JP2012228253A - Method for preparing nutrient solution for plant cultivation - Google Patents

Method for preparing nutrient solution for plant cultivation Download PDF

Info

Publication number
JP2012228253A
JP2012228253A JP2012150343A JP2012150343A JP2012228253A JP 2012228253 A JP2012228253 A JP 2012228253A JP 2012150343 A JP2012150343 A JP 2012150343A JP 2012150343 A JP2012150343 A JP 2012150343A JP 2012228253 A JP2012228253 A JP 2012228253A
Authority
JP
Japan
Prior art keywords
nutrient solution
added
water
amount
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012150343A
Other languages
Japanese (ja)
Other versions
JP2012228253A5 (en
JP5392800B2 (en
Inventor
Makoto Shinohara
信 篠原
Yoichi Uehara
洋一 上原
Masato Kono
真人 河野
Hirofumi Iwakiri
浩文 岩切
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Agriculture and Food Research Organization
Original Assignee
National Agriculture and Food Research Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Agriculture and Food Research Organization filed Critical National Agriculture and Food Research Organization
Priority to JP2012150343A priority Critical patent/JP5392800B2/en
Publication of JP2012228253A publication Critical patent/JP2012228253A/en
Publication of JP2012228253A5 publication Critical patent/JP2012228253A5/ja
Application granted granted Critical
Publication of JP5392800B2 publication Critical patent/JP5392800B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • Y02P60/216

Landscapes

  • Hydroponics (AREA)
  • Fertilizers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for preparing a nutrient solution for plant cultivation using organic matters, and to provide a hydroponic method for cultivating plants while adding the organic matters directly to the nutrient solution.SOLUTION: A method for manufacturing a biomineral inclusion includes constructing a microbial ecosystem necessary to stably making the organic matters inorganic by adding the organic matters to water gradually or all at once and fermenting. The hydroponics method includes cultivating the plants while adding the organic matters directly to the nutrient solution, using the biomineral inclusion obtained by the method as at least a portion of the nutrient solution.

Description

本発明は、バイオミネラル含有物の製造方法および有機養液栽培法に関し、詳しくは有機物を迅速に無機化し、植物が吸収可能なバイオミネラルを得るバイオミネラル発酵法を利用した植物栽培用養液の製造技術、並びに、当該技術により得られた養液を用いた養液栽培法に関する。なお、バイオミネラルとは生物起源の無機成分のことである。   The present invention relates to a method for producing a biomineral-containing material and an organic nutrient solution cultivation method, and more specifically, a nutrient solution for plant cultivation using a biomineral fermentation method that rapidly mineralizes organic matter to obtain a biomineral that can be absorbed by plants. The present invention relates to a production technique and a nutrient solution cultivation method using a nutrient solution obtained by the technique. Biomineral is an inorganic component of biological origin.

近年、循環型社会を構築すべきとの観点から、化学肥料の使用を控え有機質肥料の使用を推進する動きが世界的に活発になっている。
しかし、トマトなどの野菜や花き等の生産で広がりを見せている養液栽培では、養液に有機物を直接添加すると有害な中間分解産物が発生し、植物の根が傷んでしまうため、これまでは養液に有機物を添加することは考えられなかった。それゆえ、現在、養液には化学肥料のみが使用されている。
In recent years, from the viewpoint that a recycling-oriented society should be established, there has been an active movement worldwide to refrain from using chemical fertilizers and to promote the use of organic fertilizers.
However, in hydroponic cultivation, which has been spreading in the production of vegetables such as tomatoes and flowers, adding organic substances directly to the nutrient solution produces harmful intermediate decomposition products that damage the roots of the plant. Could not think of adding organic matter to the nutrient solution. Therefore, at present, only chemical fertilizer is used for nutrient solution.

一方、養液栽培においても有機物を使用できる技術を提供しようと、従来様々な試みがなされている。
たとえば、有機物をあらかじめ無機化して、養液に利用するアプローチが行われてきた(特許文献1−3、非特許文献1参照)。しかし、この方法では、窒素成分の分解はアンモニアまでしか進まなかった。これは、効率を上げようと大量の有機物を一度に分解するために、かえって低分子有機物やアンモニアなどの中間分解産物が大量に発生し、アンモニアを硝酸に分解する硝化菌を死滅させてしまったためと考えられる。それゆえ、アンモニアを養液に利用する試みが行われてきたが、作物にアンモニア過剰障害が出るため、肥料の一部として利用するにとどまっていた。
そこで、より肥料に適している硝酸をアンモニアから生成するため、硝化反応槽を利用する方法が開発された(特許文献4−7、非特許文献1参照)。しかし、この方法では、有機態窒素をアンモニア態窒素に分解するアンモニア化成用と、アンモニア態窒素を酸化して硝酸態窒素を生成する硝化化成用の2つの反応槽を用意しなければならない。しかも、硝化反応が不安定で、硝酸を安定して得ることが難しかった。また、分解がうまく進まないことが多く、悪臭が生じやすいという問題があった。
有機物を直接養液に投入することを可能にするため、硝化菌の棲息可能な多孔質の固形培地を利用する方法があるが(特許文献8参照)、これは特定の固形培地の使用を余儀なくされ、現在広く普及しているロックウール栽培や水耕栽培など、他の栽培技術に適用することができない限定的な技術であった。
このように、養液に有機物を直接添加する方法を、どの養液栽培技術にも適用できる技術は未だ実用化されていない。
On the other hand, various attempts have been made in the past to provide a technique capable of using organic matter even in hydroponics.
For example, the approach which mineralizes organic substance beforehand and uses for nutrient solution has been performed (refer patent documents 1-3, nonpatent literature 1). However, in this method, the decomposition of the nitrogen component has advanced only to ammonia. This is because a large amount of low-molecular-weight organic substances and intermediate decomposition products such as ammonia are generated in order to decompose a large amount of organic substances at once in order to increase efficiency, and the nitrifying bacteria that decompose ammonia into nitric acid are killed. it is conceivable that. Therefore, attempts have been made to use ammonia as a nutrient solution, but it has been used only as part of fertilizer because of excessive ammonia damage to crops.
Then, in order to produce | generate nitric acid more suitable for a fertilizer from ammonia, the method using a nitrification reaction tank was developed (refer patent documents 4-7, nonpatent literature 1). However, in this method, it is necessary to prepare two reaction tanks for ammonia conversion for decomposing organic nitrogen into ammonia nitrogen and for nitrification for oxidizing nitrate nitrogen to produce nitrate nitrogen. Moreover, the nitrification reaction is unstable and it is difficult to stably obtain nitric acid. In addition, decomposition often does not proceed well, and there is a problem that bad odor is likely to occur.
There is a method using a porous solid medium capable of inhabiting nitrifying bacteria in order to allow an organic substance to be directly introduced into a nutrient solution (see Patent Document 8), but this requires the use of a specific solid medium. It is a limited technology that cannot be applied to other cultivation techniques such as rock wool cultivation and hydroponic cultivation that are currently widely used.
Thus, the technique which can apply the method of adding an organic substance to a nutrient solution directly to any nutrient solution cultivation technique has not been put into practical use yet.

特開2002-137979号公報JP 2002-137979 A 特開2001-010885号公報JP 2001-010885 JP 特開2000-264765号公報JP 2000-264765 A 特開2005-074253号公報JP 2005-074253 特開2004-099366号公報Japanese Patent Laid-Open No. 2004-099366 特開2003-094021号公報Japanese Patent Laid-Open No. 2003-094021 特開平06-178995号公報Japanese Patent Laid-Open No. 06-178995 特開平06-125668号公報JP 06-125668 A

「養液土耕と液肥・培地管理」博友社、p.119-155(2005年)"Nutrient soil culture and liquid fertilizer / medium management" Hirotomo, p.119-155 (2005)

本発明の課題は、水に直接添加した有機物をスムーズに無機化することができるバイオミネラル発酵法、および、該発酵法を利用した植物栽培用養液の製造方法を提供することである。すなわち、本発明は、有機物の無機化に必要な微生物生態系を養液内に作り上げることにより、植物の生育に有害な中間分解産物の発生を抑え、養液への有機物の直接添加を可能にすると共に、単一の分解槽で有機物の無機化を安定して行う方法を提供することを目的とするものである。
An object of the present invention is to provide a biomineral fermentation method capable of smoothly mineralizing an organic substance added directly to water, and a method for producing a nutrient solution for plant cultivation using the fermentation method. That is, the present invention suppresses the generation of intermediate decomposition products harmful to plant growth by creating a microbial ecosystem necessary for mineralization of organic matter in the nutrient solution, and enables the direct addition of organic matter to the nutrient solution. In addition, it is an object of the present invention to provide a method for stably performing mineralization of an organic substance in a single decomposition tank.

本発明者らは、上記課題を克服すべく鋭意検討を重ねた結果、従来法では、効率を上げようと大量の有機物を一度に分解するために、かえって大量の中間分解産物が発生し、硝化菌を死滅させてしまい、アンモニアまでしか分解を進めることができないことを明らかにした。そして、養液内に、有機物を無機養分にまで分解するのに必要な微生物生態系が完成するまで、約2週間の発酵期間を設けることで、硝化菌の活性を維持することが可能であることを見出した。また、発酵期間中は、養液内の微生物生態系を破壊しない程度の少量の有機物を毎日添加(徐添加)するか、あるいはやはり微生物生態系を破壊しない程度の量の有機物を発酵開始時点に一括添加することにより、有機物を無機養分にまでスムーズに分解する微生物生態系を維持できることを見出した。しかも、発酵期間終了後は、植物の栽培に必要な量の有機物を相当量投入しても、速やかに分解されることを見出した。   As a result of intensive studies to overcome the above problems, the present inventors have decomposed a large amount of organic substances at once in order to improve efficiency. It has been clarified that the bacteria can be killed and only ammonia can be decomposed. And, it is possible to maintain the activity of nitrifying bacteria by providing a fermentation period of about 2 weeks until the microbial ecosystem necessary for decomposing organic matter into inorganic nutrients is completed in the nutrient solution. I found out. In addition, during the fermentation period, a small amount of organic matter that does not destroy the microbial ecosystem in the nutrient solution is added daily (gradual addition), or an amount of organic matter that does not destroy the microbial ecosystem is added at the start of fermentation. It was found that by adding all at once, a microbial ecosystem capable of smoothly degrading organic matter to inorganic nutrients can be maintained. Moreover, after the fermentation period, it was found that even if a considerable amount of organic matter necessary for plant cultivation was added, it was rapidly decomposed.

発酵期間が終了すれば、微生物生態系や植物に有害な分解中間産物の発生を抑え、大量の有機物をスムーズに無機化することができるようになる。その上、有機態窒素を、単一の分解槽で硝酸にまで分解することが可能となる。このため、養液栽培・養液土耕用の養液に有機物を直接添加しても、植物に障害を与えずに良好な生育を可能にする、これまでにない画期的な栽培法を確立できたのである。
本発明者らは、これらの知見に基づいて本発明を完成するに至った。
When the fermentation period ends, generation of decomposition intermediate products harmful to microbial ecosystems and plants can be suppressed, and a large amount of organic matter can be mineralized smoothly. In addition, organic nitrogen can be decomposed to nitric acid in a single decomposition tank. For this reason, even if organic matter is added directly to the nutrient solution for nutrient solution cultivation and nutrient solution soil cultivation, an unprecedented innovative cultivation method that enables good growth without causing damage to the plant. It was established.
Based on these findings, the inventors have completed the present invention.

すなわち、請求項1に係る本発明は、水に、以下(a)に記載の条件を満たすように以下(b)に記載の有機物の添加を行い、曝気を行いながら培養することによって、以下(c)に記載の微生物生態系を構築する工程を行うことを特徴とする、植物栽培用養液の製造方法である。
(a) 一度の添加量が1Lに対して0.05〜1gの以下(b)に記載の有機物を、1〜7日に1回添加する条件。
(b) コーンスティープリカー, 堆肥, 緑肥, ぼかし肥, 落葉, 魚粉, 油粕, オカラ, 生ゴミ, 米糠, 家畜糞尿, 及びイナワラから選ばれる1以上のもの。
(c) 1Lに対して66.67mgのコーンスティープリカーを一度に添加した際に、中間分解産物であるアンモニアの発生を抑えて硝酸態窒素にまで1日で分解して硝酸を生成することが可能である、硝化菌を含む微生物生態系。
請求項2に係る本発明は、前記水が、微生物が生息する自然水である、請求項1に記載の植物栽培用養液の製造方法である。
請求項3に係る本発明は、前記水が、地下水である、請求項1又は2に記載の植物栽培用養液の製造方法である。
請求項4に係る本発明は、請求項1〜3のいずれかに記載の方法によって製造された植物栽培用養液を用いることを特徴とする、液体肥料の製造方法である。
請求項5に係る本発明は、植物の養液栽培法であって、;請求項1〜3のいずれかに記載の方法にて製造され, 且つ, 前記(c)に記載の微生物生態系を含有する植物栽培用養液に、以下(d)に記載の条件を満たすように有機物を直接添加し、曝気を行いながら植物を栽培することを特徴とする、;植物の養液栽培法である。
(d) 一度の添加量が1Lに対して1〜5gの前記(b)に記載の有機物を、1〜14日に1回添加する条件。
That is, the present invention according to claim 1 adds the organic substance described in the following (b) to the water so as to satisfy the condition described in the following (a), and cultivates while performing aeration as follows ( A method for producing a nutrient solution for plant cultivation, comprising performing the step of constructing a microbial ecosystem described in c).
(a) Conditions for adding the organic substance described in (b) below in an amount of 0.05 to 1 g per 1 L added once every 1 to 7 days.
(b) One or more selected from corn steep liquor, compost, green manure, feather manure, leaf litter, fish meal, oil meal, okara, raw garbage, rice bran, livestock manure, and inawara.
(c) When 66.67mg of corn steep liquor is added to 1L at a time, it is possible to generate nitric acid by decomposing to nitrate nitrogen in one day while suppressing the generation of ammonia as an intermediate decomposition product. A microbial ecosystem containing nitrifying bacteria.
The present invention according to claim 2 is the method for producing a nutrient solution for plant cultivation according to claim 1, wherein the water is natural water inhabited by microorganisms.
The present invention according to claim 3 is the method for producing a nutrient solution for plant cultivation according to claim 1 or 2, wherein the water is groundwater.
The present invention according to claim 4 is a method for producing liquid fertilizer, characterized in that the nutrient solution for plant cultivation produced by the method according to any one of claims 1 to 3 is used.
The present invention according to claim 5 is a hydroponic cultivation method of a plant, manufactured by the method according to any one of claims 1 to 3, and the microbial ecosystem according to (c) It is characterized by cultivating a plant while aeration is carried out by directly adding organic matter to the contained nutrient solution for plant cultivation so as to satisfy the conditions described in (d) below; .
(d) Conditions for adding 1 to 5 g of the organic substance described in (b) once per day for 1 to 14 days per 1 L.

本発明によれば、有機物を徐添加、あるいは一括添加し、養液内の微生物生態系ができあがるまでの発酵期間を設けることによって、有害な中間分解産物の発生が抑えられ、植物の良好な生育が可能になる。また、単一の分解槽で有機態窒素から硝酸まで安定して分解することができる複式並行発酵を実現することができる。したがって、本発明によれば、養液を用いた植物栽培技術において、養液に直接有機物を添加できる方法が提供され、有機物のみから養液栽培・養液土耕用の養液、あるいは追肥用の液体肥料を製造することも可能となる。   According to the present invention, organic substances are added gradually or all at once, and by providing a fermentation period until the microbial ecosystem in the nutrient solution is completed, generation of harmful intermediate decomposition products can be suppressed, and the plant can grow well. Is possible. Moreover, the double parallel fermentation which can decompose | disassemble from organic nitrogen to nitric acid stably in a single decomposition tank is realizable. Therefore, according to the present invention, in a plant cultivation technique using a nutrient solution, a method is provided in which an organic substance can be added directly to the nutrient solution. It is also possible to produce a liquid fertilizer.

さらに、本発明では、有機物を固体・液体の区別なく使用して養液化することができるため、多様な原料を用いて養液を製造できるだけでなく、有機性廃棄物の有効利用法としても有望である。
また、本発明におけるバイオミネラル含有物は、養液栽培以外にも即効性の追肥用肥料としての利用も可能である。従来、養液土耕栽培で利用できる有機物は液体に限られていたが、本発明により固形の有機物を原料に養液を製造することが可能である。
しかも、本発明の養液栽培方法では、トマトなどナス科植物で深刻な被害をもたらす青枯病菌の増殖を抑え、青枯病の発生を防ぐことができる。
Furthermore, in the present invention, organic matter can be used to make a nutrient solution without distinction between solid and liquid, so that not only can a nutrient solution be produced using various raw materials, but it is also promising as an effective utilization method of organic waste. It is.
Moreover, the biomineral-containing material in the present invention can be used as a fast-acting fertilizer other than hydroponics. Conventionally, organic substances that can be used in hydroponics are limited to liquids, but according to the present invention, it is possible to produce nutrient solutions using solid organic substances as raw materials.
Moreover, in the hydroponic cultivation method of the present invention, the growth of bacterial wilt that causes serious damage in solanaceous plants such as tomatoes can be suppressed, and the occurrence of bacterial wilt can be prevented.

試験例1における各種有機物からのアンモニアおよび硝酸の発生量(mg/l)を経時的に示すグラフである。4 is a graph showing the generation amounts (mg / l) of ammonia and nitric acid from various organic substances in Test Example 1 over time. 試験例1でオカラおよびバーク堆肥を添加した場合の硝酸の発生量(mg/l)を経時的に示すグラフである。It is a graph which shows the generation amount (mg / l) of nitric acid at the time of adding Okara and bark compost in Test Example 1 with time. 試験例2Aにおける土壌添加のアンモニア発生量(mg/l)への影響を示すグラフである。It is a graph which shows the influence on the ammonia generation amount (mg / l) of the soil addition in Experiment 2A. 試験例2Aにおける土壌添加の硝酸発生量(mg/l)への影響を示すグラフである。It is a graph which shows the influence on the nitric acid generation amount (mg / l) of the soil addition in Experiment 2A. 試験例2Bにおける土壌添加量の変化によるアンモニア発生量(mg/l)への影響を示すグラフである。It is a graph which shows the influence on the ammonia generation amount (mg / l) by the change of the soil addition amount in Experiment 2B. 試験例2Bにおける土壌添加量の変化による硝酸発生量(mg/l)への影響を示すグラフである。It is a graph which shows the influence on the nitric acid generation amount (mg / l) by the change of the soil addition amount in Experiment 2B. 試験例2Cにおける土壌添加方法を示す図である。It is a figure which shows the soil addition method in Experiment 2C. 試験例2Cにおける土壌添加の硝酸発生量(mg/l)への影響を示すグラフである。It is a graph which shows the influence on the nitric acid generation amount (mg / l) of the soil addition in Experiment 2C. 試験例2Dにおける土壌添加量の変化による硝酸発生量(mg/l)への影響を示すグラフである。It is a graph which shows the influence on the nitric acid generation amount (mg / l) by the change of the soil addition amount in Experiment 2D. 試験例2Eにおけるコーンスティープリカー添加量の変化による硝酸発生量(mg/l)への影響を示すグラフである。It is a graph which shows the influence on the nitric acid generation amount (mg / l) by the change of the corn steep liquor addition amount in Experiment 2E. 実施例1におけるアンモニアの発生量(mg/l)を経時的に示すグラフである。2 is a graph showing the amount of ammonia generated (mg / l) over time in Example 1. 実施例1における硝酸の発生量(mg/l)を経時的に示すグラフである。2 is a graph showing the amount of nitric acid generated (mg / l) in Example 1 over time. 実施例1でトマトの苗を定植した様子を示す図である。It is a figure which shows a mode that the tomato seedling was planted in Example 1. FIG. 実施例1において生育したトマトの様子を示す図である。It is a figure which shows the mode of the tomato grown in Example 1. FIG. 実施例2において生育したサラダ菜の様子を示す図である。It is a figure which shows the mode of the salad vegetable grown in Example 2. FIG. 試験例3において青枯病菌を接種したトマトの様子を示す図である。It is a figure which shows the mode of the tomato which inoculated bacterial wilt disease in Test Example 3.

以下、本発明を詳細に説明する。
既述のように、従来法では水に多量の有機物を一度に添加するため、有機物の分解過程で大量に発生する中間分解産物によって硝化菌を含む多くの微生物が死滅してしまい、有機物、特に有機態窒素の無機化が十分に行われなかった。
一方、本発明のバイオミネラル含有物の製造方法では、水に有機物を徐々に添加、あるいは一括添加して発酵させることにより、水中に安定した微生物生態系が構築され、有機物の安定的かつスムーズな無機化(バイオミネラル化)が可能となる。発酵期間が終了し、安定した微生物生態系においては、水中又は空気中にもともと存在する硝化菌を含めた多様な微生物種が均衡を保ちながら共生しているため、相当量の有機物を直接添加してもスムーズに無機化でき、微生物生態系も崩れることはない。
有機物中の有機態窒素の無機化に要する微生物としては、たとえば原生動物や、細菌、糸状菌等のアンモニア化成菌、Nitrosomonas属、Nitrobacter属等の硝化菌を例示することができるが、これらに限定するものではない。
Hereinafter, the present invention will be described in detail.
As described above, in the conventional method, a large amount of organic matter is added to water at one time, so that many microorganisms including nitrifying bacteria are killed by intermediate decomposition products generated in large quantities during the decomposition of organic matter, and organic matter, particularly Organic nitrogen was not sufficiently mineralized.
On the other hand, in the method for producing a biomineral-containing material according to the present invention, an organic substance is gradually added to water or fermented by batch addition, whereby a stable microbial ecosystem is constructed in water, and the organic substance is stable and smooth. Mineralization (biomineralization) becomes possible. In a stable microbial ecosystem where the fermentation period has ended, various microbial species, including nitrifying bacteria originally present in water or air, coexist in a balanced manner. However, it can be mineralized smoothly and the microbial ecosystem will not be destroyed.
Examples of microorganisms required for mineralization of organic nitrogen in organic matter include protozoa, ammonia-forming bacteria such as bacteria and filamentous fungi, and nitrifying bacteria such as Nitrosomonas and Nitrobacter, but are not limited thereto. Not what you want.

本発明で用いる有機物としては、タンパク質およびその分解物やアミノ酸、アンモニアなど、有機態窒素を含むものであればよく、固体、液体を問わず使用できる。具体例としては、コーンスティープリカー、堆肥、緑肥、ぼかし肥、落葉などの有機質肥料、魚粉、油粕、オカラ、生ゴミ、米糠などの食品残渣、家畜糞尿やイナワラなどの有機性農業廃棄物、各種汚泥などの有機性廃棄物、並びに有機成分を含んだ各種廃水などを挙げることができ、特に窒素含量の高いコーンスティープリカー、油粕、魚粉およびオカラが好ましい。また、その形状としては、微生物が分解できるものであればよく、大きいものは細断、粉砕等して用いればよい。
本発明で用いる水は、環境中に存在する種々の微生物が生存できるものであればよく、地下水などの自然水や水道水、海水などを用いることができ、特に地下水が好ましい。
The organic substance used in the present invention may be any substance including organic nitrogen such as protein and its degradation products, amino acids, ammonia, etc., and can be used regardless of solid or liquid. Specific examples include organic fertilizers such as corn steep liquor, compost, green manure, blurred fertilizer, deciduous leaves, food residues such as fish meal, oil cake, okara, food waste, rice bran, organic agricultural waste such as livestock manure and rice straw, and various Organic wastes such as sludge and various waste waters containing organic components can be mentioned, and corn steep liquor, oil cake, fish meal and okara having a high nitrogen content are particularly preferable. Moreover, the shape should just be what can decompose | disassemble microorganisms, What is necessary is just to chop and grind | pulverize a big thing.
The water used in the present invention is not limited as long as various microorganisms existing in the environment can survive, and natural water such as ground water, tap water, sea water, and the like can be used, and ground water is particularly preferable.

本発明においては、上記有機物以外にも、微生物源を水に接種することが好ましい。微生物生態系の構築が促進されるためである。微生物源としては、園芸培土などの土壌や、バーク堆肥などの堆肥、石、砂などが例示できるが、これらに限定されない。
微生物源の添加量は、10〜1013個/L、好ましくは1010〜1011個/Lとなるようにすれば良い。また、微生物源として土壌やバーク堆肥を用いる場合は、5〜50g/L、好ましくは10〜20g/L添加する。微生物源の添加時期は発酵開始後10日以内が望ましく、特に発酵開始時点での添加が好ましい。
In the present invention, it is preferable to inoculate a microbial source with water in addition to the organic matter. This is because the construction of a microbial ecosystem is promoted. Examples of the microorganism source include soil such as horticultural soil, compost such as bark compost, stones, and sand, but are not limited thereto.
The added amount of the microbial source may be 10 8 to 10 13 / L, preferably 10 10 to 10 11 / L. When soil or bark compost is used as a microbial source, 5 to 50 g / L, preferably 10 to 20 g / L is added. The addition time of the microbial source is preferably within 10 days after the start of fermentation, and is particularly preferably added at the start of fermentation.

本発明の第1の態様では、水に有機物を少量ずつ徐々に添加して発酵させる。
本発明において、有機物を「徐々に添加する」(徐添加)とは、一括して大量に添加するのではなく、水中の微生物生態系が崩れない程度に少量ずつ分割して添加することを言う。
一度に添加することができる有機物の量は、当該有機物の分解性や温度条件などにより適宜設定すればよいが、具体的には、水1Lに対して、窒素含量として1〜30 mg/回、好ましくは3〜12 mg/回添加する。また、有機物全体としての添加量は、水1Lに対して0.05〜1g/回、好ましくは0.1〜0.4g/回であり、有機物としてコーンスティープリカーを用いる場合は、水1Lに対して0.05〜1 g/回、好ましくは0.1〜0.2 g/回とする。有機物の添加頻度は1回/1〜7日、好ましくは1回/日とする。
また、水に土壌あるいはバーク堆肥などの微生物源を5g/L以上添加する場合は、有機物の添加量を約2〜5倍に増やすことが可能である。これは、土壌粒子などが有害な中間分解産物を吸着する、緩衝効果によるものと思われる。たとえば、土壌などの微生物源を添加しない場合は、有機物の添加量は1Lに対して0.05〜1g/回であるが、土壌を5g/L加えると、1Lに対して2〜5g/回まで添加することが可能になる。
In the first embodiment of the present invention, organic substances are gradually added to water for fermentation.
In the present invention, “gradual addition” of organic substances (gradual addition) means that the organic substance is not added in a large amount at once, but is added in small portions so that the microbial ecosystem in water does not collapse. .
The amount of the organic substance that can be added at one time may be appropriately set depending on the decomposability of the organic substance and the temperature condition. Specifically, the nitrogen content is 1 to 30 mg / time with respect to 1 L of water, Preferably, 3 to 12 mg / time is added. Moreover, the addition amount as a whole organic substance is 0.05-1 g / time with respect to 1L of water, Preferably it is 0.1-0.4g / time. When using corn steep liquor as an organic substance, 0.05-1 with respect to 1L of water. g / time, preferably 0.1 to 0.2 g / time. The addition frequency of the organic substance is set to once / one to seven days, preferably once / day.
Moreover, when adding 5 g / L or more of microorganism sources, such as soil or bark compost, to water, it is possible to increase the addition amount of organic matter about 2 to 5 times. This seems to be due to the buffering effect that soil particles and the like adsorb harmful intermediate decomposition products. For example, when no microbial source such as soil is added, the amount of organic matter added is 0.05 to 1 g / time for 1 L, but when 5 g / L of soil is added, it is added to 2 to 5 g / time for 1 L. It becomes possible to do.

また、本発明の第2の態様では、発酵開始時点において、水に有機物を一括添加する。
本発明において、有機物の添加量は、水中の微生物生態系の構築を阻害しない程度の量とする。したがって、有機物の分解性や温度などの各種条件に応じて添加量を適宜設定すればよいが、具体的には、水1Lに対して、窒素含量として1.5〜30mg、好ましくは3〜12mg添加する。また、有機物全体としての添加量は、水1Lに対して0.05〜1g、好ましくは0.1〜0.4gであり、有機物としてコーンスティープリカーを用いる場合は、水1Lに対して0.05〜1 g、好ましくは0.1〜0.2 gとする。
また、水に土壌あるいはバーク堆肥などの微生物源を5g/L以上添加する場合は、有機物の添加量を約2〜5倍に増やすことが可能である。
In the second aspect of the present invention, organic substances are added to water at the time of starting fermentation.
In the present invention, the addition amount of the organic substance is set to an amount that does not inhibit the construction of the microbial ecosystem in water. Therefore, the addition amount may be appropriately set according to various conditions such as decomposability of organic matter and temperature. Specifically, the nitrogen content is 1.5 to 30 mg, preferably 3 to 12 mg per 1 L of water. Added. Moreover, the addition amount as a whole organic substance is 0.05-1g with respect to 1L of water, Preferably it is 0.1-0.4g, and when using corn steep liquor as an organic substance, 0.05- 1 g, preferably 0.1 to 0.2 g.
Moreover, when adding 5 g / L or more of microorganism sources, such as soil or bark compost, to water, it is possible to increase the addition amount of organic matter about 2 to 5 times.

本発明において発酵は、少なくとも、有機物を安定的に無機化するために必要な微生物生態系が水中に構築されるまでに必要な期間行う。したがって、この発酵期間は用いる水や有機物の種類、有機物の添加量、温度条件などにより異なるが、発酵期間終了の目安としては、水中の硝酸発生量が最大化した時点までであり、およそ7〜21日間、好ましくは2週間である。
当該発酵期間における発酵条件としては、常温、好ましくは20〜32℃で、曝気や振盪などによる好気的条件下であればよい。
なお、上記の発酵期間および発酵条件は、本発明の第1態様と第2態様において共通する。
In the present invention, fermentation is performed at least for a period necessary until a microbial ecosystem necessary for stably mineralizing organic matter is built in water. Therefore, although this fermentation period varies depending on the type of water and organic matter used, the amount of organic matter added, the temperature conditions, etc., the standard for the end of the fermentation period is until the amount of nitric acid generated in the water is maximized, approximately 7 to 21 days, preferably 2 weeks.
As fermentation conditions in the said fermentation period, it should just be aerobic conditions by aeration, shaking, etc. at normal temperature, Preferably it is 20-32 degreeC.
The above fermentation period and fermentation conditions are common to the first and second aspects of the present invention.

発酵期間終了後に得られた発酵液(バイオミネラル含有物)は、植物が吸収可能な硝酸態窒素などのバイオミネラルを豊富に含有している。また、当該バイオミネラル含有物中には、有機物を安定的に無機化するために必要な微生物生態系が構築されているため、添加された有機物を迅速に無機化することができる。
したがって、本発明の第1態様と第2態様により得られたバイオミネラル含有物は、植物の栽培に用いることができる。具体的な用途としては、養液栽培や養液土耕における養液、または追肥用の液体肥料などが挙げられる。また、乾燥固化して、固形肥料にすることもできる。
なお、本発明においてバイオミネラル含有物とは、上記の方法で発酵して得られた発酵液そのものの他、発酵液に濾過や遠心分離処理などを施したものや、吸着樹脂や透析などによるこれらの濃縮物、並びにその乾燥物なども包含するものとする。
The fermented liquor (biomineral-containing material) obtained after the end of the fermentation period contains abundant biominerals such as nitrate nitrogen that can be absorbed by plants. Moreover, since the microbial ecosystem required in order to mineralize organic substance stably is constructed | assembled in the said biomineral containing material, the added organic substance can be mineralized rapidly.
Therefore, the biomineral-containing material obtained by the first and second aspects of the present invention can be used for plant cultivation. Specific applications include nutrient solutions in hydroponics and hydroponics, or liquid fertilizers for additional fertilization. It can also be solidified by drying to form a solid fertilizer.
In addition, in the present invention, the biomineral-containing material refers to the fermented liquid itself obtained by fermentation by the above method, those obtained by subjecting the fermented liquid to filtration or centrifugation, adsorbent resin, dialysis, and the like. In addition, a concentrate thereof, and a dried product thereof are also included.

次に、本発明の養液栽培法について説明する。
本発明は、養液の少なくとも一部として上記の方法により得られたバイオミネラル含有物を用い、当該養液に有機物を直接添加しながら植物を栽培することを特徴とする養液栽培法である。養液栽培とは、植物の成長に必要な養水分を液肥として与える栽培方法であり、培地を用いない水耕栽培、噴霧耕、および培地を用いた固形培地耕があるが、本発明は水耕栽培に好適に用いられる。
本発明において栽培する植物としては、通常養液栽培されている植物であれば特に限定されない。具体例としては、トマト、ナスなどのナス科植物、サラダ菜、レタスなどの軟弱野菜、およびバラなどの花卉が挙げられるが、特にトマト、サラダ菜が好ましい。
Next, the hydroponics method of the present invention will be described.
The present invention is a hydroponic cultivation method characterized by using the biomineral-containing material obtained by the above method as at least a part of a nutrient solution and cultivating a plant while directly adding an organic substance to the nutrient solution. . Hydroponic cultivation is a cultivation method that provides nutrient nutrients necessary for plant growth as liquid fertilizer, and includes hydroponics that does not use a medium, spray cultivation, and solid medium cultivation that uses a medium. It is suitably used for cultivation.
The plant to be cultivated in the present invention is not particularly limited as long as it is a plant that is usually hydroponically cultivated. Specific examples include solanaceous plants such as tomatoes and eggplants, soft vegetables such as salad vegetables and lettuce, and flower buds such as roses, with tomatoes and salad vegetables being particularly preferred.

上記のバイオミネラル含有物を用いて養液を製造する方法としては、発酵液をそのまま、あるいは、他の肥料成分を添加したり、希釈したりして成分組成を調整した後に、養液として植物栽培に供する方法が挙げられる。また、得られた発酵液を濃縮して液体肥料を製造し、既に調製した植物栽培用養液あるいは水に、当該液体肥料を添加することもできる。さらに、上記のようにして製造された植物栽培用養液には、必要に応じて防腐剤などの添加物を混合することもできる。   As a method for producing a nutrient solution using the above-mentioned biomineral-containing material, the fermented solution is used as it is, or after adding other fertilizer components or diluting it to adjust the component composition, The method used for cultivation is mentioned. Moreover, the obtained fermented liquor can be concentrated and a liquid fertilizer can be manufactured, and the said liquid fertilizer can also be added to the already prepared nutrient solution for plant cultivation or water. Furthermore, additives such as preservatives can be mixed in the nutrient solution for plant cultivation produced as described above, if necessary.

本発明において上記植物の栽培は、上記の養液に有機物を直接添加しながら行うこと以外は、一般的な養液栽培と同様の方法で行うことができる。ここでいう有機物は、消費された養分を補うために添加するものであり、上述のバイオミネラル含有物の製造方法において使用可能なものであればよく、特に窒素含量の高いコーンスティープリカー、油粕、魚粉およびオカラ等が好ましい。
本発明において用いる養液は、相当量の有機物を一度に直接添加しても、極めてスムーズに無機化することができるため、有機物の添加量に関して特に制限はないが、好適には養液1L当たり、窒素含量として30〜150mg/回、有機物全体として1〜5g/回添加する。有機物としてコーンスティープリカーを用いる場合は、1〜5g/回添加する。添加頻度は、1回/1〜14日、好ましくは1回/日とする。
栽培条件は、栽培する植物に適した条件を適宜選択すればよいが、養液中での有機物の無機化を迅速に行うためには、常温、好ましくは20〜32℃で、かつ、好気的条件下で栽培するのが好ましい。
In the present invention, the cultivation of the plant can be carried out in the same manner as in general hydroponics except that the organic matter is directly added to the nutrient solution. The organic matter here is added to supplement the consumed nutrients, and may be any material that can be used in the above-described method for producing a biomineral-containing material. Particularly, corn steep liquor, oil cake, Fish meal and okara are preferred.
The nutrient solution used in the present invention can be mineralized very smoothly even if a considerable amount of organic matter is added directly at once, so there is no particular limitation on the amount of organic matter added, but preferably per liter of nutrient solution. The nitrogen content is added at 30 to 150 mg / time, and the whole organic substance is added at 1 to 5 g / time. When corn steep liquor is used as the organic substance, it is added 1 to 5 g / time. The addition frequency is 1 time / 1 to 14 days, preferably 1 time / day.
Cultivation conditions may be appropriately selected as appropriate for the plant to be cultivated. However, in order to quickly mineralize organic matter in the nutrient solution, it is at normal temperature, preferably 20 to 32 ° C., and aerobic. It is preferable to grow under typical conditions.

上記の方法で植物を栽培することにより、従来の養液栽培法と比べて同等もしくはそれ以上の収量が得られ、品質においても遜色がない。しかも、本発明の養液栽培法では、トマトなどのナス科植物で深刻な被害をもたらす青枯病の発生が抑えられることが明らかとなった。
By cultivating the plant by the above method, a yield equal to or higher than that of the conventional hydroponics method is obtained, and the quality is not inferior. Moreover, it has been clarified that the hydroponics method of the present invention can suppress the occurrence of bacterial wilt that causes serious damage in solanaceous plants such as tomatoes.

以下に実施例等を挙げて本発明を具体的に説明する。   Hereinafter, the present invention will be described specifically by way of examples.

試験例1 各種有機物のバイオミネラル化
500ml三角フラスコに100 mlの蒸留水、土壌1 g、各種有機物1 gを加え、25℃で分解を行った。曝気の目的で、120 rpmで振盪しながら行った。有機物としては、ナタネ油かす((株)三貴)、コーン油かす(太田油脂(株))、魚粉((株)東商)、コーンスティープリカー((株)サカタのタネ、以下、CSLと省略)を用いた。なお、土壌は園芸培土(商品名:苗一番、全農)を用いた(以下同様)。対照として、土壌を添加しないで上記と同様に試験した。
各種有機物から発生するアンモニアおよび硝酸の量を毎日測定した。測定にはアンモニア、硝酸のいずれもRQflex(MERCK社製)を用いた。結果を図1−1に示した。
Test Example 1 Biomineralization of various organic substances
To a 500 ml Erlenmeyer flask, 100 ml of distilled water, 1 g of soil and 1 g of various organic substances were added, and decomposition was performed at 25 ° C. For aeration purposes, it was carried out with shaking at 120 rpm. Organic substances include rapeseed oil residue (Miki), corn oil residue (Ota Oil & Fats Co., Ltd.), fish meal (Tosho Co., Ltd.), corn steep liquor (Sakata Seed Co., Ltd., hereinafter abbreviated as CSL). Was used. The soil used was horticulture soil (trade name: Ichiban Ichiban, Zen No Nori) (the same applies hereinafter). As a control, the same test as above was performed without adding soil.
The amount of ammonia and nitric acid generated from various organic substances was measured daily. For measurement, RQflex (made by MERCK) was used for both ammonia and nitric acid. The results are shown in FIG.

その結果、ナタネ油かす、コーン油かす、コーンスティープリカーなどの植物性のものは約1週間でアンモニアの発生が最大になり、計算上、すべての含有窒素が無機化した(図1−1)。さらに約1週間たって、硝酸の発生が最大化した。魚粉はアンモニア化成が約10日後、硝酸化成が約3週間後と、やや遅れる傾向であった。なお、土壌を添加しない対照区では、アンモニアまでの分解が起きたが、硝酸化成は見られなかった(結果は示さず)。
土壌の代わりにバーク堆肥(清水港木材産業協同組合)を、有機物として市販のオカラ(卯の花)を用いて上記と同様に試験したところ、硝化が起こった(図1-2)。
As a result, plant-based products such as rapeseed oil cake, corn oil cake, corn steep liquor, etc., generated ammonia maximum in about one week, and all the nitrogen contained in the calculation was mineralized (Fig. 1-1). . In about a week, nitric acid generation was maximized. Fish meal tended to be slightly delayed, with ammonia conversion about 10 days later and nitrification about 3 weeks later. In the control group to which no soil was added, decomposition to ammonia occurred, but nitrification was not observed (results not shown).
When bark compost (Shimizu Port Wood Industry Cooperative) was tested in the same manner as above using commercially available okara as an organic matter, nitrification occurred (Fig. 1-2).

試験例2 微生物と有機物の添加条件
A. 土壌添加の有無の影響
500ml三角フラスコに100mlの蒸留水、CSL 1 gおよび/または土壌1 gを加えて25℃で振盪(120rpm)して、試験例1と同様にしてアンモニアおよび硝酸の発生量を毎日測定した。図2にアンモニア、図3に硝酸の発生量をそれぞれ示す。
その結果、土壌とCSLの両方を加えたもののみ、硝酸の発生が見られた(図3)。土壌のみ、CSLのみでは、硝酸の発生は見られなかった。CSLのみを加えたものは、アンモニア化成まで進んだ(図2)。
Test example 2 Addition conditions of microorganisms and organic substances A. Effect of presence or absence of soil addition
100 ml of distilled water, 1 g of CSL and / or 1 g of soil was added to a 500 ml Erlenmeyer flask and shaken (120 rpm) at 25 ° C., and the generation amounts of ammonia and nitric acid were measured every day in the same manner as in Test Example 1. FIG. 2 shows the amount of ammonia generated, and FIG. 3 shows the amount of nitric acid generated.
As a result, the generation of nitric acid was observed only when both soil and CSL were added (FIG. 3). The generation of nitric acid was not observed only in soil and CSL alone. What added only CSL advanced to ammonia formation (FIG. 2).

B.土壌添加量の影響
次に、土壌の添加量を変えて、アンモニアおよび硝酸の発生量への影響を調べた。
すなわち、水(地下水)2リットルにCSLを5 g加え、土壌を0 g, 0.1 g, 1 g, 10 g添加して、25℃でエアーポンプにより曝気を行った。試験例1と同様にしてアンモニアおよび硝酸の発生量を毎日測定した。図4にアンモニア、図5に硝酸の発生量をそれぞれ示す。その結果、土壌を10 g添加した場合にのみ硝酸化成が認められ(図5)、それ以下の添加量ではアンモニア化成までしか進まなかった(図4)。
B. Effect of Soil Amount Added Next, the effect on the amount of ammonia and nitric acid generated was examined by changing the amount of soil added.
That is, 5 g of CSL was added to 2 liters of water (groundwater), 0 g, 0.1 g, 1 g, and 10 g of soil were added, and aeration was performed at 25 ° C. with an air pump. In the same manner as in Test Example 1, the amounts of ammonia and nitric acid generated were measured every day. FIG. 4 shows the amount of ammonia generated, and FIG. 5 shows the amount of nitric acid generated. As a result, nitrification was observed only when 10 g of soil was added (FIG. 5), and the amount of addition was less than that until ammonia formation (FIG. 4).

C.徐添加、土壌無添加での硝酸化成
反応初期に有機物を大量に入れるのではなく、毎日少量ずつ添加する徐添加の方法で検討を行った。
すなわち、15リットルの水(地下水)に毎日CSLを1 gずつ加え、「トキワのお茶パック」((株)トキワ産業)に土壌150 gを入れてティーバッグのようにぶら下げ (図6)、25℃でエアーポンプにより曝気した。対照として、土壌の袋をぶら下げないで同様に試験した。試験例1と同様にして硝酸の発生量を毎日測定した。結果を図7に示す。その結果、意外にも土壌を添加しなかった対照区でも、硝化が進んだ(図7)。
このことから、Bの実験のように、初期に大量の有機物(>2.5 g/l)を添加すると、土壌の添加なしには硝化が進まないが、Cの実験のように毎日少量ずつ有機物を添加する徐添加の方法をとれば、地下水のような自然水に棲息する微生物で十分、硝化を進めることができると考えられた。
C. Nitrification with gradual addition and no addition of soil Rather than adding a large amount of organic substances at the beginning of the reaction, we examined the method of gradual addition in which small amounts were added daily.
That is, 1 g of CSL is added to 15 liters of water (groundwater) every day, and 150 g of soil is placed in “Tokiwa Tea Pack” (Tokiwa Sangyo Co., Ltd.) (Fig. 6), 25 Aerated with an air pump at ℃. As a control, the same test was performed without hanging the soil bag. In the same manner as in Test Example 1, the amount of nitric acid generated was measured every day. The results are shown in FIG. As a result, nitrification advanced unexpectedly even in the control group to which no soil was added (FIG. 7).
From this, if a large amount of organic matter (> 2.5 g / l) is added in the initial stage as in the experiment of B, nitrification does not proceed without the addition of soil, but a small amount of organic matter is added every day as in the experiment of C. It was thought that nitrification could be sufficiently promoted by microorganisms that live in natural water such as groundwater if the method of slow addition was added.

D.徐添加での土壌添加量の影響
そこで次に、2リットルの水(地下水)に土壌を0 g, 0.1 g, 1 g, 10 g添加し、毎日CSLを1 gずつ加え、25℃でエアーポンプにより曝気を行った。試験例1と同様にして硝酸の発生量を毎日測定した。結果を図8に示す。すると、徐添加を行えば、Bの結果とは異なり、土壌の添加の有無にかかわらず硝化が進んだ(図8)。
D. Effect of Soil Addition with Slow Addition Next, add 0 g, 0.1 g, 1 g, 10 g of soil to 2 liters of water (groundwater), add 1 g of CSL daily, and air pump at 25 ° C Was aerated. In the same manner as in Test Example 1, the amount of nitric acid generated was measured every day. The results are shown in FIG. Then, if the gradual addition was performed, nitrification proceeded regardless of whether or not the soil was added, unlike the results of B (FIG. 8).

E.徐添加での有機物添加量の影響
2リットルの水(地下水)に25℃でエアーポンプにより曝気を行いながら毎日CSLを0.1 g, 0.2 g, 0.4 gずつ加えた。いずれの場合も、土壌の添加は行わなかった。試験例1と同様にして硝酸の発生量を毎日測定した。結果を図9に示す。その結果、全ての試験区で硝酸の発生が見られた(図9)。よって、CSLの1日当たりの添加量を1 g/L以下とする徐添加の方法であれば、硝化が進むことが分かった。
E. Effect of organic substance addition amount in gradual addition
CSL was added in 0.1 g, 0.2 g, and 0.4 g daily to 2 liters of water (ground water) at 25 ° C. while aeration with an air pump. In either case, no soil was added. In the same manner as in Test Example 1, the amount of nitric acid generated was measured every day. The results are shown in FIG. As a result, generation of nitric acid was observed in all test sections (FIG. 9). Therefore, it was found that nitrification progresses with the method of slow addition in which the daily addition amount of CSL is 1 g / L or less.

<考察>
以上、Aの結果から、微生物源として土壌を利用すれば、初期の有機物添加量を高めても(10 g/L以上)順調に硝化を進めることができることが分かった。
C、D、Eの結果から、土壌のような微生物の豊富なものを微生物源として利用しなくても、有機物の添加を1リットル当たり1 g以下(1日あたり)とする徐添加の方法をとるならば、硝化を進めることができることが分かった。
Bの結果から、1リットル当たり2.5 g以上の有機物を初期に加えると、土壌を5g/L以上添加しなければ、硝化菌が死滅するなどして硝化が進まなくなることが分かった。しかし、Eのように1リットルあたり1日に0.5 g程度の徐添加の方法を採れば、土壌の添加がなくても硝化を進めることができることが分かった。従来の無機化技術で硝酸発酵が難しかったのは、初期に大量の有機物を添加してしまうことにより、硝化菌が死滅してしまうためであると考えられた。
<Discussion>
As described above, from the results of A, it was found that if soil is used as a microbial source, nitrification can proceed smoothly even if the initial organic substance addition amount is increased (10 g / L or more).
From the results of C, D, and E, the method of gradual addition of 1 g or less per liter of organic matter (per day) without using microorganism-rich sources such as soil as a microbial source It was found that nitrification can be promoted.
From the results of B, it was found that when 2.5 g or more of organic matter per liter was initially added, nitrification would not proceed due to the death of nitrifying bacteria unless soil was added at 5 g / L or more. However, it was found that if gradual addition of about 0.5 g per liter per day as in E was adopted, nitrification could proceed without the addition of soil. The reason why nitric acid fermentation was difficult with the conventional mineralization technology was thought to be because nitrifying bacteria were killed by adding a large amount of organic substances in the initial stage.

実施例1 バイオミネラルによるトマトの養液栽培
まず、コントロール実験として、発酵期間を置かずに、水耕液に有機物を添加して養液栽培した場合の植物の状態を調べた。
すなわち、3リットルの水(地下水)が入ったワグネルポットに、トマト(品種名’ポンデローザ’)の2週間苗を定植し、CSLを15グラム加えてエアーポンプで曝気し、常温で経過を観察した。栽培開始後3日ほどで植物は黄化し、枯死した。これは、CSLが分解されてできた中間分解産物がトマトの根に障害を与えたものと考えられる。
Example 1 Hydroponic cultivation of tomatoes with biominerals First, as a control experiment, the state of the plant was examined when hydroponically cultivated by adding organic matter to the hydroponic liquid without placing a fermentation period.
That is, 2 weeks seedlings of tomato (variety name 'Ponderosa') were planted in a Wagner pot containing 3 liters of water (groundwater), 15 grams of CSL was added, aerated with an air pump, and the progress was observed at room temperature . About 3 days after the start of cultivation, the plant turned yellow and died. This is thought to be because the intermediate degradation products produced by the degradation of CSL damaged the tomato roots.

次に、本発明の方法によって養液内の有機物を無機化する発酵期間を設け、その後定植して養液栽培を行った。
すなわち、各3リットルの水(地下水)が入った4つのワグネルポットに、土壌を30 g加え、常温でエアーポンプにより曝気した。CSLを毎日5 gずつ各ポットに添加した。試験例1と同様にしてアンモニアおよび硝酸の発生量を毎日測定した。図10(A)にアンモニア、図10(B)に硝酸の発生量をそれぞれ示す。図10(A)、(B)において、「1アンモニア(硝酸)」とは、No.1のポットにおけるアンモニア(硝酸)の発生量のことである。また、2〜4についても同様である。その結果、約2週間で4つのポットの硝化がピークに達した(図10(B))。
CSL添加開始から2週間後、トマト(品種名’ポンデローザ’)の2週間苗を1株/ポットずつ定植し(図11)、常温で曝気を継続しながら養液栽培を行った(バイオミネラル区)。定植時に、カルシウム、マグネシウムなどの無機成分の不足を補うため、カキ殻石灰(商品名「セルカ」、全農)を各ポットに30 g加えた。定植後、CSLの添加量は各ポット一日に1〜5gとした。
一方、コントロールとして、化学肥料(大塚化学、大塚A処方)を水に混合した養液を用いたこと以外は、バイオミネラル区と同様に養液栽培を行った(化学肥料区)。施肥量は、窒素の施肥量がバイオミネラル区と等しくなるようにし、毎日追肥を行った。
その結果、定植後4週目の時点で、バイオミネラル区(図12の左列)と化学肥料区(図12の右列)とで順調な生育が認められ、トマトの生育に差は見られなかった。したがって、養液に有機物を直接添加する本発明の方法により、従来法と同等の生育結果が得られることが明らかになった。
Next, a fermentation period in which the organic matter in the nutrient solution was mineralized was provided by the method of the present invention, and then the plant was planted to carry out the nutrient solution cultivation.
That is, 30 g of soil was added to four Wagner pots each containing 3 liters of water (groundwater) and aerated with an air pump at room temperature. 5 g of CSL was added to each pot daily. In the same manner as in Test Example 1, the amounts of ammonia and nitric acid generated were measured every day. FIG. 10A shows the amount of ammonia generated, and FIG. 10B shows the amount of nitric acid generated. 10 (A) and 10 (B), “1 ammonia (nitric acid)” refers to the amount of ammonia (nitric acid) generated in the No. 1 pot. The same applies to 2-4. As a result, nitrification of four pots reached a peak in about 2 weeks (FIG. 10B).
Two weeks after the start of CSL addition, seedlings were planted for 1 week / pot for 2 weeks of tomato (variety 'Ponderosa') (Fig. 11), and hydroponic cultivation was carried out while continuing aeration at room temperature (biomineral zone) ). At the time of planting, 30 g of oyster shell lime (trade name “Selka”, Zen No Nori) was added to each pot to compensate for the lack of inorganic components such as calcium and magnesium. After planting, the amount of CSL added was 1-5 g per day per pot.
On the other hand, as a control, hydroponics was performed in the same manner as the biomineral zone (chemical fertilizer zone) except that a nutrient solution in which chemical fertilizer (Otsuka Chemical, Otsuka A prescription) was mixed with water was used. The amount of fertilizer applied was such that the amount of nitrogen applied was equal to that of the biomineral zone, and daily fertilization was performed.
As a result, at the 4th week after planting, smooth growth was observed in the biomineral group (left column in FIG. 12) and the chemical fertilizer group (right column in FIG. 12), and there was a difference in the growth of tomatoes. There wasn't. Therefore, it became clear that the growth result equivalent to the conventional method can be obtained by the method of the present invention in which an organic substance is directly added to the nutrient solution.

実施例2 バイオミネラルによるサラダ菜の養液栽培
サラダ菜でも栽培試験を行った。
すなわち、15リットルの水(地下水)が入ったプランター(63×23×18cm)にCSLを毎日1 g添加し、常温で曝気を続ける発酵期間を設けた。2週間後、図7に示したように硝化が進んだのを確認した後、サラダ菜('岡山サラダ菜'、タキイ種苗)の約1週間苗を16株/プランター定植し、常温で養液栽培を開始した(バイオミネラル区)。定植後のCSL添加量は一日に1〜3 gとし、養液内に直接添加した。
化学肥料区(コントロール)として、化学肥料(大塚化学、大塚A処方)を水に混合した養液を用いたこと以外は、バイオミネラル区と同様に養液栽培を行った。なお、施肥量は、窒素成分の添加量をバイオミネラル区とそろえ、毎日追肥を行った。
その結果、バイオミネラル区(図13の手前側)と化学肥料区(図13の奥側)とで、定植後4週目の時点でプランター全体の収量を比較したところ、バイオミネラル区350 g、化学肥料区312 gで、バイオミネラル区の方がやや生育が良かった。葉色や食味などについては、両試験区で特に差は認められなかった。
したがって、サラダ菜については、養液に有機物を直接添加する本発明の方法により、従来法と同等以上の生育結果が得られることが明らかになった。よって、他の植物についても、本発明の方法により栽培可能であると推測される。
Example 2 Hydroponics of Salad Vegetables with Biominerals Cultivation tests were also conducted with salad vegetables.
That is, 1 g of CSL was added daily to a planter (63 × 23 × 18 cm) containing 15 liters of water (ground water), and a fermentation period in which aeration was continued at room temperature was provided. Two weeks later, after confirming that nitrification had progressed as shown in Fig. 7, 16 seedlings / planter planting of salad vegetables ('Okayama Salad Vegetables', Takii seedlings) was planted for about 1 week, and cultivated at normal temperature. Started (biomineral zone). The amount of CSL added after planting was 1-3 g per day and added directly into the nutrient solution.
As a chemical fertilizer section (control), a hydroponic culture was performed in the same manner as in the biomineral section except that a nutrient solution in which chemical fertilizer (Otsuka Chemical Co., Ltd., Otsuka A prescription) was mixed with water was used. In addition, the amount of fertilization was adjusted daily with the amount of nitrogen component added to the biomineral zone.
As a result, when the yield of the entire planter was compared between the biomineral zone (front side in FIG. 13) and the chemical fertilizer zone (back side in FIG. 13) at the fourth week after planting, the biomineral zone 350 g, The chemical fertilizer zone was 312 g and the biomineral zone grew slightly better. There were no particular differences in leaf color or taste between the two test sections.
Therefore, for salad vegetables, it has been clarified that a growth result equal to or higher than that of the conventional method can be obtained by the method of the present invention in which an organic substance is directly added to a nutrient solution. Therefore, it is estimated that other plants can also be cultivated by the method of the present invention.

試験例3 バイオミネラル栽培による青枯病抵抗性試験
本発明の方法により栽培した植物の青枯病抵抗性について、以下のように試験した。
まず、CPG寒天培地(組成:1Lあたりカザミノ酸1g、ペプトン10g、グルコース5g、寒天16g)上で青枯病菌(Ralstonia solanacearum 03-01487株)を32℃3日間静置培養した。増殖した菌体を滅菌水に懸濁し、青枯病菌接種源とした。
Test Example 3 Resistance to bacterial wilt resistance by biomineral cultivation The resistance to bacterial wilt of plants cultivated by the method of the present invention was tested as follows.
First, bacterial wilt (Ralstonia solanacearum 03-01487 strain) was statically cultured at 32 ° C. for 3 days on a CPG agar medium (composition: 1 g of casamino acid per liter, 10 g of peptone, 5 g of glucose, 16 g of agar). The grown cells were suspended in sterilized water and used as a bacterial inoculum source.

次に、15リットルの水(地下水)が入ったプランター(63×23×18cm)にCSLを毎日1g添加し、常温で曝気を続ける発酵期間を設けた。2週間後、トマト(品種名’ポンデローザ’)の2週間苗を16株/プランターずつ定植し、32℃で養液栽培を開始した(バイオミネラル区)。定植後のCSL添加量は1g/日とした。定植の2日後、9日後、および11日後に、上記で得られた青枯病菌(108〜1010cells)を養液内に接種した。
一方、化学肥料区(コントロール)として、化学肥料(大塚化学、大塚A処方)を水に混合した養液を用いたこと以外は、バイオミネラル区と同様に養液栽培および接種を行った。なお、施肥量は、窒素成分の添加量をバイオミネラル区とそろえ、毎日追肥を行った。
Next, 1 g of CSL was added to a planter (63 × 23 × 18 cm) containing 15 liters of water (ground water) every day, and a fermentation period in which aeration was continued at room temperature was provided. Two weeks later, 16 strains / planter of 2 weeks seedlings of tomatoes (variety name “Ponderosa”) were planted each time, and hydroponic cultivation was started at 32 ° C. (biomineral zone). The amount of CSL added after planting was 1 g / day. After 2 days, 9 days and 11 days after planting, the bacterial wilt fungus (10 8 to 10 10 cells) obtained above was inoculated into the nutrient solution.
On the other hand, as a chemical fertilizer section (control), hydroponics and inoculation were performed in the same manner as in the biomineral section except that a nutrient solution in which chemical fertilizer (Otsuka Chemical Co., Ltd., Otsuka A prescription) was mixed with water was used. In addition, the amount of fertilization was adjusted daily with the amount of nitrogen component added to the biomineral zone.

その結果、定植後13日目の時点で、化学肥料区では11株が青枯病により萎凋した(図14上側)が、バイオミネラル区では全く病株の発生がなかった(図14下側)。
したがって、本発明の方法で栽培することにより、青枯病の発生を抑制できることが明らかになった。
As a result, at the time of the 13th day after planting, 11 strains in the chemical fertilizer plot were wilt due to bacterial wilt (upper side in FIG. 14), but no disease strain was generated in the biomineral plot (lower side in FIG. 14). .
Therefore, it became clear that the occurrence of bacterial wilt can be suppressed by cultivation by the method of the present invention.

本発明によれば、養液に直接有機物を添加することができる養液栽培法が提供され、有機物のみから養液栽培・養液土耕用の養液、あるいは追肥用の液体肥料を製造することも可能となる。従来、養液土耕で利用できる有機物は液体に限られていたが、本発明により、固形の有機物を原料に養液を製造することが可能となった。
さらに、本発明では、有機物を固体・液体の区別なく使用して養液化することができるため、多様な原料を用いて養液を製造できるだけでなく、有機性廃棄物の有効利用法としても有望である。
しかも、本発明の養液栽培方法では、トマトなどナス科植物で深刻な被害をもたらす青枯病の発生を防ぐことができる。
ADVANTAGE OF THE INVENTION According to this invention, the nourishing liquid cultivation method which can add an organic substance directly to a nourishing liquid is provided, and the nourishing liquid for nourishing liquid cultivation and nourishing soil culture, or the liquid fertilizer for additional fertilization is manufactured only from organic substance. It is also possible. Conventionally, the organic matter that can be used in the hydroponics is limited to the liquid, but the present invention makes it possible to produce the nutrient solution using the solid organic matter as a raw material.
Furthermore, in the present invention, organic matter can be used to make a nutrient solution without distinction between solid and liquid, so that not only can a nutrient solution be produced using various raw materials, but it is also promising as an effective utilization method of organic waste. It is.
Moreover, in the hydroponic cultivation method of the present invention, it is possible to prevent the occurrence of bacterial wilt that causes serious damage in solanaceous plants such as tomatoes.

Claims (5)

水に、以下(a)に記載の条件を満たすように以下(b)に記載の有機物の添加を行い、曝気を行いながら培養することによって、以下(c)に記載の微生物生態系を構築する工程を行うことを特徴とする、植物栽培用養液の製造方法。
(a) 一度の添加量が1Lに対して0.05〜1gの以下(b)に記載の有機物を、1〜7日に1回添加する条件。
(b) コーンスティープリカー, 堆肥, 緑肥, ぼかし肥, 落葉, 魚粉, 油粕, オカラ, 生ゴミ, 米糠, 家畜糞尿, 及びイナワラから選ばれる1以上のもの。
(c) 1Lに対して66.67mgのコーンスティープリカーを一度に添加した際に、中間分解産物であるアンモニアの発生を抑えて硝酸態窒素にまで1日で分解して硝酸を生成することが可能である、硝化菌を含む微生物生態系。
By adding the organic matter described in (b) below to water so as to satisfy the conditions described in (a) below, and culturing with aeration, the microbial ecosystem described in (c) below is constructed. The manufacturing method of the nutrient solution for plant cultivation characterized by performing a process.
(a) Conditions for adding the organic substance described in (b) below in an amount of 0.05 to 1 g per 1 L added once every 1 to 7 days.
(b) One or more selected from corn steep liquor, compost, green manure, feather manure, leaf litter, fish meal, oil meal, okara, raw garbage, rice bran, livestock manure, and inawara.
(c) When 66.67mg of corn steep liquor is added to 1L at a time, it is possible to generate nitric acid by decomposing to nitrate nitrogen in one day while suppressing the generation of ammonia as an intermediate decomposition product. A microbial ecosystem containing nitrifying bacteria.
前記水が、微生物が生息する自然水である、請求項1に記載の植物栽培用養液の製造方法。   2. The method for producing a nutrient solution for plant cultivation according to claim 1, wherein the water is natural water inhabited by microorganisms. 前記水が、地下水である、請求項1又は2に記載の植物栽培用養液の製造方法。   3. The method for producing a nutrient solution for plant cultivation according to claim 1, wherein the water is groundwater. 請求項1〜3のいずれかに記載の方法によって製造された植物栽培用養液を用いることを特徴とする、液体肥料の製造方法。   A method for producing a liquid fertilizer, comprising using a nutrient solution for plant cultivation produced by the method according to claim 1. 植物の養液栽培法であって、;請求項1〜3のいずれかに記載の方法にて製造され, 且つ, 前記(c)に記載の微生物生態系を含有する植物栽培用養液に、以下(d)に記載の条件を満たすように有機物を直接添加し、曝気を行いながら植物を栽培することを特徴とする、;植物の養液栽培法。
(d) 一度の添加量が1Lに対して1〜5gの前記(b)に記載の有機物を、1〜14日に1回添加する条件。
A nutrient solution cultivation method for a plant, which is produced by the method according to any one of claims 1 to 3, and the nutrient solution for plant cultivation containing the microbial ecosystem according to (c), An organic substance is directly added so as to satisfy the conditions described in (d) below, and the plant is cultivated while aeration is performed;
(d) Conditions for adding 1 to 5 g of the organic substance described in (b) once per day for 1 to 14 days per 1 L.
JP2012150343A 2012-07-04 2012-07-04 Production method of nutrient solution for plant cultivation Active JP5392800B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012150343A JP5392800B2 (en) 2012-07-04 2012-07-04 Production method of nutrient solution for plant cultivation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012150343A JP5392800B2 (en) 2012-07-04 2012-07-04 Production method of nutrient solution for plant cultivation

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005309250A Division JP5071897B2 (en) 2005-10-25 2005-10-25 Biomineral-containing production method and organic hydroponics method

Publications (3)

Publication Number Publication Date
JP2012228253A true JP2012228253A (en) 2012-11-22
JP2012228253A5 JP2012228253A5 (en) 2013-10-03
JP5392800B2 JP5392800B2 (en) 2014-01-22

Family

ID=47430380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012150343A Active JP5392800B2 (en) 2012-07-04 2012-07-04 Production method of nutrient solution for plant cultivation

Country Status (1)

Country Link
JP (1) JP5392800B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102976833A (en) * 2012-12-06 2013-03-20 赵世友 Green organic plant wine nutrient solution and production process thereof
CN104591880A (en) * 2014-12-30 2015-05-06 东莞市高明企业服务有限公司 Hydroponic fertilizer special for fruits and vegetables
CN105585349A (en) * 2015-12-18 2016-05-18 郎溪县新发镇华兵农作物种植家庭农场 Seedling culturing nutrient solution for qi-tonifying and blood-enriching type paddy rice
CN107032852A (en) * 2017-04-27 2017-08-11 霍邱县天滋禾种苗专业合作社 It is a kind of suitable for plantation fertilizer of kaffir lily and preparation method thereof
CN107056528A (en) * 2017-02-27 2017-08-18 林愿 A kind of plants and flowers environment-friendlyfertilizer fertilizer and preparation method thereof
CN107641006A (en) * 2017-11-27 2018-01-30 遵义农神肥业有限公司 A kind of vinasse dispensing organic fertilizer
CN109553474A (en) * 2018-12-26 2019-04-02 龙蟒大地农业有限公司 A kind of anti-caking compound fertilizer
CN109896905A (en) * 2019-03-20 2019-06-18 中南民族大学 A kind of preparation method of organic fertilizer of controllable physiologically acid salt/physiological alkalinity salt ratio
JP7148099B1 (en) 2021-07-19 2022-10-05 環境大善株式会社 Method for producing plant growth promoter, method for producing microalgae growth promoter, and method for producing fulvic acid-containing liquid
WO2023120608A1 (en) * 2021-12-21 2023-06-29 旭化成株式会社 Culture device, culture method and culture program

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10245290A (en) * 1997-03-05 1998-09-14 Akira Kawai Production of organic liquid fertilizer
JP2000109386A (en) * 1998-10-01 2000-04-18 Asahi Kankyo System Kk Composting method of organic waste and evaluation method of composted material thereby
JP2004097093A (en) * 2002-09-10 2004-04-02 Kubota Corp Method for applying methane fermentation sludge as fertilizer and substrate for cultivation
JP2004099366A (en) * 2002-09-10 2004-04-02 Kubota Corp Manufacturing method of fertilizer using methane fermentation sludge as raw material
JP2005145769A (en) * 2003-11-17 2005-06-09 Naomichi Tanaka Method for composting organic waste with high nitrogen content

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10245290A (en) * 1997-03-05 1998-09-14 Akira Kawai Production of organic liquid fertilizer
JP2000109386A (en) * 1998-10-01 2000-04-18 Asahi Kankyo System Kk Composting method of organic waste and evaluation method of composted material thereby
JP2004097093A (en) * 2002-09-10 2004-04-02 Kubota Corp Method for applying methane fermentation sludge as fertilizer and substrate for cultivation
JP2004099366A (en) * 2002-09-10 2004-04-02 Kubota Corp Manufacturing method of fertilizer using methane fermentation sludge as raw material
JP2005145769A (en) * 2003-11-17 2005-06-09 Naomichi Tanaka Method for composting organic waste with high nitrogen content

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102976833A (en) * 2012-12-06 2013-03-20 赵世友 Green organic plant wine nutrient solution and production process thereof
CN104591880A (en) * 2014-12-30 2015-05-06 东莞市高明企业服务有限公司 Hydroponic fertilizer special for fruits and vegetables
CN105585349A (en) * 2015-12-18 2016-05-18 郎溪县新发镇华兵农作物种植家庭农场 Seedling culturing nutrient solution for qi-tonifying and blood-enriching type paddy rice
CN107056528A (en) * 2017-02-27 2017-08-18 林愿 A kind of plants and flowers environment-friendlyfertilizer fertilizer and preparation method thereof
CN107032852A (en) * 2017-04-27 2017-08-11 霍邱县天滋禾种苗专业合作社 It is a kind of suitable for plantation fertilizer of kaffir lily and preparation method thereof
CN107641006A (en) * 2017-11-27 2018-01-30 遵义农神肥业有限公司 A kind of vinasse dispensing organic fertilizer
CN109553474A (en) * 2018-12-26 2019-04-02 龙蟒大地农业有限公司 A kind of anti-caking compound fertilizer
CN109896905A (en) * 2019-03-20 2019-06-18 中南民族大学 A kind of preparation method of organic fertilizer of controllable physiologically acid salt/physiological alkalinity salt ratio
JP7148099B1 (en) 2021-07-19 2022-10-05 環境大善株式会社 Method for producing plant growth promoter, method for producing microalgae growth promoter, and method for producing fulvic acid-containing liquid
JP2023014446A (en) * 2021-07-19 2023-01-31 環境大善株式会社 Production method of plant growth accelerating agent, production method of microalgae growth accelerating agent, and production method of fulvic acid-containing liquid
WO2023120608A1 (en) * 2021-12-21 2023-06-29 旭化成株式会社 Culture device, culture method and culture program

Also Published As

Publication number Publication date
JP5392800B2 (en) 2014-01-22

Similar Documents

Publication Publication Date Title
JP5392800B2 (en) Production method of nutrient solution for plant cultivation
KR101332516B1 (en) Method for producing biomineral-containing substance and organic hydroponics method
JP5071897B2 (en) Biomineral-containing production method and organic hydroponics method
KR101669599B1 (en) Composition for eliminating odor and heavy metal comprising effective microorganism culture broth as effective component
JP2013536143A (en) Organic fermentation composition and method for producing the same
KR101670651B1 (en) Method for producing fermented liquid fertilizer of manure with reduced odor and heavy metal content using effective microorganism
KR101647135B1 (en) Soil conditioner manufactured by using complex microbe spawn and method for manufacturing the same
KR102228080B1 (en) Method for Manufacturing Fertilizer Using Organic Waste
CN106673725A (en) Preparation method of organic fertilizer
JP4963784B2 (en) Cultivated soil resuscitation soil, production method of cultivated soil resuscitation soil, and resuscitation method of field soil
CN103250638B (en) A kind of chrysanthemum tissue culture method
KR100965631B1 (en) Bed-soil composition comprising bacillus sp. microbe and preparation method thereof
KR100430761B1 (en) Method for producing high-density antagonistic microbes base material
KR20220114347A (en) Liquid fertilizer manufacturing method of organic natural hormones for plant activation and promoting plant growth
KR101033413B1 (en) Manufacturing method of the fertilized pellet enhancing soil quality
JP5302765B2 (en) Microbial materials
JP2528618B2 (en) How to make blur manure
JP6967315B1 (en) Soil improvement materials and compost manufacturing methods and soil improvement materials and compost
CN108046899A (en) A kind of white melon ferment and preparation method thereof
JP4978913B2 (en) Disposal treatment liquid of plum seasoning liquid and method for producing the same
JP2004217496A (en) Method of manufacturing fermented liquid for accelerating growth of cultivated plant
JP3430215B2 (en) Cultivation method of edible mushrooms using freshwater aquatic plants
JP2007230854A (en) Compost, amino acid plant-activating liquid, amino acid plant-activating agent and their manufacturing methods
JP2004135531A (en) Horticultural soil
KR20020048337A (en) The artificial cultivatiing method of hanabiratake(scientific name : sparassis crispa wulf.)

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130815

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131009

R150 Certificate of patent or registration of utility model

Ref document number: 5392800

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250