiation shield 72. As a result, the radiation shield 72 is insulated and supported by the outer vacuum vessel 74. The support receiver 101 and the screw 102 have a heat insulating effect due to their low thermal conductivity. However, as shown in FIG. By contact, the thermal resistance can be increased.
[0028]
The structure of the support 100 will be described in detail with reference to FIG. The support 100 includes a support portion 103 and screws 102 and 104. The support portion 103 is made of, for example, a glass fiber material, the screw 102 is made of, for example, a glass fiber material, and the support portion 103 is fastened and supported to the vacuum container 74 by the screw 102. Then, the support portion 103 is passed through the perforated portion of the radiation shield 72, and receives the outer vacuum container 74 with the screw 104 made of, for example, the glass fiber material described above. By doing so, the support 100 having a high heat insulating effect can be obtained.
[0029]
According to the present embodiment, the cylindrical reaction tube 20 formed integrally with the upper surface and the side surface and having the lower surface opened, and the vacuum heat insulating layer 70 formed so as to cover the periphery of the upper surface and the side surface of the reaction tube 20. The vacuum heat insulating layer 70 includes a cylindrical inner vacuum container 73 integrally formed with an upper surface and a side surface and having an open lower surface, and a cylindrical outer vacuum container 74 integrally formed with an upper surface and a side surface and having an opened lower surface. Are combined by tightly sealing at the lower end, and the interior space is formed in a vacuum state, so that the reaction tube 20, the inner vacuum vessel 73, and the outer vacuum vessel 74 can be easily and inexpensively formed with an extremely simple structure. Can be manufactured. Further, since the heater 2 is disposed between the vacuum heat insulating layer 70 and the reaction tube 20, the vacuum heat insulating layer 70 is not directly related to heating the inside of the reaction tube 20 by the heater 2, and the vacuum heat insulating layer 70 The restriction on the material of the inner vacuum vessel 73 constituting the above can be eliminated. Thus, the inner vacuum container 73 can easily adopt a material suitable for the vacuum heat insulating function.
[0030]
Further, since the inner vacuum vessel 73 and the reaction tube 20 are detachably attached to the outer vacuum vessel 74 in order from below, they can be manufactured very easily. In particular, the inner vacuum vessel 73 having a flange 77 extending outward at the lower end is inserted into the outer vacuum vessel 76 from below, and the flange 77 is detachably attached to the lower end of the outer vacuum vessel 74 via a hermetic seal 78. The heat equalizing tube 3 having a flange 3a extending outward at the lower end is inserted into the inner vacuum vessel 73 from below, and the flange 3a is detachably attached to the flange 77 of the inner vacuum vessel 73 via an airtight seal 67. Since the reaction tube 20 is inserted into the heat tube 3 from below and is detachably attached via the airtight seal 66, these can be manufactured very easily.
[0031]
Further, since a plurality of radiation shields 72 are provided in the space formed by the inner vacuum vessel 73 and the outer vacuum vessel 74 with a gap in the heat insulating direction, the heat insulating performance of the vacuum heat insulating layer 70 is greatly improved. can do.
[0032]
Next, a second embodiment of the present invention will be described with reference to FIG. In the description of the second embodiment, the overlapping description of the parts common to the first embodiment will be omitted. In the second embodiment, the same effects as those of the first embodiment are obtained in the same configuration.
[0033]
The second embodiment is an embodiment in which a rapid temperature raising / lowering mechanism is added to the configuration of the first embodiment, and a device for supplying a cooling gas to the vacuum heat insulating layer 70 is provided. The cooling gas supply device includes a cooling air flow path 80 and valves 82 and 83. At the time of raising and lowering the temperature, the following procedure is performed.
[0034]
First, at the time of temperature rise, the valves 82 and 83 are closed, the vacuum pump 71 is operated, and the air 110 in the vacuum heat insulating layer 70 is exhausted by opening the valve 81 to evacuate the vacuum heat insulating layer 70. When the temperature is lowered after the film forming process of the wafer 41 is completed, the valve 81 is closed, the valves 82 and 83 are opened, and the cooling gas (for example, cooling air) 111 is caused to flow through the vacuum heat insulating layer 70 and the cooling air flow path 80 to quickly Then, the inside of the reaction tube 20 is cooled. When the temperature is to be increased again, the above-described procedure is repeated. By doing so, rapid temperature rise and fall can be efficiently performed.
[0035]
Note that a plurality of valves 82 provided in the outer vacuum container 74 may be provided in the circumferential direction in order to achieve uniform cooling. The holes 10 formed in the radiation shield 72 are formed so that the cooling air 111 flows evenly in the vacuum heat insulating layer 70 during cooling, so that the pressure loss at the lower portion of the radiation shield 72 is reduced as compared with the pressure loss at the upper portion. (For example, the diameter of the hole 10 provided in the lower part of the radiation shield 72 is made larger than that of the upper part, or the number of holes is increased).
[0036]
Next, a third embodiment of the present invention will be described with reference to FIG. In the description of the third embodiment, the overlapping description of the parts common to the first and second embodiments will be omitted. In the third embodiment, the same effects as those of the first and second embodiments can be obtained.
[0037]
The third embodiment is different from the second embodiment in that a ceiling and a cap heater are provided in a furnace in order to further increase the temperature rapidly and to make the temperature distribution of the wafer rows uniform. That is, a ceiling heater 90 is provided in a portion surrounded by the heat equalizing tube 3 and the vacuum vessel 73, and a cap heater 91 is provided below the row of wafers 41 and the heat insulating plate 60. By doing so, the temperature of the wafer 41 can be raised efficiently and the temperature distribution of the wafer row becomes uniform, so that a semiconductor device excellent in uniformity of film thickness can be obtained with high efficiency.
[0038]
Next, a fourth embodiment of the present invention will be described with reference to FIG. In the description of the fourth embodiment, the overlapping description of the parts common to the first to third embodiments will be omitted. In the fourth embodiment, the same effects as those of the first to third embodiments can be obtained.
[0039]
The fourth embodiment is different from the third embodiment in that a vacuum heat insulating layer cap 79 is provided instead of the heat insulating plate 60 in order to further improve the heat insulating performance. The vacuum insulating layer cap 79 is formed by, for example, vacuum-sealing the inside of double quartz glass. By doing so, the heat radiation below the row of wafers 41 is suppressed, so that the temperature of the wafer 41 can be raised efficiently and the temperature distribution of the row of wafers becomes uniform, so that a semiconductor device having excellent uniformity in film thickness can be obtained with high efficiency. Is obtained.
[0040]
【The invention's effect】
As described above, according to the present invention, a semiconductor that can be manufactured at low cost and improve the heating efficiency in a reaction tube while improving the heat insulation efficiency and reducing the heat capacity of the heat insulation structure itself by using a vacuum heat insulation structure. A manufacturing apparatus can be provided.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a semiconductor manufacturing apparatus illustrating a first embodiment of the present invention.
FIG. 2 is a detailed sectional view showing a radiation shield support member located on a side surface of the semiconductor manufacturing apparatus of FIG. 1;
FIG. 3 is a detailed sectional view showing a radiation shield supporter located on the upper surface of the semiconductor manufacturing apparatus of FIG. 1;
FIG. 4 is a longitudinal sectional view of a semiconductor manufacturing apparatus according to a second embodiment of the present invention.
FIG. 5 is a vertical sectional view of a semiconductor manufacturing apparatus according to a third embodiment of the present invention.
FIG. 6 is a longitudinal sectional view of a semiconductor manufacturing apparatus according to a third embodiment of the present invention.
FIG. 7 is a sectional view showing a conventional semiconductor manufacturing apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Vertical semiconductor manufacturing apparatus, 2 ... Heater, 3 ... Heat equalizing pipe, 4 ... Heat insulation material, 5 ... Gas introduction pipe, 6 ... Exhaust pipe, 7 ... Exhaust pipe, 10 ... Hole, 20 ... Reaction pipe, 40 ... Boat 41, wafer, 60, heat insulating plate, 61, furnace lid, 62, flange, 63, O-ring, 64, rotating mechanism, 65, O-ring, 66, O-ring, 67, O-ring, 70, vacuum heat insulating layer, 71 vacuum pump, 72 radiation shield, 73 inner vacuum vessel, 74 outer vacuum vessel, 75 support, 76 flange, 77 flange, 78 O-ring, 79 vacuum insulation cap, 80 cooling Wind channel, 81: valve, 82: valve, 83: valve, 90: ceiling heater, 91: cap heater, 100: support, 101: support receiver, 102: screw, 103: support, 104: screw, 110 ... Air, 111 ... cooling air .

Claims (7)

上面および側面を一体に形成し且つ下面を開口した筒状の反応管と、
ウエハを装填して前記反応管内に収納されるボートと、
前記反応管の内部を加熱するヒータと、
前記反応管の上面および側面の周囲を覆うように形成される真空断熱層とを備え、
前記真空断熱層は、上面および側面を一体に形成し且つ下面が開口した筒状の内側真空容器と、上面および側面を一体に形成し且つ下面が開口した筒状の外側真空容器とを下端部で密着シールして組み合わせ、その内部空間を真空状態とすることにより形成し、
前記ヒータは前記真空断熱層と前記反応管との間に配置した
ことを特徴とする半導体製造装置。
A tubular reaction tube formed integrally with the upper surface and the side surfaces and opening the lower surface,
A boat loaded with wafers and housed in the reaction tube;
A heater for heating the inside of the reaction tube;
A vacuum heat insulating layer formed so as to cover the periphery of the upper surface and side surfaces of the reaction tube,
The vacuum heat-insulating layer has a lower end formed by a cylindrical inner vacuum container having an upper surface and side surfaces formed integrally and having a lower surface opened, and a cylindrical outer vacuum container formed integrally with upper surface and side surfaces and having a lower surface opened. It is formed by bringing the internal space into a vacuum state,
The semiconductor manufacturing apparatus, wherein the heater is disposed between the vacuum heat insulating layer and the reaction tube.
前記外側真空容器に対して前記内側真空容器および前記反応管を順に下方より着脱可能に取り付けたことを特徴とする請求項1に記載の半導体製造装置。2. The semiconductor manufacturing apparatus according to claim 1, wherein the inner vacuum vessel and the reaction tube are detachably attached to the outer vacuum vessel in order from below. 下端部に外側に延びるフランジを有する前記内側真空容器を前記外側真空容器内に下方より挿入してそのフランジを前記外側真空容器の下端部に気密シールを介して着脱可能に取付け、下端部に外側に延びるフランジを有する均熱管を前記内側真空容器内に下方より挿入してそのフランジを前記内側真空容器のフランジに気密シールを介して着脱可能に取付け、前記均熱管に前記反応管を下方より挿入して気密シールを介して着脱可能に取り付けたことを特徴とする請求項2に記載の半導体製造装置。The inner vacuum container having a flange extending outward at a lower end portion is inserted into the outer vacuum container from below, and the flange is detachably attached to a lower end portion of the outer vacuum container via a hermetic seal. A heat equalizing pipe having a flange extending to the inner vacuum vessel is inserted from below into the inner vacuum vessel, and the flange is detachably attached to a flange of the inner vacuum vessel via an airtight seal, and the reaction tube is inserted into the heat equalizing pipe from below. 3. The semiconductor manufacturing apparatus according to claim 2, wherein the semiconductor device is detachably attached via a hermetic seal. 前記内側真空容器と前記外側真空容器とで形成される空間内に前記ウエハの搬出時に前記真空状態を解除して冷却用気体を流す装置を設けたことを特徴とする請求項1から3の何れかに記載の半導体製造装置。4. The apparatus according to claim 1, wherein a device is provided in a space formed by the inner vacuum vessel and the outer vacuum vessel, in which the vacuum state is released and a cooling gas flows when the wafer is carried out. A semiconductor manufacturing apparatus according to any one of the above. 前記内側真空容器と前記外側真空容器とで形成される空間内に複数枚の輻射シールドを断熱方向に隙間を空けて設けたことを特徴とする請求項1から4の何れかに記載の半導体製造装置。The semiconductor manufacturing device according to any one of claims 1 to 4, wherein a plurality of radiation shields are provided in the space formed by the inner vacuum vessel and the outer vacuum vessel with a gap in the adiabatic direction. apparatus. 前記複数枚の輻射シールドに排気用の穴10を形成したことを特徴とする請求項5に記載の半導体製造装置。6. The semiconductor manufacturing apparatus according to claim 5, wherein exhaust holes 10 are formed in the plurality of radiation shields. 前記反応管内の下部にもヒータを設けると共に、このヒータの下側にも真空断熱層を設けたことを特徴とする請求項1から6の何れかに記載の半導体製造装置。7. The semiconductor manufacturing apparatus according to claim 1, wherein a heater is provided in a lower portion of the reaction tube, and a vacuum heat insulating layer is provided below the heater.
JP2002379618A 2002-12-27 2002-12-27 Semiconductor manufacturing apparatus and semiconductor manufacturing method Expired - Fee Related JP4063661B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002379618A JP4063661B2 (en) 2002-12-27 2002-12-27 Semiconductor manufacturing apparatus and semiconductor manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002379618A JP4063661B2 (en) 2002-12-27 2002-12-27 Semiconductor manufacturing apparatus and semiconductor manufacturing method

Publications (2)

Publication Number Publication Date
JP2004214283A true JP2004214283A (en) 2004-07-29
JP4063661B2 JP4063661B2 (en) 2008-03-19

Family

ID=32816069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002379618A Expired - Fee Related JP4063661B2 (en) 2002-12-27 2002-12-27 Semiconductor manufacturing apparatus and semiconductor manufacturing method

Country Status (1)

Country Link
JP (1) JP4063661B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007046414A1 (en) * 2005-10-18 2007-04-26 Tokyo Electron Limited Processing apparatus
JP2012049380A (en) * 2010-08-27 2012-03-08 Tokyo Electron Ltd Thermal processing apparatus
JP2012234981A (en) * 2011-05-02 2012-11-29 Mirapuro:Kk Decompression processing container
JP2013058741A (en) * 2011-08-17 2013-03-28 Hitachi Cable Ltd Metal chloride gas generating device, hydride gas phase growing device, and nitride semiconductor template
KR101500938B1 (en) * 2014-10-21 2015-03-12 주식회사 케이엔제이 Susceptor manufacturing apparatus
WO2018100850A1 (en) * 2016-12-01 2018-06-07 株式会社日立国際電気 Method for manufacturing substrate processing device, ceiling heater and semiconductor device
WO2020261466A1 (en) * 2019-06-27 2020-12-30 株式会社Kokusai Electric Heat insulation structure, substrate treatment device, and method of manufacturing semiconductor device
WO2023145054A1 (en) * 2022-01-31 2023-08-03 株式会社Kokusai Electric Heater unit, multilayer structure, processing device, and method for manufacturing semiconductor device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101497373B1 (en) * 2013-04-26 2015-03-03 주식회사 케이엔제이 Susceptor manufactuing apparatus
KR101511512B1 (en) * 2013-04-26 2015-04-13 주식회사 케이엔제이 Susceptor manufacturing apparatus with cooling fan
KR102116275B1 (en) * 2013-10-31 2020-05-29 주성엔지니어링(주) Shielding unit, device treating substrate, and method for treating substrate using the sames

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007142363A (en) * 2005-10-18 2007-06-07 Tokyo Electron Ltd Processor
KR100920280B1 (en) 2005-10-18 2009-10-08 도쿄엘렉트론가부시키가이샤 Processing apparatus
WO2007046414A1 (en) * 2005-10-18 2007-04-26 Tokyo Electron Limited Processing apparatus
US8485127B2 (en) 2005-10-18 2013-07-16 Tokyo Electron Limited Processing apparatus
TWI497599B (en) * 2010-08-27 2015-08-21 Tokyo Electron Ltd Thermal processing apparatus
JP2012049380A (en) * 2010-08-27 2012-03-08 Tokyo Electron Ltd Thermal processing apparatus
CN102383112A (en) * 2010-08-27 2012-03-21 东京毅力科创株式会社 Thermal processing apparatus
KR101435547B1 (en) * 2010-08-27 2014-08-29 도쿄엘렉트론가부시키가이샤 Thermal processing apparatus
JP2012234981A (en) * 2011-05-02 2012-11-29 Mirapuro:Kk Decompression processing container
JP2013058741A (en) * 2011-08-17 2013-03-28 Hitachi Cable Ltd Metal chloride gas generating device, hydride gas phase growing device, and nitride semiconductor template
KR101500938B1 (en) * 2014-10-21 2015-03-12 주식회사 케이엔제이 Susceptor manufacturing apparatus
WO2018100850A1 (en) * 2016-12-01 2018-06-07 株式会社日立国際電気 Method for manufacturing substrate processing device, ceiling heater and semiconductor device
JPWO2018100850A1 (en) * 2016-12-01 2019-10-17 株式会社Kokusai Electric Substrate processing apparatus, ceiling heater, and semiconductor device manufacturing method
WO2020261466A1 (en) * 2019-06-27 2020-12-30 株式会社Kokusai Electric Heat insulation structure, substrate treatment device, and method of manufacturing semiconductor device
WO2023145054A1 (en) * 2022-01-31 2023-08-03 株式会社Kokusai Electric Heater unit, multilayer structure, processing device, and method for manufacturing semiconductor device

Also Published As

Publication number Publication date
JP4063661B2 (en) 2008-03-19

Similar Documents

Publication Publication Date Title
JP4889683B2 (en) Deposition equipment
TWI462185B (en) Substrate processing apparatus, substrate supporting tool and method of manufacturing semiconductor device
JP3073627B2 (en) Heat treatment equipment
US5048800A (en) Vertical heat treatment apparatus
JPH04264716A (en) Heat treatment device
US7381926B2 (en) Removable heater
US5318633A (en) Heat treating apparatus
JP2004214283A (en) Semiconductor device manufacturing apparatus
JP5721219B2 (en) Substrate processing apparatus, semiconductor device manufacturing method, and heating apparatus
JP4260404B2 (en) Deposition equipment
KR20070013364A (en) Heater module of chemical vapor deposition apparatus
JP4645616B2 (en) Deposition equipment
JP3383784B2 (en) Heat treatment equipment for semiconductor wafers
JP4782761B2 (en) Deposition equipment
JP3109702B2 (en) Heat treatment equipment
JP2001234346A (en) Vacuum treating equipment utilizing reactive gas
JPH0930893A (en) Vapor growth device
JP3055797B2 (en) Vertical heat treatment equipment
JP4212753B2 (en) Vertical heat treatment equipment
JPH0729841A (en) Heat treatment furnace
JP2005056908A (en) Substrate treatment system
JPS63137416A (en) Vacuum heat insulating furnace
JPS60113921A (en) Method for vapor-phase reaction and device thereof
JP2000058459A (en) Thermal treatment method and thermal treatment equipment
JPH063795B2 (en) Heat treatment equipment for semiconductor manufacturing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071107

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071225

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140111

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees