JP2012173510A - Organic developing process method and organic developing process device - Google Patents

Organic developing process method and organic developing process device Download PDF

Info

Publication number
JP2012173510A
JP2012173510A JP2011035310A JP2011035310A JP2012173510A JP 2012173510 A JP2012173510 A JP 2012173510A JP 2011035310 A JP2011035310 A JP 2011035310A JP 2011035310 A JP2011035310 A JP 2011035310A JP 2012173510 A JP2012173510 A JP 2012173510A
Authority
JP
Japan
Prior art keywords
substrate
organic
development processing
developer
development
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011035310A
Other languages
Japanese (ja)
Other versions
JP5275385B2 (en
Inventor
Koichi Mototake
幸一 本武
Hideji Kyoda
秀治 京田
Takafumi Niwa
崇文 丹羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2011035310A priority Critical patent/JP5275385B2/en
Priority to KR1020120003374A priority patent/KR101842720B1/en
Publication of JP2012173510A publication Critical patent/JP2012173510A/en
Application granted granted Critical
Publication of JP5275385B2 publication Critical patent/JP5275385B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2041Exposure; Apparatus therefor in the presence of a fluid, e.g. immersion; using fluid cooling means
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70341Details of immersion lithography aspects, e.g. exposure media or control of immersion liquid supply

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an organic developing process method and an organic developing process device capable of stabilizing a fine line width in a circuit pattern and improving throughput without using a rinsing liquid and without being influenced by a time difference in an organic developing process.SOLUTION: The developing process device carries out development by supplying a developing solution to the surface of a wafer W after a resist is applied thereon and exposed, and the device includes: a developing nozzle 30 that discharges the developing solution containing an organic solvent simultaneously to the entire surface area of the wafer W; and a gas nozzle 40 that discharges N2 gas for stopping the development and for drying to the entire surface area of the wafer W. After a liquid film of the developing solution containing the organic solvent is simultaneously formed on the entire surface area of the wafer W by discharging the developing solution to the entire surface of the wafer W from the developing nozzle 30, N2 gas is discharged to the entire surface of the wafer W from the gas nozzle 40 to stop the development as well as to remove the developing solution to dry the wafer W.

Description

この発明は、有機溶剤を含有する現像液を用いた有機現像処理方法及び有機現像処理装置に関するものである。   The present invention relates to an organic development processing method and an organic development processing apparatus using a developer containing an organic solvent.

半導体製造工程においては、例えば半導体ウエハ等の基板の上に例えば化学増幅型のフォトレジストを塗布し、レジスト膜を所定の回路パターンに応じて露光し、現像処理することにより回路パターンを形成するフォトリソグラフィ工程が採用されている。   In a semiconductor manufacturing process, for example, a chemical amplification type photoresist is applied onto a substrate such as a semiconductor wafer, the resist film is exposed according to a predetermined circuit pattern, and developed to form a circuit pattern. A lithography process is employed.

フォトリソグラフィ工程において、アルカリ現像液を用いたアルカリ現像方法(ポジ現像方法ともいう)に代えて、有機溶剤を含有する現像液を用いた有機現像方法(ネガ現像方法ともいう)が行われている(例えば、特許文献1参照)。   In the photolithography process, an organic development method using a developer containing an organic solvent (also referred to as a negative development method) is performed instead of an alkali development method using an alkali developer (also referred to as a positive development method). (For example, refer to Patent Document 1).

上記有機現像方法は、露光用マスクに形成された回路パターンを露光した光照射強度の弱いレジスト膜の領域を選択的に溶解・除去してパターンを形成する方法である。これに対して、アルカリ現像方法は、逆に露光用マスクに形成された回路パターンを露光した光照射強度の強いレジスト膜の領域を溶解・除去してパターンを形成する方法である。   The organic development method is a method in which a pattern is formed by selectively dissolving and removing a region of a resist film having a low light irradiation intensity exposed to a circuit pattern formed on an exposure mask. On the other hand, the alkali developing method is a method of forming a pattern by dissolving and removing a region of a resist film having a high light irradiation intensity exposed to a circuit pattern formed on an exposure mask.

特許文献1に記載のパターン形成方法においては、有機溶剤を含有する現像液に対する溶解度が減少する樹脂を含有する有機溶剤系現像用レジスト組成物によりレジスト膜を形成する工程と、有機溶剤を含有する現像液を用いて現像工程を行った後、溶剤を含有するリンス液を用いた洗浄工程を行っている。   The pattern forming method described in Patent Document 1 includes a step of forming a resist film with an organic solvent-based developing resist composition containing a resin that reduces solubility in a developer containing an organic solvent, and an organic solvent. After performing a developing process using a developing solution, a cleaning process using a rinsing solution containing a solvent is performed.

特開2010−152353号公報(特許請求の範囲)JP 2010-152353 A (Claims)

ところで、この発明の発明者は研究の結果、有機現像処理の場合には、現像後にリンス液を用いた洗浄工程を行わなくても現像処理のみで解像が可能であり、欠陥も増加しないことを知見した。一方で、リンス液による洗浄工程を省略した場合には、回路パターンの線幅が変動して乾燥むらが生じることも判った。   By the way, as a result of research, the inventors of the present invention have found that in the case of organic development processing, resolution can be achieved only by development processing without performing a washing step using a rinsing liquid after development, and defects are not increased. I found out. On the other hand, it was also found that when the cleaning step with the rinsing liquid is omitted, the line width of the circuit pattern fluctuates and uneven drying occurs.

ここで、図12を参照し、有機現像方法とアルカリ現像方法の現像時間10〜20秒の範囲における現像速度と、現像時間20〜30秒の範囲における現像速度とを見ると、有機現像液の方がアルカリ現像液よりも溶解速度が速いことが判る。また、有機現像液ではアルカリ現像液と比較して、一定時間経過後も高い溶解速度を維持している。すなわち、有機現像処理では、現像処理の時間差の影響が強く、これが回路パターンの線幅の面内分布に反映される傾向にある。このことから、リンス液を用いた洗浄工程を省略した場合には、残存した現像液により回路パターンの線幅が変動して乾燥むらが生じたものと考えられる。   Here, with reference to FIG. 12, the development speed in the development time range of 10 to 20 seconds and the development speed in the development time range of 20 to 30 seconds of the organic development method and the alkali development method are as follows. It can be seen that the dissolution rate is faster than that of the alkali developer. In addition, the organic developer maintains a high dissolution rate even after a certain period of time as compared with the alkali developer. That is, in the organic development processing, the influence of the time difference of the development processing is strong, and this tends to be reflected in the in-plane distribution of the line width of the circuit pattern. From this, it is considered that when the washing step using the rinsing solution is omitted, the line width of the circuit pattern fluctuates due to the remaining developer, resulting in uneven drying.

この発明は、上記事情に鑑みてなされたもので、リンス液を用いずに、かつ有機現像処理の時間差の影響を受けずに回路パターンの微細線幅の安定化及びスループットの向上を図れるようにした有機現像処理方法及び有機現像処理装置を提供する。   The present invention has been made in view of the above circumstances, so that the fine line width of a circuit pattern can be stabilized and the throughput can be improved without using a rinsing solution and without being affected by the time difference of organic development processing. An organic development processing method and an organic development processing apparatus are provided.

上記課題を解決するために、この発明の有機現像処理方法は、表面にレジストが塗布され、露光された後の基板の表面に現像液を供給して現像を行う現像処理方法において、基板の表面全域に同時に有機溶剤を含有する現像液の液膜を形成する工程と、上記液膜が形成された基板の表面全域にガスを供給して、現像の停止を行うと共に、基板の乾燥を行う工程と、を含むことを特徴とする(請求項1)。   In order to solve the above-described problems, an organic development processing method of the present invention is a development processing method in which a resist is applied to a surface and a developer is supplied to the surface of the substrate after exposure to perform development. A step of simultaneously forming a liquid film of a developer containing an organic solvent over the entire region, a step of supplying a gas to the entire surface of the substrate on which the liquid film is formed, stopping development, and drying the substrate (Claim 1).

また、この発明の有機現像処理方法は、表面にレジストが塗布され、露光された後の基板の表面に現像液を供給して現像を行う現像処理方法において、基板を水平状態に保持する工程と、基板の表面全域に同時に有機溶剤を含有する現像液の液膜を形成する工程と、上記液膜が形成された基板の表面全域にガスを供給して、現像の停止を行うと共に、基板の乾燥を行う工程と、を含むことを特徴とする(請求項2)。   In addition, the organic development processing method of the present invention is a development processing method in which a resist is applied to the surface and a developing solution is supplied to the surface of the substrate after exposure to perform development, and the substrate is held in a horizontal state. A step of forming a liquid film of a developer containing an organic solvent simultaneously on the entire surface of the substrate, and supplying gas to the entire surface of the substrate on which the liquid film is formed to stop development, And a step of performing drying (claim 2).

請求項1又は2に記載の発明において、上記液膜を形成する工程は、基板の表面に対向する複数の現像液供給ノズルから上記現像液を基板の表面全域に吐出して行う方が好ましい(請求項3)。   In the invention described in claim 1 or 2, the step of forming the liquid film is preferably performed by discharging the developer from the plurality of developer supply nozzles facing the surface of the substrate over the entire surface of the substrate ( Claim 3).

また、上記現像の停止と基板の乾燥を行う工程は、基板の表面に対向する複数のガス供給ノズルからガスを基板の表面全域に吐出して行う方が好ましい(請求項4)。この場合、上記現像の停止と基板の乾燥を行う工程は、水平状態に保持された基板を静止させた状態で複数のガス供給ノズルからガスを基板の表面全域に吐出して行ってもよいが、基板を鉛直軸回りに回転しながら行う方が好ましい(請求項5)。   The step of stopping the development and drying the substrate is preferably performed by discharging gas from the plurality of gas supply nozzles facing the surface of the substrate over the entire surface of the substrate. In this case, the step of stopping the development and drying the substrate may be performed by discharging gas from a plurality of gas supply nozzles over the entire surface of the substrate while the substrate held in a horizontal state is stationary. It is preferable to carry out the process while rotating the substrate around the vertical axis.

また、この発明の有機現像処理方法は、表面にレジストが塗布され、露光された後の基板の表面に現像液を供給して現像を行う現像処理方法において、基板の表面を下方に向けた状態で、貯留容器内に貯留されている有機溶剤を含有する現像液に上記基板の表面のみを浸漬して、基板の表面全域に同時に上記現像液の液膜を形成する工程と、上記液膜が形成された基板の表面全域にガスを供給して、現像の停止を行うと共に、基板の乾燥を行う工程と、を含むことを特徴とする(請求項6)。   Further, the organic development processing method of the present invention is a development processing method in which a resist is applied to the surface and development is performed by supplying a developing solution to the surface of the substrate after the exposure. In the development processing method, the surface of the substrate faces downward. A step of immersing only the surface of the substrate in a developer containing an organic solvent stored in a storage container and simultaneously forming a liquid film of the developer over the entire surface of the substrate; and A step of supplying a gas to the entire surface of the formed substrate to stop development and to dry the substrate (claim 6).

また、この発明の有機現像処理方法は、表面にレジストが塗布され、露光された後の基板の表面に現像液を供給して現像を行う現像処理方法において、基板の表面を下方に向けた状態で保持する工程と、基板の表面を下方に向けた状態で、貯留容器内に貯留されている有機溶剤を含有する現像液に上記基板の表面のみを浸漬して、基板の表面全域に同時に上記現像液の液膜を形成する工程と、上記液膜が形成された基板の表面全域にガスを供給して、現像の停止を行うと共に、基板の乾燥を行う工程と、を含むことを特徴とする(請求項7)。   Further, the organic development processing method of the present invention is a development processing method in which a resist is applied to the surface and development is performed by supplying a developing solution to the surface of the substrate after the exposure. In the development processing method, the surface of the substrate faces downward. In the step of holding in the state where the surface of the substrate is directed downward, only the surface of the substrate is immersed in a developer containing an organic solvent stored in the storage container, and the entire surface of the substrate is simultaneously A step of forming a liquid film of a developer, and a step of supplying a gas to the entire surface of the substrate on which the liquid film is formed to stop development and dry the substrate. (Claim 7).

請求項6又は7に記載の発明において、上記現像液の液膜を形成する工程は、基板を静止させた状態で基板表面のみを現像液に浸漬しても差し支えないが、基板を鉛直軸回りに回転しながら基板表面のみを現像液に浸漬する方が好ましい(請求項8)。   In the invention according to claim 6 or 7, the step of forming the liquid film of the developer may be performed by immersing only the surface of the substrate in the developer while the substrate is stationary. It is preferable to immerse only the surface of the substrate in the developing solution while rotating in a horizontal direction (claim 8).

また、請求項6又は7に記載の発明において、上記現像の停止と基板の乾燥を行う工程は、基板の表面に対向する複数のガス供給ノズルからガスを基板の表面全域に吐出して行う方が好ましい(請求項9)。この場合、上記現像の停止と基板の乾燥を行う工程は、水平状態に保持された基板を静止させた状態で複数のガス供給ノズルからガスを基板の表面全域に吐出して行っておもよいが、基板を鉛直軸回りに回転しながら行う方が好ましい(請求項10)。   Further, in the invention according to claim 6 or 7, the step of stopping the development and drying the substrate is performed by discharging a gas from a plurality of gas supply nozzles facing the surface of the substrate over the entire surface of the substrate. (Claim 9). In this case, the step of stopping the development and drying the substrate may be performed by discharging gas from a plurality of gas supply nozzles over the entire surface of the substrate while the substrate held in a horizontal state is stationary. However, it is preferable to perform the rotation while rotating the substrate around the vertical axis.

請求項1記載の有機現像処理方法は、基板の表面全域に同時に有機溶剤を含有する現像液を吐出する現像液供給手段と、基板の表面全域に現像停止及び乾燥用のガスを吐出するガス供給手段と、を具備する有機現像処理装置によって実施される(請求項11)。   The organic development processing method according to claim 1, wherein a developer supplying means for discharging a developer containing an organic solvent simultaneously over the entire surface of the substrate, and a gas supply for discharging a gas for stopping development and drying over the entire surface of the substrate. And an organic development processing apparatus comprising the means (claim 11).

上記請求項2記載の有機現像処理方法は、基板を水平状態に保持する基板保持手段と、基板の表面全域に同時に有機溶剤を含有する現像液を吐出する現像液供給手段と、基板の表面全域に現像停止及び乾燥用のガスを吐出するガス供給手段と、を具備する有機現像処理装置によって実施される(請求項12)。   The organic development processing method according to claim 2 includes a substrate holding means for holding the substrate in a horizontal state, a developer supplying means for simultaneously discharging a developer containing an organic solvent over the entire surface of the substrate, and an entire surface of the substrate. And a gas supply means for discharging a gas for stopping and drying the development (claim 12).

請求項11又は12に記載の有機現像処理装置において、上記現像液供給手段は、基板の表面に対向する複数の現像液供給ノズルを具備する方が好ましい(請求項13)。また、上記ガス供給手段は、基板の表面に対向する複数のガス供給ノズルを具備する方が好ましい(請求項14)。また、上記基板保持手段を鉛直軸回りに回転する回転駆動機構を更に具備する方が好ましい(請求項15)。   13. The organic development processing apparatus according to claim 11 or 12, wherein the developer supply means preferably includes a plurality of developer supply nozzles facing the surface of the substrate (claim 13). The gas supply means preferably includes a plurality of gas supply nozzles opposed to the surface of the substrate. Further, it is preferable to further include a rotation drive mechanism for rotating the substrate holding means around a vertical axis.

また、請求項11ないし15のいずれかに記載の有機現像処理装置において、上記現像液供給手段とガス供給手段は、別体に形成されていても良いが、好ましくは水平状態に保持された基板の表面に対して相対的に接離移動するノズルヘッドに設けられている方がよい(請求項16)。   Further, in the organic development processing apparatus according to any one of claims 11 to 15, the developer supply means and the gas supply means may be formed separately, but are preferably a substrate held in a horizontal state. It is better to be provided in the nozzle head that moves relative to and away from the surface of the nozzle.

また、請求項6,7記載の有機現像処理方法は、基板の表面を下方に向けた状態で保持する基板保持手段と、有機溶剤を含有する現像液を貯留する容器と、上記基板保持手段に保持された基板と上記容器とを相対的に接離移動する移動機構と、上記基板保持手段に保持された基板の表面全域に現像停止及び基板乾燥用のガスを吐出するガス供給手段と、を具備する有機現像処理装置によって実施される(請求項17)。この場合、上記ガス供給手段は、上記基板保持手段に保持された基板と上記容器との間に、移動可能に形成されている方が好ましい(請求項18)。また、上記ガス供給手段は、基板の表面に対向する複数のガス供給ノズルを具備する方が好ましい(請求項19)。   The organic development processing method according to claims 6 and 7 includes a substrate holding means for holding the surface of the substrate facing downward, a container for storing a developer containing an organic solvent, and the substrate holding means. A moving mechanism for moving the held substrate and the container relative to and away from each other; and a gas supply means for discharging a gas for stopping development and drying the substrate over the entire surface of the substrate held by the substrate holding means. The present invention is carried out by an organic development processing apparatus (claim 17). In this case, it is preferable that the gas supply means is formed to be movable between the substrate held by the substrate holding means and the container. The gas supply means preferably includes a plurality of gas supply nozzles opposed to the surface of the substrate.

請求項1〜5,11〜16に記載の発明によれば、現像液供給手段から基板の表面全域に同時に有機溶剤を含有する現像液を吐出することによって、基板の表面全域に同時に有機溶剤を含有する現像液の液膜を形成した後、ガス供給手段から液膜が形成された基板の表面全域にガスを供給して、現像の停止を行うと共に、基板の乾燥を行うことができる。   According to the invention described in claims 1 to 5 and 11 to 16, the organic solvent is simultaneously applied to the entire surface of the substrate by discharging the developer containing the organic solvent simultaneously to the entire surface of the substrate from the developer supply means. After the liquid film of the developer to be contained is formed, the gas can be supplied from the gas supply means to the entire surface of the substrate on which the liquid film is formed to stop development and dry the substrate.

請求項6〜10,17〜19に記載の発明によれば、基板保持手段によって基板の表面を下方に向けた状態で保持した状態で、貯留容器内に貯留されている有機溶剤を含有する現像液に基板の表面のみを浸漬して、基板の表面全域に同時に現像液の液膜を形成した後、ガス供給手段から液膜が形成された基板の表面全域にガスを供給して、現像の停止を行うと共に、基板の乾燥を行うことができる。   According to invention of Claims 6-10, 17-19, the image development which contains the organic solvent stored in the storage container in the state hold | maintained in the state which faced the surface of the board | substrate downward by the board | substrate holding means. After immersing only the surface of the substrate in the liquid and forming a liquid film of the developer on the entire surface of the substrate at the same time, the gas is supplied from the gas supply means to the entire surface of the substrate on which the liquid film is formed. While stopping, the substrate can be dried.

この発明によれば、基板の表面全域に同時に有機溶剤を含有する現像液の液膜を形成した後、ガス供給手段から液膜が形成された基板の表面全域にガスを供給して、現像の停止を行うと共に、基板の乾燥を行うことで、リンス液を用いずに、かつ有機現像処理の時間差の影響を受けずに回路パターンの微細線幅の安定化を図ることができると共に、スループットの向上を図ることができる。   According to the present invention, after forming a liquid film of a developer containing an organic solvent simultaneously on the entire surface of the substrate, gas is supplied from the gas supply means to the entire surface of the substrate on which the liquid film has been formed. By stopping the substrate and drying the substrate, it is possible to stabilize the fine line width of the circuit pattern without using a rinsing solution and without being affected by the time difference of the organic development process, and also improving the throughput. Improvements can be made.

この発明に係る有機現像処理装置の第1実施形態を示す概略断面図である。1 is a schematic cross-sectional view showing a first embodiment of an organic development processing apparatus according to the present invention. 上記有機現像処理装置の概略平面図である。It is a schematic plan view of the organic development processing apparatus. 第1実施形態における現像液供給ノズルを示す底面図(a)及び(a)のI−I線に沿う断面図(b)である。It is sectional drawing (b) which follows the II line | wire of the bottom view (a) and (a) which shows the developing solution supply nozzle in 1st Embodiment. 第1実施形態の現像液の吐出状態を示す概略側面図(a)及びガスの吐出状態を示す概略側面図(b)である。FIG. 2 is a schematic side view (a) showing a discharge state of a developer according to the first embodiment and a schematic side view (b) showing a discharge state of a gas. この発明における現像液の液膜形成状態を示す拡大断面図(a)、ガス吐出状態を示す拡大断面図(b)及び乾燥状態を示す拡大断面図(c)である。They are an expanded sectional view (a) which shows the liquid film formation state of the developing solution in this invention, an expanded sectional view (b) which shows a gas discharge state, and an enlarged sectional view (c) which shows a dry state. この発明に係る有機現像処理装置の第2実施形態を示す概略断面図である。It is a schematic sectional drawing which shows 2nd Embodiment of the organic developing processing apparatus which concerns on this invention. 第2実施形態における反転機構の基板の搬入動作・反転前の動作を示す概略側面図(a),(b)、反転動作を示す概略正面図(c),(d)、基板の反転後の動作・搬出動作を示す概略側面図(e)及び(d)のII矢視図(f)である。Schematic side views (a) and (b) showing the substrate loading operation and the operation before inverting of the inverting mechanism in the second embodiment, schematic front views (c) and (d) showing the inverting operation, and after the substrate is inverted It is a schematic side view (e) which shows operation | movement / carrying-out operation | movement, and II arrow directional view (f) of (d). 第2実施形態におけるガス供給ノズルを示す平面図(a)及び(a)のIII−III線に沿う断面図(b)である。It is sectional drawing (b) which follows the III-III line of the top view (a) and (a) which shows the gas supply nozzle in 2nd Embodiment. 第2実施形態における基板の液膜形成工程を示す概略断面図(a)、現像停止・乾燥工程を示す概略断面図(b)及び現像停止・乾燥工程の要部を示す拡大断面図(c)である。Schematic cross-sectional view (a) showing a liquid film forming step of a substrate in the second embodiment, schematic cross-sectional view (b) showing a development stop / drying step, and enlarged cross-sectional view (c) showing a main part of the development stop / drying step It is. 評価試験に用いられるウエハの概略平面図である。It is a schematic plan view of the wafer used for an evaluation test. 評価試験により得られた線幅とウエハの中心からの距離との関係を示すグラフである。It is a graph which shows the relationship between the line | wire width obtained by the evaluation test, and the distance from the center of a wafer. 有機現像とアルカリ現像の線幅溶解速度と現像時間の依存関係を示すグラフである。It is a graph which shows the dependence relationship of the line | wire width melt | dissolution rate of organic development and alkali development, and development time.

以下に、この発明の実施の形態について添付図面を参照して詳細に説明する。ここでは、被処理基板である半導体ウエハW(以下にウエハWという)は、図示しない塗布装置において、化学増幅型のフォトレジストが塗布され、露光装置において露光処理されたウエハWを、搬送手段1によってこの発明に係る有機現像処理装置に搬送して現像処理を行う場合について説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. Here, a semiconductor wafer W (hereinafter referred to as a wafer W), which is a substrate to be processed, is applied with a chemical amplification type photoresist applied by a coating apparatus (not shown), and the wafer W subjected to exposure processing in the exposure apparatus is transferred to the transport means 1. The case of carrying out development processing by transporting to the organic development processing apparatus according to the present invention will be described.

<第1実施形態>
第1実施形態の有機現像処理装置10(以下に現像装置10という)は、筐体11を備えており、筐体11の一側壁にはウエハWの搬送口12が設けられている。この搬送口12を介して図2に示す搬送手段1によりウエハWが筐体11内に搬送される。この場合、搬送手段1は、ウエハWの側周を囲む略馬蹄形状のアーム体2と、このアーム体2の内周に複数、この例では4つ設けられ、ウエハWの裏面周辺を支持する支持部3とを備えている。
<First Embodiment>
The organic development processing apparatus 10 (hereinafter referred to as the developing apparatus 10) of the first embodiment includes a housing 11, and a wafer W transfer port 12 is provided on one side wall of the housing 11. The wafer W is transferred into the housing 11 by the transfer means 1 shown in FIG. In this case, the transfer means 1 is provided with a substantially horseshoe-shaped arm body 2 surrounding the side periphery of the wafer W, and a plurality, four in this example, are provided on the inner periphery of the arm body 2 to support the periphery of the back surface of the wafer W. The support part 3 is provided.

筐体11内には、この筐体11内を上下に仕切る仕切板13が設けられている。仕切板13の上側はウエハWを処理するための処理領域14aとして構成され、仕切板13の下側は駆動領域14bが構成されている。   A partition plate 13 for partitioning the interior of the housing 11 up and down is provided in the housing 11. The upper side of the partition plate 13 is configured as a processing region 14a for processing the wafer W, and the lower side of the partition plate 13 is configured with a drive region 14b.

筐体11内にはウエハWを水平状態に載置する基板保持手段である基板保持チャック20が設けられている。この基板保持チャック20は回転駆動機構である例えばサーボモータにて形成される回転駆動モータ21の回転軸21aに連結されており、回転駆動モータ21の駆動によって水平方向に回転自在に構成されている。基板保持チャック20の表面の複数箇所には吸引孔22が設けられており、回転軸21aには吸引孔22に連通する吸引通路(図示せず)が設けられており、吸引通路に一端が接続する排気管23の他端が排気手段である真空ポンプ24に接続されている。なお、回転軸21aは仕切板13に設けられた貫通孔13aに回転自在に貫挿されている。   A substrate holding chuck 20 which is a substrate holding unit for placing the wafer W in a horizontal state is provided in the housing 11. The substrate holding chuck 20 is connected to a rotation shaft 21a of a rotation drive motor 21 formed by, for example, a servo motor which is a rotation drive mechanism, and is configured to be rotatable in the horizontal direction by driving of the rotation drive motor 21. . Suction holes 22 are provided at a plurality of locations on the surface of the substrate holding chuck 20, and a suction passage (not shown) communicating with the suction holes 22 is provided on the rotating shaft 21 a, and one end is connected to the suction passage. The other end of the exhaust pipe 23 is connected to a vacuum pump 24 that is an exhaust means. The rotating shaft 21a is rotatably inserted into a through hole 13a provided in the partition plate 13.

また、基板保持チャック20と回転駆動モータ21は例えばシリンダやボールねじ機構等にて形成される昇降機構25によって鉛直方向に移動(昇降)可能に構成されている。   Further, the substrate holding chuck 20 and the rotation drive motor 21 are configured to be movable (elevated and lowered) in the vertical direction by an elevating mechanism 25 formed by, for example, a cylinder or a ball screw mechanism.

回転駆動モータ21、昇降機構25及び真空ポンプ24は制御部100に電気的に接続され、制御部100からの制御信号に基づいて制御される。   The rotation drive motor 21, the lifting mechanism 25, and the vacuum pump 24 are electrically connected to the control unit 100 and controlled based on a control signal from the control unit 100.

基板保持チャック20の上方には下方が開口する扁平な円形状のカバー体26が設けられており、このカバー体26は、支持部材27を介してカバー体26を昇降すなわち基板保持チャック20に対して接離移動する接離移動機構28が連接されている。接離移動機構28は制御部100に電気的に接続されており、制御部100からの制御信号によりカバー体26が基板保持チャック20に対して接離移動自在に構成されている。なお、カバー体26の開口端部にはOリング29が嵌着されており、カバー体26が下降して仕切板13に密接して、カバー体26内の気密性が維持されるようになっている。   A flat circular cover body 26 having an opening at the bottom is provided above the substrate holding chuck 20. The cover body 26 moves the cover body 26 up and down via a support member 27, that is, with respect to the substrate holding chuck 20. The contact / separation moving mechanism 28 that moves toward and away is connected. The contact / separation moving mechanism 28 is electrically connected to the control unit 100, and the cover body 26 is configured to be movable toward and away from the substrate holding chuck 20 by a control signal from the control unit 100. An O-ring 29 is fitted to the opening end of the cover body 26, and the cover body 26 descends and comes into close contact with the partition plate 13, so that the airtightness in the cover body 26 is maintained. ing.

カバー体26の天板26aの下面には現像液供給手段である現像液供給ノズル30とガス供給手段であるガス供給ノズル40を備えたノズル体50が装着されている。この場合、ノズル体50は、図2及び図3に示すように、基板保持チャック20上に載置されるウエハWの直径と同径以上の円に内接する角部51を有する例えば8角形状の扁平状のノズルヘッド52を備えており、ノズルヘッド52の下面に複数の現像液供給ノズル30(以下に現像ノズル30という)と、ガス供給ノズル40(以下にガスノズル40という)とが、例えば交互に散点状に設けられている。なお、ノズルヘッド52は必ずしも8角形状である必要はなく、例えば8角以外の多角形や円形であってもよい。   A nozzle body 50 having a developer supply nozzle 30 as a developer supply means and a gas supply nozzle 40 as a gas supply means is mounted on the lower surface of the top plate 26a of the cover body 26. In this case, as shown in FIGS. 2 and 3, the nozzle body 50 has, for example, an octagonal shape having a corner 51 inscribed in a circle having the same diameter or more as the diameter of the wafer W placed on the substrate holding chuck 20. A plurality of developer supply nozzles 30 (hereinafter referred to as development nozzles 30) and a gas supply nozzle 40 (hereinafter referred to as gas nozzles 40) are provided on the lower surface of the nozzle head 52, for example. Alternating dots are provided. The nozzle head 52 does not necessarily have an octagonal shape, and may be, for example, a polygon other than an octagon or a circle.

このうち現像ノズル30はノズルヘッド52に設けられた現像液流路31に接続されている。現像液流路31は現像液供給管32を介して有機溶剤を含有する現像液の現像液供給源33に接続されている。現像液供給管32には、バルブやマスフローコントローラを備えた流量制御部34Aと温調制御部35が介設されている。なお、本実施例で用いられる有機溶剤を含有する現像液としては、例えばケトン系溶剤,エステル系溶剤,アルコール系溶剤,アミド系溶剤,エーテル系溶剤等の極性溶剤及び炭化水素系溶剤等を用いることができ、本実施形態においては、エステル系溶剤である酢酸ブチルを含有する現像液を用いる。   Among these, the developing nozzle 30 is connected to a developer flow path 31 provided in the nozzle head 52. The developer flow path 31 is connected via a developer supply pipe 32 to a developer supply source 33 for a developer containing an organic solvent. The developer supply pipe 32 is provided with a flow rate control unit 34A including a valve and a mass flow controller and a temperature control unit 35. As the developer containing the organic solvent used in this embodiment, for example, polar solvents such as ketone solvents, ester solvents, alcohol solvents, amide solvents, ether solvents, and hydrocarbon solvents are used. In this embodiment, a developer containing butyl acetate which is an ester solvent is used.

一方、ガスノズル40はノズルヘッド52に設けられたガス流路41に接続されている。ガス流路41はガス供給管42を介してガス供給源43に接続されている。ガス供給管42には、バルブやマスフローコントローラを備えた流量制御部34Bが介設されている。なお、本実施例で用いられるガスとしては、例えば窒素(N2)ガス等の不活性ガスや清浄空気等が用いられ、本実施形態では不活性ガスであるN2ガスが用いられる。   On the other hand, the gas nozzle 40 is connected to a gas flow path 41 provided in the nozzle head 52. The gas flow path 41 is connected to a gas supply source 43 through a gas supply pipe 42. The gas supply pipe 42 is provided with a flow rate control unit 34B including a valve and a mass flow controller. In addition, as gas used by a present Example, inert gas, such as nitrogen (N2) gas, clean air, etc. are used, for example, N2 gas which is inert gas is used in this embodiment.

上記流量制御部34A,34Bと温調制御部35は制御部100と電気的に接続されており、制御部100からの制御信号に基づいて現像液が所定の温度例えば23℃に設定されると共に所定量例えば80mL〜600mL吐出され、また、N2ガスが所定量例えば5〜50L/min吐出されるように形成されている。   The flow rate control units 34A, 34B and the temperature control unit 35 are electrically connected to the control unit 100, and the developer is set to a predetermined temperature, for example, 23 ° C. based on a control signal from the control unit 100. A predetermined amount, for example, 80 mL to 600 mL is discharged, and N2 gas is formed to be discharged by a predetermined amount, for example, 5 to 50 L / min.

上記のように形成されるノズル体50は、カバー体26と共に基板保持チャック20に対して接離移動自在に構成されており、下降して基板保持チャック20に近づいた状態で、現像ノズル30から現像液を吐出することにより、基板保持チャック20に載置されたウエハWの表面全域に同時に現像液の液膜を形成する。また、ウエハWの表面全域に現像液の液膜を形成した後、ガスノズル40からN2ガスを吐出することにより、ウエハWの表面全域にN2ガスを供給して、現像の停止を行うと共に、ウエハW表面上の現像液を除去して乾燥することができる。なお、現像ノズル30から現像液を吐出する際、基板保持チャック20を回転することにより、ウエハWの表面全域に均一に現像液の液膜を形成することができる。また、ウエハWの表面全域にN2ガスを供給する際に基板保持チャック20を回転することにより、ウエハWの表面全域に均一にN2ガスを供給することができ、現像液の除去及び乾燥時間の短縮を図ることができる。   The nozzle body 50 formed as described above is configured so as to be movable toward and away from the substrate holding chuck 20 together with the cover body 26, and is lowered from the developing nozzle 30 while approaching the substrate holding chuck 20. By discharging the developer, a liquid film of the developer is simultaneously formed on the entire surface of the wafer W placed on the substrate holding chuck 20. Further, after forming a liquid film of the developer on the entire surface of the wafer W, N2 gas is discharged from the gas nozzle 40 to supply N2 gas to the entire surface of the wafer W to stop development, and at the same time The developer on the W surface can be removed and dried. Note that when the developer is discharged from the developing nozzle 30, the developer holding liquid film can be uniformly formed over the entire surface of the wafer W by rotating the substrate holding chuck 20. Further, by rotating the substrate holding chuck 20 when supplying the N2 gas to the entire surface of the wafer W, the N2 gas can be uniformly supplied to the entire surface of the wafer W, and the developer removal and drying time can be reduced. Shortening can be achieved.

次に、第1実施形態の現像装置の動作態様と現像方法について図1ないし図5を参照して詳細に説明する。まず、搬送手段1によりウエハWが筐体11内に搬送され、基板保持チャック20の上方にウエハWが位置する。すると、昇降機構25の駆動によって基板保持チャック20が上昇し、吸引動作によってウエハWは基板保持チャック20上に吸着保持される。その後、搬送手段1は後退する。   Next, an operation mode and a developing method of the developing device according to the first embodiment will be described in detail with reference to FIGS. First, the wafer W is transferred into the housing 11 by the transfer means 1, and the wafer W is positioned above the substrate holding chuck 20. Then, the substrate holding chuck 20 is raised by driving the lifting mechanism 25, and the wafer W is sucked and held on the substrate holding chuck 20 by the suction operation. Thereafter, the conveying means 1 moves backward.

基板保持チャック20上にウエハWを保持した状態で、接離移動機構28が駆動してカバー体26と共に現像ノズル30とガスノズル40を備えたノズル体50が下降して、ウエハ表面の上方の近接位置例えば30mmに移動する。なおこの際、昇降機構25を駆動してウエハWの表面とノズル体50との距離を調整することもできる。   In a state where the wafer W is held on the substrate holding chuck 20, the contact / separation moving mechanism 28 is driven, and the nozzle body 50 including the developing nozzle 30 and the gas nozzle 40 is lowered together with the cover body 26, and approaches the upper surface of the wafer surface. Move to position eg 30mm. At this time, the elevating mechanism 25 can be driven to adjust the distance between the surface of the wafer W and the nozzle body 50.

次に、所定の温度例えば23℃に設定された有機溶剤を含有する現像液Dが現像ノズル30からウエハWの表面全域に例えば10〜30秒間吐出され、ウエハWの表面全域に同時に現像液Dの液膜が形成される。このとき、図4(a)に示すように、基板保持チャック20を回転(例えば10〜1000rpm)することにより、基板保持チャック20に載置されたウエハWの表面全域に同時に現像液の液膜を形成する。現像液Dの液膜が形成された状態を拡大すると、図5(a)に示すように、現像液Dにレジストの溶解性部位が溶解して、不溶解性の部位が残って回路パターンCが形成される。この状態では、現像液Dに溶解生成物dが混在している。   Next, a developing solution D containing an organic solvent set at a predetermined temperature, for example, 23 ° C. is discharged from the developing nozzle 30 to the entire surface of the wafer W, for example, for 10 to 30 seconds, and simultaneously the developing solution D is applied to the entire surface of the wafer W. A liquid film is formed. At this time, as shown in FIG. 4A, by rotating the substrate holding chuck 20 (for example, 10 to 1000 rpm), the liquid film of the developer is simultaneously applied to the entire surface of the wafer W placed on the substrate holding chuck 20. Form. When the state in which the liquid film of the developer D is formed is enlarged, as shown in FIG. 5A, the soluble part of the resist is dissolved in the developer D, and the insoluble part remains, so that the circuit pattern C Is formed. In this state, the dissolved product d is mixed in the developer D.

次に、ノズル体50をウエハ表面の上方の近接位置例えば30mmに移動する。この状態で、基板保持チャック20を500〜3000rpm例えば1000rpmの回転数で回転させながら、ガスノズル40からウエハWの表面全域にN2ガスを5〜50L/min例えば5L/minの流量で5〜30秒間吐出する(図4(b)参照)。このように、現像液Dの液膜が形成された後に、ウエハWを回転させながらウエハWの表面全域にN2ガスを吐出すると、その吐出による衝撃とウエハWの回転による遠心力との作用により、図5(b),(c)に示すように、N2ガスはウエハWの中心部から周縁部に向かって広がり、溶解生成物dが混在している現像液Dは効率的に外側に排出され、回路パターンCの凹部内の現像液Dは確実に排出(除去)される。   Next, the nozzle body 50 is moved to a proximity position, for example, 30 mm above the wafer surface. In this state, while rotating the substrate holding chuck 20 at a rotational speed of 500 to 3000 rpm, for example, 1000 rpm, N 2 gas is supplied from the gas nozzle 40 to the entire surface of the wafer W at a flow rate of 5 to 50 L / min, for example, 5 L / min for 5 to 30 seconds. Discharge (see FIG. 4B). Thus, after the liquid film of the developer D is formed, when N2 gas is discharged over the entire surface of the wafer W while rotating the wafer W, due to the impact of the discharge and the centrifugal force due to the rotation of the wafer W, As shown in FIGS. 5B and 5C, the N 2 gas spreads from the central portion toward the peripheral portion of the wafer W, and the developer D in which the dissolved product d is mixed is efficiently discharged to the outside. Thus, the developer D in the recesses of the circuit pattern C is reliably discharged (removed).

上記のようにして現像処理が終了した後、上記動作と逆の動作によって基板保持チャック20上のウエハWは、基板保持チャック20から搬送手段1に受け取られ、搬送手段1により筐体11内から搬出される。   After the development processing is completed as described above, the wafer W on the substrate holding chuck 20 is received from the substrate holding chuck 20 to the transfer means 1 by the operation opposite to the above operation, and is transferred from the inside of the housing 11 by the transfer means 1. It is carried out.

上記第1実施形態によれば、現像ノズル30により、ウエハWの全面に同時に現像液を供給して液膜を形成した後、ウエハWの表面全域にN2ガスを供給することにより、ウエハWの全面において同時に現像を停止することができる。したがって、回路パターンの線幅を安定化させることができる。   According to the first embodiment, the developing nozzle 30 supplies a developing solution to the entire surface of the wafer W at the same time to form a liquid film, and then supplies N 2 gas to the entire surface of the wafer W, thereby Development can be stopped simultaneously on the entire surface. Therefore, the line width of the circuit pattern can be stabilized.

なお、上記第1実施形態では、現像ノズル30からウエハWの表面全域に現像液を吐出してウエハ表面に現像液の液膜を形成する際に、ウエハWを回転する場合について説明したが、現像ノズル30から吐出される現像液がウエハWの表面全域に渡って吐出されていれば、必ずしもウエハWを回転しなくてもよい。   In the first embodiment, the case where the wafer W is rotated when the developer is discharged from the developing nozzle 30 to the entire surface of the wafer W to form the developer film on the wafer surface has been described. If the developer discharged from the developing nozzle 30 is discharged over the entire surface of the wafer W, the wafer W does not necessarily have to be rotated.

なお、上記実施形態では、現像ノズル30の各ノズル体50は共通の現像液流路31を介して現像液供給源33に接続されて、各ノズル体50から同量の現像液を吐出する場合について説明したが、ノズル体50に連通する現像液流路を例えば中心部と外周部に区画し、分離して現像液を吐出するようにしてもよい。このようにすることにより、ウエハWの表面全域に更に均一に現像液の液膜を形成することができる。   In the above embodiment, each nozzle body 50 of the developing nozzle 30 is connected to the developer supply source 33 via the common developer flow path 31, and the same amount of developer is discharged from each nozzle body 50. However, the developer flow path communicating with the nozzle body 50 may be partitioned into, for example, a central portion and an outer peripheral portion, and the developer may be discharged separately. In this way, a liquid film of the developer can be formed more uniformly over the entire surface of the wafer W.

<第2実施形態>
次に、この発明に係る有機現像処理装置の第2実施形態について、図6ないし図9を参照して説明する。
Second Embodiment
Next, a second embodiment of the organic development processing apparatus according to the present invention will be described with reference to FIGS.

第2実施形態の有機現像処理装置10A(以下に現像装置10Aという)は、図6に示すように、図示しない筐体内に、ウエハWの表面を下方に向けた状態で保持する基板保持手段である基板保持チャック20Aと、有機溶剤を含有する現像液Dを貯留する現像液貯留容器60(以下に容器60という)と、基板保持チャック20Aに保持されたウエハWと容器60とを相対的に接離移動する接離移動機構28Aと、基板保持チャック20Aに保持されたウエハWの表面全域に現像停止及び基板乾燥用のガス例えば窒素(N2)ガスを吐出するガス供給手段であるガス供給ノズル40A(以下にガスノズル40Aという)と、を備えている。また、現像装置10Aは、図示しない搬送手段からウエハWを受け取ってウエハWの表裏面を反転させる受け渡しアーム70を備えており、受け渡しアーム70によって表裏反転されたウエハWを基板保持チャック20Aに受け渡し可能に構成されている。   As shown in FIG. 6, the organic development processing apparatus 10 </ b> A (hereinafter referred to as the development apparatus 10 </ b> A) of the second embodiment is a substrate holding unit that holds the surface of the wafer W in a state of facing downward in a housing (not shown). A substrate holding chuck 20A, a developing solution storage container 60 (hereinafter referred to as a container 60) for storing a developing solution D containing an organic solvent, and the wafer W held by the substrate holding chuck 20A and the container 60 are relatively disposed. A gas supply nozzle that is a gas supply means for discharging a gas for stopping development and drying a substrate, for example, nitrogen (N2) gas, over the entire surface of the wafer W held by the substrate holding chuck 20A. 40A (hereinafter referred to as gas nozzle 40A). Further, the developing device 10A includes a transfer arm 70 that receives the wafer W from a transfer unit (not shown) and reverses the front and back surfaces of the wafer W, and transfers the wafer W that is turned upside down by the transfer arm 70 to the substrate holding chuck 20A. It is configured to be possible.

この場合、受け渡しアーム70は、図7に示すように、基台71の上端に、水平方向に回転及び伸縮可能なリンク部材72を介して上部水平軸73を設け、上部水平軸73に沿って外方に向かって水平方向に進退可能なウエハ保持部74が設けられている。また、受け渡しアーム70は、図示しない反転用モータを具備する反転機構75を具備しており、この反転機構75によってウエハ保持部74は、上部水平軸73に対して180度回動可能すなわち反転可能に形成されている。   In this case, as shown in FIG. 7, the transfer arm 70 is provided with an upper horizontal shaft 73 at the upper end of the base 71 via a link member 72 that can be rotated and expanded in the horizontal direction, and along the upper horizontal shaft 73. A wafer holding portion 74 that can be advanced and retracted in the horizontal direction toward the outside is provided. Further, the transfer arm 70 includes a reversing mechanism 75 having a reversing motor (not shown), and the reversing mechanism 75 allows the wafer holder 74 to be rotated 180 degrees with respect to the upper horizontal shaft 73, that is, reversible. Is formed.

ウエハ保持部74は、図7(f)に示すように、先端が略馬蹄形状に形成されると共に、ウエハWの裏面中心部側を例えば真空吸着により保持するように構成されている。なお、この場合、ウエハ保持部74の馬蹄形状部には、周方向に沿って適宜間隔をおいて、複数の吸引孔74aが設けられており、図示しない開閉弁を介設した配管(図示せず)を介して吸着源例えば真空ポンプ(図示せず)に接続されている。   As shown in FIG. 7 (f), the wafer holding unit 74 has a substantially horseshoe-shaped tip, and is configured to hold the center of the back surface of the wafer W by, for example, vacuum suction. In this case, the horseshoe-shaped portion of the wafer holding portion 74 is provided with a plurality of suction holes 74a at appropriate intervals along the circumferential direction, and piping (not shown) provided with an open / close valve (not shown). ) Through an adsorption source such as a vacuum pump (not shown).

上記のように構成される受け渡しアーム70は、図7(a)に示す状態からウエハ保持部74が水平方向に伸びて図示しない搬送手段からウエハWを受け取って吸着保持した状態(図7(b)参照)で、反転機構75によってウエハ保持部74が上部水平軸73に対して180度回動してウエハWの表裏面を反転させる(図7(c)〜図7(e)参照)。   In the transfer arm 70 configured as described above, the wafer holding unit 74 extends in the horizontal direction from the state shown in FIG. 7A and receives and holds the wafer W from the transfer means (not shown) (FIG. 7B). )), The reversing mechanism 75 causes the wafer holder 74 to rotate 180 degrees with respect to the upper horizontal shaft 73 to reverse the front and back surfaces of the wafer W (see FIGS. 7C to 7E).

また、現像装置10Aは、図6に示すように、図示しない筐体内の上部に配置される、例えばボールねじ機構やタイミングベルト機構等にて形成される接離移動機構28Aと、接離移動機構28Aによって鉛直方向に移動自在な昇降ブラケット28bの下部に連結される、回転駆動機構である例えばサーボモータにて形成される回転駆動モータ21Aと、を備えている。回転駆動モータ21Aの回転軸21aの下端部に基板保持チャック20Aが下向きに連結されており、回転駆動モータ21Aの駆動によって水平方向に回転自在に構成されている。基板保持チャック20Aは、第1実施形態の基板保持チャック20と同様に、基板保持チャック20Aの表面の複数箇所には吸引孔(図示せず)が設けられており、回転軸21aには吸引孔と連通する吸引通路(図示せず)が設けられ、吸引通路に一端が接続する排気管(図示せず)の他端が排気手段である真空ポンプ(図示せず)に接続されている。   Further, as shown in FIG. 6, the developing device 10 </ b> A includes a contact / separation moving mechanism 28 </ b> A that is disposed at an upper portion in a housing (not shown) and formed by, for example, a ball screw mechanism or a timing belt mechanism, and a contact / separation movement mechanism. The rotary drive motor 21A formed by, for example, a servo motor, which is a rotary drive mechanism, is connected to the lower portion of the elevating bracket 28b that is movable in the vertical direction by 28A. A substrate holding chuck 20A is connected downward to the lower end portion of the rotation shaft 21a of the rotation drive motor 21A, and is configured to be rotatable in the horizontal direction by driving the rotation drive motor 21A. Similarly to the substrate holding chuck 20 of the first embodiment, the substrate holding chuck 20A is provided with suction holes (not shown) at a plurality of locations on the surface of the substrate holding chuck 20A, and the rotation shaft 21a has suction holes. A suction passage (not shown) communicating with the suction passage is provided, and the other end of an exhaust pipe (not shown) whose one end is connected to the suction passage is connected to a vacuum pump (not shown) which is an exhaust means.

回転駆動モータ21A、接離移動機構28A及び真空ポンプ(図示せず)は制御部100に電気的に接続され、制御部100からの制御信号に基づいて制御される。   The rotation drive motor 21A, the contact / separation moving mechanism 28A and the vacuum pump (not shown) are electrically connected to the control unit 100 and controlled based on a control signal from the control unit 100.

上記容器60は、図6に示すように、上端が開口した箱状に形成され、図示しない支持台等によって水平状態に設置されている。容器60の対向する側壁の上部に設けられた連通口61a,61bに循環管路62の両端が接続されており、循環管路62にはフィルタ63と循環ポンプ64が介設されると共に、循環管路62を流れる有機溶剤を含有する現像液Dの温度を一定の温度に設定する温度制御部65が介設されている。なお、容器60の底部には排液口66が設けられており、排液口66にドレインバルブ67を介設したドレイン管68が接続されている。   As shown in FIG. 6, the container 60 is formed in a box shape having an open upper end, and is installed in a horizontal state by a support base (not shown). Both ends of a circulation pipe 62 are connected to communication ports 61a and 61b provided on upper portions of opposing side walls of the container 60. A filter 63 and a circulation pump 64 are provided in the circulation pipe 62, and circulation is also performed. A temperature control unit 65 is provided for setting the temperature of the developer D containing the organic solvent flowing through the pipe line 62 to a constant temperature. In addition, a drain port 66 is provided at the bottom of the container 60, and a drain pipe 68 having a drain valve 67 interposed is connected to the drain port 66.

容器60の外周にはカップ80が配設されている。カップ80は、容器60の外周外方及び下方を包囲する有底円筒状の下部カップ体81と、下部カップ体81の開口部側の内周面に沿って移動可能な上部カップ体82とで構成されている。この場合、上部カップ体82は、下部カップ体81の開口部側の内周面に沿って移動可能な扁平筒状基部83と、扁平筒状基部83の上端に屈曲される傾斜部84と、傾斜部84の上端から容器60側に屈曲される内向き鍔部85とで構成されている。また、上部カップ体82は、この上部カップ体82の扁平筒状基部83の外側に連結される支持部材86を介してカップ昇降機構87に連接されており、カップ昇降機構87によって上部カップ体82が昇降可能に構成されている。   A cup 80 is disposed on the outer periphery of the container 60. The cup 80 includes a bottomed cylindrical lower cup body 81 that surrounds the outer periphery of the container 60 and the lower side, and an upper cup body 82 that is movable along the inner peripheral surface of the lower cup body 81 on the opening side. It is configured. In this case, the upper cup body 82 includes a flat cylindrical base portion 83 that is movable along the inner peripheral surface of the lower cup body 81 on the opening side, an inclined portion 84 that is bent at the upper end of the flat cylindrical base portion 83, The inward flange portion 85 is bent from the upper end of the inclined portion 84 toward the container 60 side. The upper cup body 82 is connected to a cup lifting mechanism 87 via a support member 86 connected to the outside of the flat cylindrical base 83 of the upper cup body 82, and the upper cup body 82 is connected by the cup lifting mechanism 87. Is configured to be movable up and down.

また、ガスノズル40Aはノズル体50Aに備えられている。ノズル体50Aは、図6及び図8に示すように、基板保持チャック20Aに吸着保持されるウエハWの直径と同径以上の円に内接する角部51を有する8角形状の扁平状のノズルヘッド52Aを備えており、ノズルヘッド52Aの上面に複数のガスノズル40Aが散点状に設けられている。ガスノズル40Aはノズルヘッド52Aに設けられたガス流路41に接続されており、ガス流路41はガス供給管42を介してN2ガス供給源43に接続されている。ガス供給管42には、バルブやマスフローコントローラを備えた流量制御部(図示せず)が介設されている。なお、ノズルヘッド52Aは必ずしも8角形状である必要はなく、例えば8角以外の多角形や円形であってもよい。   Further, the gas nozzle 40A is provided in the nozzle body 50A. As shown in FIGS. 6 and 8, the nozzle body 50A is an octagonal flat nozzle having a corner 51 inscribed in a circle having the same diameter or more as the diameter of the wafer W attracted and held by the substrate holding chuck 20A. A head 52A is provided, and a plurality of gas nozzles 40A are provided in the form of dots on the upper surface of the nozzle head 52A. The gas nozzle 40A is connected to a gas flow path 41 provided in the nozzle head 52A, and the gas flow path 41 is connected to an N 2 gas supply source 43 via a gas supply pipe. The gas supply pipe 42 is provided with a flow rate control unit (not shown) including a valve and a mass flow controller. The nozzle head 52A does not necessarily have an octagonal shape, and may be, for example, a polygon other than an octagon or a circle.

上記のように形成されるガスノズル40Aを備えるノズルヘッド52Aは、図6に示すように、上記ガイドレール90に沿って移動自在な可動基台91の下部に垂下される接離移動機構28Bによって鉛直方向に移動自在な昇降ブラケット28cに連結されている。なお、可動基台91は、図示しない例えばボールねじ機構やタイミングベルト機構等の駆動手段によってガイドレール90上を移動可能に形成されており、制御部100からの制御信号に基づいて駆動する駆動手段によって、基板保持チャック20Aに保持されたウエハWと容器60との間の位置と、容器60の外方の待機位置とに移動可能に構成されている。   As shown in FIG. 6, the nozzle head 52 </ b> A including the gas nozzle 40 </ b> A formed as described above is vertically moved by the contact / separation moving mechanism 28 </ b> B that is suspended from the lower portion of the movable base 91 that is movable along the guide rail 90. It is connected to a lifting bracket 28c that is movable in the direction. The movable base 91 is formed so as to be movable on the guide rail 90 by a driving means such as a ball screw mechanism or a timing belt mechanism (not shown) and is driven based on a control signal from the control unit 100. Accordingly, the position can be moved between a position between the wafer W held by the substrate holding chuck 20 </ b> A and the container 60 and a standby position outside the container 60.

次に、第2実施形態の現像装置の動作態様と現像方法について、図6ないし図9を参照して詳細に説明する。まず、図示しない搬送手段によって搬送されたウエハWを受け渡しアーム70がウエハWの表面を上にしたまま受け取る。ウエハWを受け取った受け渡しアーム70は、反転機構75によってウエハ保持部74が上部水平軸73に対して180度回動してウエハWの表裏面を反転させる(図7(c)〜図7(e)参照)。   Next, an operation mode and a developing method of the developing device according to the second embodiment will be described in detail with reference to FIGS. First, the transfer arm 70 receives the wafer W transferred by a transfer means (not shown) with the surface of the wafer W facing up. In the transfer arm 70 that has received the wafer W, the reversing mechanism 75 causes the wafer holder 74 to rotate 180 degrees with respect to the upper horizontal shaft 73 to reverse the front and back surfaces of the wafer W (FIG. 7C to FIG. 7). e)).

受け渡しアーム70によってウエハWを反転した状態で、受け渡しアーム70のウエハ保持部74が基板保持チャック20A側に移動し、基板保持チャック20Aが略馬蹄形状のウエハ保持部74の内方に入り込む(図7(e)の二点鎖線参照)。この状態で、ウエハ保持部74の真空吸着を解除すると同時又は解除直前に、基板保持チャック20Aの真空吸着を開始して基板保持チャック20AによりウエハWの裏面側を吸着保持する。その後、基板保持チャック20Aを容器60の上方に移動する。   In a state where the wafer W is inverted by the transfer arm 70, the wafer holding portion 74 of the transfer arm 70 moves to the substrate holding chuck 20A side, and the substrate holding chuck 20A enters the inside of the substantially horseshoe-shaped wafer holding portion 74 (see FIG. 7 (e), see the two-dot chain line). In this state, the vacuum holding of the substrate holding chuck 20A is started at the same time or immediately before the vacuum holding of the wafer holding unit 74 is released, and the back side of the wafer W is sucked and held by the substrate holding chuck 20A. Thereafter, the substrate holding chuck 20 </ b> A is moved above the container 60.

次に、接離移動機構28Aを駆動して基板保持チャック20Aに保持されているウエハWの表面のみを容器60内に貯留されている有機溶剤を含有する現像液Dに所定時間例えば20秒間浸漬して、ウエハWの表面全域に同時に現像液の液膜を形成する。   Next, the contact / separation moving mechanism 28A is driven to immerse only the surface of the wafer W held by the substrate holding chuck 20A in the developer D containing the organic solvent stored in the container 60 for a predetermined time, for example, 20 seconds. Then, a liquid film of the developer is simultaneously formed on the entire surface of the wafer W.

次に、接離移動機構28Aを駆動して基板保持チャック20に保持されているウエハWを容器60の上方に移動して水平状態に保持する。ウエハWの上昇と同時又は上昇後、駆動手段の駆動により可動基台91Bがガイドレール90に沿って移動し、ノズルヘッド52Aが基板保持チャック20Aに保持されたウエハWと容器60との間に位置して、ガスノズル40をウエハWの表面と対向する位置におく。このとき、カップ昇降機構87の駆動により上部カップ体82は容器60の上方とノズルヘッド52Aの周囲を包囲する。この状態で、基板保持チャック20Aを500〜3000rpm例えば1000rpmの回転数で回転させながら、ガスノズル40AからウエハWの表面全域にN2ガスを5〜50L/min例えば5L/minの流量で5〜30秒間吐出する。このように、現像液Dの液膜が形成された後に、ウエハWを回転させながらウエハWの表面全域にN2ガスを吐出すると、その吐出による衝撃とウエハWの回転による遠心力との作用により、N2ガスはウエハWの中心部から周縁部に向かって広がり、溶解生成物dが混在している現像液Dは効率的に外側に排出され、回路パターンCの凹部内の現像液Dは確実に排出(除去)される。   Next, the contact / separation moving mechanism 28A is driven to move the wafer W held by the substrate holding chuck 20 above the container 60 and hold it in a horizontal state. Simultaneously with or after the rising of the wafer W, the movable base 91B is moved along the guide rail 90 by driving of the driving means, and the nozzle head 52A is placed between the wafer 60 and the container 60 held by the substrate holding chuck 20A. The gas nozzle 40 is positioned so as to face the surface of the wafer W. At this time, the upper cup body 82 surrounds the upper portion of the container 60 and the periphery of the nozzle head 52 </ b> A by driving the cup lifting mechanism 87. In this state, while rotating the substrate holding chuck 20A at a rotational speed of 500 to 3000 rpm, for example, 1000 rpm, N 2 gas is supplied from the gas nozzle 40A to the entire surface of the wafer W at a flow rate of 5 to 50 L / min, for example, 5 L / min for 5 to 30 seconds. Discharge. Thus, after the liquid film of the developer D is formed, when N2 gas is discharged over the entire surface of the wafer W while rotating the wafer W, due to the impact of the discharge and the centrifugal force due to the rotation of the wafer W, , N2 gas spreads from the center to the periphery of the wafer W, the developer D containing the dissolved product d is efficiently discharged to the outside, and the developer D in the recesses of the circuit pattern C is surely Discharged (removed).

上記のようにして現像処理が終了した後、上記動作と逆の動作によって基板保持チャック20Aにより保持されたウエハWは、基板保持チャック20Aから受け渡しアーム70に受け取られ、受け渡しアーム70によって表裏反転すなわち表面が上面側に反転された後、図示しない搬送手段により搬送される。   After the development processing is completed as described above, the wafer W held by the substrate holding chuck 20A by the reverse operation to the above operation is received by the transfer arm 70 from the substrate holding chuck 20A, and is turned upside down by the transfer arm 70. After the surface is reversed to the upper surface side, it is transported by a transport means (not shown).

なお、上記第2実施形態では、ガスノズル40Aを備えるノズルヘッド52Aがガイドレール90上を移動する可動基台91に取り付けられる場合について説明したが、ノズルヘッド52Aの移動は必ずしもこの構造に限定されるものではなく、例えば水平方向に旋回可能なアームによってウエハWと容器60の間と、容器60の外方位置とに移動可能な構造としてもよい。   In the second embodiment, the case where the nozzle head 52A including the gas nozzle 40A is attached to the movable base 91 that moves on the guide rail 90 has been described. However, the movement of the nozzle head 52A is not necessarily limited to this structure. For example, a structure that can be moved between the wafer W and the container 60 and an outer position of the container 60 by an arm that can pivot in the horizontal direction may be used.

上記第2実施形態によれば、ウエハWの表面のみを容器60内に貯留された現像液Dに浸漬することにより、ウエハWの全面に同時に現像液を供給して液膜を形成した後、ウエハWの表面全域にN2ガスを供給することにより、ウエハWの全面において同時に現像を停止することができる。したがって、回路パターンの線幅を安定化させることができる。また、第2実施形態においては、容器60に貯留された現像液Dは、循環管路62を介してフィルタ63により不純物を取り除いた上で、温度制御部65で温度が調整されて再度現像に用いることができ、現像液の無駄を少なくすることができる。   According to the second embodiment, after immersing only the surface of the wafer W in the developer D stored in the container 60, the developer is simultaneously supplied to the entire surface of the wafer W to form a liquid film. By supplying N 2 gas over the entire surface of the wafer W, development can be stopped simultaneously on the entire surface of the wafer W. Therefore, the line width of the circuit pattern can be stabilized. In the second embodiment, the developer D stored in the container 60 is subjected to removal of impurities by the filter 63 via the circulation pipe 62, and the temperature is adjusted by the temperature control unit 65 to be developed again. It can be used and waste of the developer can be reduced.

(評価試験)
次に、有機溶剤を含有する現像液をウエハに供給して現像液の液膜を形成した後のN2ガスの吐出の有無による評価試験について図10及び図11を参照して説明する。
(Evaluation test)
Next, an evaluation test based on whether or not N2 gas is discharged after a developer containing an organic solvent is supplied to the wafer to form a developer film is described with reference to FIGS.

図10に示すように、300mmウエハWの表面に有機溶剤を含有する現像液を供給して液膜を形成した後、ウエハWの中心部にN2ガスを5L/minの流量で、3秒間吐出した場合と、N2ガスを吐出しない場合のウエハWの中心から外周における任意の箇所の線幅の上限と下限を調べたところ、図11に示すような結果が得られた。   As shown in FIG. 10, after supplying a developer containing an organic solvent to the surface of a 300 mm wafer W to form a liquid film, N2 gas is discharged to the center of the wafer W at a flow rate of 5 L / min for 3 seconds. When the upper limit and the lower limit of the line width at an arbitrary position on the outer periphery from the center of the wafer W when N2 gas was not discharged were examined, the results shown in FIG. 11 were obtained.

その結果、図11に示すように、N2ガスを吐出した場合は、N2ガスを吐出しない場合に比べてN2ガス吐出領域の現像の停止が速くなると共に、線幅が変動する。これにより、ウエハWの表面全体にN2ガスを吐出することで、ウエハ面内の線幅の制御が可能となる。   As a result, as shown in FIG. 11, when N2 gas is discharged, the development of the N2 gas discharge region stops more rapidly and the line width fluctuates than when N2 gas is not discharged. Thereby, by discharging N2 gas over the entire surface of the wafer W, the line width in the wafer surface can be controlled.

以上、この発明の実施形態について説明したが、この発明は上記実施形態に限定されるものではなく、基板表面の全域に同時に有機溶剤を含有する現像液の液膜を形成した後、基板表面全域にガスを供給して、現像の停止と乾燥を行う全ての有機現像処理に適用できる。   As mentioned above, although embodiment of this invention was described, this invention is not limited to the said embodiment, After forming the liquid film of the developing solution containing an organic solvent simultaneously in the whole region of a substrate surface, the substrate surface whole region It can be applied to all organic development processes in which gas is supplied to, and development is stopped and dried.

なお、上記実施形態では、被処理基板が半導体ウエハWである場合について説明したが、この発明は半導体ウエハ以外の例えばFPD基板等の他の基板の有機現像処理にも適用できる。   In the above embodiment, the case where the substrate to be processed is the semiconductor wafer W has been described. However, the present invention can also be applied to organic development processing of another substrate other than the semiconductor wafer such as an FPD substrate.

W ウエハ(基板)
20,20A 基板保持チャック(基板保持手段)
21,21A 回転駆動モータ(回転駆動機構)
28,28A,28B 接離移動機構
30 現像ノズル(現像液供給手段)
40,40A ガスノズル(ガス供給手段)
50,50A ノズル体
52,52A ノズルヘッド
60 容器(現像液貯留容器)
100 制御部
W Wafer (Substrate)
20, 20A substrate holding chuck (substrate holding means)
21, 21A Rotation drive motor (rotation drive mechanism)
28, 28A, 28B contact / separation moving mechanism 30 developer nozzle (developer supply means)
40,40A gas nozzle (gas supply means)
50, 50A Nozzle body 52, 52A Nozzle head 60 Container (developer storage container)
100 Control unit

Claims (19)

表面にレジストが塗布され、露光された後の基板の表面に現像液を供給して現像を行う現像処理方法において、
基板の表面全域に同時に有機溶剤を含有する現像液の液膜を形成する工程と、
上記液膜が形成された基板の表面全域にガスを供給して、現像の停止を行うと共に、基板の乾燥を行う工程と、
を含むことを特徴とする有機現像処理方法。
In a development processing method in which a resist is applied to the surface and development is performed by supplying a developer to the surface of the substrate after exposure,
Forming a liquid film of a developer containing an organic solvent simultaneously on the entire surface of the substrate;
Supplying gas to the entire surface of the substrate on which the liquid film is formed, stopping development, and drying the substrate;
An organic development processing method comprising:
表面にレジストが塗布され、露光された後の基板の表面に現像液を供給して現像を行う現像処理方法において、
基板を水平状態に保持する工程と、
基板の表面全域に同時に有機溶剤を含有する現像液の液膜を形成する工程と、
上記液膜が形成された基板の表面全域にガスを供給して、現像の停止を行うと共に、基板の乾燥を行う工程と、
を含むことを特徴とする有機現像処理方法。
In a development processing method in which a resist is applied to the surface and development is performed by supplying a developer to the surface of the substrate after exposure,
A step of holding the substrate in a horizontal state;
Forming a liquid film of a developer containing an organic solvent simultaneously on the entire surface of the substrate;
Supplying gas to the entire surface of the substrate on which the liquid film is formed, stopping development, and drying the substrate;
An organic development processing method comprising:
請求項1又は2に記載の有機現像処理方法において、
上記液膜を形成する工程は、基板の表面に対向する複数の現像液供給ノズルから上記現像液を基板の表面全域に吐出して行う、ことを特徴とする有機現像処理方法。
In the organic development processing method of Claim 1 or 2,
The step of forming the liquid film is performed by discharging the developer from the plurality of developer supply nozzles facing the surface of the substrate over the entire surface of the substrate.
請求項1ないし3のいずれかに記載の有機現像処理方法において、
上記現像の停止と基板の乾燥を行う工程は、基板の表面に対向する複数のガス供給ノズルからガスを基板の表面全域に吐出して行う、ことを特徴とする有機現像処理方法。
In the organic development processing method according to any one of claims 1 to 3,
The organic development processing method, wherein the step of stopping the development and drying the substrate is performed by discharging a gas from a plurality of gas supply nozzles facing the surface of the substrate over the entire surface of the substrate.
請求項4に記載の有機現像処理方法において、
上記現像の停止と基板の乾燥を行う工程は、水平状態に保持された基板を鉛直軸回りに回転しながら行う、ことを特徴とする有機現像処理方法。
In the organic development processing method of Claim 4,
The organic development processing method characterized in that the steps of stopping the development and drying the substrate are performed while rotating the substrate held in a horizontal state around a vertical axis.
表面にレジストが塗布され、露光された後の基板の表面に現像液を供給して現像を行う現像処理方法において、
基板の表面を下方に向けた状態で、貯留容器内に貯留されている有機溶剤を含有する現像液に上記基板の表面のみを浸漬して、基板の表面全域に同時に上記現像液の液膜を形成する工程と、
上記液膜が形成された基板の表面全域にガスを供給して、現像の停止を行うと共に、基板の乾燥を行う工程と、
を含むことを特徴とする有機現像処理方法。
In a development processing method in which a resist is applied to the surface and development is performed by supplying a developer to the surface of the substrate after exposure,
With the surface of the substrate facing downward, only the surface of the substrate is immersed in a developer containing an organic solvent stored in a storage container, and the liquid film of the developer is simultaneously spread over the entire surface of the substrate. Forming, and
Supplying gas to the entire surface of the substrate on which the liquid film is formed, stopping development, and drying the substrate;
An organic development processing method comprising:
表面にレジストが塗布され、露光された後の基板の表面に現像液を供給して現像を行う現像処理方法において、
基板の表面を下方に向けた状態で保持する工程と、
基板の表面を下方に向けた状態で、貯留容器内に貯留されている有機溶剤を含有する現像液に上記基板の表面のみを浸漬して、基板の表面全域に同時に上記現像液の液膜を形成する工程と、
上記液膜が形成された基板の表面全域にガスを供給して、現像の停止を行うと共に、基板の乾燥を行う工程と、
を含むことを特徴とする有機現像処理方法。
In a development processing method in which a resist is applied to the surface and development is performed by supplying a developer to the surface of the substrate after exposure,
Holding the surface of the substrate facing downward;
With the surface of the substrate facing downward, only the surface of the substrate is immersed in a developer containing an organic solvent stored in a storage container, and the liquid film of the developer is simultaneously spread over the entire surface of the substrate. Forming, and
Supplying gas to the entire surface of the substrate on which the liquid film is formed, stopping development, and drying the substrate;
An organic development processing method comprising:
請求項6又は7に記載の有機現像処理方法において、
上記現像液の液膜を形成する工程は、基板を鉛直軸回りに回転しながら行う、ことを特徴とする有機現像処理方法。
In the organic development processing method according to claim 6 or 7,
An organic development processing method, wherein the step of forming a liquid film of the developer is performed while rotating the substrate about a vertical axis.
請求項6又は7に記載の有機現像処理方法において、
上記現像の停止と基板の乾燥を行う工程は、基板の表面に対向する複数のガス供給ノズルからガスを基板の表面全域に吐出して行う、ことを特徴とする有機現像処理方法。
In the organic development processing method according to claim 6 or 7,
The organic development processing method, wherein the step of stopping the development and drying the substrate is performed by discharging a gas from a plurality of gas supply nozzles facing the surface of the substrate over the entire surface of the substrate.
請求項9に記載の有機現像処理方法において、
上記現像の停止と基板の乾燥を行う工程は、基板を鉛直軸回りに回転しながら行う、ことを特徴とする有機現像処理方法。
In the organic development processing method according to claim 9,
The organic development processing method, wherein the steps of stopping the development and drying the substrate are performed while rotating the substrate about a vertical axis.
表面にレジストが塗布され、露光された後の基板の表面に現像液を供給して現像を行う現像処理装置において、
基板の表面全域に同時に有機溶剤を含有する現像液を吐出する現像液供給手段と、
基板の表面全域に現像停止及び乾燥用のガスを吐出するガス供給手段と、
を具備することを特徴とする有機現像処理装置。
In a development processing apparatus for developing by supplying a developer to the surface of the substrate after the resist is applied and exposed to the surface,
A developer supply means for simultaneously discharging a developer containing an organic solvent over the entire surface of the substrate;
Gas supply means for discharging a gas for stopping development and drying over the entire surface of the substrate;
An organic development processing apparatus comprising:
表面にレジストが塗布され、露光された後の基板の表面に現像液を供給して現像を行う現像処理装置において、
基板を水平状態に保持する基板保持手段と、
基板の表面全域に同時に有機溶剤を含有する現像液を吐出する現像液供給手段と、
基板の表面全域に現像停止及び乾燥用のガスを吐出するガス供給手段と、
を具備することを特徴とする有機現像処理装置。
In a development processing apparatus for developing by supplying a developer to the surface of the substrate after the resist is applied and exposed to the surface,
Substrate holding means for holding the substrate in a horizontal state;
A developer supply means for simultaneously discharging a developer containing an organic solvent over the entire surface of the substrate;
Gas supply means for discharging a gas for stopping development and drying over the entire surface of the substrate;
An organic development processing apparatus comprising:
請求項11又は12に記載の有機現像処理装置において、
上記現像液供給手段は、基板の表面に対向する複数の現像液供給ノズルを具備する、ことを特徴とする有機現像処理装置。
The organic development processing apparatus according to claim 11 or 12,
The organic development processing apparatus, wherein the developer supply means includes a plurality of developer supply nozzles facing the surface of the substrate.
請求項11ないし13のいずれかに記載の有機現像処理装置において、
上記ガス供給手段は、基板の表面に対向する複数のガス供給ノズルを具備する、ことを特徴とする有機現像処理装置。
The organic development processing apparatus according to any one of claims 11 to 13,
The organic developing apparatus according to claim 1, wherein the gas supply means includes a plurality of gas supply nozzles facing the surface of the substrate.
請求項12ないし14のいずれかに記載の有機現像処理装置において、
上記基板保持手段を鉛直軸回りに回転する回転駆動機構を更に具備する、ことを特徴とする有機現像処理装置。
The organic development processing apparatus according to any one of claims 12 to 14,
An organic development processing apparatus, further comprising a rotation driving mechanism for rotating the substrate holding means around a vertical axis.
請求項11ないし15のいずれかに記載の有機現像処理装置において、
上記現像液供給手段とガス供給手段は、水平状態に保持された基板の表面に対して相対的に接離移動するノズルヘッドに設けられている、ことを特徴とする有機現像処理装置。
The organic development processing apparatus according to any one of claims 11 to 15,
An organic development processing apparatus, wherein the developer supply means and the gas supply means are provided in a nozzle head that moves relative to and away from the surface of the substrate held in a horizontal state.
表面にレジストが塗布され、露光された後の基板の表面に現像液を供給して現像を行う現像処理装置において、
基板の表面を下方に向けた状態で保持する基板保持手段と、
有機溶剤を含有する現像液を貯留する容器と、
上記基板保持手段に保持された基板と上記容器とを相対的に接離移動する移動機構と、
上記基板保持手段に保持された基板の表面全域に現像停止及び基板乾燥用のガスを吐出するガス供給手段と、
を具備することを特徴とする有機現像処理装置。
In a development processing apparatus for developing by supplying a developer to the surface of the substrate after the resist is applied and exposed to the surface,
Substrate holding means for holding the surface of the substrate facing downward;
A container for storing a developer containing an organic solvent;
A moving mechanism for moving the substrate held by the substrate holding means and the container relative to and away from each other;
A gas supply means for discharging a gas for stopping development and drying the substrate over the entire surface of the substrate held by the substrate holding means;
An organic development processing apparatus comprising:
請求項17に記載の有機現像処理装置において、
上記ガス供給手段は、上記基板保持手段に保持された基板と上記容器との間に、移動可能に形成されている、ことを特徴とする有機現像処理装置。
The organic development processing apparatus according to claim 17, wherein
The organic development processing apparatus, wherein the gas supply means is formed movably between the substrate held by the substrate holding means and the container.
請求項17又は18に記載の有機現像処理装置において、
上記ガス供給手段は、基板の表面に対向する複数のガス供給ノズルを具備する、ことを特徴とする有機現像処理装置。
The organic development processing apparatus according to claim 17 or 18,
The organic developing apparatus according to claim 1, wherein the gas supply means includes a plurality of gas supply nozzles facing the surface of the substrate.
JP2011035310A 2011-02-22 2011-02-22 Organic development processing method and organic development processing apparatus Active JP5275385B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011035310A JP5275385B2 (en) 2011-02-22 2011-02-22 Organic development processing method and organic development processing apparatus
KR1020120003374A KR101842720B1 (en) 2011-02-22 2012-01-11 Organic development processing apparatus and organic development processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011035310A JP5275385B2 (en) 2011-02-22 2011-02-22 Organic development processing method and organic development processing apparatus

Publications (2)

Publication Number Publication Date
JP2012173510A true JP2012173510A (en) 2012-09-10
JP5275385B2 JP5275385B2 (en) 2013-08-28

Family

ID=46886419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011035310A Active JP5275385B2 (en) 2011-02-22 2011-02-22 Organic development processing method and organic development processing apparatus

Country Status (2)

Country Link
JP (1) JP5275385B2 (en)
KR (1) KR101842720B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016004894A (en) * 2014-06-17 2016-01-12 東京エレクトロン株式会社 Developing method and device, and computer-readable recording medium
JP2016072557A (en) * 2014-10-01 2016-05-09 東京エレクトロン株式会社 Liquid processing method, storage medium and liquid processing device
WO2017187951A1 (en) * 2016-04-28 2017-11-02 東京エレクトロン株式会社 Development method, development device, and recording medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63137227A (en) * 1986-11-29 1988-06-09 Fujitsu Ltd Electron beam positive resist
JPH03182756A (en) * 1989-12-13 1991-08-08 Fujitsu Ltd Formation of resist pattern
JPH04127517A (en) * 1990-09-19 1992-04-28 Fujitsu Ltd Resist developing method and device therefor
JPH05226242A (en) * 1992-02-13 1993-09-03 Fujitsu Ltd Apparatus and method for developing
JP2002532759A (en) * 1998-12-17 2002-10-02 独立行政法人産業技術総合研究所 Electron beam resist

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2712392B2 (en) * 1988-10-11 1998-02-10 日本電気株式会社 Resist development method
JP5578774B2 (en) 2008-08-29 2014-08-27 日本写真印刷株式会社 Transfer sheet having hairline design and method for producing transfer molded product

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63137227A (en) * 1986-11-29 1988-06-09 Fujitsu Ltd Electron beam positive resist
JPH03182756A (en) * 1989-12-13 1991-08-08 Fujitsu Ltd Formation of resist pattern
JPH04127517A (en) * 1990-09-19 1992-04-28 Fujitsu Ltd Resist developing method and device therefor
JPH05226242A (en) * 1992-02-13 1993-09-03 Fujitsu Ltd Apparatus and method for developing
JP2002532759A (en) * 1998-12-17 2002-10-02 独立行政法人産業技術総合研究所 Electron beam resist

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016004894A (en) * 2014-06-17 2016-01-12 東京エレクトロン株式会社 Developing method and device, and computer-readable recording medium
JP2016072557A (en) * 2014-10-01 2016-05-09 東京エレクトロン株式会社 Liquid processing method, storage medium and liquid processing device
WO2017187951A1 (en) * 2016-04-28 2017-11-02 東京エレクトロン株式会社 Development method, development device, and recording medium

Also Published As

Publication number Publication date
KR20120096406A (en) 2012-08-30
JP5275385B2 (en) 2013-08-28
KR101842720B1 (en) 2018-03-27

Similar Documents

Publication Publication Date Title
KR102604997B1 (en) Substrate processing apparatus, substrate processing system and substrate processing method
KR101493647B1 (en) Substrate cleaning method and substrate cleaning apparatus
TWI656570B (en) Substrate liquid processing device, substrate liquid processing method, and memory medium
KR101375423B1 (en) Apparatus for liquid treatment of treatment object
TW201741032A (en) Substrate processing apparatus and substrate processing method
TWI397118B (en) Liquid treatment apparatus, liquid treatment method and storage medium
TWI495964B (en) Developing method and apparatus using organic-solvent containing developer
US20070116459A1 (en) Rinsing method, developing method, developing system and computer-read storage medium
TWI687971B (en) Substrate processing device and substrate processing method
JP5390873B2 (en) Substrate processing method and substrate processing apparatus
JP5275385B2 (en) Organic development processing method and organic development processing apparatus
US20200126822A1 (en) Substrate processing apparatus, and substrate processing method
KR102508316B1 (en) Substrate processing apparatus, substrate processing method, and recording medium
JP2003197718A (en) Unit and method for treatment substrate
KR20140086846A (en) Substrate cleaning apparatus and substrate cleaning method
KR20240027875A (en) Substrate processing device and transfer control method therefor
JP2001230185A (en) Method and apparatus for developing
JP2017118049A (en) Substrate processing apparatus, substrate processing method and storage medium
TWI578115B (en) Negative developing method and negative developing apparatus
JP6405259B2 (en) Substrate processing apparatus and substrate processing method
JP2014130945A (en) Substrate processing apparatus
JP2024072489A (en) SUBSTRATE PROCESSING METHOD AND SUBSTRATE PROCESSING SYSTEM
KR20240072057A (en) Substrate processing method and substrate processing system
JP2004072120A (en) Method and device for development, and method and device for treating liquid
JP2010278094A (en) Development processor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130430

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130515

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5275385

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130725

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250