JP2012186776A - 撮像装置および撮像方法 - Google Patents

撮像装置および撮像方法 Download PDF

Info

Publication number
JP2012186776A
JP2012186776A JP2011092336A JP2011092336A JP2012186776A JP 2012186776 A JP2012186776 A JP 2012186776A JP 2011092336 A JP2011092336 A JP 2011092336A JP 2011092336 A JP2011092336 A JP 2011092336A JP 2012186776 A JP2012186776 A JP 2012186776A
Authority
JP
Japan
Prior art keywords
data
pixel
luminance
filter
dynamic range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011092336A
Other languages
English (en)
Other versions
JP5803233B2 (ja
Inventor
Daisuke Okada
大輔 岡田
Kenji Shiraishi
賢二 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2011092336A priority Critical patent/JP5803233B2/ja
Priority to EP12164456.1A priority patent/EP2515543B1/en
Publication of JP2012186776A publication Critical patent/JP2012186776A/ja
Application granted granted Critical
Publication of JP5803233B2 publication Critical patent/JP5803233B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/80Camera processing pipelines; Components thereof
    • H04N23/84Camera processing pipelines; Components thereof for processing colour signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/62Control of parameters via user interfaces
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/57Control of the dynamic range

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Human Computer Interaction (AREA)
  • Color Television Image Signal Generators (AREA)
  • Studio Devices (AREA)
  • Facsimile Image Signal Circuits (AREA)
  • Compression Of Band Width Or Redundancy In Fax (AREA)

Abstract

【課題】彩度バランスの崩れを招くことなく、1回の撮影によるダイナミックレンジの拡大を実現し、高品位な撮影画像を得ることができる撮像装置および撮像方法を提供する。
【解決手段】補正係数算出部61が、単位画素ブロックに含まれるG画素の画素出力が飽和レベルTに達している場合に、その単位画素ブロックに含まれるR画素やB画素の画素出力と、Gフィルタの感度特性とRフィルタやBフィルタの感度特性との比率とに基づいて補正係数を算出する。また、RGB−YUVプレ変換部62が、入力されるRAW−RGBデータをYUVデータに変換する。そして、補正処理部63が、YUVデータの輝度(Y)データに対してのみ補正係数算出部61で算出された補正係数を乗算し、階調圧縮部64が、14ビットデータに拡張された輝度(Y)データを12ビットデータに圧縮する。
【選択図】図7

Description

本発明は、撮影画像のダイナミックレンジを拡大することができる撮像装置および撮像方法に関する。
従来、ダイナミックレンジを拡大することができる撮像装置として、特許文献1に記載されたものが知られている。特許文献1に記載の撮像装置は、RGB原色フィルタが配置された各画素からの出力のうち、Gフィルタが配置された画素の出力が所定の飽和レベル以上に達していると判定した場合に、その周囲の飽和していないR、Bフィルタが配置された画素からの出力に基づいて、飽和レベル領域以上における画素出力を予測補間することで、ダイナミックレンジの拡大を実現している。
特許文献1に記載の撮像装置によれば、露光量を変えて撮影した複数の画像を合成することでダイナミックレンジが拡大された画像を得る方法に比べ、1回の撮影によってダイナミックレンジの拡大を実現することができるので、被写体が移動物体であっても被写体のぶれなどを生じさせず、黒つぶれや白とびのない高品位な撮影画像を得ることができる。
しかしながら、特許文献1に記載の技術では、入力されるRGBデータのG成分のみを補正する構成であるため、補正後のRGBデータにおいて、彩度バランスの崩れが生じる場合があった。
本発明は、上記に鑑みてなされたものであって、彩度バランスの崩れを招くことなく、1回の撮影によるダイナミックレンジの拡大を実現し、高品位な撮影画像を得ることができる撮像装置および撮像方法を提供することを目的としている。
上述した課題を解決し、目的を達成するために、本発明に係る撮像装置は、光学系を通して入射される被写体像を複数の画素を有する受光面に受光して電気信号に変換するとともに、前記受光面の各画素の前面側に複数色のフィルタからなる色分解フィルタが配置された撮像素子と、前記複数色のうちの特定色のフィルタが配置された画素からの出力が所定の飽和レベルに達している場合に、当該画素の周囲の前記特定色以外のフィルタが配置された画素からの出力と、前記特定色のフィルタの感度特性と前記特定色以外のフィルタの感度特性との比率とに基づいて、補正係数を算出する補正係数算出手段と、前記特定色のフィルタが配置された画素からの出力と、前記特定色以外のフィルタが配置された画素からの出力とを含むRGBデータを、輝度データと色差データとからなるYUVデータに変換する第1の変換手段と、前記YUVデータの輝度データに対して前記補正係数を乗算し、当該輝度データを第1のビット数のデータから第2のビット数のデータに拡張する補正処理手段と、前記第2のビット数のデータに拡張された前記輝度データを、前記第1のビット数のデータに圧縮する階調圧縮手段と、を備えることを特徴とする。
また、本発明に係る撮像方法は、光学系を通して入射される被写体像を複数の画素を有する受光面に受光して電気信号に変換するとともに、前記受光面の各画素の前面側に複数色のフィルタからなる色分解フィルタが配置された撮像素子を備えた撮像装置において実行される撮像方法であって、前記複数色のうちの特定色のフィルタが配置された画素からの出力が所定の飽和レベルに達している場合に、当該画素の周囲の前記特定色以外のフィルタが配置された画素からの出力と、前記特定色のフィルタの感度特性と前記特定色以外のフィルタの感度特性との比率とに基づいて、補正係数を算出するステップと、前記特定色のフィルタが配置された画素からの出力と、前記特定色以外のフィルタが配置された画素からの出力とを含むRGBデータを、輝度データと色差データとからなるYUVデータに変換するステップと、前記YUVデータの輝度データに対して前記補正係数を乗算し、当該輝度データを第1のビット数のデータから第2のビット数のデータに拡張するステップと、前記第2のビット数のデータに拡張された前記輝度データを、前記第1のビット数のデータに圧縮するステップと、を含むことを特徴とする。
本発明によれば、RGBデータをYUVデータに変換して、YUVデータの輝度データを補正してダイナミックレンジの拡大を図るようにしているので、彩度バランスの崩れを招くことなく、1回の撮影によるダイナミックレンジの拡大を実現し、高品位な撮影画像を得ることができるという効果を奏する。
図1−1は、デジタルカメラの上面図である。 図1−2は、デジタルカメラの正面図である。 図1−3は、デジタルカメラの裏面図である。 図2は、デジタルカメラの制御系の構成例を示すブロック図である。 図3は、ベイヤ配列の色分解フィルタを説明する図である。 図4は、色分解フィルタの各色の感度の違いと画素出力との関係を示す図である。 図5は、メニュースイッチの押圧操作によりLCDモニタに表示される撮影設定画面の一例を示す図である。 図6は、第2のCCD信号処理ブロック内部の機能構成を示す機能ブロック図である。 図7は、Dレンジ拡大処理部の詳細を示すブロック図である。 図8は、階調圧縮部による輝度(Y)データの圧縮に用いる変換特性の一例を示す図である。 図9は、単位画素ブロックの他の例を説明する図である。 図10は、第2の実施形態を説明する図であり、輝度ヒストグラム生成部57で生成されたヒストグラムの一例を示す図である。 図11は、LCDモニタに表示される撮影設定画面の画面遷移例を示す図である。 図12は、第3の実施形態を説明する図であり、輝度ヒストグラム生成部57で生成されたヒストグラムの一例を示す図である。 図13は、第4の実施形態を説明する図であり、輝度ヒストグラム生成部57で生成されたヒストグラムの一例を示す図である。
以下に添付図面を参照して、この発明に係る撮像装置および撮像方法の最良な実施の形態を詳細に説明する。なお、ここではデジタルスチルカメラ(以下、単に「デジタルカメラ」という。)に本発明を適用した例について説明するが、本発明は、受光面の各画素の前面側に複数色の色分解フィルタが配置された撮像素子を備える撮像装置に対して広く適用することができる。
[第1の実施形態]
(デジタルカメラの構成)
図1は、本実施形態に係るデジタルカメラの外観の一例を示す図であり、図1−1は同デジタルカメラの上面図、図1−2は同デジタルカメラの正面図、図1−3は同デジタルカメラの裏面図である。
本実施形態に係るデジタルカメラは、図1−1に示すように、その上面に、静止画撮影が可能な枚数などを表示するサブ液晶ディスプレイ(以下、液晶ディスプレイを「LCD」という。)1と、静止画撮影の際に押圧操作されるレリーズシャッタSW1と、画像を記録する記録(撮影)モードや記録された画像を再生する再生モード、カメラ設定のためのSETUPモードなどの各種モードの切り替えの際に操作されるモードダイアルSW2を有する。
また、本実施形態に係るデジタルカメラは、図1−2に示すように、その正面に、ストロボを発光させるストロボ発光部2と、図示しないリモコン端末からの赤外線信号を受信するリモコン受光部3と、鏡胴ユニット4と、光学ファインダ(正面)5を有する。また、本実施形態に係るデジタルカメラの側面には、後述するメモリカードを挿入するメモリカードスロットルや電池を収容する電池収容部が設けられており、これらメモリカードスロットルや電池収容部は蓋体6により閉塞されている。
また、本実施形態に係るデジタルカメラは、図1−3に示すように、その裏面に、AF動作時に点灯するAFLED7と、ストロボ発光時に点灯するストロボLED8と、各種設定画面の表示や再生画像の表示および撮影時の電子ファインダとして用いられるLCDモニタ9と、光学ファインダ(裏面)10と、電源スイッチ11とを有する。
さらに、本実施形態に係るデジタルカメラの裏面には、広角側ズーム時に操作されるズーム(WIDE)スイッチSW3、望遠側ズーム時に操作されるズーム(TELE)スイッチSW4、セルフタイマの作動時に操作されるセルフタイマ/削除スイッチSW5、メニュー選択の際に操作されるメニュースイッチSW6、ストロボのモード(自動、強制発光、赤目低減など)を切り替える際に操作されるとともにLCDモニタ9上のカーソルを上移動させる場合等に操作される上/ストロボスイッチSW7、LCDモニタ9上のカーソルを右移動させる場合等に操作される右スイッチSW8、LCDモニタ9の表示の切り替え時に操作されるディスプレイスイッチSW9、マクロ撮影を行う際に操作されるとともにLCDモニタ9上のカーソルを下移動させる場合等に操作される下/マクロスイッチSW10、撮影した画像をLCDモニタ9で確認する際に操作されるとともにLCDモニタ9上のカーソルを左移動させる場合等に操作される左/画像確認スイッチSW11、選択した事項を確定させる際に操作されるOKスイッチSW12、登録したメニューを選択する際に操作されるクイックアクセススイッチSW13の各種スイッチが設けられている。
図2は、本実施形態に係るデジタルカメラの制御系の構成例を示すブロック図である。本実施形態に係るデジタルカメラは、上述した鏡胴ユニット4を介して入射した光を光電変換して電気信号として出力するCCD101と、CCD101から出力されるアナログの電気信号を前処理してデジタル信号として出力するF/E(フロントエンド)−IC102と、F/E−IC102からのデジタル信号を処理してデジタルカメラの各種動作を実行制御するデジタルスチルカメラプロセッサ(以下、単に「プロセッサ」という。)104とを備える。
鏡胴ユニット4は、被写体の光学画像を取り込むためのズームレンズ41a及びズームモータ41bからなるズーム光学系41、フォーカスレンズ42a及びフォーカスモータ42bからなるフォーカス光学系42、絞り43a及び絞りモータ43bからなる絞りユニット43、メカシャッタ44a及びメカシャッタモータ44bからなるメカシャッタユニット44、各モータを駆動するモータドライバ45を有する。モータドライバ45は、プロセッサ104内の後述するCPUブロック1043からの駆動指令によって駆動制御される。
CCD101は、鏡胴ユニット4を介して入射した光を受光し、その光学画像を光電変換して光学画像に対応した画像データを出力する固体撮像素子である。なお、本実施形態に係るデジタルカメラでは、撮像素子としてCCD101を用いているが、CCD101の代わりにCMOSイメージセンサなどの他の撮像素子を用いるようにしてもよい。
F/E−IC102は、画像ノイズ除去用相関二重サンプリングを行うCDS1021、利得調整を行うAGC1022、アナログ信号をデジタル信号に変換するA/D1023、プロセッサ104内の後述する第1のCCD信号処理ブロック1041から供給される垂直同期信号(VD信号)及び水平同期信号(HD信号)に基づいてCCD101やCDS1021、AGC1022、A/D1023の駆動タイミング信号を発生するTG(Timing Generator)1024を有する。このF/E−IC102における各部の動作は、プロセッサ104内の後述するCPUブロック1043によって制御される。
プロセッサ104は、第1のCCD信号処理ブロック1041、第2のCCD信号処理ブロック1042、CPUブロック1043、ローカルSRAM1044、USBブロック1045、シリアルブロック1046、JPEG・CODECブロック1047、RESIZEブロック1048、TV信号表示ブロック1049、メモリカードコントローラブロック10410を有している。プロセッサ104における上記各部は、相互にバスラインで接続されている。
第1のCCD信号処理ブロック1041は、画像データのタイミングを制御する上述したVD信号およびHD信号をTG1024に供給し、F/E−IC102から画像データ(RAW−RGBデータ)を取り込む。第2のCCD信号処理ブロック1042は、入力されたRAW−RGBデータに対して、ダイナミックレンジ拡大処理、ホワイトバランス制御、ガンマ補正(トーン変換)などを行うとともに、YUV形式のデータ(YUVデータ)への変換を行う。なお、YUVデータは、輝度(Y)データと、色差(U:輝度データと青色(B)成分データの差分、V:輝度データと赤色(R)成分データの差分)データとで画像を表現するものである。
CPUブロック1043は、本実施形態に係るデジタルカメラの各部の動作制御を司るものである。具体的には、CPUブロック1043は、音声記録回路1151による音声記録動作を制御する。音声記録回路1151は、マイク1153で変換されてマイクアンプ1152により増幅された音声信号を、CPUブロック1043からの指令に応じて記録する。また、CPUブロック1043は、音声再生回路1161による音声再生動作も制御する。音声再生回路1161は、CPUブロック1043からの指令により、適宜のメモリに記録されている音声信号を再生してオーディオアンプ1162に入力し、スピーカ1163から音声を出力させる。また、CPUブロック1043は、ストロボ回路114の動作を制御することによって、ストロボ発光部2から照明光を発光させる。
CPUブロック1043は、プロセッサ104の外部に配置されたサブCPU109と接続されている。サブCPU109は、LCDドライバ111を介してサブLCD1による表示を制御する。また、サブCPU109は、AFLED7、ストロボLED8、リモコン受光部3、ブザー113、前記スイッチSW1〜SW13からなる操作キーユニットに接続されており、操作キーユニットやリモコン受光部3からの出力信号をユーザの操作情報として、ユーザ操作情報に応じてAFLED7、ストロボLED8、ブザー113の動作を制御し、また、ユーザ操作情報をプロセッサ104内のCPUブロック1043に伝達する。
ローカルSRAM1044は、制御に必要なデータ等を一時的に保存するメモリである。USBブロック1045は、USBコネクタ122に接続されたコンピュータ端末などの外部機器との間でUSB通信を行う。また、シリアルブロック1046は、RS−232Cコネクタ1232に接続されたコンピュータ端末などの外部機器との間で、シリアルドライバ回路1231を介してシリアル通信を行う。
JPEG・CODECブロック1047は、撮影された画像データをJPEG形式で圧縮し、またJPEG形式で圧縮された記録画像のデータ(JPEGデータ)を伸長する処理を行う。また、RESIZEブロック1048は、画像データのサイズを補間処理によって拡大・縮小する処理を行う。
TV信号表示ブロック1049は、画像データをLCDモニタ9やTVなどの外部表示機器に表示させるためのビデオ信号に変換する。TV信号表示ブロック1049にはLCDドライバ117が接続されており、LCDドライバ117により駆動されるLCDモニタ9に画像を表示させる。また、TV信号表示ブロック1049にはビデオAMP118が接続されており、ビデオジャック119がTVなどの外部表示機器に接続されている場合に、この外部表示機器に画像を表示させる。
メモリカードコントローラブロック10410は、メモリカードスロットル121に接続され、このメモリカードスロットル121に挿入されたメモリカードや汎用のPCMCIAなどの制御を行う。
また、プロセッサ104の外部には、SDRAM103、RAM107、ROM108、内蔵メモリ120が配置されており、これらはプロセッサ104とバスラインによって接続されている。
SDRAM103は、プロセッサ104で画像処理を施す際に画像データを一時的に保存するメモリである。保存される画像データは、例えば、第1のCCD信号処理ブロック1041によりF/E−IC102から取り込まれたRAW−RGBデータや、第2のCCD信号処理ブロック1042でYUV形式に変換されたYUVデータ、JPEG・CODECブロック1047でJPEG形式に圧縮されたJPEGデータなどである。
ROM108には、CPUブロック1043にて解読可能なコードで記述された制御プログラムや制御のためのパラメータが格納されている。なお、これらのパラメータは内蔵メモリ120に格納されていてもよい。デジタルカメラの電源がオン状態になると、プログラムは不図示のメインメモリにロードされ、CPUブロック1043はそのプログラムに従って各部の動作を制御するとともに、制御に必要なデータ等を一時的にRAM107及びプロセッサ104内のローカルSRAM1044に保存する。このROM108として書き換え可能なフラッシュROMを用いるようにすれば、制御プログラムや制御のためのパラメータを変更することが可能となり、機能のバージョンアップを容易に行うことが可能となる。
内蔵メモリ120は、メモリカードスロットル121にメモリカードが挿入されていない場合に、撮影した画像データを記録しておくためのメモリである。また、RAM107は、CPUブロック1043が制御プログラムを実行する際のワークエリアとして利用されるメモリである。
(デジタルカメラの動作概要)
次に、以上のように構成されるデジタルカメラの動作の概要を説明する。本実施形態に係るデジタルカメラの動作モードには、静止画を撮影して記録するモードである撮影モードや、記録した画像を再生する再生モードがあり、これらの動作モードは、モードダイアルSW2の操作により切り替えられる。
撮影者がモードダイアルSW2を撮影モードに設定して電源スイッチ11をオンすることで、デジタルカメラは撮影モードで起動する。デジタルカメラが撮影モードで起動すると、ROM108内の制御プログラムを実行するCPUブロック1043からモータドライバ45に制御信号が出力され、鏡胴ユニット4が撮影可能位置に移動する。また、CCD101や、F/E−IC102、プロセッサ104等が起動して、デジタルカメラは撮影可能な状態となる。
この状態で、撮影者が鏡胴ユニット4を被写体に向けることにより、被写体像がCCD101の複数の画素を有する受光面上に結像され、電気信号に変換されてCCD101から出力される。CCD101より出力された電気信号(アナログRGB画像信号)は、F/E−IC102のA/D1023により12ビット(1画素出力あたり12ビットの階調値)のRAW−RGBデータに変換される。
このRAW−RGBデータは、プロセッサ104の第1のCCD信号処理ブロック1041に取り込まれ、SDRAM103に保存される。そして、SDRAM103から読み出されたRAW−RGBデータは、第2のCCD信号処理ブロック1042にて表示可能な形式であるYUV形式のYUVデータに変換され、このYUVデータがSDRAM103に保存される。
その後、SDRAM103から読み出されたYUVデータは、TV信号表示ブロック1049を介してLCDドライバ117に送られ、LCDモニタ9に画像が表示される。このLCDモニタ9に画像を表示しているモニタリング時においては、第1のCCD信号処理ブロック1041による画素数の間引き処理により、1/30秒の時間で1フレームを読み出している。ここでいうモニタリングとは、電子ファインダとして機能するLCDモニタ9に画像が表示されているだけで、撮影者によるレリーズシャッタSW1の操作が行われていない状態である。
このLCDモニタ9への画像の表示により、撮影者は被写体像を確認しながら構図などを決めることができる。なお、YUVデータは、TV信号表示ブロック1049からビデオAMP118にも送られており、ビデオジャック119がケーブル等を介してTVなどの外部表示機器に接続されている場合には、この外部表示機器に画像を表示させることもできる。
第1のCCD信号処理ブロック1041は、プロセッサ104内に取り込まれたRAW−RGBデータにより、AF(自動合焦)評価値、AE(自動露出)評価値、AWB(オートホワイトバランス)評価値を算出する処理を行っている。
AF評価値は、例えば高周波成分抽出フィルタの出力積分値や、近接画素の輝度差の積分値によって算出される。被写体像が合焦状態にあるときは、被写体のエッジ部分がはっきりとしているため、高周波成分が一番高くなる。これを利用して、AF動作時(合焦検出動作時)には、フォーカス光学系42のフォーカスレンズ42aを光軸方向に移動させながら各位置におけるAF評価値を取得し、高周波成分が一番高くなる点を合焦検出位置として、AF動作が実行される。
AE評価値とAWB評価値は、RAW−RGBデータにおけるRGB値(画素出力)のそれぞれの積分値から算出される。例えば、CCD101の全画素に対応した画面を256エリアに等分割(水平16分割、垂直16分割)し、それぞれのエリアのRGB積算を算出する。そして、ROM108内の制御プログラムを実行するCPUブロック1043が、算出されたRGB積算値を読み出し、AE処理では、画面のそれぞれのエリアの輝度を算出して、輝度分布から適正な露光量を決定する。そして、決定した露光量に基づいて、露光条件(CCD101の電子シャッタ回数、絞り43aの絞り値等)を設定する。また、AWB処理では、RGBの分布から被写体の光源の色に合わせた制御値を決定する。このAWB処理により、第2のCCD信号処理ブロック1042でRAW−RGBデータをYUVデータに変換するときのホワイトバランスをあわせている。なお、上記のAE処理とAWB処理は、モニタリング時には連続的に実行されている。
モニタリング動作時にレリーズシャッタSW1が押圧(半押しから全押し)操作されると、静止画撮影動作が開始され、合焦位置検出動作であるAF動作と静止画記録処理が行われる。すなわち、ROM108内の制御プログラムを実行しているCPUブロック1043からモータドライバ45への駆動指令により、フォーカスレンズ42aが合焦位置へと移動する。そして、被写体像に焦点が合った状態でAE処理が行われ、露光開始時点で、CPUブロック1043からモータドライバ45への駆動指令により、メカシャッタ44aが閉じられる。そして、CCD101から静止画用のアナログRGB画像信号が出力され、F/E−IC102のA/D1023によりRAW−RGBデータに変換される。
このRAW−RGBデータは、プロセッサ104の第1のCCD信号処理ブロック1041により取り込まれ、第2のCCD信号処理ブロック1042でYUVデータに変換されてSDRAM103に保存される。そして、このYUVデータは、SDRAM103から読み出されて、RESIZEブロック1048で記録画素数に対応するサイズに変換され、JPEG・CODECブロック1047でJPEGデータに圧縮される。圧縮されたJPEGデータは、SDRAM103に書き戻された後、メモリカードコントローラブロック10410を介して、メモリカードスロットル121に装着されたメモリカード等のメディアに保存される。
(ダイナミックレンジ拡大処理)
本実施形態に係るデジタルカメラの第2のCCD信号処理ブロック1042は、ダイナミックレンジを拡大するためのダイナミックレンジ拡大処理機能を有している。
デジタルカメラのCCD101を構成する各画素上には、図3に示すようにRGB各色のフィルタが並んだベイヤ配列の色分解フィルタが配置されている。このベイヤ配列の色分解フィルタは、太陽光のように広い波長帯域を持つ光に対して、RGBそれぞれのフィルタの輝度に対する感度が異なっている。ここでは、G(グリーン)フィルタが、R(レッド)フィルタ、B(ブルー)フィルタの2倍程度の感度を有する色分解フィルタを用いているものとして説明する。
図4は、色分解フィルタの各色の感度の違いと画素出力との関係を示す図である。図中のa,b,c,d,eは、それぞれ、太陽光のように広い波長帯域を持つ光が色分解フィルタに入射したときのRGBごとの画素出力を示しており、aからeへと順に入射光量が大きくなっている。なお、図中のTは画素出力の飽和レベルであり、fはGフィルタの感度特性、gはRフィルタおよびBフィルタの感度特性である。
この図4から分かるように、太陽光のように広い波長帯域を持つ光が色分解フィルタに入射したときに、Rフィルタが配置された画素(以下、「R画素」という。)や、Bフィルタが配置された画素(以下、「B画素」という。)の画素出力よりも、Gフィルタが配置された画素(以下、「G画素」という。)の画素出力の方が先に飽和レベルTに達することになる(図4のcの斜線部分)。ここで、感度の高いG画素の画素出力が飽和レベルTに達するまでの範囲(図4のa,b,c)に合わせてダイナミックレンジを設定すると、R画素出力やB画素出力は飽和レベルTの1/2程度に制限されることになる。
そこで、本実施形態に係るデジタルカメラでは、感度の高いG画素の画素出力が飽和レベルTを超えていても、その周囲のR画素やB画素の画素出力と、Gフィルタの感度特性とRフィルタやBフィルタの感度特性との比率とに基づいて補正係数を算出し、この補正係数を、RAW−RGBデータから変換したYUVデータの輝度(Y)データに乗算して、実質的にG画素の画素出力の飽和レベルTを超えた部分が予測補間されたかたちのデータとすることで、ダイナミックレンジの拡大を実現するようにした。図4中のh,iが、G画素の画素出力の飽和レベルTを超えた部分の予測補間された階調値に相当する。
以下、第2のCCD信号処理ブロック1042により実行されるダイナミックレンジ拡大処理の詳細について説明する。本実施形態に係るデジタルカメラでは、撮影者がメニュースイッチSW6を押圧操作することにより、例えば図5に示すような撮影設定画面がLCDモニタ9に表示される。そして、この表示画面から「ダイナミックレンジ2倍」の項目を選択することにより、CPUブロック1043から第2のCCD信号処理ブロック1042へ制御信号が出力され、ダイナミックレンジを2倍に拡大する処理動作が実行される。
例えば、被写体の背景の一部に極端に明るい部分がある場合などに、撮影者の判断によりメニュースイッチSW6を押圧操作して「ダイナミックレンジ2倍」の項目を選択することにより、ダイナミックレンジの拡大処理が行われる。なお、本実施形態では、上述したように、GフィルタがRフィルタやBフィルタの2倍程度の感度を有していることを前提としているため、極端に赤い光源下や青い光源下では、G画素の画素出力よりもR画素やB画素の画素出力の方が先に飽和してしまう場合がある。このような状況下でダイナミックレンジ拡大処理を行うと正確な階調および色再現が得られないので、このような場合には撮影者の判断により、「ダイナミックレンジ2倍」の項目を選択しないようにする。
図6は、第2のCCD信号処理ブロック1042内部の機能構成を示す機能ブロック図である。第2のCCD信号処理ブロック1042は、図6に示すように、ダイナミックレンジ拡大処理部(以下、「Dレンジ拡大処理部」という)51と、ホワイトバランス制御部52と、同時化部53と、トーンカーブ変換部54と、RGB−YUV変換部55と、画像サイズコンバータ部56と、輝度ヒストグラム生成部57と、エッジエンハンス部58とを備えている。
Dレンジ拡大処理部51は、RAW−RGBデータを入力してダイナミックレンジの拡大処理を実行し、処理したRGBデータをホワイトバランス制御部52に出力する。なお、このDレンジ拡大処理部51の詳細については後述する。
ホワイトバランス制御部52は、入力されるRGBデータのRGB値を増幅する。この際、CPUブロック1043は、第1のCCD信号処理ブロック1041で算出されたAWB評価値に基づいてホワイトバランスを合わせるための補正値を算出し、算出した補正値をホワイトバランス制御部52に出力する。ホワイトバランス制御部52は、入力される補正値に基づいてホワイトバランスを合わせる。
同時化部53は、1画素に1色のデータしか持っていないRGBデータに対して補間演算処理を行い、1画素に対してRGBの全てのデータを生成する。
トーンカーブ変換部54は、1画素あたり12ビットのRGBデータを8ビットのRGBデータに変換するγ変換を行って、RGB−YUV変換部55に出力する。
RGB−YUV変換部55は、入力されるRGBデータ(8ビット)をマトリックス演算によりYUVデータに変換し、画像サイズコンバータ部56に出力する。
画像サイズコンバータ部56は、入力されるYUVデータ(8ビット)に対して所望の画像サイズに縮小または拡大を行い、輝度ヒストグラム生成部57およびエッジエンハンス部58に出力する。
輝度ヒストグラム生成部57は、入力されるYUVデータにより輝度ヒストグラムを生成する。
エッジエンハンス部58は、入力されるYUVデータに対して画像に合わせたエッジ強調等の処理を行い、処理後のYUVデータをSDRAM10に保存する。
図7は、Dレンジ拡大処理部51の詳細を示すブロック図である。Dレンジ拡大処理部51は、図7に示すように、補正係数算出部61(特許請求の範囲に記載の「補正係数算出手段」に相当)と、RGB−YUVプレ変換部62(特許請求の範囲に記載の「第1の変換手段」に相当)と、補正処理部63(特許請求の範囲に記載の「補正処理手段」に相当)と、階調圧縮部64(特許請求の範囲に記載の「階調圧縮手段」に相当)と、YUV−RGB変換部65(特許請求の範囲に記載の「第2の変換手段」に相当)とを備える。
上記のRAW−RGBデータは、補正係数算出部61とRGB−YUVプレ変換部62とに入力される。
補正係数算出部61は、入力されるRAW−RGBデータからR画素の画素出力、G画素の画素出力、B画素の画素出力をそれぞれ検出するとともに、G画素の画素出力が飽和レベルTに達しているかを判定する。このとき、補正係数算出部61は、例えば図3中の太線Aで示す2×2画素(2つのG画素と、1つずつのR画素およびB画素)の集合を処理単位(以下、この処理単位とする画素の集合を「単位画素ブロック」という。)として、この単位画素ブロックに含まれるG画素の画素出力が飽和レベルTに達しているか否かを判定する。そして、補正係数算出部61は、G画素の画素出力が飽和レベルTに達している場合に、その単位画素ブロックに含まれるR画素やB画素の画素出力と、Gフィルタの感度特性とRフィルタやBフィルタの感度特性との比率とに基づいて、後述する補正係数を算出する。なお、補正係数算出部61は、単位画素ブロックに含まれるG画素の画素出力が飽和レベルTに達していない場合は、補正係数を“1”とする。
RGB−YUVプレ変換部62は、上記の単位画素ブロックごとに、入力されるRAW−RGBデータを、輝度(Y)データと色差(U,V)データとからなるYUVデータに変換する。第2のCCD信号処理ブロック1042では、上述したRGB−YUV変換部55においてYUVデータへの変換が行われるが、その前段のDレンジ拡大処理部51において、RGB−YUVプレ変換部62により、単位画素ブロックごとにRAW−RGBデータからYUVデータへの変換が行われる。RGB−YUVプレ変換部62により変換されたYUVデータは、輝度(Y)データと色差(U,V)データとに分離される。そして、輝度(Y)データは補正処理部63に入力され、色差(U,V)データはYUV−RGB変換部65に入力される。
補正処理部63は、RGB−YUVプレ変換部62から入力された輝度(Y)データに対して、補正係数算出部61で算出された補正係数を乗算することによって、輝度(Y)データを補正する。このとき、補正後の輝度(Y)データは12ビット(最大値4095)を超えたデータになるため、補正処理部63は、この輝度(Y)データを12ビットのデータから14ビットのデータに拡張する。つまり、補正処理部63は、輝度(Y)データを、最大値が8190となる14ビットのデータとして扱う。この14ビットのデータに拡張された補正後の輝度(Y)データは、階調圧縮部64に入力される。
なお、補正処理部63は、単位画素ブロックに含まれるG画素の画素出力が飽和レベルTに達しておらず、補正係数算出部61が算出した補正係数が“1”の場合は、輝度(Y)データの階調値を維持したまま、その輝度(Y)データを14ビットのデータとして扱う。
階調圧縮部64は、14ビットのデータに拡張された輝度(Y)データ(最大値8190)を、後述するビット圧縮変換特性に従って、12ビットのデータ(最大値4095)に圧縮する。この階調圧縮部64により12ビットのデータに圧縮された補正後の輝度(Y)データは、YUV−RGB変換部65に入力される。
YUV−RGB変換部65は、階調圧縮部64から入力された輝度(Y)データと、RGB−YUVプレ変換部62から入力された色差(U,V)データとからなるYUVデータを、RGBデータに変換する。このとき、変換元のYUVデータにおける色差(U,V)データは、補正処理部63や階調圧縮部64をバイパスしてYUV−RGB変換部65に入力されるため、元の階調値が維持されている。したがって、変換後のRGBデータは、輝度(Y)データにおいて支配的なG成分の輝度値が主に補正され、かつ、Dレンジ拡大処理部51に入力されたRAW−RGBデータに対してRGBの各色の彩度バランスが保たれたデータとなる。つまり、上記の構成によって、彩度バランスの崩れを招くことなくダイナミックレンジの拡大を実現することができる。
(補正係数の算出)
ここで、補正係数算出部61による補正係数の算出の具体例について説明する。補正係数算出部61は、例えば下記式(1)を用いて補正係数Kを算出する。
K={l×f(Ro)+m×f(Go)+n×f(Bo)}/3 ・・・(1)
この式(1)において、l、m、nはRGBの各フィルタの感度特性の比率から設定される係数であり、f(Ro)、f(Go)、f(Bo)は、下記の式(2)〜(4)で設定される係数である。
Figure 2012186776
この式(2)〜(4)において、RoはR画素の画素出力、TRはR画素の画素出力に対して設定される飽和判定レベルであり、GoはG画素の画素出力、TGはG画素の画素出力に対して設定される飽和判定レベルであり、BoはB画素の画素出力、TBはB画素の画素出力に対して設定される飽和判定レベルである。
上記式(2)〜(4)における飽和判定レベルTR、TG、TBは、RGBの各フィルタの感度特性に応じて設定される。本実施形態においては、上述したように、Gフィルタの感度が、RフィルタおよびBフィルタの感度の2倍程度であることを前提としているため、G画素の画素出力が上述した飽和レベルTに達した値を飽和判定レベルTGとし、飽和判定レベルTR、TBは、TGの1/2の値に設定した。この場合、上記式(1)における係数l、nをそれぞれ3/2、mを0とすることで、G画素の画素出力を予測補間する補正係数Kが算出される。そして、この補正係数Kを、YUVデータにおいてG成分が支配的となる成分である輝度(Y)データに乗算することで、彩度バランスを崩すことなく実質的にG画素の画素出力を補間して、ダイナミックレンジの拡大を実現することができる。
なお、上記式(2)〜(4)において、RGBの各画素出力が所定の飽和判定レベル(TR、TG、TB)以下の場合はf(Ro)、f(Go)、f(Bo)が“1”となるようにしているが、これは、補正係数を乗算することで輝度(Y)データの値が元の値よりも小さくならないように、つまり、補正係数を乗算した輝度(Y)データの値が、補正係数を乗算する前の値以上となるようにするためである。
すなわち、単位画素ブロック内にあるG画素の画素出力が飽和レベルTに達しているときでも、その周囲のR画素やB画素の画素出力が、G画素の画素出力に対して極端に小さい場合がある。この場合に、RGBの各画素出力が所定の飽和判定レベル(TR、TG、TB)よりも小さいときにf(Ro)、f(Go)、f(Bo)が“1”にならないと、G画素の画素出力が飽和レベルTに達しているにも関わらず、補正係数を乗算した輝度(Y)データの値を元の値よりも小さくしてしまう不具合が生じる。そこで、上記式(2)〜(4)のように、RGBの各画素出力が所定の飽和判定レベル(TR、TG、TB)よりも小さいときにはf(Ro)、f(Go)、f(Bo)が“1”になるようにして、ダイナミックレンジ拡大処理を適切に行えるようにしている。
(階調圧縮の変換特性)
次に、階調圧縮部64による輝度(Y)データの圧縮に用いる変換特性について説明する。階調圧縮部64は、例えば、図8(a)に示すようなビット圧縮変換特性(3箇所の節点を指定し、それらの間を直線で近似する4区間の折れ線近似特性)によって、14ビットに拡張された輝度(Y)データを12ビットに圧縮する。なお、図8(a)において、aは12ビットの範囲であり、bは最大値8190のデータを1/2倍する単純な線形変換特性(一点鎖線部分)である。
本実施形態では、階調圧縮部64が図8(a)の実線で示すような3つの節点を有する圧縮変換特性を用いて14ビットのデータを12ビットのデータに圧縮することで、単純な節点のない線形変換特性(図8(a)のb)を用いた場合には得られない以下のような効果が得られる。
すなわち、図8(a)のbのような線形変換特性を用いた場合、図8(a)のaで示す12ビットの範囲においても、14ビットデータで表される階調値を1/2にして12ビットデータに圧縮することになる。ここで、14ビットデータが12ビットで表される階調値を持つのは、G画素の画素出力が飽和レベルTに達しておらず、12ビットの輝度(Y)データを、その階調値を維持したまま14ビットデータとして扱った場合である。つまり、図8(a)のaで示す12ビットの範囲の階調値を1/2にして12ビットデータに圧縮することは、低輝度・中輝度レベルでの階調性の悪化につながり、画像の階調感を損なう要因となる。
これに対して、図8(a)の実線で示すような圧縮変換特性を用いて14ビットデータを12ビットデータに圧縮するようにすれば、輝度(Y)データの階調値の連続性を保ちながら、G画素の画素出力が飽和レベルTに達している場合の14ビットの輝度(Y)データを適切に12ビットデータに圧縮し、且つ、G画素の画素出力が飽和レベルTに達していない場合の14ビットの輝度(Y)データを、元の12ビットデータにできるだけ復元することが可能となる。その結果、低輝度・中輝度レベルでの階調性を維持しながら、14ビットデータから12ビットデータへの圧縮を適切に実施することが可能となる。
すなわち、図8(a)の実線で示すような圧縮変換特性は、G画素の画素出力が飽和レベルTに達している場合の輝度(Y)データに対する圧縮率よりも、G画素の画素出力が飽和レベルTに達していない場合の輝度(Y)データに対する圧縮率を小さくし、G画素の画素出力が飽和レベルTに達していない場合の輝度(Y)データに対する圧縮率を、輝度(Y)データの階調値が圧縮前と圧縮後でほぼ変わらないようにする変換特性である。このような圧縮変換特性を用いて14ビットデータを12ビットデータに圧縮することで、低輝度・中輝度レベルでの階調性を維持しながら、14ビットデータから12ビットデータへの圧縮を適切に実施することができる。
なお、図8(a)の実線で示す圧縮変換特性は、3つの節点を指定し、それらの間を直線で近似する4区間の折れ線近似特性であるが、この区間数は特に限定されるものではない。また、階調圧縮部64による輝度(Y)データの圧縮に用いる圧縮変換特性は、図8(a)のような折れ線近似特性に限らず、図8(b)に示すような、複数の節点を有していない曲線による変換特性としてもよい。すなわち、図8(a)の4区間を有する変換特性に対して、区間数を8192にしたものがこの曲線による圧縮変換特性となる。なお、図8(b)において、aは12ビットの範囲である。
また、上記のような圧縮変換特性を用いて14ビットデータを12ビットデータに圧縮する場合、入力14ビットデータの0〜8192に対して、12ビットに圧縮した後の数値データを持ったルックアップテーブルを設けておくことにより、処理を簡便且つ適切に実施することができる。
(実施形態の効果)
以上、具体的な例を挙げながら詳細に説明したように、本実施形態に係るデジタルカメラでは、Dレンジ拡大処理部51の補正係数算出部61が、単位画素ブロックに含まれるG画素の画素出力が飽和レベルTに達している場合に、その単位画素ブロックに含まれるR画素やB画素の画素出力と、Gフィルタの感度特性とRフィルタやBフィルタの感度特性との比率とに基づいて補正係数を算出する。また、RGB−YUVプレ変換部62が、入力されるRAW−RGBデータをYUVデータに変換する。そして、補正処理部63が、YUVデータの輝度(Y)データに対してのみ補正係数算出部61で算出された補正係数を乗算し、階調圧縮部64が、14ビットデータに拡張された輝度(Y)データを12ビットデータに圧縮している。したがって、本実施形態に係るデジタルカメラによれば、彩度バランスの崩れを招くことなくダイナミックレンジの拡大を実現することができ、撮影画像内の背景等に高輝度部分がある場合でも、白とびの発生を防止して良好な階調性を得ることが可能となる。
また、本実施形態に係るデジタルカメラでは、Dレンジ拡大処理部51に、輝度(Y)データのみを補正したYUVデータをRGBデータに変換するYUV−RGB変換部65が設けられているので、Dレンジ拡大処理部51以降のホワイトバランス制御部52や同時化部53、トーン変換部54での処理を従来と同様に実施することができ、汎用性が高い。
また、本実施形態に係るデジタルカメラでは、Dレンジ拡大処理部51の補正係数算出部61が、補正係数を乗算した輝度(Y)データの値が補正係数を乗算する前の値以上となるような補正係数を算出するので、G画素の画素出力が飽和レベルTに達しているにも関わらず、補正係数を乗算した輝度(Y)データの値を元の値よりも小さくしてしまうといった不具合を有効に回避して、ダイナミックレンジ拡大処理を適切に行うことができる。
また、本実施形態に係るデジタルカメラでは、Dレンジ拡大処理部51の階調圧縮部64が、G画素の画素出力が飽和レベルTに達している場合の輝度(Y)データに対する圧縮率よりも、G画素の画素出力が飽和レベルTに達していない場合の輝度(Y)データに対する圧縮率を小さくし、G画素の画素出力が飽和レベルTに達していない場合の輝度(Y)データに対する圧縮率を、輝度(Y)データの階調値が圧縮前と圧縮後で略同じ値となる圧縮率としているので、低輝度・中輝度レベルでの階調性を維持しながら、14ビットデータから12ビットデータへの圧縮を適切に実施することができる。
(変形例)
なお、上記の説明では、図3中の太線Aで示した2×2画素の集合を、処理単位となる単位画素ブロックとしたが、より多くの画素の集合を、処理単位となる単位画素ブロックとしてもよい。例えば、図9中の太線B内の5画素(1つのG画素と、2つずつのR画素(R1、R2)およびB画素)の集合を単位画素ブロックとすることが考えられる。この場合、補正係数算出部61は、単位画素ブロック内のG画素の画素出力が飽和レベルTに達している場合に、その単位画素ブロックに含まれる2つのR画素(R1、R2)の画素出力の平均値と、2つのB画素(B1、B2)の画素出力の平均値とを求め、求めた平均値をそれぞれR画素の画素出力、B画素の画素出力として用いて、上述した補正係数を算出する。
すなわち、補正係数算出部61は、例えば下記式(5)を用いて補正係数Kを算出する。
K={l×f(Ra)+m×f(Ga)+n×f(Ba)}/3 ・・・(5)
この式(5)において、l、m、nはRGBの各フィルタの感度特性の比率から設定される係数であり、f(Ra)、f(Ga)、f(Ba)は、下記の式(6)〜(8)で設定される係数である。
Figure 2012186776
この式(6)〜(8)において、Raは単位画素ブロック内のR画素の画素出力の平均値、R画素の画素出力に対して設定される飽和判定レベルであり、Gaは単位画素ブロック内のG画素の画素出力、TGはG画素の画素出力に対して設定される飽和判定レベルであり、Baは単位画素ブロック内のB画素の画素出力の平均値、TBはB画素の画素出力に対して設定される飽和判定レベルである。
なお、上記の説明と同様に、Gフィルタの感度が、RフィルタおよびBフィルタの感度の2倍程度である場合、TGは、G画素の画素出力が上述した飽和レベルTに達した値とし、飽和判定レベルTR、TBは、TGの1/2の値に設定すればよい。また、この場合、係数l、nはそれぞれ3/2、mは0となる。これにより、単位画素ブロックを広い領域とした場合にも、上記の説明と同様に、G画素の画素出力を予測補間する補正係数Kを算出することができる。
このように、処理単位となる単位画素ブロックを広い領域とすることで、単位画素ブロック内のG画素以外のR画素やB画素が持っている感度差による影響を緩和することができ、より正確なダイナミックレンジ拡大処理を実現することができる。
[第2の実施形態]
次に、第2の実施形態に係るデジタルカメラについて説明する。本実施形態は、ダイナミックレンジの拡大率をユーザ操作に応じて変更できるようにしたものである。なお、デジタルカメラの基本構成およびダイナミックレンジ拡大処理の基本動作は第1の実施形態と同様であるため、以下、第1の実施形態と同様の部分については重複した説明を省略し、本実施形態に特徴的な部分についてのみ説明する。
図10(a)は、G画素の画素出力が飽和レベルTを超えたある撮影画像に対して、ダイナミックレンジを2倍にする上述したダイナミックレンジ拡大処理を実施した場合に、輝度ヒストグラム生成部57で生成されたヒストグラムの一例を示す図である。また、図10(b)は、G画素の画素出力が飽和レベルTを超えた撮影画像に対して、上述したダイナミックレンジ拡大処理を行わなかった場合に、輝度ヒストグラム生成部57で生成されたヒストグラムの一例を示す図である。 なお、図10(a)および図10(b)において、横軸は輝度(0〜255の256階調(8ビット))を表し、縦軸は画素の発生頻度(0〜1(=100%))を表している。
図10(b)に示すヒストグラムから分かるように、ダイナミックレンジ拡大処理を行わなかった場合には、最大輝度部分(255)付近に画素の発生があり、白飛びが発生している。これに対し、ダイナミックレンジ拡大処理を行った場合には、図10(a)に示すヒストグラムの例から分かるように、最大輝度部分(255)付近では白飛びがほとんど発生していない。このように、ダイナミックレンジ拡大処理を実施することで、最大輝度部分における白飛びの発生が抑制される。
しかしながら、図10(a)に示すヒストグラムでは、最大輝度部分(255)付近に画素が殆どない領域が存在している。これは、この最大輝度部分付近にはもともと画像データが存在しないのに、ダイナミックレンジを必要以上に広く拡大してしまったことによるものであり、RGBの8ビットで表現可能な全階調(0〜255の256階調)を有効に利用できていないことを意味する。そこで、本実施形態では、G画素の画素出力が飽和レベルTを超えている撮影画像に対して、RGBの8ビットで表現可能な全階調の範囲を有効に利用することができるように、ダイナミックレンジの拡大率を、例えば、上述した2倍以外に1.6倍と1.3倍に変更できるようにしている。
本実施形態では、ユーザ操作に従って、プロセッサ104内のCPUブロック1043がダイナミックレンジの拡大率を設定する。このため、本実施形態に係るデジタルカメラは、ダイナミックレンジの拡大率を指定するユーザ操作を受け付けるユーザインタフェースを備える。
具体的には、本実施形態に係るデジタルカメラでは、撮影者がメニュースイッチSW6を押圧操作することにより、例えば図11(a)に示すような撮影設定画面がLCDモニタ9に表示される。この図11(a)に示す撮影設定画面では、ダイナミックレンジの拡大率を2倍に設定できる。ダイナミックレンジの拡大率を2倍に設定する場合、ユーザは、下/マクロスイッチSW10の操作と右スイッチSW8の操作によりこの撮影設定画面から「ダイナミックレンジ2倍」の項目を選択し、OKスイッチSW12を押圧操作して「ダイナミックレンジ2倍」をONにする。これにより、CPUブロック1043(特許請求の範囲に記載の「拡大率設定手段」に相当)がダイナミックレンジの拡大率を2倍に設定し、CPUブロック1043から第2のCCD信号処理ブロック1042へ制御信号が出力され、ダイナミックレンジを2倍に拡大する処理動作が実行される。
また、ダイナミックレンジの拡大率を2倍以外の他の倍率に設定したい場合、ユーザは、図11(a)に示す撮影設定画面がLCDモニタ9に表示されている状態で、例えば、左/画像確認スイッチSW11を操作する。これにより、LCDモニタ9に表示される撮影設定画面が図11(a)の画面から図11(b)の画面に遷移する。この図11(b)に示す撮影設定画面では、ダイナミックレンジの拡大率を1.6倍に設定できる。ダイナミックレンジの拡大率を1.6倍に設定する場合、ユーザは、下/マクロスイッチSW10の操作と右スイッチSW8の操作によりこの撮影設定画面から「ダイナミックレンジ1.6倍」の項目を選択し、OKスイッチSW12を押圧操作して「ダイナミックレンジ1.6倍」をONにする。これにより、CPUブロック1043がダイナミックレンジの拡大率を1.6倍に設定し、CPUブロック1043から第2のCCD信号処理ブロック1042へ制御信号が出力され、ダイナミックレンジを1.6倍に拡大する処理動作が実行される。
また、ダイナミックレンジの拡大率を1.3倍に設定したい場合、ユーザは、図11(b)に示す撮影設定画面がLCDモニタ9に表示されている状態で、例えば、左/画像確認スイッチSW11を操作する。これにより、LCDモニタ9に表示される撮影設定画面が図11(b)の画面から図11(c)の画面に遷移する。この図11(c)に示す撮影設定画面では、ダイナミックレンジの拡大率を1.3倍に設定できる。ダイナミックレンジの拡大率を1.3倍に設定する場合、ユーザは、下/マクロスイッチSW10の操作と右スイッチSW8の操作によりこの撮影設定画面から「ダイナミックレンジ1.3倍」の項目を選択し、OKスイッチSW12を押圧操作して「ダイナミックレンジ1.3倍」をONにする。これにより、CPUブロック1043がダイナミックレンジの拡大率を1.3倍に設定し、CPUブロック1043から第2のCCD信号処理ブロック1042へ制御信号が出力され、ダイナミックレンジを1.3倍に拡大する処理動作が実行される。
本実施形態に係るデジタルカメラでは、以上のように、ユーザ操作に応じてダイナミックレンジの拡大率を2倍、1.6倍、1.3倍と3段階で切り替えて設定できるようにしている。ただし、このような3段階の切り替えはあくまで一例であり、2段階の切り替え
であってもよいし、4段階以上の多段階の切り替えであってもよい。
ユーザは、例えば、撮影したい被写体の背景の一部に極端に明るい部分がある場合などには、ダイナミックレンジの拡大率を低めに設定する操作を行う。また、ユーザは、図10(a)に示したような輝度ヒストグラム生成部57が生成するヒストグラムをLCDモニタ9にて確認し、現在設定されているダイナミックレンジの拡大率では最大輝度付近に画素が殆ど存在しない領域がある場合に、ダイナミックレンジの拡大率を現在設定されている拡大率よりも低い拡大率に設定する操作を行う。これにより、RGBの8ビットで表現可能な全階調の範囲を有効に利用してダイナミックレンジを拡大することができる。
ダイナミックレンジの拡大率が変更された場合、Dレンジ拡大処理部51の階調圧縮部64は、変更後のダイナミックレンジの拡大率に対応した圧縮率で、14ビットのデータに拡張された輝度(Y)データ(最大値8190)を、12ビットのデータ(最大値4095)に圧縮する。
具体的には、図8(a)または図8(b)に示した階調圧縮のためのビット圧縮変換特性を、設定可能な複数のダイナミックレンジの拡大率ごとに予め設定し、これら複数のビット圧縮変換特性を複数のダイナミックレンジの拡大率に対応付けて階調圧縮部64が保持する。階調圧縮部64は、CPUブロック1043によりダイナミックレンジの拡大率が設定されると、設定されたダイナミックレンジの拡大率に対応するビット圧縮変換特性を読み出して、その変換特性に従って、14ビットのデータに拡張された輝度(Y)データを12ビットのデータに圧縮する。なお、ダイナミックレンジの拡大率1.6倍に対応するビット圧縮変換特性では、14ビットデータにおける6826を、12ビットデータの最大値である4095に圧縮し、ダイナミックレンジの拡大率1.3倍に対応するビット圧縮変換特性では、14ビットデータにおける5461を、12ビットデータの最大値である4095に圧縮する。
以上のように、本実施形態に係るデジタルカメラでは、ダイナミックレンジの拡大率をユーザ操作に応じて変更できるようにしているので、RGBの8ビットで表現可能な全階調の範囲を有効に利用してダイナミックレンジを拡大することができる。
[第3の実施形態]
次に、第3の実施形態に係るデジタルカメラについて説明する。本実施形態は、プロセッサ104内のCPUブロック1043が、輝度ヒストグラム生成部57で生成されたヒストグラムを解析し、その結果に従ってダイナミックレンジの拡大率を自動的に(ユーザ操作によらず)設定するようにしたものである。なお、デジタルカメラの基本構成およびダイナミックレンジ拡大処理の基本動作は第1の実施形態と同様であるため、以下、第1の実施形態と同様の部分については重複した説明を省略し、本実施形態に特徴的な部分についてのみ説明する。
本実施形態に係るデジタルカメラでは、プロセッサ104内のCPUブロック1043が、輝度ヒストグラム生成部57で生成されたヒストグラムに対し、最大輝度側から低輝度側に向けて画素の発生頻度を順次検出していく。そして、このヒストグラムにおいて画素の発生頻度が予め定めた規定値以上になる位置を特定し、この位置がヒストグラムの新たな最大輝度位置とするように、ダイナミックレンジの拡大率を設定する。
図12(a)は、G画素の画素出力が飽和レベルTを超えたある撮影画像に対して、ダイナミックレンジを2倍にする上述したダイナミックレンジ拡大処理を実施した場合に、輝度ヒストグラム生成部57で生成されたヒストグラムの一例を示す図である。なお、図12(a)において、横軸は輝度(0〜255の256階調(8ビット))を表し、縦軸は画素の発生頻度(0〜1(=100%))を表している。
CPUブロック1043は、この図12(a)に示すようなヒストグラムに対して、最大輝度(255)側から低輝度側に向けて、各輝度値を持つ画素の発生頻度をカウントしていく。そして、CPUブロック1043は、カウントした最大輝度(255)付近での画素の発生頻度が予め定めた規定値(例えば、0.01)以上になる位置(ポイント)を、ダイナミックレンジ拡大後の新たな輝度の最大値(最大輝度)となるように、ダイナミックレンジの拡大率を設定する。すなわち、CPUブロック1043は、図12(a)に示すようなヒストグラムに対して、最大輝度(255)側から低輝度側に向けて画素の発生頻度をカウントしたときに、画素の発生頻度が予め定められた規定値以上になる位置までが拡大範囲となるように、ダイナミックレンジの拡大率を設定する。
図12(a)のヒストグラムでは、最大輝度(255)付近の矢印aで示した箇所が、画素の発生頻度が規定値以上になる位置(ポイント)である。この場合、Dレンジ拡大処理部51の階調圧縮部64は、この矢印aで示したポイントが、14ビットデータを12ビットデータへ圧縮変換するときの最大値(4095)に変換するポイントとなるようなビット圧縮変換特性を用いて、14ビットのデータに拡張された輝度(Y)データを12ビットのデータに圧縮する。
図12(b)は、CPUブロック1043により新たに設定されたダイナミックレンジの拡大率に従ってダイナミックレンジ拡大処理を実施した場合に、輝度ヒストグラム生成部57で生成されたヒストグラムの一例を示す図である。なお、図12(b)において、横軸は輝度(0〜255の256階調(8ビット))を表し、縦軸は画素の発生頻度(0〜1(=100%))を表している。
図12(b)に示すヒストグラムは、図12(a)に示すヒストグラムと比較して、最大輝度(255)まで画素が発生しており、RGBの8ビットで表現可能な全階調の範囲を有効に利用できていることが分かる。
なお、以上の説明では、画素の発生頻度に対する閾値として用いる既定値として0.01を例示したが、既定値はこの数値に限定されるものではなく、0(ゼロ)以上としてもよい。既定値が0(ゼロ)以上ということは、ダイナミックレンジの拡大率を2倍としたときの輝度の最大値(最大輝度部分(255))を検出し、その検出値が最終的なダイナミックレンジの最大値となることを意味している。
以上のように、本実施形態に係るデジタルカメラでは、CPUブロック1043がヒストグラムを解析した結果に従ってダイナミックレンジの拡大率を自動的に設定するようにしているので、ユーザの操作負担を軽減しながら、RGBの8ビットで表現可能な全階調の範囲を有効に利用してダイナミックレンジを拡大することができる。
[第4の実施形態]
次に、第4の実施形態に係るデジタルカメラについて説明する。本実施形態は、第3の実施形態と同様に、CPUブロック1043が、輝度ヒストグラム生成部57で生成されたヒストグラムを解析してダイナミックレンジの拡大率を自動的に設定するが、その具体的な手法が第3の実施形態とは異なるものである。なお、デジタルカメラの基本構成およびダイナミックレンジ拡大処理の基本動作は第1の実施形態と同様であるため、以下、第1の実施形態と同様の部分については重複した説明を省略し、本実施形態に特徴的な部分についてのみ説明する。
本実施形態に係るデジタルカメラでは、プロセッサ104内のCPUブロック1043が、輝度ヒストグラム生成部57で生成されたヒストグラムに対し、低輝度側から最大輝度側に向けて画素の発生頻度をカウントしていく。そして、そのカウント値が、ヒストグラムに含まれる全ての輝度領域についてカウントした場合の全カウント値に対して、予め定めた割合に達する位置を特定し、この位置がヒストグラムの新たな最大輝度位置とするように、ダイナミックレンジの拡大率を設定する。
図13(a)は、G画素の画素出力が飽和レベルTを超えたある撮影画像に対して、ダイナミックレンジを2倍にする上述したダイナミックレンジ拡大処理を実施した場合に、輝度ヒストグラム生成部57で生成されたヒストグラムの一例を示す図である。このときの撮影画像には、ごく狭いエリアに高輝度の発光体が存在する。このため、図13(a)に示すヒストグラムでは、最大輝度(255)付近(図中のaで示した箇所)に、高輝度の発光体に対応した画素が表れている。なお、図13(a)において、横軸は輝度(0〜255の256階調(8ビット))を表し、縦軸は画素の発生頻度(0〜1(=100%))を表している。
本実施形態に係るデジタルカメラにおいて、CPUブロック1043は、この図13(a)に示すようなヒストグラムに対して、低輝度側から最大輝度(255)側に向けて、各輝度値を持つ画素の発生頻度をカウントしていく。そして、CPUブロック1043は、低輝度側からカウントした画素の発生頻度のカウント値が、ヒストグラムに含まれる全ての輝度領域について画素の発生頻度をカウントした場合の全カウント値に対して、予め定めた割合(例えば98%)に達する位置(ポイント)を、ダイナミックレンジ拡大後の新たな輝度の最大値(最大輝度)となるように、ダイナミックレンジの拡大率を設定する。 すなわち、CPUブロック1043は、図13(a)に示すようなヒストグラムに対して、低輝度側からカウントした画素の発生頻度のカウント値がヒストグラム全体の全カウント値に対して予め定めた割合になる位置までが拡大範囲となるように、ダイナミックレンジの拡大率を設定する。
図13(a)のヒストグラムでは、図中のbで示した箇所が、低輝度側からの画素の発生頻度のカウント値が全体の98%に達する位置(ポイント)である。この場合、Dレンジ拡大処理部51の階調圧縮部64は、このbで示したポイントが、14ビットデータを12ビットデータへ圧縮変換するときの最大値(4095)に変換するポイントとなるようなビット圧縮変換特性を用いて、14ビットのデータに拡張された輝度(Y)データを12ビットのデータに圧縮する。
図13(a)のヒストグラムに対して、第3の実施形態で説明した方法で新たな輝度の最大値(最大輝度)を定めようとした場合、高輝度の発光体に対応した画素が表れる図中のaの位置で画素の発生頻度が大きいため、このaの位置が最大輝度の位置となる。このため、ダイナミックレンジの拡大率は2倍からほとんど変化せず、利用可能な全階調の範囲を有効利用する効果を得ることが難しい。これに対して、本実施形態の方法で新たな輝度の最大値(最大輝度)を定めるようにすれば、画像内に高輝度の発光体が含まれる場合であっても、ダイナミックレンジの拡大率を最適な値に変更し、利用可能な全階調の範囲を有効利用する効果を得ることが可能となる。
図13(b)は、CPUブロック1043により新たに設定されたダイナミックレンジの拡大率に従ってダイナミックレンジ拡大処理を実施した場合に、輝度ヒストグラム生成部57で生成されたヒストグラムの一例を示す図である。なお、図13(b)において、横軸は輝度(0〜255の256階調(8ビット))を表し、縦軸は画素の発生頻度(0〜1(=100%))を表している。
図13(b)に示すヒストグラムは、図13(a)に示すヒストグラムと比較して、最大輝度(255)まで画素が発生しており、RGBの8ビットで表現可能な全階調の範囲を有効に利用できていることが分かる。なお、図中のaで示す箇所は、高輝度の発光体を映した画素が飽和していることを表しているが、このような高輝度の発光体を映した画素は飽和しても不自然にならないため、画質の劣化は生じない。
以上のように、本実施形態に係るデジタルカメラでは、CPUブロック1043がヒストグラムを解析した結果に従ってダイナミックレンジの拡大率を自動的に設定するようにしているので、ユーザの操作負担を軽減しながら、RGBの8ビットで表現可能な全階調の範囲を有効に利用してダイナミックレンジを拡大することができる。また、飽和しても不自然とならない高輝度の発光体などは飽和させるようにしているので、高輝度の発光体以外の範囲においてダイナミックレンジを有効に拡大することができる。
なお、以上説明した第1乃至第4の本実施形態に係るデジタルカメラにおいて、Dレンジ拡大処理部51の機能は、例えば、ROM108に格納された制御プログラムにより実現することができる。また、Dレンジ拡大処理部51の機能を実現するプログラムを、インストール可能な形式又は実行可能な形式のファイルでCD−ROM、フレキシブルディスク(FD)、CD−R、DVD(Digital Versatile Disc)等のコンピュータで読み取り可能な記録媒体に記録して提供するように構成してもよい。さらに、Dレンジ拡大処理部51の機能を実現するプログラムを、インターネット等のネットワークに接続されたコンピュータ上に格納し、ネットワーク経由でダウンロードさせることにより提供するように構成してもよい。また、Dレンジ拡大処理部51の機能を実現するプログラムを、インターネット等のネットワーク経由で提供または配布するように構成してもよい。
Dレンジ拡大処理部51の機能を実現するプログラムは、上述した補正係数算出部61、RGB−YUVプレ変換部62、補正処理部63、階調圧縮部64およびYUV−RGB変換部65を含むモジュール構成となっており、実際のハードウェアとしては、プロセッサ104内のCPUブロック1043が、上記プログラムをROM108から読み出して実行することにより、上記各部が第2のCCD信号処理ブロック1042に生成されるようになっている。
以上、本発明の具体的な実施形態について説明したが、本発明は、上述した実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で様々な変形を加えて具体化することができる。つまり、上述したデジタルカメラの構成や動作はあくまで具体的な一例を例示したものであり、用途や目的に応じて様々な変形が可能である。
51 Dレンジ拡大処理部
61 補正係数算出部
62 RGB−YUVプレ変換部
63 補正処理部
64 階調圧縮部
65 YUV−RGB変換部
101 CCD
104 プロセッサ
1042 第2のCCD信号処理ブロック
特開2009−89355号公報

Claims (12)

  1. 光学系を通して入射される被写体像を複数の画素を有する受光面に受光して電気信号に変換するとともに、前記受光面の各画素の前面側に複数色のフィルタからなる色分解フィルタが配置された撮像素子と、
    前記複数色のうちの特定色のフィルタが配置された画素からの出力が所定の飽和レベルに達している場合に、当該画素の周囲の前記特定色以外のフィルタが配置された画素からの出力と、前記特定色のフィルタの感度特性と前記特定色以外のフィルタの感度特性との比率とに基づいて、補正係数を算出する補正係数算出手段と、
    前記特定色のフィルタが配置された画素からの出力と、前記特定色以外のフィルタが配置された画素からの出力とを含むRGBデータを、輝度データと色差データとからなるYUVデータに変換する第1の変換手段と、
    前記YUVデータの輝度データに対して前記補正係数を乗算し、当該輝度データを第1のビット数のデータから第2のビット数のデータに拡張する補正処理手段と、
    前記第2のビット数のデータに拡張された前記輝度データを、前記第1のビット数のデータに圧縮する階調圧縮手段と、を備えることを特徴とする撮像装置。
  2. 前記圧縮が行われた輝度データと前記色差データとからなるYUVデータをRGBデータに変換する第2の変換手段をさらに備えることを特徴とする請求項1に記載の撮像装置。
  3. 前記補正係数算出手段は、前記補正係数を乗算した前記輝度データの値が、前記補正係数を乗算する前の値以上となるように、前記補正係数を算出することを特徴とする請求項1または2に記載の撮像装置。
  4. 前記補正処理手段は、前記特定色のフィルタが配置された画素からの出力が前記飽和レベルに達していない場合は、前記輝度データを、階調値を維持したまま前記第1のビット数のデータから前記第2のビット数のデータに拡張し、
    前記階調圧縮手段は、前記特定色のフィルタが配置された画素からの出力が前記飽和レベルに達している場合の前記輝度データに対する圧縮率よりも、前記特定色のフィルタが配置された画素からの出力が前記飽和レベルに達していない場合の前記輝度データに対する圧縮率を小さくして圧縮することを特徴とする請求項1〜3のいずれか一項に記載の撮像装置。
  5. 前記階調圧縮手段は、前記特定色のフィルタが配置された画素からの出力が前記飽和レベルに達していない場合の前記輝度データに対する圧縮率を、前記輝度データの階調値が圧縮前と圧縮後で略同じ値となる圧縮率とすることを特徴とする請求項4に記載の撮像装置。
  6. 前記補正係数算出手段は、前記特定色のフィルタが配置された画素からの出力が前記飽和レベルに達している場合に、当該画素の周囲の前記特定色以外のフィルタであって同色のフィルタが配置された複数の画素からの出力の平均値と、前記特定色のフィルタの感度特性と前記特定色以外のフィルタとの感度特性との比率とに基づいて、補正係数を算出することを特徴とする請求項1〜5のいずれか一項に記載の撮像装置。
  7. ダイナミックレンジの拡大率を設定する拡大率設定手段をさらに備え、
    前記階調圧縮手段は、前記拡大率設定手段により設定されたダイナミックレンジの拡大率に対応した圧縮率で、前記第2のビット数のデータに拡張された前記輝度データを、前記第1のビット数のデータに圧縮することを特徴とする請求項1〜6のいずれか一項に記載の撮像装置。
  8. 前記階調圧縮手段は、前記第2のビット数のデータと前記第1のビット数のデータとを対応づけた圧縮変換特性を、複数のダイナミンクレンジの拡大率それぞれに対応付けて複数保持し、前記拡大率設定手段により設定されたダイナミックレンジの拡大率に対応した前記圧縮変換特性に従って、前記第2のビット数のデータに拡張された前記輝度データを、前記第1のビット数のデータに圧縮することを特徴とする請求項7に記載の撮像装置。
  9. ダイナミックレンジの拡大率を指定するユーザ操作を受け付けるユーザインタフェースをさらに備え、
    前記拡大率設定手段は、前記ユーザインタフェースが受け付けたユーザ操作に従ってダイナミックレンジの拡大率を設定することを特徴とする請求項7または8に記載の撮像装置。
  10. 画像の低輝度から最大輝度間における画素の発生頻度を表したヒストグラムを生成するヒストグラム生成手段をさらに備え、
    前記拡大率設定手段は、前記ヒストグラムに対し最大輝度側から低輝度側に向けて画素の発生頻度を検出したときに、画素の発生頻度が予め定めた規定値以上になる位置を前記ヒストグラムの新たな最大輝度位置とするように、ダイナミックレンジの拡大率を設定することを特徴とする請求項7または8に記載の撮像装置。
  11. 画像の低輝度から最大輝度間における画素の発生頻度を表したヒストグラムを生成するヒストグラム生成手段をさらに備え、
    前記拡大率設定手段は、前記ヒストグラムに対し低輝度側から最大輝度側に向けてカウントした画素の発生頻度のカウント値が、全ての輝度領域についてカウントした全カウント値に対して予め定めた割合に達する位置を前記ヒストグラムの新たな最大輝度位置とするように、ダイナミックレンジの拡大率を設定することを特徴とする請求項7または8に記載の撮像装置。
  12. 光学系を通して入射される被写体像を複数の画素を有する受光面に受光して電気信号に変換するとともに、前記受光面の各画素の前面側に複数色のフィルタからなる色分解フィルタが配置された撮像素子を備えた撮像装置において実行される撮像方法であって、
    前記複数色のうちの特定色のフィルタが配置された画素からの出力が所定の飽和レベルに達している場合に、当該画素の周囲の前記特定色以外のフィルタが配置された画素からの出力と、前記特定色のフィルタの感度特性と前記特定色以外のフィルタの感度特性との比率とに基づいて、補正係数を算出するステップと、
    前記特定色のフィルタが配置された画素からの出力と、前記特定色以外のフィルタが配置された画素からの出力とを含むRGBデータを、輝度データと色差データとからなるYUVデータに変換するステップと、
    前記YUVデータの輝度データに対して前記補正係数を乗算し、当該輝度データを第1のビット数のデータから第2のビット数のデータに拡張するステップと、
    前記第2のビット数のデータに拡張された前記輝度データを、前記第1のビット数のデータに圧縮するステップと、を含むことを特徴とする撮像方法。
JP2011092336A 2011-02-14 2011-04-18 撮像装置および撮像方法 Active JP5803233B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011092336A JP5803233B2 (ja) 2011-02-14 2011-04-18 撮像装置および撮像方法
EP12164456.1A EP2515543B1 (en) 2011-04-18 2012-04-17 Image capturing apparatus and image capturing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011028899 2011-02-14
JP2011028899 2011-02-14
JP2011092336A JP5803233B2 (ja) 2011-02-14 2011-04-18 撮像装置および撮像方法

Publications (2)

Publication Number Publication Date
JP2012186776A true JP2012186776A (ja) 2012-09-27
JP5803233B2 JP5803233B2 (ja) 2015-11-04

Family

ID=46317123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011092336A Active JP5803233B2 (ja) 2011-02-14 2011-04-18 撮像装置および撮像方法

Country Status (2)

Country Link
EP (1) EP2515543B1 (ja)
JP (1) JP5803233B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014051059A1 (ja) * 2012-09-28 2014-04-03 国立大学法人 東京大学 絞り装置、集光装置、及び撮像装置
KR20190143260A (ko) * 2018-06-20 2019-12-30 삼성전자주식회사 이미지 복원 장치 및 방법
CN113741843A (zh) * 2021-08-30 2021-12-03 浙江大华技术股份有限公司 校正系数的处理方法、装置、系统、电子装置和存储介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3276956B1 (en) * 2015-03-26 2021-07-21 Sony Corporation Image processing device and image processing method, and program

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI296394B (en) * 2005-03-15 2008-05-01 Sunplus Technology Co Ltd Method and apparatus of image dynamic response re-mapping and digital camera using the same
JP5091781B2 (ja) 2007-09-14 2012-12-05 株式会社リコー 撮像装置および撮像方法
WO2009035148A1 (en) * 2007-09-14 2009-03-19 Ricoh Company, Ltd. Imaging apparatus and imaging method
JP5223686B2 (ja) * 2009-01-07 2013-06-26 株式会社リコー 撮像装置および撮像方法
JP5752133B2 (ja) * 2009-10-08 2015-07-22 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation デジタル画像を低ダイナミック・レンジ(ldr)画像から高ダイナミック・レンジ(hdr)画像に変換するための方法およびシステム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014051059A1 (ja) * 2012-09-28 2014-04-03 国立大学法人 東京大学 絞り装置、集光装置、及び撮像装置
KR20190143260A (ko) * 2018-06-20 2019-12-30 삼성전자주식회사 이미지 복원 장치 및 방법
KR102465070B1 (ko) * 2018-06-20 2022-11-09 삼성전자주식회사 이미지 복원 장치 및 방법
CN113741843A (zh) * 2021-08-30 2021-12-03 浙江大华技术股份有限公司 校正系数的处理方法、装置、系统、电子装置和存储介质

Also Published As

Publication number Publication date
EP2515543B1 (en) 2018-02-21
EP2515543A2 (en) 2012-10-24
JP5803233B2 (ja) 2015-11-04
EP2515543A3 (en) 2013-09-18

Similar Documents

Publication Publication Date Title
JP5347707B2 (ja) 撮像装置および撮像方法
US8269852B2 (en) Imaging apparatus and imaging method
KR101388130B1 (ko) 화상처리장치 및 화상처리방법
JP5123137B2 (ja) 撮像装置および撮像方法
US7884866B2 (en) Imaging apparatus and imaging method
JP2007067815A (ja) 画像処理装置及び画像処理方法
JP2007251860A (ja) 画像データのカラーノイズ除去方法及びこの方法を用いた撮像装置
JP2017022610A (ja) 画像処理装置、画像処理方法
JP2013034261A (ja) 撮像装置、撮像方法
JP5223686B2 (ja) 撮像装置および撮像方法
JP2017085481A (ja) 映像処理装置、映像処理方法、及び映像処理プログラム
JP5984975B2 (ja) 撮像装置、撮像方法、およびプログラム
JP5803233B2 (ja) 撮像装置および撮像方法
JP5277863B2 (ja) 撮像装置および撮像方法
JP6092690B2 (ja) 撮像装置およびその制御方法
JP2008109305A (ja) 画像処理装置および画像処理装置の制御方法
JP5091781B2 (ja) 撮像装置および撮像方法
JP5310331B2 (ja) 撮像装置および撮像方法
JP2010068331A (ja) 撮像装置および撮像方法
JP2009118052A (ja) 画像信号処理方法及び装置
JP5091734B2 (ja) 撮像装置および撮像方法
US8854256B2 (en) Image capture apparatus and method of controlling the same
JP2013090094A (ja) 画像処理装置及び画像処理装置の制御方法
JP5145876B2 (ja) 撮像装置および撮像方法
JP5169540B2 (ja) 撮像装置および撮像方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150817

R151 Written notification of patent or utility model registration

Ref document number: 5803233

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151