JP2012197745A - 燃料噴射制御装置 - Google Patents

燃料噴射制御装置 Download PDF

Info

Publication number
JP2012197745A
JP2012197745A JP2011063117A JP2011063117A JP2012197745A JP 2012197745 A JP2012197745 A JP 2012197745A JP 2011063117 A JP2011063117 A JP 2011063117A JP 2011063117 A JP2011063117 A JP 2011063117A JP 2012197745 A JP2012197745 A JP 2012197745A
Authority
JP
Japan
Prior art keywords
cylinder
injection
injection amount
amount
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011063117A
Other languages
English (en)
Other versions
JP5690181B2 (ja
Inventor
Yoichi Saito
陽一 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP2011063117A priority Critical patent/JP5690181B2/ja
Publication of JP2012197745A publication Critical patent/JP2012197745A/ja
Application granted granted Critical
Publication of JP5690181B2 publication Critical patent/JP5690181B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

【課題】ディーゼルエンジンのメイン噴射に先立つ先行噴射を、広範囲に渡る運転領域で最適に制御する。
【解決手段】基本プレ噴射量設定部51にてプレ噴射量のベース値である基本プレ噴射量Gpbaseを設定し、1サイクル毎に連続爆発しない異なる気筒を対象として、プレ噴射量調整部52で基本プレ噴射量Gpbaseを順次減量補正する。そして、プレ噴射量の減量前後の燃焼状態の変化をプレ噴射量限界判定部53で判定し、その判定結果に応じて減量分を調整する。これにより、広範囲に渡る運転領域でプレ噴射量を最適化する最適に制御することが可能となる。
【選択図】図2

Description

本発明は、ディーゼルエンジンのメイン噴射に先立つ燃料噴射を最適化する燃料噴射制御装置に関する。
一般に、ディーゼルエンジンにおける燃料噴射では、安定した燃焼状態を得るためや燃焼音を低減するため、メイン噴射に先立ってパイロット噴射やプレ噴射等の先行噴射を実施している。このメイン噴射に先立つ先行噴射の噴射量が多すぎると、燃費悪化や粒子状物質の排出増加につながるため、最小限の量にすることが望まれるが、逆に噴射量が少なくなり過ぎると、インジェクタの噴射特性バラツキや経時変化等により失火等が発生し、燃焼状態が悪化する。
このため、特許文献1には、アイドリング状態に移行したとき、パイロット噴射をn回に分割し、インジェクタからの燃料の噴射時期毎に分割パイロット噴射量を徐々に減量すしてゆき、気筒間での回転偏差が所定値より大きくなると、このときの分割パイロット噴射量をインジェクタから噴射可能な燃料の下限値として学習することで、インジェクタ毎の燃料噴射量の下限値の個体差、及び燃料噴射量の経時的な変化を取得し、パイロット噴射量を適正化する技術が開示されている。
特開2009−36067号公報
しかしながら、特許文献1に開示の技術は、インジェクタから噴射可能な燃料の下限値を学習するインジェクタ主体の噴射量最適化であり、学習条件を満足する運転領域以外では精度良い最適化を期待できない。
本発明は上記事情に鑑みてなされたもので、ディーゼルエンジンのメイン噴射に先立つ先行噴射を、広範囲に渡る運転領域で最適に制御することのできる燃料噴射制御装置を提供することを目的としている。
本発明による燃料噴射制御装置は、ディーゼルエンジンの一回の燃焼行程中に燃焼の主たる燃料を噴射するメイン噴射に先立って、上記メイン噴射よりも少量の燃料を噴射する先行噴射を実施する燃料噴射制御装置であって、上記先行噴射の噴射量を1サイクル毎に連続爆発しない異なる気筒について所定の減量分だけ順次減量し、上記先行噴射の気筒毎の噴射量を調整する噴射量調整部と、上記先行噴射における噴射量減量前後のエンジンの燃焼状態の変化を検出し、該燃焼状態の変化が限界レベルを超えたか否かを判定する噴射量限界判定部とを備え、上記噴射量限界判定部で上記燃焼状態の変化が上記限界レベルを超えたと判定したとき、上記噴射量調整部における気筒別の減量調整分を更新するものである。
本発明によれば、ディーゼルエンジンのメイン噴射に先立つ先行噴射を、広範囲の運転領域で最適に制御することができ、常に良好な燃焼状態を維持して燃費及び排ガスエミッションの低減を図ることができる。
エンジン制御系の構成図 プレ噴射制御に係る機能ブロック図 プレ噴射量の変化を示す説明図 プレ噴射最適化ルーチンのフローチャート 気筒別プレ噴射最適化ルーチンのフローチャート
以下、図面を参照して本発明の実施の形態を説明する。
図1において、符号1はエンジンであり、本実施の形態においては、ディーゼルエンジン(以下、単に「エンジン」と記載する)である。このエンジン1の燃焼室2に、吸気弁3,排気弁4を介して吸気通路5,排気通路6が連通されている。吸気通路5の上流側には吸気チャンバ40が形成され、この吸気チャンバ40の上流に、スロットル弁10が介装されている。吸気チャンバ40には、スロットル弁10下流の空気圧を絶対圧で検出する吸気圧センサ37、が臨まされている。
スロットル弁10は、電子制御装置(ECU50)からの制御信号によってスロットル弁10の開度を調整し、吸気量(新気量)を制御する吸気アクチュエータ11に連設されている。また、スロットル弁10の上流側には、インタークーラ12が介装され、このインタークーラ12の上流側に、ターボ過給機13のコンプレッサ13aが介装されている。更に、ターボ過給機13のコンプレッサ13a上流側には、エアクリーナ14が介装され、このエアクリーナ14の下流側に、吸気温を検出する吸気温センサ15を内蔵する吸入空気量センサ16が介装されている。
一方、エンジン1の排気通路6には、ターボ過給機13のタービン13bが介装され、タービン13b上流側の排気通路6が排気ガス還流(EGR)通路17を介してスロットル弁10下流側の吸気通路5にバイパス接続されている。EGR通路17には、ECU50からの制御信号によってEGR量を制御するEGR弁18と、EGRガスを冷却するEGRクーラ19とが介装されている。
ターボ過給機13は、本実施の形態においては、周知の可変ノズル式ターボ過給機(Variable Geometory Turbosupercharger:VGT)であり、タービン13bの周囲に設けられた可変ノズルのベーンがリンク機構(図示せず)を介して負圧作動式のアクチュエータ20に連設されている。アクチュエータ20の圧力導入管には、ECU50によって制御される負圧制御電磁弁21が接続されており、図示しない負圧源からの負圧が負圧制御電磁弁21で調圧されてアクチュエータ20に導入される。
これにより、ターボ過給機13の可変ノズルのベーン開度が可変されてタービン13bに吹き付けられる排気ガスの流速が調整され、タービン回転数が可変されて過給圧が制御される。すなわち、アクチュエータ20の動作により、可変ノズルのベーン開度が閉方向へ変化すると、排気ガス流速が速くなり、過給圧が上昇する。逆にベーン開度が開方向へ変化すると、排気ガス流速が遅くなり、過給圧が低下する。
タービン13b下流側の排気通路6は、主として排気ガス中の炭化水素(HC)と一酸化炭素(CO)を触媒反応により酸化させるディーゼル用酸化触媒(Diesel Oxidation Catalyst;DOC)22に連通されている。また、DOC22の下流側には、排気ガス中の窒素酸化物(NOx)を吸蔵し、還元浄化するNOx吸蔵還元型触媒(Lean NOx Trap catalyst;LNT)23が配設され、更に、LNT23の下流側に、排気ガス中の煤やカーボンスート(Soot),可溶性有機成分(Soluble Organic Fraction;SOF),サルフェート(sulfate;SO4)等の粒子状物質(Particulate Matter;PM)を捕集するディーゼルパティキュレートフィルタ(Diesel Particulate Filter;DPF)24が配設されている。
タービン13bを通過した排気は、DOC22,LNT23を通過する際に所定に浄化され、更に、DPF24の多孔性の隔壁を通過しながら下流側へ流れ、その間、排気ガス中のPMが捕集・堆積される。そして、最終的に浄化された排気ガスが排気マフラ(図示せず)を経て排出される。
このようなDOC22,LNT23,DPF24には、排気ガスの状態を検出するためのセンサ類が配設されている。すなわち、DOC22の上流側に、DOC22に流入する排気ガスの温度を検出する温度センサ41が臨まされ、DOC22とLNT23との間に、排気ガスの空燃比を検出するリニア空燃比センサ42が臨まされている。また、LNT23とDPF24の間に、排気ガスの温度を検出する温度センサ43と、排気ガス中のNOx濃度を検出するNOxセンサ44とが臨まされ、更に、DPF24の上下流に、DPF24の入口圧力と出口圧力との差圧を検出する差圧センサ45が配設されている。
次に、エンジン1の燃料噴射系について説明する。このエンジン1は、周知のコモンレール式燃料噴射システムを採用しており、燃焼室2に、ECU50によって制御されるインジェクタ25が臨まされている。また、燃焼室2のインジェクタ25の噴射ノズル近傍には、グローコントローラ27によって通電が制御されるグロープラグ26が臨まされている。
インジェクタ25は、各気筒に分岐配管される燃料配管28を介してコモンレール29に接続されており、コモンレール29には、図示しない燃料タンクから燃料を吸い上げて加圧するサプライポンプ30が接続されている。そして、サプライポンプ30によって高圧に昇圧された燃料がコモンレール29に蓄圧され、各気筒への燃料配管28を介して各気筒のインジェクタ25に高圧燃料が供給される。
サプライポンプ30は、例えばインナカム式の圧送系と電磁弁による吸入量の調量方式を備えるものであり、吸入量を調整する吸入調量電磁弁31、燃料温度を検出する燃料温度センサ32が本体内に組込まれている。サプライポンプ30の燃料温度センサ32からの信号は、コモンレール29内の燃料圧力(レール圧)を検出する燃料圧力センサ33からの信号と共にECU50に入力され、他のセンサ類からの信号と共に処理される。そして、ECU50により、サプライポンプ30の吐出圧すなわちコモンレール29の燃料圧力が、例えばエンジン回転数と負荷とに応じた最適値に、吸入調量電磁弁31を介してフィードバック制御される。
次に、ECU50を中心とする電子制御系について説明する。ECU50は、CPU,ROM,RAM,I/Oインターフェイス等からなるマイクロコンピュータを中心として、その他、A/D変換器、タイマ、カウンタ、各種ロジック回路等の周辺回路を含んで構成されている。
ECU50には、吸気温センサ15、吸入空気量センサ16、燃料温度センサ32、燃料圧力センサ33、エンジン1の冷却水通路に臨まされて冷却水温を検出する水温センサ34、クランク軸1aの回転位置を検出するクランク角センサ35、アクセルペダルの踏込み量を検出するアクセルペダルセンサ36、吸気チャンバ40に臨まされている吸気圧センサ37、大気圧を検出する大気圧センサ38、排気系に介装された各センサ(温度センサ41,43、リニア空燃比センサ42、NOxセンサ44、差圧センサ45)、その他、図示しない各種センサ類やスイッチ類からの信号が入力される。
尚、ECU50は、更に、例えばCAN(Controller Area Network)等の通信プロトコルに基づく車内ネットワーク(図示せず)に接続されている。この車内ネットワークには、ECU50の他、変速機を制御するトランスミッションECU、ブレーキを制御するブレーキECU等の複数のECUが接続されており、互いにデータを送受信して各種情報を共有する。
ECU50は、エンジン運転状態を検出する上述の各種センサ類からの信号、車内ネットワークを介して入力される各種制御情報に基づいて、燃料圧力制御、燃料噴射制御、吸気制御、過給圧制御、EGR制御等の各種エンジン制御を実行し、エンジン1の運転状態を最適状態に維持する。このエンジン制御においては、通常走行時、クランク角センサ35からの信号に基づくエンジン回転数とアクセルペダルセンサ36からの信号に基づくアクセル開度とに応じて、マップ参照等により燃料噴射量や噴射時期を決定し、ピストン上死点前後の多段噴射のパターン、例えば、プレ噴射→メイン噴射→アフター噴射のパターンでインジェクタ25から高圧燃料を噴射させ、燃焼安定化及び排気エミッションの低減を図っている。
特に、燃料噴射制御においては、ECU50は、広範囲の運転領域においてメイン噴射に先立つ先行噴射の噴射量を最適に制御し、常に良好な燃焼状態を維持して燃費及び排ガスエミッションの低減を図るようにしている。尚、本実施の形態においては、メイン噴射に先立つ先行噴射を、パイロット噴射を含むプレ噴射として代表して記載する。
このため、ECU50は、プレ噴射制御に係る機能として、図2に示すように、基本プレ噴射量設定部51、プレ噴射量調整部52、プレ噴射量限界判定部53を備えている。これらの機能部によるプレ噴射制御は、概略的には、基本プレ噴射量設定部51にてプレ噴射量のベース値である基本プレ噴射量Gpbaseを設定し、1サイクル毎に連続爆発しない異なる気筒を対象として、プレ噴射量調整部52で基本プレ噴射量Gpbaseを順次減量補正する制御であり、プレ噴射量の減量前後の燃焼状態の変化をプレ噴射量限界判定部53で判定し、その判定結果に応じて減量分を調整することで、運転領域毎の燃焼状態を主体としてプレ噴射量を最適化する制御である。
プレ噴射量を減量する気筒の順番は、エンジン1が#1〜#4の4つの気筒を備える4気筒エンジンである場合、3爆発気筒毎若しくは5爆発気筒毎若しくは7爆発気筒毎若しくは9爆発気筒毎であり、例えば、#1→#3→#2→#4の爆発順(燃焼順)に設定されている場合、以下に示すように、●印の気筒がプレ噴射量を減量する気筒となる。尚、以下では、エンジン1を4気筒エンジンとして説明するが、6気筒エンジンである場合には、5爆発気筒毎、若しくは7爆発気筒毎、若しくは11爆発気筒毎、若しくは13爆発気筒毎とする。
○3爆発気筒毎
#1気筒●→#3気筒 →#2気筒 →#4気筒●→
#1気筒 →#3気筒 →#2気筒●→#4気筒 →
#1気筒 →#3気筒●→#2気筒 →#4気筒 →
#1気筒●→#3気筒 →#2気筒 →#4気筒●→
#1気筒 →#3気筒 →#2気筒●→#4気筒 →
・・・・・・・・
○5爆発気筒毎
#1気筒●→#3気筒 →#2気筒 →#4気筒 →
#1気筒 →#3気筒●→#2気筒 →#4気筒 →
#1気筒 →#3気筒 →#2気筒●→#4気筒 →
#1気筒 →#3気筒 →#2気筒 →#4気筒●→
#1気筒 →#3気筒 →#2気筒 →#4気筒 →
#1気筒●→#3気筒 →#2気筒 →#4気筒 →
・・・・・・・・
以上のような1サイクル毎に異なる気筒を対象として、基本プレ噴射量Gpbaseが減量補正され、実際に噴射される最終的なプレ噴射量Gpが設定される。この最終的なプレ噴射量Gpは、以下の(1)式に示すように、基本プレ噴射量Gpbaseから所定の気筒別の減量分(順次気筒別減量分)Gcyを減算した値を主として、気筒毎の燃焼状態の変化に応じた気筒別の減量調整分である気筒別補正量Ghによって調整される。本実施に形態においては、順次気筒別減量分Gcyに加えて、気筒毎に徐々に減量する微調整用の減量分である徐変減量分Gjを用いているが、徐変減量分Gjは省略することも可能である。
Gp=Gpbase−Gcy−Gj+Gh …(1)
但し、Gcy:順次気筒別減量分
Gj :徐変減量分
Gh :気筒別補正量
図3は、最適化処理開始後のプレ噴射量の変化を図式的に示すものである。ここでは、便宜上、最適化開始前のプレ噴射量(基本プレ噴射量)を10という数値で表現し、最適化により#1気筒からプレ噴射量の減量が開始され、図3中のバーグラフ表示の塗り潰し部分に示すように、3爆発気筒毎に、気筒別の減量補正が順次実行されるものとする。図3中の数値そのものには特に意味はなく、相対的な大きさの変化を示している。
この最適化制御における最初の#1気筒では、基本プレ噴射量Gpbase=10から順次気筒別減量分Gcy=2及び徐変減量分Gj=0.05が減算され、更に気筒別補正量Gh=0が加算され、#1気筒の最終的なプレ噴射量Gp=7.95が設定される。更に、3爆発毎の#4気筒,#2気筒,#3気筒,#1気筒,#4気筒,#2気筒,…に対して、基本プレ噴射量Gpから順次気筒別減量分Gcy及び徐変減量分Gjが減算され、減量補正が実施される。
尚、図3においては、プレ噴射量の減量によって燃焼状態が限界レベルまで変化しておらず、気筒別補正量Ghは0のままであるものとする。
このとき、徐変減量分Gjは、全ての気筒毎に0.05ずつ順次大きくされ、最初に順次気筒別減量分Gcyによって大きく減量された#1気筒の次の#3気筒では、最終的なプレ噴射量Gpが9.9(Gpbase=10,Gcy=0,Gj=0.1,Gh=0)、次の#2気筒では、最終的なプレ噴射量Gpが9.85(Gpbase=10,Gcy=0,Gj=0.15,Gh=0)に微調整される。そして、#1気筒から3爆発後の#4気筒で、最終的なプレ噴射量Gpが7.8(Gpbase=10,Gcy=2,Gj=0.2,Gh=0)に再度大きく減量され、以後、同様にして、順次、プレ噴射量が減量調整される。
プレ噴射量の減量によるエンジンの燃焼状態の変化は、プレ噴射量限界判定部53にて判定される。具体的には、プレ噴射量限界判定部53は、プレ噴射量の減量前後のエンジンの燃焼状態を各気筒の筒内圧の変化や回転変動に基づいて判定する。すなわち、気筒毎に設置した筒内圧センサで検出した燃焼圧の値に基づいて、或いはクランク角センサ35からの信号により計測した各気筒の燃焼後の所定クランク角度の回転時間に基づいて、エンジンの燃焼状態を判定する。
本実施の形態においては、クランク角センサ35からの信号により所定クランク角度毎の回転時間を算出し、減量前後の回転時間の差による回転変動に基づいて、エンジンの燃焼状態が安定限界レベルに近いか否かを判定する。詳細には、プレ噴射量限界判定部53は、クランク角センサ35の信号入力間隔から所定クランク角度間の経過時間を計測し、エンジン半回転(180°CA)の経過時間(半回転時間)を算出する。
この半回転時間に基づく燃焼状態の判定は、以下の(a)の(2)式に示すように、全気筒についてのプレ噴射量減量前後の回転変動の所定サイクル数の平均値を判定閾値と比較する判定条件と、以下の(b)の(3)式に示すように、各気筒毎のプレ噴射量減量前の回転変動の所定サイクル数の平均値を判定閾値とを比較する判定条件との2つの条件で判定される。
(a)全気筒についての回転変動判定
(ΣTa#i)/N−(ΣT#i)/N>S1 …(2)
但し、T#i :#i気筒の減量前燃焼時半回転時間(i=1,3,2,4)
Ta#i:#i気筒の減量後燃焼時半回転時間(i=1,3,2,4)
N :サイクル数
S1 :運転領域毎の回転変動判定閾値(全気筒)
(b)各気筒についての回転変動判定
(ΣTa#i')/3/N−(ΣTa#i)/N>S2 …(3)
但し、Ta#i':#i気筒以外の減量後燃焼時半回転時間
(i=1→i'=3,2,4、i=3→i'=1,2,4、i=2→i'=1,3,4、i=4→i'=1,3,2)
S2 :運転領域毎の回転変動判定閾値(気筒毎)
以上のプレ噴射量限界判定部53における燃焼状態の判定結果は、基本プレ噴射量設定部51及びプレ噴射量調整部52に反映され、全気筒の回転変動平均値が運転領域毎に設定した目標値(判定閾値)になるようにプレ噴射量が更新されると共に、気筒毎の回転変動バラツキが所定範囲内に収まるように気筒毎のプレ噴射量の補正量が更新される。
詳細には、(2)式による判定条件が成立し、プレ噴射量限界判定部53にて全体の回転変動が限界レベルに近づいたと判定されたとき、基本プレ噴射量設定部51において、基本プレ噴射量Gpbaseが以下の(4)式に従って更新され、プレ噴射量が増量方向に補正される。
Gpbase=Gpbase'−Gcy'−Gj'+ΔQ …(4)
但し、Gpbase':限界判定時の基本プレ噴射量
Gcy' :限界判定時の順次気筒別減量分
Gj' :限界判定時の徐変減量分
ΔQ :所定のシフト量
また、(3)式による判定条件が成立し、プレ噴射量限界判定部53にて気筒毎の回転変動が限界レベルに近づいたと判定されたとき、プレ噴射量調整部52において、限界判定された#i気筒の気筒別補正量Gh#iが以下の(5)式に従って更新され、プレ噴射量が増量方向に補正される。尚、このとき、限界判定された#i気筒以外の気筒に対しては、以下の(6)式に従って気筒別補正量Gh#i'が更新される。
Gh#i=Gh'#i+Δh …(5)
Gh#i'=Gh'#i'−Δh/3 …(6)
但し、Gh'#i :限界判定時の#i気筒の気筒別補正量
Gh'#i':限界判定時の#i気筒以外の気筒の気筒別補正量
Δh :補正値
次に、以上のプレ噴射制御に係るプログラム処理について、図4に示すプレ噴射最適化ルーチンのフローチャート、図5に示す気筒別プレ噴射最適化ルーチンのフローチャートを用いて説明する。
図4のプレ噴射最適化ルーチンは、最適化制御のメインとなるルーチンであり、先ず最初のステップS1において、各種センサ類からの信号に基づくエンジンパラメータを検出し、ステップS2でプレ噴射量の最適化開始のタイミングか否かを調べる。最適化開始タイミングでない場合にはステップS2からルーチンを抜け、最適化開始タイミングである場合、ステップS2からステップS3へ進み、図5の気筒別プレ噴射最適化ルーチンによるプレ噴射量の調整処理を開始する。
その後、ステップS4へ進み、前述の(2)式による限界判定の判定条件が成立するか否かを調べる。(2)式の判定条件が成立せず、気筒全体の回転変動が判定閾値を超えていない場合には、ステップS4からステップS5へ進んでプレ噴射量の調整処理を継続する。一方、(2)式の判定条件が成立し、気筒全体の回転変動が判定閾値を超えて全気筒の回転変動が限界レベルに近づいたと判定された場合には、ステップS4からステップS6へ進み、前述の(4)式に従って、基本プレ噴射量を、現在の値から所定シフト量だけ増量する方向に更新する。
次に、図5の気筒別プレ噴射最適化ルーチンについて説明する。
この気筒別プレ噴射最適化ルーチンでは、最初のステップS11で、同様に、各種センサ類からの信号に基づくエンジンパラメータを検出し、ステップS12で気筒別プレ噴射量の最適化開始タイミングか否かを調べる。気筒別のプレ噴射量最適化開始タイミングでない場合にはステップS12からルーチンを抜け、気筒別のプレ噴射量最適化開始タイミングである場合、ステップS12からステップS13へ進み、気筒別のプレ噴射量の調整処理を開始する。この気筒別のプレ噴射量の調整処理は、前述の(1)式に基づいて、基本プレ噴射量Gpbaseから順次気筒別減量分Gcy及び徐変減量分Gjを減算し、気筒別補正量Ghを加算することにより、最終的なプレ噴射量Gpに調整する処理である。
次に、ステップS14,S15,S16,S17で、それぞれ、#1気筒のプレ噴射量限界、#3気筒のプレ噴射量限界、#2気筒のプレ噴射量限界、#4気筒のプレ噴射量限界を、前述の(3)式による条件で判定する。そして、S14,S15,S16,S17の何れのステップにおいても、プレ噴射量限界に達していない場合には、ステップS18で気筒別のプレ噴射量の調整処理を継続し、ルーチンを抜ける。
その後、ステップS14,S15,S16,S17の何れかでプレ噴射量限界に達したと判定された場合、前述の(5)式に基づいて該当する気筒の気筒別補正量を更新する。すなわち、ステップS14で#1気筒の回転変動が限界レベルに近づいたと判定された場合には、ステップS19で#1気筒の気筒別補正量Gh#1を、限界判定時の気筒別補正量Gh'#1に補正値Δhを加算した値に更新することにより、最終的なプレ噴射量Gpに対して加算項として作用する気筒別補正量を増量し、回転変動を解消する方向に補正する。尚、このとき、(6)式に基づいて、#1気筒以外の#3,#2,#4気筒に対する気筒別補正量も、限界判定時の気筒別補正量から補正値Δh/3を減算した値に更新する。
また、ステップS15で#3気筒の回転変動が限界レベルに近づいたと判定された場合には、ステップS20で3気筒の気筒別補正量Gh#3を、限界判定時の気筒別補正量Gh'#3に補正値Δhを加算した値に更新し、同様に、回転変動を解消する方向に補正する。尚、このときにおいても、#3気筒以外の#1,#2,#4気筒に対する気筒別補正量を、限界判定時の気筒別補正量から補正値Δh/3を減算した値に更新する。
また、ステップS16で#2気筒の回転変動が限界レベルに近づいたと判定された場合には、ステップS21で#2気筒の気筒別補正量Gh#2を、限界判定時の気筒別補正量Gh'#2に補正値Δhを加算した値に更新し、同様に、回転変動を解消する方向に補正する。このときも、#2気筒以外の#1,#3,#4気筒に対する気筒別補正量を、限界判定時の気筒別補正量から補正値Δh/3を減算した値に更新する。
また、ステップS17で#4気筒の回転変動が限界レベルに近づいたと判定された場合には、ステップS22で#4気筒の気筒別補正量Gh#4を、限界判定時の気筒別補正量Gh'#4に補正値Δhを加算した値に更新し、同様に、回転変動を解消する方向に補正する。このときも、#4気筒以外の#1,#3,#2気筒に対する気筒別補正量を、限界判定時の気筒別補正量から補正値Δh/3を減算した値に更新する。
このように、本実施の形態においては、目的とする燃焼形態のままプレ噴射量を低減していき、回転変動に影響を与えるようなポイントを探すことにより、プレ噴射量を最適化する。このとき、プレ噴射の低減量が大きくなるとトルク低下を招くため、4気筒エンジンの場合には、3気筒毎若しくは5気筒毎というように、プレ噴射量を減量する気筒を同一気筒で連続させず、且つ全気筒を順々にプレ噴射量が低減するように制御することで、ドライバビリティの低下を回避することができる。また、プレ噴射量の低減処理を数回転毎に行って回転変動成分や負荷変動成分の影響を除外することにより、定常運転状態だけでなく、緩加速、緩減速等を含めたより広範囲の運転領域でプレ噴射量を最適化することが可能になる。
1 ディーゼルエンジン
50 電子制御装置
51 基本プレ噴射量設定部
52 プレ噴射量調整部
53 プレ噴射量限界判定部
Gpbase 基本プレ噴射量
Gcy 順次気筒別減量分(所定の減量分)
Gh 気筒別補正量(気筒別の減量調整分)
Gj 徐変減量分(微調整用の減量分)
Gp プレ噴射量

Claims (6)

  1. ディーゼルエンジンの一回の燃焼行程中に燃焼の主たる燃料を噴射するメイン噴射に先立って、上記メイン噴射よりも少量の燃料を噴射する先行噴射を実施する燃料噴射制御装置であって、
    上記先行噴射の噴射量を1サイクル毎に連続爆発しない異なる気筒について所定の減量分だけ順次減量し、上記先行噴射の気筒毎の噴射量を調整する噴射量調整部と、
    上記先行噴射における噴射量減量前後のエンジンの燃焼状態の変化を検出し、該燃焼状態の変化が限界レベルを超えたか否かを判定する噴射量限界判定部とを備え、
    上記噴射量限界判定部で上記燃焼状態の変化が上記限界レベルを超えたと判定したとき、上記噴射量調整部における気筒別の減量調整分を更新することを特徴とする燃料噴射制御装置。
  2. 上記噴射量調整部は、更に、各気筒毎の上記先行噴射の噴射量を微調整用の減量分で徐々に減量することを特徴とする請求項1記載の燃料噴射制御装置。
  3. 上記噴射量調整部は、上記ディーゼルエンジンが4気筒エンジンである場合、3爆発気筒毎、5爆発気筒毎、7爆発気筒毎、9爆発気筒毎の何れかの気筒毎に、上記先行噴射の噴射量を順次減量することを特徴とする請求項1記載の燃料噴射制御装置。
  4. 上記噴射量調整部は、上記ディーゼルエンジンが6気筒エンジンである場合、5爆発気筒毎、7爆発気筒毎、11爆発気筒毎、13爆発気筒毎の何れかの気筒毎に、上記先行噴射の噴射量を減量補正することを特徴とする請求項1記載の燃料噴射制御装置。
  5. 上記噴射量限界判定部は、クランク角センサの信号により計測した各気筒の燃焼後の所定クランク角度の回転時間に基づいて、エンジンの燃焼状態を検出することを特徴とする請求項1記載の燃料噴射制御装置。
  6. 上記噴射量限界判定部は、各気筒毎に設置した筒内圧センサからの信号に基づいて、エンジンの燃焼状態を検出することを特徴とする請求項1記載の燃料噴射制御装置。
JP2011063117A 2011-03-22 2011-03-22 燃料噴射制御装置 Expired - Fee Related JP5690181B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011063117A JP5690181B2 (ja) 2011-03-22 2011-03-22 燃料噴射制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011063117A JP5690181B2 (ja) 2011-03-22 2011-03-22 燃料噴射制御装置

Publications (2)

Publication Number Publication Date
JP2012197745A true JP2012197745A (ja) 2012-10-18
JP5690181B2 JP5690181B2 (ja) 2015-03-25

Family

ID=47180213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011063117A Expired - Fee Related JP5690181B2 (ja) 2011-03-22 2011-03-22 燃料噴射制御装置

Country Status (1)

Country Link
JP (1) JP5690181B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103291481A (zh) * 2013-05-24 2013-09-11 潍柴动力股份有限公司 一种发动机的预喷控制方法、装置和发动机电控系统
JP2017020436A (ja) * 2015-07-13 2017-01-26 三菱自動車工業株式会社 エンジンの制御装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002013436A (ja) * 2000-06-30 2002-01-18 Toyota Motor Corp 筒内噴射式内燃機関の燃料噴射装置
JP2003027995A (ja) * 2001-07-13 2003-01-29 Mazda Motor Corp ディーゼルエンジンの制御装置及び制御方法
JP2005282441A (ja) * 2004-03-29 2005-10-13 Nippon Soken Inc 内燃機関の燃料噴射制御装置
JP2005315107A (ja) * 2004-04-27 2005-11-10 Toyota Motor Corp 8気筒エンジン
JP2007154802A (ja) * 2005-12-07 2007-06-21 Honda Motor Co Ltd 内燃機関の制御装置
JP2009036067A (ja) * 2007-08-01 2009-02-19 Denso Corp 燃料噴射制御装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002013436A (ja) * 2000-06-30 2002-01-18 Toyota Motor Corp 筒内噴射式内燃機関の燃料噴射装置
JP2003027995A (ja) * 2001-07-13 2003-01-29 Mazda Motor Corp ディーゼルエンジンの制御装置及び制御方法
JP2005282441A (ja) * 2004-03-29 2005-10-13 Nippon Soken Inc 内燃機関の燃料噴射制御装置
JP2005315107A (ja) * 2004-04-27 2005-11-10 Toyota Motor Corp 8気筒エンジン
JP2007154802A (ja) * 2005-12-07 2007-06-21 Honda Motor Co Ltd 内燃機関の制御装置
JP2009036067A (ja) * 2007-08-01 2009-02-19 Denso Corp 燃料噴射制御装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103291481A (zh) * 2013-05-24 2013-09-11 潍柴动力股份有限公司 一种发动机的预喷控制方法、装置和发动机电控系统
JP2017020436A (ja) * 2015-07-13 2017-01-26 三菱自動車工業株式会社 エンジンの制御装置

Also Published As

Publication number Publication date
JP5690181B2 (ja) 2015-03-25

Similar Documents

Publication Publication Date Title
JP4770742B2 (ja) エンジンの燃料噴射制御装置及び燃焼装置
US9556813B2 (en) Internal combustion engine control device
JP5146612B2 (ja) 内燃機関の制御装置
JP4667346B2 (ja) 内燃機関の制御装置
JP2009209741A (ja) エンジン
US7886524B2 (en) Method for controlling an internal combustion engine during regeneration of an emission after-treatment device
WO2015097520A1 (en) Exhaust gas control device for internal combustion engine mounted on vehicle
JP4645585B2 (ja) エンジントルク制御装置
JP2008184908A (ja) エンジン制御装置
WO2016143822A1 (ja) 排気浄化システム及び排気浄化システムの制御方法
JP2016133050A (ja) 排気浄化システム
JP5690181B2 (ja) 燃料噴射制御装置
US8463530B2 (en) Method for operating auto ignition combustion engine
JP2012145054A (ja) 多気筒内燃機関の気筒間空燃比ばらつき異常検出装置
JPWO2012127574A1 (ja) 内燃機関の制御装置
JP2010261846A (ja) ガスセンサの信号処理装置
JP2015121182A (ja) エンジンの制御装置
JP2008121518A (ja) 内燃機関の排気浄化装置
JP4868908B2 (ja) 選択還元型NOx触媒付きエンジンの制御装置
EP2290210A1 (en) Fuel supply control system for internal combustion engine
EP3462012B1 (en) Controller and control method for internal combustion engine
JP4710729B2 (ja) 内燃機関の制御装置
JP5083398B2 (ja) エンジントルク制御装置
JP2008215110A (ja) 内燃機関の排気浄化装置
JP6740744B2 (ja) エンジンの制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150130

R150 Certificate of patent or registration of utility model

Ref document number: 5690181

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees