JP2005145769A - Method for composting organic waste with high nitrogen content - Google Patents

Method for composting organic waste with high nitrogen content Download PDF

Info

Publication number
JP2005145769A
JP2005145769A JP2003386993A JP2003386993A JP2005145769A JP 2005145769 A JP2005145769 A JP 2005145769A JP 2003386993 A JP2003386993 A JP 2003386993A JP 2003386993 A JP2003386993 A JP 2003386993A JP 2005145769 A JP2005145769 A JP 2005145769A
Authority
JP
Japan
Prior art keywords
organic waste
high nitrogen
activated carbon
nitrogen content
fermentation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003386993A
Other languages
Japanese (ja)
Inventor
Naomichi Tanaka
尚道 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SENDO MANJU
Original Assignee
SENDO MANJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SENDO MANJU filed Critical SENDO MANJU
Priority to JP2003386993A priority Critical patent/JP2005145769A/en
Publication of JP2005145769A publication Critical patent/JP2005145769A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/20Fertilizers of biological origin, e.g. guano or fertilizers made from animal corpses

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for composting an organic waste with a high nitrogen content capable of suppressing the generation of global warming gases and bad smell. <P>SOLUTION: An organic waste with a high nitrogen content and an activated carbon obtained under a reducing atmosphere are mixed by 1 vs. 1 and a zymogeneous microorganism to produce nitric acid by decomposing ammonia is further mixed in this method. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

地球温暖化ガスおよび悪臭の発生を抑制した高含窒素有機性廃棄物の堆肥化方法に関するものである。   The present invention relates to a method for composting high-nitrogen organic waste that suppresses the generation of global warming gases and odors.

高含窒素有機性廃棄物(生ゴミ、畜糞、汚泥など)の堆肥化は環境保全および持続的農業の推進において重要な課題である。   Composting high nitrogen-containing organic waste (eg, garbage, livestock dung, sludge, etc.) is an important issue in environmental conservation and promotion of sustainable agriculture.

しかしながら、高含窒素有機性廃棄物(生ゴミ、畜糞、汚泥など)の堆肥化で発生するアンモニアガス、メチルメルカプタン、硫化水素、亜酸化窒素は地球温暖化ガスとして環境破壊を引き起こしている。
すなわち、従来は、オガクズやモミガラをそのまま使用して堆肥化が行われていたが、高含窒素有機性廃棄物と木質系廃棄物との発酵速度の違いから良質の堆肥の製造は不可能であったばかりか、発生したアンモニアガスの吸着も低く、大気中に多量のアンモニアガスを放出する結果、地球温暖化を促進するという結果を招いた。
However, ammonia gas, methyl mercaptan, hydrogen sulfide, and nitrous oxide generated by composting high-nitrogen organic waste (such as raw garbage, livestock dung, and sludge) cause environmental destruction as global warming gases.
In other words, conventionally, composting has been carried out using sawdust and rice straw as they are, but it is impossible to produce high-quality compost due to the difference in fermentation rate between high nitrogenous organic waste and woody waste. In addition, the adsorption of the generated ammonia gas was low, and as a result of releasing a large amount of ammonia gas into the atmosphere, it resulted in promoting global warming.

他方、アンモニアの処理方法については、既に発明者は提案している(特開2000−600号公報「大気汚染ガスを放出しない高含窒素汚泥処理システムおよび汚泥の処理方法」)。   On the other hand, the inventor has already proposed a method for treating ammonia (Japanese Patent Laid-Open No. 2000-600, “High nitrogen-containing sludge treatment system and sludge treatment method that does not release atmospheric pollutant gas”).

特開2000−600号公報JP 2000-600 A

高含窒素有機性廃棄物(生ゴミ、畜糞、汚泥など)の堆肥化により発生するアンモニアガス、メチルメルカプタン、硫化水素、亜酸化窒素は地球温暖化ガスとして環境破壊を引き起こす問題点を有した。   Ammonia gas, methyl mercaptan, hydrogen sulfide, and nitrous oxide generated by composting high nitrogen-containing organic waste (eg, garbage, livestock dung, sludge, etc.) have the problem of causing environmental destruction as a global warming gas.

この発明は、高含窒素有機性廃棄物と、無酸素状態で得られた活性炭と、アンモニアを分解して硝酸を得る発酵菌とを混合することを特徴とする高含窒素有機性廃棄物の堆肥化方法、にある。
さらに、
高含窒素有機性廃棄物と、還元的雰囲気下で得られた活性炭とを1対1で混合するとともに、アンモニアを分解して硝酸を得る発酵菌とを混合することを特徴とする高含窒素有機性廃棄物の堆肥化方法、にある。
尚、この発明でいう活性炭とは、炭または活性炭、あるいは、炭及び活性炭を言う。
The present invention relates to a high nitrogen content organic waste, an activated carbon obtained in an oxygen-free state, and a fermenting bacterium that decomposes ammonia to obtain nitric acid. Composting method.
further,
High nitrogen content characterized by mixing high nitrogen content organic waste and activated carbon obtained in a reducing atmosphere in a one-to-one relationship with fermenting bacteria that decompose nitric acid to obtain nitric acid. The method is for composting organic waste.
In addition, activated carbon as used in this invention means charcoal or activated carbon, or charcoal and activated carbon.

高含窒素有機性廃棄物を還元的雰囲気下で炭化された活性炭と、アンモニアを分解して硝酸を得る発酵菌とを混合し、好気的条件下で発酵させる。発酵過程で発生された地球温暖化ガス(主にアンモニア)は活性炭に吸着され、発酵菌により硝酸態窒素にかわり大気へ放出させず、製造された堆肥を土壌へ還元して初めて窒素成分として植物に利用される。   Activated carbon obtained by carbonizing high nitrogen-containing organic waste in a reducing atmosphere and fermenting bacteria that decompose ammonia to obtain nitric acid are mixed and fermented under aerobic conditions. Global warming gas (mainly ammonia) generated in the fermentation process is adsorbed by activated carbon, and is not released into the atmosphere by fermenting bacteria instead of nitrate nitrogen. Used for

高含窒素有機性廃棄物と、無酸素状態で得られた活性炭と、アンモニアを分解して硝酸を得る発酵菌とを混合することにより得られる。   It is obtained by mixing high nitrogen-containing organic waste, activated carbon obtained in an oxygen-free state, and fermenting bacteria that decompose ammonia to obtain nitric acid.

1.前処理
工場に搬入された可燃性廃棄物は、熱分解炉へ投入され炭化する。
還元的雰囲気下すなわち、無酸素状態で得られた活性炭である。還元的雰囲気下とは、条件としてはほとんど無酸素条件下をいう。
この実施例では、単に活性炭というが、この発明で言う活性炭とは、炭または活性炭、あるいは、炭及び活性炭である。
高含窒素有機性廃棄物は、水分含有率が80%前後のものが多いため発酵に適した水分(材料によって若干変わってくるが60〜65%)になるように、先に還元的雰囲気下で得られた活性炭と混合する。高含窒素有機性廃棄物としては、生ゴミがある。
1. Pre-combustible combustible waste brought into the factory is put into a pyrolysis furnace and carbonized.
Activated carbon obtained in a reducing atmosphere, that is, in an oxygen-free state. In a reducing atmosphere, the conditions are almost oxygen-free conditions.
In this embodiment, the activated carbon is simply referred to, but the activated carbon referred to in the present invention is charcoal or activated carbon, or charcoal and activated carbon.
High nitrogen-containing organic waste has a water content of around 80%, so it is suitable for fermentation (60% to 65% depending on the material). Mix with the activated carbon obtained in As high nitrogenous organic waste, there is garbage.

この混合物に発酵菌を1立米当たり1−2Kgを混合し、エアレ−ションを施した堆積場またはロ−タリ−式(スク−プ式)発酵装置にて10日から14日で好気的条件下で、一次発酵を行う。従来は、オガクズやモミガラをそのまま使用して堆肥化が行われていたが、高含窒素有機性廃棄物と木質系廃棄物との発酵速度の違いから良質の堆肥の製造は不可能であったばかりか、発生したアンモニアガスの吸着も低く、大気中に多量のアンモニアガスを放出する結果、地球温暖化を促進するという結果を招いたが、本発明では活性炭を用いるため、アンモニアガスの吸着能の向上、並びに通気性の改善による発酵菌による発酵速度の増加により良質の堆肥を短期間で製造することが可能となる。   Aerobic conditions in 10 to 14 days in a sedimentation field or rotary type (scoop type) fermenter where 1-2 kg of fermented bacteria are mixed with this mixture per 1 m2 of rice and aerated. Under the primary fermentation. Previously, composting was carried out using sawdust and rice straw as it was, but it was just impossible to produce high-quality compost due to the difference in fermentation rate between high nitrogen-containing organic waste and woody waste Or, the adsorption of the generated ammonia gas is low, and as a result of releasing a large amount of ammonia gas into the atmosphere, it has resulted in the promotion of global warming. It is possible to produce high-quality compost in a short period of time by increasing the fermentation rate by the fermenting bacteria by improving and improving the air permeability.

混合比率は、原料や季節によって異なるが、
高含窒素有機性廃棄物:活性炭=1:0.5〜1.5
である。
更に、混合比率は運転始動時と運転中とでは変化させる。
運転始動時には、1:1.2〜1.5
運転中には、 1:0.8〜1.2
が望ましい。
アンモニア発生量は以下のとおりである。
但、有機性廃棄物:活性炭=1:1の時、発酵物直上部の空気中の濃度
静地時 5〜25ppm
攪拌時 50〜150ppm
アンモニア吸着率=80〜95%
The mixing ratio varies depending on the raw material and season,
High nitrogen-containing organic waste: Activated carbon = 1: 0.5 to 1.5
It is.
Furthermore, the mixing ratio is changed at the start of operation and during operation.
At the start of operation, 1: 1.2 to 1.5
1: 0.8 to 1.2 during operation
Is desirable.
The amount of ammonia generated is as follows.
However, when organic waste: activated carbon = 1: 1, the concentration in the air immediately above the fermentation product
5-25ppm at rest
50-150ppm during stirring
Ammonia adsorption rate = 80-95%

2.一次発酵
前処理乾燥、活性炭との混合の終わった高含窒素有機性廃棄物は、堆積型またはロ−タリ−式発酵層へ投入され、好気的条件下で14〜21日で一次発酵が完了する。発酵菌は、放線菌、糸状菌、細菌を取り混ぜて使用する。一次発酵中は微生物による発酵熱で最高約80〜90℃まで温度が上昇する。また、この一次発酵時にアンモニアを多量に含んだ水蒸気が発生するが、混合した活性炭の吸着ならびに発酵菌によるアンモニアの分解の結果ほとんどアンモニアガスの発生が見られない。
活性炭に吸着されたアンモニアが、発酵菌により硝酸に変わるので、活性炭と発酵菌とにはアンモニアガス不発生の上で密接な関係があると思われる。
また、一次発酵層内にはエアレ−ション用のパイプが埋設されており、処理物へ均等にエアが送られる。
2. Primary fermentation Pre-dried, high-nitrogen organic waste that has been mixed with activated carbon is put into a sedimentary or rotary fermentation bed, and primary fermentation takes place in 14-21 days under aerobic conditions. Complete. Fermentative bacteria are used by mixing actinomycetes, filamentous fungi, and bacteria. During primary fermentation, the temperature rises to a maximum of about 80 to 90 ° C. due to the heat of fermentation by microorganisms. Further, water vapor containing a large amount of ammonia is generated during the primary fermentation, but almost no ammonia gas is generated as a result of adsorption of the mixed activated carbon and decomposition of the ammonia by the fermentation bacteria.
Since ammonia adsorbed on the activated carbon is changed to nitric acid by the fermenting bacteria, it seems that the activated carbon and the fermenting bacteria have a close relationship with no generation of ammonia gas.
Moreover, a pipe for aeration is embedded in the primary fermentation layer, and air is sent evenly to the processed product.

一次発酵の温度条件としては室温20℃〜30℃、堆積物の温度は30℃前後で発酵を始めると発酵が早まるが、北海道のような厳寒地でも堆積物の温度が4度以上あれば発酵は進む。よって、初期発酵温度が4℃以上40℃未満であれば望ましく発酵が進む。湿度はあまり関係ないが、堆積物の水分含有率および通気量は発酵速度と関係してくる。水分含有率60〜65%、通気量は0.02立米/(Kg/h)程度は必要である。   As temperature conditions for primary fermentation, room temperature 20 ° C to 30 ° C, and the temperature of the sediment starts at around 30 ° C. Fermentation is accelerated, but even in severe cold regions such as Hokkaido, if the temperature of the sediment is 4 degrees or more, fermentation Goes on. Therefore, if initial fermentation temperature is 4 degreeC or more and less than 40 degreeC, fermentation will advance desirably. Humidity is irrelevant, but the moisture content and aeration of the sediment are related to the fermentation rate. A moisture content of 60 to 65% and an air permeability of about 0.02 cubic rice / (Kg / h) are necessary.

3.二時発酵
一次発酵の終了した混合物は二時発酵層へ投入し、約30−40日かけて熟成させる。 一次発酵の終了条件は、堆積物の温度と堆積物のC/N比で決定する。温度は30℃前後、C/N比は10前後とする。
一次発酵の終了条件は、堆積物の温度と堆積物のC/N比で決定する。温度は30℃前後、C/N比は10前後とする。
堆積法は2次発酵堆積層へショベルローダーで積み替えるが、ロータリー式はそのまま攪拌しながら2次発酵を終了させる。堆積層には1次発酵と同様にエアレ−ションパイプが埋設されており、好気性発酵による熟成を行う。10日−14日に一度ショベルローダーで切り返しをすることにより均一な良質の堆肥が製造可能である。
3. Two-time fermentation The mixture after the completion of the primary fermentation is put into the two-time fermentation layer and aged for about 30-40 days. The primary fermentation termination condition is determined by the temperature of the deposit and the C / N ratio of the deposit. The temperature is around 30 ° C. and the C / N ratio is around 10.
The primary fermentation termination condition is determined by the temperature of the deposit and the C / N ratio of the deposit. The temperature is around 30 ° C. and the C / N ratio is around 10.
In the deposition method, the shovel loader is used to load the secondary fermentation sedimentation layer, but the secondary fermentation is completed while stirring the rotary method. As in the primary fermentation, an aeration pipe is embedded in the sedimentary layer, and ripening is performed by aerobic fermentation. Uniform and high-quality compost can be produced by turning back with a shovel loader once every 10 to 14 days.

製造された堆肥の成分
N(窒素):P(リン):K(カリウム)=0.7〜1.5:0.5〜2.0:0.5〜2.0
製造された堆肥中のダイオキシン濃度=3.7pg以下
Components of manufactured compost N (nitrogen): P (phosphorus): K (potassium) = 0.7 to 1.5: 0.5 to 2.0: 0.5 to 2.0
Dioxin concentration in manufactured compost = 3.7 pg or less

4.環境設備
一次発酵層からは低濃度のアンモニアを含んだ水蒸気が発生する。低濃度といえども地球温暖化ガスには代わりがない。そこで、水田等で見られる脱窒現象を利用したアンモニアガス還元装置を利用し、アンモニアを還元し、無害の窒素ガスにして大気へ放出する。
すなわち、アンモニアガス還元装置とは、発酵層からの排気を水中に通し、アンモニアを捕集したあと、水を張った粘土層(45cmくらい)の表層に流すことにより硝化され、硝化された硝酸性窒素が還元層へ移動したときに、還元状態の土壌中に生息する一般的には脱窒菌といわれる微生物による硝酸性窒素の酸素を消費することで窒素として空中に放出される装置である。
4). Environmental facilities Water vapor containing low concentration of ammonia is generated from the primary fermentation layer. Even at low concentrations, there is no substitute for global warming gas. Therefore, ammonia is reduced by using an ammonia gas reduction device that utilizes the denitrification phenomenon found in paddy fields, etc., and is released into the atmosphere as harmless nitrogen gas.
In other words, the ammonia gas reducing device is a nitrified nitrate by passing exhaust gas from the fermentation layer into water, collecting ammonia, and then flowing it to the surface layer of a clay layer (about 45 cm) filled with water. When nitrogen moves to the reduction layer, it is a device that is released into the air as nitrogen by consuming oxygen of nitrate nitrogen by microorganisms generally inhabiting in the reduced state soil called denitrifying bacteria.

高含窒素有機性廃棄物を還元的雰囲気下で炭化された可燃ゴミから製造された活性炭とアンモニアを分解して硝酸を得る発酵菌とを混合し、好気的条件下で発酵させる。発酵過程で発生された地球温暖化ガス(主にアンモニア)は活性炭に吸着され、硝酸態窒素にかわり大気へ放出されず、製造された堆肥を土壌へ還元して初めて窒素成分として植物に利用される。
Activated carbon produced from combustible waste obtained by carbonizing high nitrogen-containing organic waste in a reducing atmosphere and fermenting bacteria that decompose ammonia to obtain nitric acid are mixed and fermented under aerobic conditions. Global warming gas (mainly ammonia) generated in the fermentation process is adsorbed by activated carbon and is not released into the atmosphere in place of nitrate nitrogen. The

Claims (3)

高含窒素有機性廃棄物と、活性炭と、アンモニアを分解して硝酸を得る発酵菌とを混合することを特徴とする高含窒素有機性廃棄物の堆肥化方法。   A composting method for high nitrogen content organic waste, comprising mixing high nitrogen content organic waste, activated carbon, and fermenting bacteria that decompose nitric acid to obtain nitric acid. 高含窒素有機性廃棄物と、還元的雰囲気下で得られた活性炭と、アンモニアを分解して硝酸を得る発酵菌とを混合することを特徴とする高含窒素有機性廃棄物の堆肥化方法。   Combustion method of high nitrogen content organic waste, activated carbon obtained under reducing atmosphere, and fermenting bacteria that decompose ammonia to obtain nitric acid . 高含窒素有機性廃棄物と、還元的雰囲気下で得られた活性炭とを1対1で混合するとともに、アンモニアを分解して硝酸を得る発酵菌とを混合することを特徴とする高含窒素有機性廃棄物の堆肥化方法。
High nitrogen content characterized by mixing high nitrogen content organic waste and activated carbon obtained in a reducing atmosphere in a one-to-one relationship with fermenting bacteria that decompose nitric acid to obtain nitric acid. Method for composting organic waste.
JP2003386993A 2003-11-17 2003-11-17 Method for composting organic waste with high nitrogen content Pending JP2005145769A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003386993A JP2005145769A (en) 2003-11-17 2003-11-17 Method for composting organic waste with high nitrogen content

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003386993A JP2005145769A (en) 2003-11-17 2003-11-17 Method for composting organic waste with high nitrogen content

Publications (1)

Publication Number Publication Date
JP2005145769A true JP2005145769A (en) 2005-06-09

Family

ID=34694519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003386993A Pending JP2005145769A (en) 2003-11-17 2003-11-17 Method for composting organic waste with high nitrogen content

Country Status (1)

Country Link
JP (1) JP2005145769A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007053966A (en) * 2005-08-24 2007-03-08 Jfe Engineering Kk Method for suppressing nitrous oxide emission from soil
JP2012071255A (en) * 2010-09-28 2012-04-12 Ritsumeikan Soil cleaning method
JP2012228253A (en) * 2012-07-04 2012-11-22 National Agriculture & Food Research Organization Method for preparing nutrient solution for plant cultivation
CN104245635A (en) * 2012-04-26 2014-12-24 宝洁公司 Articles for in-home composting and method of composting

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007053966A (en) * 2005-08-24 2007-03-08 Jfe Engineering Kk Method for suppressing nitrous oxide emission from soil
JP2012071255A (en) * 2010-09-28 2012-04-12 Ritsumeikan Soil cleaning method
CN104245635A (en) * 2012-04-26 2014-12-24 宝洁公司 Articles for in-home composting and method of composting
JP2015520100A (en) * 2012-04-26 2015-07-16 ザ プロクター アンド ギャンブルカンパニー Domestic composting articles and composting method
JP2012228253A (en) * 2012-07-04 2012-11-22 National Agriculture & Food Research Organization Method for preparing nutrient solution for plant cultivation

Similar Documents

Publication Publication Date Title
Cáceres et al. Nitrification within composting: A review
Lv et al. Effects of C/N ratio and earthworms on greenhouse gas emissions during vermicomposting of sewage sludge
Shan et al. Additives for reducing nitrogen loss during composting: A review
Awasthi et al. Influence of zeolite and lime as additives on greenhouse gas emissions and maturity evolution during sewage sludge composting
Huang et al. Carbon and N conservation during composting: A review
Yu et al. Effects of inoculation with lignocellulose-degrading microorganisms on nitrogen conversion and denitrifying bacterial community during aerobic composting
Harindintwali et al. Integrated eco-strategies towards sustainable carbon and nitrogen cycling in agriculture
Zhou et al. Modified cornstalk biochar can reduce ammonia emissions from compost by increasing the number of ammonia-oxidizing bacteria and decreasing urease activity
Wong et al. Improving compost quality by controlling nitrogen loss during composting
Zhao et al. Impacts of adding thermotolerant nitrifying bacteria on nitrogenous gas emissions and bacterial community structure during sewage sludge composting
CN109095955A (en) A kind of preparation method and applications of magnesium salts modification biological charcoal
Hu et al. Use of potassium dihydrogen phosphate and sawdust as adsorbents of ammoniacal nitrogen in aerobic composting process
EP2767585A1 (en) Microbiological method of H2S removal from biogas
Hou et al. Effects of microbial inoculum on microbial community and enzyme activity involved in nitrogen-sulfur metabolism during sewage sludge composting
Dai et al. Mechanism associated with the positive effect of nanocellulose on nitrogen retention in a manure composting system
Zhang et al. Who contributes more to N 2 O emission during sludge bio-drying with two different aeration strategies, nitrifiers or denitrifiers?
Liu et al. Mitigating gas emissions from poultry litter composting with waste vinegar residue
Kim et al. Cattle manure composting: Shifts in the methanogenic community structure, chemical composition, and consequences on methane production potential in a rice paddy
JP3417314B2 (en) Organic waste treatment method
Zhang et al. The non-negligibility of greenhouse gas emission from a combined pre-composting and vermicomposting system with maize stover and cow dung
JP2005145769A (en) Method for composting organic waste with high nitrogen content
CN111925240A (en) Nitrogen-preserving deodorant for high-temperature composting of livestock and poultry manure
Nakasaki et al. Effect of bulking agent on the reduction of NH3emissions during thermophilic composting of night-soil sludge
Chen et al. Recognizing the challenges of composting: Critical strategies for control, recycling, and valorization of nitrogen loss
CN115594533A (en) Additive for improving decomposition degree of cow dung compost and application thereof