WO2017187951A1 - Development method, development device, and recording medium - Google Patents

Development method, development device, and recording medium Download PDF

Info

Publication number
WO2017187951A1
WO2017187951A1 PCT/JP2017/014713 JP2017014713W WO2017187951A1 WO 2017187951 A1 WO2017187951 A1 WO 2017187951A1 JP 2017014713 W JP2017014713 W JP 2017014713W WO 2017187951 A1 WO2017187951 A1 WO 2017187951A1
Authority
WO
WIPO (PCT)
Prior art keywords
developer
substrate
wafer
developing device
liquid
Prior art date
Application number
PCT/JP2017/014713
Other languages
French (fr)
Japanese (ja)
Inventor
剛 下青木
祐作 橋本
福田 昌弘
公一朗 田中
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2017187951A1 publication Critical patent/WO2017187951A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/30Imagewise removal using liquid means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34

Definitions

  • the present invention relates to a technique for performing development processing on a substrate that has been subjected to exposure processing.
  • a resist film is formed, and a developing solution is supplied to a substrate exposed along a predetermined pattern to form a resist pattern.
  • a developer is discharged from a developer nozzle toward a horizontally held semiconductor wafer (hereinafter referred to as “wafer”) to form a liquid pool on the surface of the wafer W, and the developer
  • the developing process is performed by spreading the liquid pool on the wafer W by moving the nozzle and rotating the wafer W.
  • a pattern is generated by exposing the substrate coated with a positive resist solution and making the exposed region soluble in the positive developer, thereby removing the exposed portion.
  • a negative developing process that generates a pattern by making a portion exposed by exposure on a substrate coated with a negative resist solution insoluble in a negative developer and dissolving and removing the unexposed portion.
  • polar solvents such as ketone solvents, ester solvents, alcohol solvents, amide solvents, ether solvents, and hydrocarbons are used.
  • System solvents are used.
  • a negative developer is supplied to the wafer to dissolve the resist film.
  • the wafer is rinsed after the development process, and the dissolved portion of the resist film is washed away together with the negative developer.
  • a rinsing liquid a rinsing liquid containing an organic solvent, for example, an organic solvent such as 4-methyl-2-pentanol is used.
  • the present invention has been made under such circumstances, and an object of the present invention is to provide a technique for suppressing line width disturbance after development when an exposed substrate is developed with an organic developer. It is in.
  • the development method of the present invention is a development method in which a resist is applied to the surface and an organic developer is supplied to the exposed substrate to perform a development process. Holding the exposed substrate horizontally; and Subsequently, supplying the developer to the surface of the substrate; Next, removing the developer on the surface of the substrate; And thereafter supplying a cleaning liquid made of an organic solvent for cleaning the substrate to the surface of the substrate.
  • a resist is applied on the surface and an organic developing process is performed on the substrate after being exposed.
  • a substrate holder for horizontally holding the substrate;
  • a rotation mechanism for rotating the substrate holder around the vertical axis;
  • a developer supply unit for supplying an organic developer to the surface of the substrate;
  • a cleaning liquid supply unit for supplying a cleaning liquid made of an organic solvent for cleaning the substrate to the surface of the substrate;
  • a removal mechanism for removing the developer on the surface of the substrate;
  • a controller that executes a step of supplying a developer to the surface of the substrate held horizontally, a step of removing the developer on the surface of the substrate by a removal mechanism, and a step of supplying a cleaning solution to the surface of the substrate thereafter.
  • the storage medium of the present invention is a storage medium storing a computer program used in a developing device that performs organic development processing on a substrate after a resist is coated on the surface and exposed.
  • the computer program has a set of steps so as to execute the developing method described above.
  • an organic developer is supplied to a substrate that has been subjected to exposure processing, the development processing is performed, and then the developer on the surface of the substrate is removed, and then the surface of the substrate is cleaned by supplying an organic solvent. I am doing so. For this reason, since a developing solution and an organic solvent are not mixed, melt
  • the developing device includes a spin chuck 12 that is a substrate holder.
  • the spin chuck 12 adsorbs the central portion of the back surface of the wafer W, which is a substrate, and holds the wafer W horizontally, and is configured to be rotatable about a vertical axis by a rotating mechanism 13 via a rotating shaft 131. ing.
  • a circular plate 22 is provided on the lower side of the spin chuck 12 so as to surround the rotating shaft 131 through a gap. Further, three through holes 22A are formed in the circular plate 22 in the circumferential direction, and the up and down pins 14 are provided in the respective through holes 22A.
  • a common lift plate 18 is provided below the lift pins 14, and the lift pins 14 are configured to be lifted and lowered by a lift mechanism 15 provided below the lift plate 18.
  • a cup body 20 is provided so as to surround the spin chuck 12.
  • the cup body 20 is configured to receive the drained liquid splashed or spilled from the rotating wafer W and to discharge the drained liquid to the outside of the developing device.
  • the cup body 20 includes a mountain-shaped guide portion 23 provided in a ring shape having a mountain-shaped cross section around the circular plate 22, and an annular end is formed at the outer peripheral end of the mountain-shaped guide portion 23 so as to extend downward.
  • a vertical wall 27 is provided.
  • the chevron guide part 23 guides the liquid spilled from the wafer W to the lower side outside the wafer W.
  • a cylindrical upper guide portion 28 configured so that the upper edge extends obliquely inward and upward so as to surround the outer side of the mountain-shaped guide portion 23 is provided.
  • the upper guide portion 28 is configured to be moved up and down by the lifting mechanism 21, and when the developer nozzle 3 and the rinse liquid nozzle 5 described later move above the wafer W, or between the spin chuck 12 and the external transfer arm.
  • the wafer W is transferred, it is lowered to the lowered position indicated by the solid line in FIG.
  • the wafer W is rotated and the processing liquid is shaken off from the surface of the wafer W, the wafer W rises to a rising position indicated by a dotted line in FIG.
  • a ring-shaped liquid receiving portion 24 whose section is a concave shape is provided below the upper guide portion 28, the mountain-shaped guide portion 23, and the vertical wall 27.
  • a drainage path 25 is connected to the outer peripheral side.
  • an exhaust pipe 26 is provided on the inner peripheral side of the liquid receiving portion 24 with respect to the drainage passage 25 so as to protrude from below.
  • the developing device includes a developer nozzle 3 for applying a developer to the wafer W.
  • the developer nozzle 3 is formed at a lower end of, for example, a cylindrical main body 30 smaller than the surface of the wafer W and is provided so as to face the surface of the wafer W. It has.
  • a discharge port 31 for discharging the developer is provided at the center of the lower surface of the contact portion 32.
  • the discharge port 31 is formed at the downstream end of the developer supply path 33 formed inside the main body 30 and the contact portion 32.
  • the developer nozzle 3 is held between the processing position for supplying the developer to the wafer W held by the arm 41 and held by the spin chuck 12 and a standby position (not shown) provided outside the cup body 20. Moving.
  • a developer supply pipe 36 is connected to the upstream end of the developer supply path 33, and the other end of the developer supply pipe 36 is used to develop the developer D, in this example, a negative resist.
  • a developer supply source 361 for supplying an organic developer such as butyl acetate is connected.
  • the developer supply source 361 includes a pump, a valve, and the like, and is configured to supply the developer D to the developer nozzle 3 in accordance with a control signal from the control unit 100 described later.
  • the developing device includes a rinsing liquid nozzle 5 for supplying a cleaning liquid (rinsing liquid) that is an organic solvent such as 4-methyl-2-pentanol toward the wafer W after the development processing.
  • the rinse liquid nozzle 5 is configured to supply a rinse liquid from above toward the wafer W, and is connected to a rinse liquid supply source 50 via a rinse liquid supply pipe 51.
  • the rinsing liquid nozzle 5 is held by an arm (not shown), and is between a processing position for supplying the rinsing liquid to the wafer W held by the spin chuck 12 and a standby position (not shown) provided outside the cup body 20. Move with.
  • the developing device includes a back surface side cleaning liquid nozzle 29 that supplies a cleaning liquid to the back surface of the wafer W held on the wafer W.
  • the back surface side cleaning liquid nozzle 29 is connected to a cleaning liquid supply unit (not shown), and cleans the back surface of the wafer W by supplying a cleaning liquid, for example, pure water, to the back surface of the wafer W that rotates when the rinse liquid is shaken off.
  • the developing device includes a control unit 100 including a computer.
  • a control unit 100 including a computer.
  • a program stored in a storage medium such as a flexible disk, a compact disk, a hard disk, an MO (magneto-optical disk), and a memory card is installed in the control unit 100.
  • the installed program incorporates instructions (steps) to transmit a control signal to each part of the developing device to control its operation.
  • a negative resist film (hereinafter referred to as “resist film”) in which an exposed area is insoluble in a developer is formed on the wafer W, and an exposure process is performed in which a circuit pattern is transferred to the wafer W by an exposure apparatus.
  • the wafer W on which the exposure processing has been performed is delivered to the spin chuck 12 by the cooperative action of, for example, an external transfer arm (not shown) and the lift pins 14.
  • the developer nozzle 3 moves from the standby position to above the central portion of the wafer W, and the contact portion 32 is lowered so as to face the wafer W in close proximity. In this manner, the developer D is discharged from the discharge port 31 to the wafer W in the state where the contact portion 32 is close to the wafer W, so that a liquid pool in a state of contacting the contact portion 32 is formed below the developer nozzle 3.
  • the rotation of the wafer W is started, and for example, the rotation speed of 10 rpm is maintained, and the developer nozzle 3 is moved toward the periphery of the wafer W as shown in FIGS.
  • the pool of the developer D is spread from the center of the wafer W toward the peripheral edge in a state where it is in contact with the contact portion 32 of the developer nozzle 3.
  • the supply of the developer D is stopped, and the developer nozzle 3 is retracted to a standby portion outside the cup body 20 (not shown).
  • a pool of the developer D is formed so as to cover the entire surface of the wafer W.
  • the rotation of the wafer W is stopped and, for example, it is stopped for 15 to 60 seconds.
  • the resist is insoluble in the developer D by exposure. Therefore, a liquid pool of the developer D is formed and the liquid pool is made stationary with respect to the wafer W, whereby the unexposed soluble part in the resist film reacts with the developer D and dissolves.
  • the rotation of the wafer W is started, and the rotation speed of 2500 rpm or less, for example, 2000 rpm is maintained for 5 to 20 seconds, for example, 15 seconds.
  • the part of the resist film dissolved by reacting with the developing solution has high fluidity, and therefore is removed by being shaken off together with the developing solution D supplied to the surface of the wafer W by the rotation of the wafer W.
  • the surface of the wafer W is dried, and for example, interference fringes due to the developer D are not visible on the surface of the wafer W.
  • the rinsing liquid nozzle 5 is moved to a position for discharging toward the center of the wafer W.
  • the rotation speed of the wafer W is reduced to 500 to 1500 rpm, for example, 1000 rpm, and a rinsing liquid R as an organic solvent is supplied toward the center of the wafer W.
  • a pool of the rinse liquid R is formed on the surface of the wafer W and spreads toward the periphery of the wafer W.
  • the exposed area becomes insoluble in the developer D, but the developer (organic solution) D and the rinse solution (organic solvent) R
  • the mixed solution may be dissolved. This is because the organic developer and the organic solvent are mixed, so that the difference in the solubility parameter value between the mixed solution and the resist solution is larger than the difference in the solubility parameter value between each solution and the resist film. It is presumed that this is due to the smaller size.
  • the wafer W is rotated to shake off the developer D and dry the surface of the wafer W. Yes.
  • the rotation speed of the wafer W is maintained at 2500 rpm or less, for example, 2000 rpm, the rinse liquid R on the front surface of the wafer W is shaken off, and the cleaning liquid is supplied from the back surface side cleaning liquid nozzle 29 toward the back surface of the wafer W. To do. Thereby, on the surface of the wafer W, along with the rinse liquid R, the dissolved resist film is washed away and removed. Further, the back side of the wafer W is also cleaned.
  • the negative developing solution D is supplied to the wafer W on which the exposure processing has been performed, the developing processing is performed, and then the wafer W is rotated to shake off the surface developing solution D and dry. Then, the rinse liquid R is supplied to clean the surface of the wafer W. For this reason, the developing solution D and the rinsing solution R are not mixed, and dissolution of the portion insoluble in the resist film by the mixed solution can be suppressed. Therefore, the disturbance of the line width of the circuit pattern formed on the wafer W can be suppressed.
  • the rotation speed of the wafer W in the step of shaking off the developer D from the wafer W is 2500 rpm or less.
  • the wafer W may be rotated and the nitrogen (N 2 ) gas may be supplied toward the wafer W in the process of rotating the wafer W and shaking off the developer D.
  • N 2 nitrogen
  • a configuration in which a gas nozzle that discharges N 2 gas toward the wafer W is provided at a position that does not interfere with the developer nozzle 3 and the rinsing liquid nozzle 5 can be given.
  • N 2 gas is discharged with the gas nozzle 90 directed toward the center of the wafer W as shown in FIG. Move to the position you want.
  • N 2 gas is discharged from the gas nozzle 90 toward the wafer W, and the wafer W is rotated for 15 seconds at a rotational speed of, for example, 2500 rpm.
  • the discharge position of the gas discharged from the gas nozzle 90 may remain at the center of the wafer W.
  • the gas nozzle 90 is scanned to set the discharge position to the center of the wafer W. You may make it move to a peripheral part from a part.
  • the rinse liquid for the wafer W may be supplied. By rotating the wafer W to shake off the developer D and supplying the N 2 gas to dry the surface of the wafer W, drying of the surface of the wafer W can be promoted. The rotation time can be shortened and the rotation speed of the wafer W can be decreased.
  • the dried air is fed above the cup body 20. You may supply toward.
  • the humidity of the atmosphere around the wafer W can be lowered in the step of rotating the wafer W and shaking off the developer D. By reducing the humidity of the atmosphere around the wafer W, drying of the surface of the wafer W is further promoted.
  • the developing device includes a cup body 6, a developer nozzle 3, a rinse liquid nozzle 5, and a pure water nozzle 8.
  • the cup body 6 is drained of pure water and drained of an organic solvent such as the developer D and the rinsing solution R, for example, according to the request of the factory where the developing device is installed. Are configured to be discharged out of the cup body 6 so as not to be mixed with each other.
  • the cup body 6 includes a movable cup 60 for forming two separate drainage paths.
  • the movable cup 60 is provided so as to surround the periphery of the wafer W, the circular plate 22 and the mountain-shaped guide portion 23 placed on the spin chuck 12.
  • the movable cup 60 is configured by stacking circular ring plates 60A and 60B that are inclined from the center side of the cup body 6 toward the peripheral edge thereof with an interval in the vertical direction.
  • the lower ring plate 60B is bent halfway downward, and the lower end portion thereof is a cylindrical portion 60C formed so as to extend in the vertical direction.
  • a protrusion 60D protruding inward is provided over the entire circumference at a position from below in the inner surface of the cylindrical portion 60C.
  • 7 in FIG. 9 is a raising / lowering mechanism which raises / lowers the movable cup 60 between the raising position and the lowering position.
  • the cup body 6 includes a cylindrical outer cup 63 so as to surround the outer side of the movable cup 60.
  • the upper end of the outer cup 63 is bent horizontally toward the center side, and the lower end of the outer cup 63 is formed with a ring-shaped liquid receiving portion 62 whose section is a concave shape.
  • the liquid receiving portion 62 is provided with partition walls 61 ⁇ / b> A and 61 ⁇ / b> B standing upright and concentrically in this order toward the periphery of the outer cup 63.
  • annular recesses 62A, 62B, 62C are formed concentrically in this order toward the periphery of the outer cup 63 by the partition walls 61A, 61B and the side wall of the outer cup 63, and the recess 62A , 62B, 62C are respectively provided with an exhaust port 64, a drain port 65, and a drain port 66.
  • the drain port 65 is connected to a drain pipe 67 that drains the organic processing liquid, and the drain port 66 drains a drain that does not contain an organic solvent such as pure water. It is connected to the.
  • 69 in FIG. 9 is an exhaust pipe.
  • the movable cup 60 when the movable cup 60 is set at the raised position indicated by the dotted line in FIG. 9, the upper end of the upper ring plate 60A and the upper surface of the outer cup 63 are close to each other, and the lower ring plate 60B The lower surface of the inner peripheral edge is positioned above the surface of the wafer W so that the processing liquid scattered from the wafer W can be received. Further, the protrusion 60D of the movable cup 60 is located above the partition wall 61B. When the organic processing liquid is shaken off from the wafer W, the movable cup 60 is raised to the raised position. As a result, the processing liquid shaken off from the wafer W is received by the movable cup 60, flows into the recess 62 ⁇ / b> B, and is drained from the drain port 65.
  • the cylindrical portion 60C is located in the recess 62C.
  • the upper end of the upper ring plate 60A is located at the same or substantially the same height as the surface of the wafer W.
  • the pure water nozzle 8 is configured to discharge pure water as a replacement fluid toward the surface side of the wafer W.
  • the pure water nozzle 8 is connected to a pure water supply source 80 via a pure water supply pipe 81.
  • the pure water nozzle 8 is held by an arm (not shown) and is configured to be movable between the upper portion of the wafer W held by the spin chuck 12 and a standby unit (not shown) outside the cup body 6.
  • the movable cup 60 is positioned at the lowered position, and the developer D is applied to the surface of the wafer W. Then, as shown in FIG. 4, a pool of developer D is formed on the surface of the wafer W, the wafer W is stopped and developed, and then the pure water nozzle 8 is moved to a position for discharging toward the center of the wafer W. Let Thereafter, the rotation of the wafer W is started, the rotation speed of 500 to 1500 rpm, for example, 1000 rpm is maintained, and pure water P is supplied toward the center of the wafer W for 5 to 20 seconds, for example, 15 seconds.
  • the pure water P supplied to the center of the wafer W spreads from the center of the wafer W toward the periphery by the rotation of the wafer W. Therefore, as shown in FIG. 10, the developer D is swept away by the pure water P and shaken off from the periphery of the wafer W. As a result, the liquid pool on the surface of the wafer W is replaced with the pure water P from the developer D.
  • the position of the movable cup 60 the supply of pure water P is started with the movable cup 60 set at the lowered position, and after the developer D on the surface of the wafer W has been shaken off, the movable cup 60 is moved to the raised position. The pure water P is shaken off from the wafer W.
  • the pure water nozzle 8 is retracted to the outside of the cup body 6, and the rinse liquid nozzle 5 is moved to a position for discharging toward the center of the wafer W.
  • the rotation speed of the wafer W is maintained at 500 to 1500 rpm, for example, 1000 rpm, and the rinse liquid R is supplied toward the center of the wafer W. Therefore, as shown in FIG. 11, the rinsing liquid R supplied to the center of the wafer W gradually spreads from the center of the wafer W toward the periphery.
  • the pure water P on the surface of the wafer W is swept away from the wafer W, and the liquid pool on the surface of the wafer W is replaced with the rinsing liquid R from the pure water P.
  • the movable cup 60 At the start of the supply of the rinsing liquid R, the movable cup 60 is set to the ascending position, and after the pure water P on the surface of the wafer W has been shaken off, the movable cup 60 is moved to the descending position. Shake off. Thereafter, the supply of the rinsing liquid R is stopped, and the wafer W is rotated so that the dissolved portion of the resist film together with the rinsing liquid R is shaken off and removed.
  • the developing device After supplying the developing solution D to the wafer W, the reservoir of the developing solution D is replaced with pure water P, and then the rinsing solution R is supplied. Therefore, since mixing with the developing solution D and the rinse liquid R can be prevented, dissolution of the pattern part of a resist film can be suppressed.
  • pure water P is used as the replacement fluid for replacing the developer.
  • pure water containing a surfactant may be used, for example.
  • An organic solvent may be used as the replacement fluid.
  • the organic solvent supplied as the replacement fluid is mixed with the organic solvent and the organic developer, the difference between the values of the solubility parameters between the respective solutions and the resist film is larger than that between the mixed solution and the resist solution. Any organic solvent in which the difference in the values of the solubility parameters becomes large can be used as a replacement fluid because dissolution of the insoluble region in the negative-type developer after exposure can be suppressed.
  • a gas may be used as a replacement fluid for replacing the developer D.
  • a gas supply nozzle that supplies dry air toward the center of the wafer W is provided, and the developer D is pushed away by a gas flow that flows from the center of the wafer W toward the periphery.
  • an inert gas or the like may be used as the replacement fluid.
  • the replacement fluid may be steam or mist. Steam is included in the gas.
  • the present invention may also be applied to a developing device that supplies the developing solution D, pure water P, and rinsing solution R while the wafer W is stationary.
  • the developing nozzle 3, the rinsing liquid nozzle 5 and the pure water nozzle 8 are each provided with discharge ports in a range longer than the length of the diameter of the wafer W, and each nozzle is moved horizontally in a direction perpendicular to the direction in which the discharge ports extend. In other words, it may be configured to scan from one end of the wafer W to the other end. Even in such a developing apparatus, the developer D on the surface of the wafer W can be removed by supplying the pure water P after forming the pool of the developer D, and thus the same effect can be obtained.
  • the present invention may be a developing process for a positive resist film in which an exposed area in the resist film is soluble in a developer.
  • a developing process for a positive resist film in which an exposed area in the resist film is soluble in a developer.
  • an organic developer D is used as the developer D and the developer D and the rinse R after the development treatment are mixed, there are also portions of the resist film that are not exposed to insolubility. There is a risk of dissolution. Therefore, after supplying the developing solution D to the wafer W, removing the developing solution D, and then supplying the rinsing solution R, the same effect can be obtained.
  • CD Critical dimension
  • CDU Critical Dimension Uniformity
  • the CD was measured at each measurement point in each rectangular area, and the CDU of the wafer W was calculated.
  • Table 1 shows CDU in each wafer W of the reference example, the comparative example, and the example.
  • the value obtained as follows. Assuming that the nine measurement points already described in each rectangular area are P1, P2,... P9, the CD value in P1 of each rectangular area is extracted, and the average value of these CD values is used as the mask value of P1. Mask values are similarly obtained for P2 to P9. Then, the mask value m (P1) of P1 is subtracted from the CD value (actually measured value) measured at P1 for each rectangular area. Similarly for P2 to P9, the mask value of the corresponding measurement point is subtracted from the measured CD value (actually measured value).
  • the CDU is obtained based on the CD value after mask processing (a value obtained by subtracting the mask value from the actual measurement value). If this calculation is expressed functionally, it can be said that the CD value caused by the process component is obtained by subtracting the CD value caused by the mask at the time of exposure from the measured data of CD.
  • the inter CDU is a CDU obtained by obtaining a rectangular area average value that is an average value of the CD values of P1 to P9 for each rectangular area and calculating based on the rectangular area average value in each rectangular area.
  • the intra CDU has a region average value (the CD value corresponding to P1 to P9 in each rectangular region is the same value (average value)) from the CD value (the value obtained by subtracting the mask value from the actual measurement value) used when calculating the global CDU. CD value obtained by subtracting (A).
  • the global CDU was 1.04, the inter CDU was 0.70, and the intra CDU was 0.78.
  • the global CDU was 1.11, the inter CDU was 0.72, and the intra CDU was 0.72.
  • the CDU was 0.85.
  • the global CDU was 1.04, the inter CDU was 0.69, and the intra CDU was 0.78.
  • the CDU is larger in the comparative example than in the reference example, and after supplying the developing solution D, the rinse solution R is supplied without performing the step of shaking off the developing solution D. It can be said that the in-plane uniformity becomes worse.
  • the example has a smaller CDU than the comparative example. Therefore, after supplying the developing solution D, supplying the rinsing solution R after performing the step of shaking off the developing solution D compared to the case of supplying the rinsing solution R without performing the step of shaking off the developing solution D. A CD equivalent to that obtained when no rinse solution is supplied is obtained, and it can be said that the in-plane uniformity of the CD is improved.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

[Problem] To provide a technology for suppressing post-development line width unsteadiness during development of an exposed wafer using a developer. [Solution] A negative-type developer D is supplied to a wafer W that has been subjected to an exposure process, and a development process is performed. Then, after drying by rotating the wafer W to drain the developer D on the surface, or after pure water P is supplied to the surface of the wafer W and the pure water P replaces the developer D as a liquid residue on the surface of the wafer W, a rinse fluid R is supplied to clean the surface of the wafer W. Accordingly, the developer D and the rinse fluid R do not become mixed, thus suppressing the dissolution, by the mixed solution of the developer D and the rinse fluid R, of a portion of a resist film that has been made insoluble by the exposure. Thus, the unsteadiness in the line width of a circuit pattern formed on the wafer W can be suppressed.

Description

現像方法、現像装置及び記憶媒体Development method, development device, and storage medium
 本発明は、露光処理が行われた基板に現像処理を行う技術に関する。 The present invention relates to a technique for performing development processing on a substrate that has been subjected to exposure processing.
 半導体装置の製造におけるフォトリソグラフィ工程では、レジスト膜が形成され、所定のパターンに沿って露光された基板に対して現像液が供給され、レジストパターンが形成される。例えば特許文献1に記載されるように、水平に保持した半導体ウエハ(以下「ウエハ」という)に向けて現像液ノズルから現像液を吐出してウエハWの表面に液溜まりを形成し、現像液ノズルの移動とウエハWの回転とにより、当該液溜まりをウエハWに広げることにより現像処理が行われている。 In a photolithography process in the manufacture of a semiconductor device, a resist film is formed, and a developing solution is supplied to a substrate exposed along a predetermined pattern to form a resist pattern. For example, as described in Patent Document 1, a developer is discharged from a developer nozzle toward a horizontally held semiconductor wafer (hereinafter referred to as “wafer”) to form a liquid pool on the surface of the wafer W, and the developer The developing process is performed by spreading the liquid pool on the wafer W by moving the nozzle and rotating the wafer W.
 現像処理においては、ポジ型レジスト液を塗布した基板を露光して、露光された領域をポジ型現像液に対して可溶とすることで、露光された箇所を除去することでパターンを生成するポジ型現像処理と、ネガ型レジスト液を塗布した基板を露光により露光された箇所をネガ型現像液に対して不溶とし、露光されていない箇所を溶解させて除去することでパターンを生成するネガ型現像処理とがある。 In the development process, a pattern is generated by exposing the substrate coated with a positive resist solution and making the exposed region soluble in the positive developer, thereby removing the exposed portion. A negative developing process that generates a pattern by making a portion exposed by exposure on a substrate coated with a negative resist solution insoluble in a negative developer and dissolving and removing the unexposed portion. There is a mold development process.
 例えば特許文献2に記載されているようにネガ型現像処理においては、ネガ型現像液として、ケトン系溶剤、エステル系溶剤、アルコール系溶剤、アミド系溶剤、エーテル系溶剤等の極性溶剤及び炭化水素系溶剤が用いられる。そしてウエハにネガ型現像液を供給してレジスト膜を溶解させる。その後プロセスの欠陥対策として、現像処理に続いてウエハにリンス処理が行われ、ネガ型現像液と共にレジスト膜の溶解した部位が洗い流される。このようなリンス液として有機溶媒、例えば4メチル2ペンタノールなどの有機溶剤を含むリンス液が用いられるが、ネガ型現像液と、有機溶剤であるリンス液と、が混合されると、混合液により、露光後のネガ型現像液に対して不溶解性とした領域も溶解してしまうことがある。近年では、ウエハに形成する回路パターンが微細化しており、パターンの線幅であるCD(Critical Dimension)の均一性が求められているが、不溶解性とした領域も溶解によるCDの乱れや、LER(Line Edge Roughness)の悪化が問題となるおそれがあった。 For example, as described in Patent Document 2, in negative development processing, as a negative developer, polar solvents such as ketone solvents, ester solvents, alcohol solvents, amide solvents, ether solvents, and hydrocarbons are used. System solvents are used. Then, a negative developer is supplied to the wafer to dissolve the resist film. Thereafter, as a countermeasure against defects in the process, the wafer is rinsed after the development process, and the dissolved portion of the resist film is washed away together with the negative developer. As such a rinsing liquid, a rinsing liquid containing an organic solvent, for example, an organic solvent such as 4-methyl-2-pentanol is used. When a negative developer and a rinsing liquid that is an organic solvent are mixed, the mixed liquid As a result, the region insoluble in the negative developer after exposure may be dissolved. In recent years, the circuit pattern formed on the wafer has been miniaturized, and the uniformity of CD (Critical Dimension), which is the line width of the pattern, is demanded. Deterioration of LER (Line Edge Roughness) may be a problem.
特開2016-29703号公報JP 2016-29703 A 特開2012-191168号公報JP 2012-191168 A
 本発明は、このような事情の下になされたものであり、その目的は、露光した基板を有機系の現像液により現像するにあたって、現像後の線幅の乱れを抑制する技術を提供することにある。 The present invention has been made under such circumstances, and an object of the present invention is to provide a technique for suppressing line width disturbance after development when an exposed substrate is developed with an organic developer. It is in.
 本発明の現像方法は、表面にレジストが塗布され、露光された後の基板に有機系の現像液を供給して現像処理を行う現像方法において、
 露光された後の基板を水平に保持する工程と、
 続いて基板の表面に前記現像液を供給する工程と、
 次いで基板の表面の現像液を除去する工程と、
 その後基板の表面に、基板を洗浄する有機溶剤からなる洗浄液を供給する工程と、を含むことを特徴とする。
The development method of the present invention is a development method in which a resist is applied to the surface and an organic developer is supplied to the exposed substrate to perform a development process.
Holding the exposed substrate horizontally; and
Subsequently, supplying the developer to the surface of the substrate;
Next, removing the developer on the surface of the substrate;
And thereafter supplying a cleaning liquid made of an organic solvent for cleaning the substrate to the surface of the substrate.
 本発明の現像装置は、表面にレジストが塗布され、露光された後の基板に有機現像処理を行う現像装置において、
 基板を水平に保持する基板保持部と、
 基板保持部を鉛直軸周りに回転させる回転機構と、
 基板の表面に有機系の現像液を供給する現像液供給部と、
 基板の表面に、基板を洗浄する有機溶剤からなる洗浄液を供給する洗浄液供給部と、
 基板の表面の現像液を除去する除去機構と、
 水平に保持した基板の表面に現像液を供給するステップと、次いで除去機構により、基板の表面の現像液を除去するステップと、その後基板の表面に洗浄液を供給するステップとを実行する制御部と、を備えたことを特徴とする。
In the developing device of the present invention, a resist is applied on the surface and an organic developing process is performed on the substrate after being exposed.
A substrate holder for horizontally holding the substrate;
A rotation mechanism for rotating the substrate holder around the vertical axis;
A developer supply unit for supplying an organic developer to the surface of the substrate;
A cleaning liquid supply unit for supplying a cleaning liquid made of an organic solvent for cleaning the substrate to the surface of the substrate;
A removal mechanism for removing the developer on the surface of the substrate;
A controller that executes a step of supplying a developer to the surface of the substrate held horizontally, a step of removing the developer on the surface of the substrate by a removal mechanism, and a step of supplying a cleaning solution to the surface of the substrate thereafter. , Provided.
 本発明の記憶媒体は、表面にレジストが塗布され、露光された後の基板に有機現像処理を行う現像装置に用いられるコンピュータプログラムを記憶した記憶媒体であって、
 前記コンピュータプログラムは、上述の現像方法を実行するようにステップ群が組まれていることを特徴とする
The storage medium of the present invention is a storage medium storing a computer program used in a developing device that performs organic development processing on a substrate after a resist is coated on the surface and exposed.
The computer program has a set of steps so as to execute the developing method described above.
 本発明は、露光処理が行われた基板に有機系の現像液を供給して、現像処理を行い、次いで基板表面の現像液を除去した後、有機溶剤を供給して基板の表面を洗浄するようにしている。このため現像液と有機溶剤とが混合されないので、混合液によるレジスト膜における不溶部分の溶解を抑制することができる。従って基板に形成される回路パターンの線幅の乱れを抑制することができる。 In the present invention, an organic developer is supplied to a substrate that has been subjected to exposure processing, the development processing is performed, and then the developer on the surface of the substrate is removed, and then the surface of the substrate is cleaned by supplying an organic solvent. I am doing so. For this reason, since a developing solution and an organic solvent are not mixed, melt | dissolution of the insoluble part in a resist film by a liquid mixture can be suppressed. Therefore, it is possible to suppress the disturbance of the line width of the circuit pattern formed on the substrate.
第1の実施の形態に係る現像装置を示す断面図である。It is sectional drawing which shows the developing device which concerns on 1st Embodiment. 前記現像装置に設けられた現像液ノズルを示す断面図である。It is sectional drawing which shows the developing solution nozzle provided in the said developing device. 第1の実施の形態に係る現像装置の作用を示す説明図である。It is explanatory drawing which shows the effect | action of the developing device which concerns on 1st Embodiment. 第1の実施の形態に係る現像装置の作用を示す説明図である。It is explanatory drawing which shows the effect | action of the developing device which concerns on 1st Embodiment. 第1の実施の形態に係る現像装置の作用を示す説明図である。It is explanatory drawing which shows the effect | action of the developing device which concerns on 1st Embodiment. 第1の実施の形態に係る現像装置の作用を示す説明図である。It is explanatory drawing which shows the effect | action of the developing device which concerns on 1st Embodiment. 第1の実施の形態に係る現像装置の作用を示す説明図である。It is explanatory drawing which shows the effect | action of the developing device which concerns on 1st Embodiment. 第1の実施の形態に係る現像装置の他の例の作用を示す説明図である。It is explanatory drawing which shows the effect | action of the other example of the developing device which concerns on 1st Embodiment. 第2の実施の形態に係る現像装置を示す断面図である。It is sectional drawing which shows the developing device which concerns on 2nd Embodiment. 第2の実施の形態に係る現像装置の作用を示す説明図である。It is explanatory drawing which shows the effect | action of the developing device which concerns on 2nd Embodiment. 第2の実施の形態に係る現像装置の作用を示す説明図である。It is explanatory drawing which shows the effect | action of the developing device which concerns on 2nd Embodiment.
 本発明の実施の形態に係る現像方法を実行する現像装置について説明する。図1に示すように現像装置は、基板保持部であるスピンチャック12を備えている。このスピンチャック12は、基板であるウエハWの裏面中央部を吸着して、ウエハWを水平に保持するものであり、回転軸131を介して回転機構13により鉛直軸まわりに回転自在に構成されている。 A developing device that executes the developing method according to the embodiment of the present invention will be described. As shown in FIG. 1, the developing device includes a spin chuck 12 that is a substrate holder. The spin chuck 12 adsorbs the central portion of the back surface of the wafer W, which is a substrate, and holds the wafer W horizontally, and is configured to be rotatable about a vertical axis by a rotating mechanism 13 via a rotating shaft 131. ing.
 スピンチャック12の下方側には、回転軸131を隙間を介して取り囲むように円形板22が設けられる。また円形板22に周方向に3か所の貫通孔22Aが形成され、各貫通孔22Aには各々昇降ピン14が設けられている。これら昇降ピン14の下方には、共通の昇降板18が設けられ、昇降ピン14は昇降板18の下方に設けられた昇降機構15により昇降自在に構成されている。 A circular plate 22 is provided on the lower side of the spin chuck 12 so as to surround the rotating shaft 131 through a gap. Further, three through holes 22A are formed in the circular plate 22 in the circumferential direction, and the up and down pins 14 are provided in the respective through holes 22A. A common lift plate 18 is provided below the lift pins 14, and the lift pins 14 are configured to be lifted and lowered by a lift mechanism 15 provided below the lift plate 18.
 またスピンチャック12を取り囲むようにカップ体20が設けられている。カップ体20は、回転するウエハWより飛散したり、こぼれ落ちた排液を受け止め、当該排液を現像装置外に排出するように構成されている。カップ体20は、前記円形板22の周囲に断面形状が山型のリング状に設けられた山型ガイド部23を備え、山型ガイド部23の外周端には、下方に伸びるように環状の垂直壁27が設けられている。山型ガイド部23は、ウエハWよりこぼれ落ちた液を、ウエハWの外側下方へとガイドする。 Further, a cup body 20 is provided so as to surround the spin chuck 12. The cup body 20 is configured to receive the drained liquid splashed or spilled from the rotating wafer W and to discharge the drained liquid to the outside of the developing device. The cup body 20 includes a mountain-shaped guide portion 23 provided in a ring shape having a mountain-shaped cross section around the circular plate 22, and an annular end is formed at the outer peripheral end of the mountain-shaped guide portion 23 so as to extend downward. A vertical wall 27 is provided. The chevron guide part 23 guides the liquid spilled from the wafer W to the lower side outside the wafer W.
 また、山型ガイド部23の外側を取り囲むように上縁が内側上方へ向けて斜めに伸びるように構成された筒状の上側ガイド部28が設けられている。上側ガイド部28は、昇降機構21により昇降するように構成され、ウエハWの上方を後述する現像液ノズル3、リンス液ノズル5が移動するときや、スピンチャック12と外部の搬送アームとの間でウエハWの受け渡しを行うときには、図1中実線で示す下降位置に下降する。そしてウエハWを回転させて、ウエハWの表面から処理液を振り切るときには、図1中の点線で示す上昇位置に上昇する。上側ガイド部28、山型ガイド部23及び垂直壁27の下方には、断面が凹部型となるリング状の液受け部24が設けられている。この液受け部24においては、外周側に排液路25が接続されている。また液受け部24における排液路25よりも内周側には、排気管26が下方から突入する形で設けられている。 Further, a cylindrical upper guide portion 28 configured so that the upper edge extends obliquely inward and upward so as to surround the outer side of the mountain-shaped guide portion 23 is provided. The upper guide portion 28 is configured to be moved up and down by the lifting mechanism 21, and when the developer nozzle 3 and the rinse liquid nozzle 5 described later move above the wafer W, or between the spin chuck 12 and the external transfer arm. When the wafer W is transferred, it is lowered to the lowered position indicated by the solid line in FIG. When the wafer W is rotated and the processing liquid is shaken off from the surface of the wafer W, the wafer W rises to a rising position indicated by a dotted line in FIG. A ring-shaped liquid receiving portion 24 whose section is a concave shape is provided below the upper guide portion 28, the mountain-shaped guide portion 23, and the vertical wall 27. In the liquid receiver 24, a drainage path 25 is connected to the outer peripheral side. Further, an exhaust pipe 26 is provided on the inner peripheral side of the liquid receiving portion 24 with respect to the drainage passage 25 so as to protrude from below.
 また現像装置は、ウエハWに現像液を塗布するための現像液ノズル3を備えている。図2に示すように現像液ノズル3は、例えば円柱形状の本体部30の下端に、ウエハWの表面よりも小さく形成されると共に前記ウエハWの表面と対向するように設けられた接触部32を備えている。接触部32の下面の中心部には現像液を吐出する吐出口31が設けられている。吐出口31は、本体部30及び接触部32の内部に形成された現像液供給路33の下流側端部に形成されている。現像液ノズル3は、アーム41により保持され、スピンチャック12に保持されたウエハWに対して現像液を供給する処理位置と、カップ体20の外部に設けられた図示しない待機位置との間で移動する。 Further, the developing device includes a developer nozzle 3 for applying a developer to the wafer W. As shown in FIG. 2, the developer nozzle 3 is formed at a lower end of, for example, a cylindrical main body 30 smaller than the surface of the wafer W and is provided so as to face the surface of the wafer W. It has. A discharge port 31 for discharging the developer is provided at the center of the lower surface of the contact portion 32. The discharge port 31 is formed at the downstream end of the developer supply path 33 formed inside the main body 30 and the contact portion 32. The developer nozzle 3 is held between the processing position for supplying the developer to the wafer W held by the arm 41 and held by the spin chuck 12 and a standby position (not shown) provided outside the cup body 20. Moving.
 現像液供給路33の上流側端部には、現像液供給管36の一端が接続され、現像液供給管36の他端には、現像液D、この例ではネガ型レジストを現像するための酢酸ブチルなどの有機系の現像液を供給するための現像液供給源361が接続されている。この現像液供給源361は、ポンプやバルブなどを備え、後述の制御部100からの制御信号に従って、現像液ノズル3へ現像液Dを供給するように構成されている。 One end of a developer supply pipe 36 is connected to the upstream end of the developer supply path 33, and the other end of the developer supply pipe 36 is used to develop the developer D, in this example, a negative resist. A developer supply source 361 for supplying an organic developer such as butyl acetate is connected. The developer supply source 361 includes a pump, a valve, and the like, and is configured to supply the developer D to the developer nozzle 3 in accordance with a control signal from the control unit 100 described later.
 また現像装置は、現像処理後のウエハWに向けて例えば4メチル2ペンタノールなどの有機溶剤である洗浄液(リンス液)を供給するためのリンス液ノズル5を備えている。リンス液ノズル5は、ウエハWに向けて上方からリンス液を供給するように構成されており、リンス液供給管51を介してリンス液供給源50に接続されている。またリンス液ノズル5は図示しないアームにより保持され、スピンチャック12に保持されたウエハWに対してリンス液を供給する処理位置と、カップ体20の外部に設けられた図示しない待機位置との間で移動する。
 また現像装置は、ウエハWに保持されたウエハWの裏面に洗浄液を供給する裏面側洗浄液ノズル29を備えている。裏面側洗浄液ノズル29は、図示しない洗浄液供給部に接続されており、リンス液を振り切る時に回転するウエハWの裏面に洗浄液、例えば純水を供給して、ウエハWの裏面を洗浄する。
Further, the developing device includes a rinsing liquid nozzle 5 for supplying a cleaning liquid (rinsing liquid) that is an organic solvent such as 4-methyl-2-pentanol toward the wafer W after the development processing. The rinse liquid nozzle 5 is configured to supply a rinse liquid from above toward the wafer W, and is connected to a rinse liquid supply source 50 via a rinse liquid supply pipe 51. The rinsing liquid nozzle 5 is held by an arm (not shown), and is between a processing position for supplying the rinsing liquid to the wafer W held by the spin chuck 12 and a standby position (not shown) provided outside the cup body 20. Move with.
Further, the developing device includes a back surface side cleaning liquid nozzle 29 that supplies a cleaning liquid to the back surface of the wafer W held on the wafer W. The back surface side cleaning liquid nozzle 29 is connected to a cleaning liquid supply unit (not shown), and cleans the back surface of the wafer W by supplying a cleaning liquid, for example, pure water, to the back surface of the wafer W that rotates when the rinse liquid is shaken off.
 また現像装置は、コンピュータからなる制御部100を備えている。制御部100には、例えばフレキシブルディスク、コンパクトディスク、ハードディスク、MO(光磁気ディスク)及びメモリーカードなどの記憶媒体に格納されたプログラムがインストールされる。インストールされたプログラムは、現像装置の各部に制御信号を送信してその動作を制御するように命令(各ステップ)が組み込まれている。 Further, the developing device includes a control unit 100 including a computer. For example, a program stored in a storage medium such as a flexible disk, a compact disk, a hard disk, an MO (magneto-optical disk), and a memory card is installed in the control unit 100. The installed program incorporates instructions (steps) to transmit a control signal to each part of the developing device to control its operation.
 続いて第1の実施の形態に係る現像装置の作用について説明する。例えば露光された領域が現像液に対して不溶となるネガ型レジスト膜(以下「レジスト膜」という)がウエハWに成膜され、当該ウエハWに露光装置にて回路パターンを転写する露光処理が行われる。
 露光処理が行われたウエハWは、例えば図示しない外部の搬送アームと、昇降ピン14と、の協働作用により、スピンチャック12に受け渡される。次いで現像液ノズル3が待機位置からウエハWの中心部の上方に移動し、接触部32がウエハWに近接して対向するように下降する。このように接触部32がウエハWに近接した状態で、吐出口31からウエハWに現像液Dを吐出することで、現像液ノズル3の下方に当該接触部32に接触した状態の液溜まりを形成する。
Next, the operation of the developing device according to the first embodiment will be described. For example, a negative resist film (hereinafter referred to as “resist film”) in which an exposed area is insoluble in a developer is formed on the wafer W, and an exposure process is performed in which a circuit pattern is transferred to the wafer W by an exposure apparatus. Done.
The wafer W on which the exposure processing has been performed is delivered to the spin chuck 12 by the cooperative action of, for example, an external transfer arm (not shown) and the lift pins 14. Next, the developer nozzle 3 moves from the standby position to above the central portion of the wafer W, and the contact portion 32 is lowered so as to face the wafer W in close proximity. In this manner, the developer D is discharged from the discharge port 31 to the wafer W in the state where the contact portion 32 is close to the wafer W, so that a liquid pool in a state of contacting the contact portion 32 is formed below the developer nozzle 3. Form.
 しかる後、ウエハWの回転を開始し、例えば10rpmの回転数を維持すると共に、図3(a)、(b)に示すように現像液ノズル3をウエハWの周縁に向けて移動させる。これによって図3(b)に示すように現像液Dの液溜まりは前記現像液ノズル3の接触部32に接した状態で、ウエハWの中心から周縁部へ向けて広げられる。そして現像液ノズル3はウエハWの周縁まで移動した後、現像液Dの供給を停止し、図示しないカップ体20の外部の待機部に退避する。この結果ウエハWの表面全体を覆うように現像液Dの液溜まりが形成される。 Thereafter, the rotation of the wafer W is started, and for example, the rotation speed of 10 rpm is maintained, and the developer nozzle 3 is moved toward the periphery of the wafer W as shown in FIGS. As a result, as shown in FIG. 3B, the pool of the developer D is spread from the center of the wafer W toward the peripheral edge in a state where it is in contact with the contact portion 32 of the developer nozzle 3. Then, after the developer nozzle 3 has moved to the periphery of the wafer W, the supply of the developer D is stopped, and the developer nozzle 3 is retracted to a standby portion outside the cup body 20 (not shown). As a result, a pool of the developer D is formed so as to cover the entire surface of the wafer W.
 その後図4に示すようにウエハWの回転を停止し、例えば15~60秒間静止する。レジスト膜における露光処理が行われた部位は、露光によりレジストが現像液Dに対して不溶性となっている。従って現像液Dの液溜まりを形成し、ウエハWに対して液溜まりを静止することにより、レジスト膜における露光されていない可溶部位が現像液Dと反応して溶解する。 After that, as shown in FIG. 4, the rotation of the wafer W is stopped and, for example, it is stopped for 15 to 60 seconds. In the portion of the resist film where the exposure process has been performed, the resist is insoluble in the developer D by exposure. Therefore, a liquid pool of the developer D is formed and the liquid pool is made stationary with respect to the wafer W, whereby the unexposed soluble part in the resist film reacts with the developer D and dissolves.
 続いて図5に示すようにウエハWの回転を開始し、2500rpm以下、例えば2000rpmの回転速度を5~20秒間、例えば15秒維持する。このときレジスト膜における現像液と反応して溶解した部位は、流動性が高くなっているため、ウエハWの回転により、ウエハWの表面に供給された現像液Dと共に振り切られて除去される。さらにウエハWの表面が乾燥し、例えばウエハWの表面において現像液Dによる干渉縞が見えなくなる。 Subsequently, as shown in FIG. 5, the rotation of the wafer W is started, and the rotation speed of 2500 rpm or less, for example, 2000 rpm is maintained for 5 to 20 seconds, for example, 15 seconds. At this time, the part of the resist film dissolved by reacting with the developing solution has high fluidity, and therefore is removed by being shaken off together with the developing solution D supplied to the surface of the wafer W by the rotation of the wafer W. Furthermore, the surface of the wafer W is dried, and for example, interference fringes due to the developer D are not visible on the surface of the wafer W.
 その後リンス液ノズル5をウエハWの中心に向けて吐出する位置に移動する。次いで図6に示すようにウエハWの回転速度を500~1500rpm、例えば1000rpmに減速すると共に、ウエハWの中心に向けて有機溶剤であるリンス液Rを供給する。これによりウエハWの表面にリンス液Rの液溜まりが形成され、ウエハWの周縁に向けて広がって行く。 Thereafter, the rinsing liquid nozzle 5 is moved to a position for discharging toward the center of the wafer W. Next, as shown in FIG. 6, the rotation speed of the wafer W is reduced to 500 to 1500 rpm, for example, 1000 rpm, and a rinsing liquid R as an organic solvent is supplied toward the center of the wafer W. As a result, a pool of the rinse liquid R is formed on the surface of the wafer W and spreads toward the periphery of the wafer W.
 背景技術に示したようにネガ型のレジスト膜においては、露光された領域が現像液Dに対して不溶性となるが、現像液(有機系の溶液)Dとリンス液(有機溶剤)Rとの混合液に対しては、溶解してしまうことがある。この理由は有機系の現像液と有機溶剤とが混ざることにより、各々の液とレジスト膜との間の溶解パラメータの値の差よりも混合液とレジスト液との間の溶解パラメータの値の差の方が小さくなったことに起因していると推定される。上述の実施の形態においては、ウエハWに現像液Dの液溜まりを形成し、現像処理を行った後、ウエハWを回転させて、現像液Dを振り切ると共に、ウエハWの表面を乾燥させている。そのためその後ウエハWの表面にリンス液Rを供給したときに、現像液Dとリンス液Rとが混合されない。従って、ウエハWにリンス液Rを供給したときに、レジスト膜の露光された領域が現像液Dとリンス液Rとの混合液に曝されることがなく、レジスト膜の不溶部分の溶解を防ぐことができる。 As shown in the background art, in the negative resist film, the exposed area becomes insoluble in the developer D, but the developer (organic solution) D and the rinse solution (organic solvent) R The mixed solution may be dissolved. This is because the organic developer and the organic solvent are mixed, so that the difference in the solubility parameter value between the mixed solution and the resist solution is larger than the difference in the solubility parameter value between each solution and the resist film. It is presumed that this is due to the smaller size. In the above-described embodiment, after a liquid pool of the developer D is formed on the wafer W and development processing is performed, the wafer W is rotated to shake off the developer D and dry the surface of the wafer W. Yes. Therefore, when the rinse liquid R is subsequently supplied to the surface of the wafer W, the developer D and the rinse liquid R are not mixed. Therefore, when the rinsing liquid R is supplied to the wafer W, the exposed area of the resist film is not exposed to the mixed liquid of the developing liquid D and the rinsing liquid R, thereby preventing dissolution of the insoluble portion of the resist film. be able to.
 その後図7に示すようにウエハWの回転速度を2500rpm以下、例えば2000rpmに維持し、ウエハWの表面のリンス液Rを振り切ると共に、裏面側洗浄液ノズル29からウエハWの裏面に向けて洗浄液を供給する。これにより、ウエハWの表面においては、リンス液Rと共に、溶解したレジスト膜が洗い流されて除去される。更にウエハWの裏面側も洗浄される。 Thereafter, as shown in FIG. 7, the rotation speed of the wafer W is maintained at 2500 rpm or less, for example, 2000 rpm, the rinse liquid R on the front surface of the wafer W is shaken off, and the cleaning liquid is supplied from the back surface side cleaning liquid nozzle 29 toward the back surface of the wafer W. To do. Thereby, on the surface of the wafer W, along with the rinse liquid R, the dissolved resist film is washed away and removed. Further, the back side of the wafer W is also cleaned.
 上述の実施の形態によれば、露光処理が行われたウエハWにネガ型の現像液Dを供給して、現像処理を行い、次いでウエハWを回転させて表面の現像液Dを振り切って乾燥させた後、リンス液Rを供給してウエハWの表面を洗浄するようにしている。このため現像液Dとリンス液Rとが混合せず、混合液によるレジスト膜における露光により不溶性となった部分の溶解を抑制することができる。従ってウエハWに形成される回路パターンの線幅の乱れを抑制することができる。 According to the above-described embodiment, the negative developing solution D is supplied to the wafer W on which the exposure processing has been performed, the developing processing is performed, and then the wafer W is rotated to shake off the surface developing solution D and dry. Then, the rinse liquid R is supplied to clean the surface of the wafer W. For this reason, the developing solution D and the rinsing solution R are not mixed, and dissolution of the portion insoluble in the resist film by the mixed solution can be suppressed. Therefore, the disturbance of the line width of the circuit pattern formed on the wafer W can be suppressed.
 またウエハWから現像液Dを振り切る工程においては、ウエハWの回転速度を速くすることにより、ウエハWから現像液を確実に振り切ることができ、乾燥する時間を短くすることができる。しかしながらウエハWの回転速度が速すぎる場合には、ウエハWの周縁側において乾燥しすぎてしまい、回路パターンの線幅の均一性が悪くなることがある。そのためウエハWから現像液Dを振り切る工程におけるウエハWの回転速度は、2500rpm以下であることが好ましい。 Also, in the step of shaking off the developer D from the wafer W, by increasing the rotation speed of the wafer W, the developer can be reliably shaken off from the wafer W, and the drying time can be shortened. However, when the rotation speed of the wafer W is too high, the wafer W is dried too much on the peripheral side, and the line width uniformity of the circuit pattern may deteriorate. Therefore, it is preferable that the rotation speed of the wafer W in the step of shaking off the developer D from the wafer W is 2500 rpm or less.
 また上述の実施の形態は、ウエハWを回転させて現像液Dを振り切る工程において、ウエハWを回転させると共に、ウエハWに向けて窒素(N)ガスを供給してもよい。このような例としては、例えばウエハWに向けてNガスを吐出するガスノズルを現像液ノズル3及びリンス液ノズル5と互いに干渉しない位置に設けた構成が挙げられる。このような現像装置において、ウエハWの表面に現像液の液溜まりを形成してウエハWを静止させた後、図8に示すようにガスノズル90をウエハWの中心に向けてNガスを吐出する位置に移動する。 In the above-described embodiment, the wafer W may be rotated and the nitrogen (N 2 ) gas may be supplied toward the wafer W in the process of rotating the wafer W and shaking off the developer D. As such an example, for example, a configuration in which a gas nozzle that discharges N 2 gas toward the wafer W is provided at a position that does not interfere with the developer nozzle 3 and the rinsing liquid nozzle 5 can be given. In such a developing apparatus, after a liquid pool of developer is formed on the surface of the wafer W and the wafer W is stopped, N 2 gas is discharged with the gas nozzle 90 directed toward the center of the wafer W as shown in FIG. Move to the position you want.
 その後ウエハWに向けてガスノズル90からNガスを吐出すると共に、ウエハWを例えば2500rpmの回転速度で、15秒間回転させる。この場合ガスノズル90から吐出するガスの吐出位置をウエハWの中心部に位置させたままであってもよいが、ウエハWが回転している間にガスノズル90をスキャンして吐出位置をウエハWの中心部から周縁部に移動させるようにしてもよい。次いでNガスの供給を停止した後、ウエハWのリンス液を供給するようにすればよい。
 ウエハWを回転させて現像液Dを振り切ると共に、Nガスを供給してウエハWの表面を乾燥させることにより、ウエハWの表面の乾燥を促進することができ、ウエハWの表面の乾燥の回転時間を短くしたり、ウエハWの回転速度を遅くすることができる。
Thereafter, N 2 gas is discharged from the gas nozzle 90 toward the wafer W, and the wafer W is rotated for 15 seconds at a rotational speed of, for example, 2500 rpm. In this case, the discharge position of the gas discharged from the gas nozzle 90 may remain at the center of the wafer W. However, while the wafer W is rotating, the gas nozzle 90 is scanned to set the discharge position to the center of the wafer W. You may make it move to a peripheral part from a part. Next, after the supply of N 2 gas is stopped, the rinse liquid for the wafer W may be supplied.
By rotating the wafer W to shake off the developer D and supplying the N 2 gas to dry the surface of the wafer W, drying of the surface of the wafer W can be promoted. The rotation time can be shortened and the rotation speed of the wafer W can be decreased.
 さらに現像装置におけるカップ体20の上方の天井部に設けられたFFU(Fun Filter Unit)から、ウエハWを回転させて現像液Dを振り切る工程において、例えば乾燥させた空気をカップ体20の上方に向けて供給してもよい。このように構成することで、ウエハWを回転させて現像液Dを振り切る工程において、ウエハWの周囲の雰囲気の湿度を下げることができる。ウエハWの周囲の雰囲気の湿度が下がることにより、ウエハWの表面の乾燥がより促進される。
[第2の実施の形態]
Further, in the step of rotating the wafer W from the FFU (Fun Filter Unit) provided on the ceiling portion above the cup body 20 in the developing device, for example, the dried air is fed above the cup body 20. You may supply toward. With this configuration, the humidity of the atmosphere around the wafer W can be lowered in the step of rotating the wafer W and shaking off the developer D. By reducing the humidity of the atmosphere around the wafer W, drying of the surface of the wafer W is further promoted.
[Second Embodiment]
 第2の実施の形態に係る現像装置について説明する。現像装置は、図9に示すように、カップ体6と、現像液ノズル3と、リンス液ノズル5と、純水ノズル8とを備えている。第2の実施の形態に係る現像装置においては、カップ体6は、例えば現像装置が設置される工場の要請に従って、純水の排液及び現像液D及びリンス液Rなどの有機溶媒の排液が互いに混合されないようにカップ体6外へ排出するように構成される。 The developing device according to the second embodiment will be described. As shown in FIG. 9, the developing device includes a cup body 6, a developer nozzle 3, a rinse liquid nozzle 5, and a pure water nozzle 8. In the developing device according to the second embodiment, the cup body 6 is drained of pure water and drained of an organic solvent such as the developer D and the rinsing solution R, for example, according to the request of the factory where the developing device is installed. Are configured to be discharged out of the cup body 6 so as not to be mixed with each other.
 カップ体6は、2つの個別の排液路を形成するための可動カップ60を備えている。当該可動カップ60は、スピンチャック12に載置されたウエハW、円形板22及び山型ガイド部23の周囲を囲むように設けられている。可動カップ60は、カップ体6の中心側から周縁に向かって傾斜する円形のリング板60A、60Bを上下に間隔をおいて重ねて構成されている。下方側のリング板60Bは下方に向かう途中で屈曲され、その下端部は、垂直方向に伸びるように形成された円筒部60Cとなっている。また円筒部60Cの内面における下方よりの位置には、内側に向けて突出した突起60Dが全周に亘って設けられている。なお図9中の7は、可動カップ60を上昇位置と下降位置との間で昇降させる昇降機構である。 The cup body 6 includes a movable cup 60 for forming two separate drainage paths. The movable cup 60 is provided so as to surround the periphery of the wafer W, the circular plate 22 and the mountain-shaped guide portion 23 placed on the spin chuck 12. The movable cup 60 is configured by stacking circular ring plates 60A and 60B that are inclined from the center side of the cup body 6 toward the peripheral edge thereof with an interval in the vertical direction. The lower ring plate 60B is bent halfway downward, and the lower end portion thereof is a cylindrical portion 60C formed so as to extend in the vertical direction. Further, a protrusion 60D protruding inward is provided over the entire circumference at a position from below in the inner surface of the cylindrical portion 60C. In addition, 7 in FIG. 9 is a raising / lowering mechanism which raises / lowers the movable cup 60 between the raising position and the lowering position.
 カップ体6は、可動カップ60のさらに外側を囲むように円筒状の外側カップ63を備えている。外側カップ63の上端は、中心側に向けて水平に屈曲され、外側カップ63の下端は、断面が凹部型となるリング状の液受け部62が形成されている。液受け部62には各々起立した区画壁61A、61Bが、外側カップ63の周縁に向かってこの順に、平面視同心円状に設けられている。そして、区画壁61A、61Bと外側カップ63の側壁とによって、3つの円環状の凹部62A、62B、62Cが、外側カップ63の周縁に向かってこの順に、同心円状に形成されており、凹部62A、62B、62Cの底面には、排気口64、排液口65、排液口66が夫々開口している。そして排液口65は、有機系の処理液を排液する排液管67に接続され、排液口66は、例えば純水などの有機溶媒を含まない排液を排液する排液管68に接続されている。なお図9中の69は、排気管である。 The cup body 6 includes a cylindrical outer cup 63 so as to surround the outer side of the movable cup 60. The upper end of the outer cup 63 is bent horizontally toward the center side, and the lower end of the outer cup 63 is formed with a ring-shaped liquid receiving portion 62 whose section is a concave shape. The liquid receiving portion 62 is provided with partition walls 61 </ b> A and 61 </ b> B standing upright and concentrically in this order toward the periphery of the outer cup 63. Then, three annular recesses 62A, 62B, 62C are formed concentrically in this order toward the periphery of the outer cup 63 by the partition walls 61A, 61B and the side wall of the outer cup 63, and the recess 62A , 62B, 62C are respectively provided with an exhaust port 64, a drain port 65, and a drain port 66. The drain port 65 is connected to a drain pipe 67 that drains the organic processing liquid, and the drain port 66 drains a drain that does not contain an organic solvent such as pure water. It is connected to the. In addition, 69 in FIG. 9 is an exhaust pipe.
 図9に示すように可動カップ60が図9中点線で示す上昇位置に設定されるときは、上側のリング板60Aの上端と外側カップ63の上面とが近接し、下側のリング板60Bの内周縁部の下面が、ウエハWから飛散する処理液を受けることができるように、当該ウエハWの表面の上方に位置する。また、可動カップ60の突起60Dが、区画壁61Bの上方に位置する。そしてウエハWから有機系の処理液を振り切るときには、可動カップ60を上昇位置に上昇させる。これによりウエハWから振り切られた処理液は、可動カップ60により、受け止められて、凹部62Bに流れ込み、排液口65から排液される。 As shown in FIG. 9, when the movable cup 60 is set at the raised position indicated by the dotted line in FIG. 9, the upper end of the upper ring plate 60A and the upper surface of the outer cup 63 are close to each other, and the lower ring plate 60B The lower surface of the inner peripheral edge is positioned above the surface of the wafer W so that the processing liquid scattered from the wafer W can be received. Further, the protrusion 60D of the movable cup 60 is located above the partition wall 61B. When the organic processing liquid is shaken off from the wafer W, the movable cup 60 is raised to the raised position. As a result, the processing liquid shaken off from the wafer W is received by the movable cup 60, flows into the recess 62 </ b> B, and is drained from the drain port 65.
 また図9中実線で示すように、可動カップ60が下降位置にあるときは、円筒部60Cは凹部62C内に位置する。また、上側のリング板60Aの上端がウエハWの表面と同じ、または略同じ高さに位置する。そしてウエハWから有機系の処理液を含まない液を振り切るときには、可動カップ60を下降位置に下降させる。これによりウエハWから振り切られた処理液は、可動カップ60の上方を越えて外側カップ63に受け止められ、凹部62Cに流れ込み、排液口66から排液される。
 さらに純水ノズル8は、ウエハWの表面側に向けて置換流体である純水を吐出できるように構成されている。純水ノズル8は、純水供給管81を介して純水供給源80に接続されている。また純水ノズル8は、図示しないアームに保持され、スピンチャック12に保持されたウエハWの上方とカップ体6の外部の図示しない待機部との間を移動自在に構成されている。
Further, as indicated by the solid line in FIG. 9, when the movable cup 60 is in the lowered position, the cylindrical portion 60C is located in the recess 62C. Further, the upper end of the upper ring plate 60A is located at the same or substantially the same height as the surface of the wafer W. When the liquid containing no organic processing liquid is shaken off from the wafer W, the movable cup 60 is lowered to the lowered position. As a result, the processing liquid shaken off from the wafer W passes over the movable cup 60 and is received by the outer cup 63, flows into the recess 62 </ b> C, and is drained from the drain port 66.
Further, the pure water nozzle 8 is configured to discharge pure water as a replacement fluid toward the surface side of the wafer W. The pure water nozzle 8 is connected to a pure water supply source 80 via a pure water supply pipe 81. The pure water nozzle 8 is held by an arm (not shown) and is configured to be movable between the upper portion of the wafer W held by the spin chuck 12 and a standby unit (not shown) outside the cup body 6.
 第2の実施の形態においては、まず可動カップ60を下降位置に位置させて、ウエハWの表面に現像液Dの塗布を行う。そして図4に示すようにウエハWの表面に現像液Dの液溜まりを形成し、ウエハWを静止させて現像した後、純水ノズル8をウエハWの中心部に向けて吐出する位置に移動させる。その後ウエハWの回転を開始し、500~1500rpm例えば1000rpmの回転速度を維持すると共に、ウエハWの中心に向けて純水Pを5~20秒、例えば15秒供給する。この時ウエハWの中心に供給された純水Pは、ウエハWの回転によりウエハWの中心から周縁に向けて広がる。そのため図10に示すように現像液Dが純水Pにより押し流されウエハWの周縁から振り切られる。この結果ウエハWの表面の液溜まりが現像液Dから純水Pに置換される。
 また可動カップ60の位置については、可動カップ60を下降位置に設定したまま純水Pの供給を開始し、ウエハWの表面の現像液Dが振り切られた後、可動カップ60を上昇位置に移動させ、ウエハWから純水Pを振り切る。
In the second embodiment, first, the movable cup 60 is positioned at the lowered position, and the developer D is applied to the surface of the wafer W. Then, as shown in FIG. 4, a pool of developer D is formed on the surface of the wafer W, the wafer W is stopped and developed, and then the pure water nozzle 8 is moved to a position for discharging toward the center of the wafer W. Let Thereafter, the rotation of the wafer W is started, the rotation speed of 500 to 1500 rpm, for example, 1000 rpm is maintained, and pure water P is supplied toward the center of the wafer W for 5 to 20 seconds, for example, 15 seconds. At this time, the pure water P supplied to the center of the wafer W spreads from the center of the wafer W toward the periphery by the rotation of the wafer W. Therefore, as shown in FIG. 10, the developer D is swept away by the pure water P and shaken off from the periphery of the wafer W. As a result, the liquid pool on the surface of the wafer W is replaced with the pure water P from the developer D.
As for the position of the movable cup 60, the supply of pure water P is started with the movable cup 60 set at the lowered position, and after the developer D on the surface of the wafer W has been shaken off, the movable cup 60 is moved to the raised position. The pure water P is shaken off from the wafer W.
 そして純水ノズル8をカップ体6の外部に退避させると共に、リンス液ノズル5をウエハWの中心に向けて吐出する位置に移動させる。その後ウエハWの回転速度を500~1500rpm、例えば1000rpmに維持し、ウエハWの中心に向けてリンス液Rを供給する。そのため図11に示すようにウエハWの中心に供給されたリンス液RがウエハWの中心から徐々に周縁に向けて広がる。これによりウエハWの表面の純水Pが押し流されて、ウエハWから振り切られ、ウエハWの表面の液溜まりが純水Pからリンス液Rに置換される。
 リンス液Rの供給開始時においては、可動カップ60を上昇位置に設定し、ウエハWの表面の純水Pが振り切られた後、可動カップ60を下降位置に移動させ、ウエハWからリンス液Rを振り切る。その後リンス液Rの供給を停止すると共に、ウエハWを回転させてリンス液Rと共にレジスト膜の溶解した部分を振り切って除去する。
Then, the pure water nozzle 8 is retracted to the outside of the cup body 6, and the rinse liquid nozzle 5 is moved to a position for discharging toward the center of the wafer W. Thereafter, the rotation speed of the wafer W is maintained at 500 to 1500 rpm, for example, 1000 rpm, and the rinse liquid R is supplied toward the center of the wafer W. Therefore, as shown in FIG. 11, the rinsing liquid R supplied to the center of the wafer W gradually spreads from the center of the wafer W toward the periphery. As a result, the pure water P on the surface of the wafer W is swept away from the wafer W, and the liquid pool on the surface of the wafer W is replaced with the rinsing liquid R from the pure water P.
At the start of the supply of the rinsing liquid R, the movable cup 60 is set to the ascending position, and after the pure water P on the surface of the wafer W has been shaken off, the movable cup 60 is moved to the descending position. Shake off. Thereafter, the supply of the rinsing liquid R is stopped, and the wafer W is rotated so that the dissolved portion of the resist film together with the rinsing liquid R is shaken off and removed.
 第2の実施の形態に係る現像装置においては、ウエハWに現像液Dを供給した後、現像液Dの液溜まりを純水Pに置換し、その後リンス液Rを供給するようにしている。そのため現像液Dとリンス液Rとの混合を防ぐことができるため、レジスト膜のパターン部分の溶解を抑制することができる。
 また上述の例では、現像液を置換する置換流体として、純水Pを用いたが、例えば界面活性剤を含んだ純水などを用いてもよい。また置換流体として有機溶剤を用いてもよい。置換流体として供給する有機溶剤が、当該有機溶剤と有機系の現像液と混合したときに、各々の液とレジスト膜との間の溶解パラメータの値の差よりも混合液とレジスト液との間の溶解パラメータの値の差が大きくなる有機溶剤であれば、露光後のネガ型現像液に対して不溶解性とした領域の溶解を抑制できるため置換流体として用いることができる。
In the developing device according to the second embodiment, after supplying the developing solution D to the wafer W, the reservoir of the developing solution D is replaced with pure water P, and then the rinsing solution R is supplied. Therefore, since mixing with the developing solution D and the rinse liquid R can be prevented, dissolution of the pattern part of a resist film can be suppressed.
In the above example, pure water P is used as the replacement fluid for replacing the developer. However, pure water containing a surfactant may be used, for example. An organic solvent may be used as the replacement fluid. When the organic solvent supplied as the replacement fluid is mixed with the organic solvent and the organic developer, the difference between the values of the solubility parameters between the respective solutions and the resist film is larger than that between the mixed solution and the resist solution. Any organic solvent in which the difference in the values of the solubility parameters becomes large can be used as a replacement fluid because dissolution of the insoluble region in the negative-type developer after exposure can be suppressed.
 あるいは現像液Dを置換する置換流体としてガスを用いてもよい。例えば純水ノズル8に代えてウエハWの中心に向けてドライエアを供給するガス供給ノズルを設け、ウエハWの中心から周縁に向かって流れるガス流により現像液Dを押し流す。これによりウエハWの表面の現像液Dの液溜まりがドライエアの気相に置換される。このような例では、置換流体として不活性ガスなどを用いてもよい。また置換流体は、蒸気やミストなどであってもよい。なお蒸気はガスに含まれるものとする。 Alternatively, a gas may be used as a replacement fluid for replacing the developer D. For example, instead of the pure water nozzle 8, a gas supply nozzle that supplies dry air toward the center of the wafer W is provided, and the developer D is pushed away by a gas flow that flows from the center of the wafer W toward the periphery. As a result, the liquid reservoir of the developer D on the surface of the wafer W is replaced with a gas phase of dry air. In such an example, an inert gas or the like may be used as the replacement fluid. The replacement fluid may be steam or mist. Steam is included in the gas.
 また本発明は、ウエハWを静止させた状態で現像液D、純水P及びリンス液Rを供給する現像装置に適用してもよい。例えば現像液ノズル3、リンス液ノズル5及び純水ノズル8を夫々ウエハWの径の長さよりも長い範囲に吐出口を設け、各ノズルを吐出口の伸びる方向に対して垂直な方向に水平移動するように、即ちウエハWの一端から他端までスキャンするように構成してもよい。
 このような現像装置においても現像液Dの液溜まりを形成した後、純水Pを供給することによりウエハW表面の現像液Dを除去することができるため、同様の効果が得られる。
The present invention may also be applied to a developing device that supplies the developing solution D, pure water P, and rinsing solution R while the wafer W is stationary. For example, the developing nozzle 3, the rinsing liquid nozzle 5 and the pure water nozzle 8 are each provided with discharge ports in a range longer than the length of the diameter of the wafer W, and each nozzle is moved horizontally in a direction perpendicular to the direction in which the discharge ports extend. In other words, it may be configured to scan from one end of the wafer W to the other end.
Even in such a developing apparatus, the developer D on the surface of the wafer W can be removed by supplying the pure water P after forming the pool of the developer D, and thus the same effect can be obtained.
 また本発明は、レジスト膜における露光した領域が現像液に対して可溶となるポジ型のレジスト膜に対する現像処理であってもよい。このようなレジスト膜においても現像液Dとして有機系の現像液Dを用い、現像液Dと現像処理後のリンス液Rとが混合されると、レジスト膜の露光されていない不溶とした部分も溶解してしまうおそれがある。従って、ウエハWに現像液Dを供給した後、現像液Dの除去を行った後、リンス液Rを供給することで同様の効果を得ることができる。 Further, the present invention may be a developing process for a positive resist film in which an exposed area in the resist film is soluble in a developer. Even in such a resist film, when an organic developer D is used as the developer D and the developer D and the rinse R after the development treatment are mixed, there are also portions of the resist film that are not exposed to insolubility. There is a risk of dissolution. Therefore, after supplying the developing solution D to the wafer W, removing the developing solution D, and then supplying the rinsing solution R, the same effect can be obtained.
 本発明の実施の形態の効果を調べるために以下の試験を行った。第1の実施の形態に示した現像方法において、ウエハWの表面全体に現像液Dの液溜まりを形成した後、ウエハWを2000rpmで5秒間回転させて、現像液Dを振り切り、その後リンス液Rを5秒間供給した例を実施例とした。またウエハWの表面全体に現像液Dの液溜まりを形成した後、回転させずに、現像液Dの液溜まりの上からリンス液Rを供給したことを除いて、実施例と同様に処理した例を比較例とした。また現像液Dの液溜まりを形成した後、現像液Dを振り切り、その後ウエハWにリンス液Rを供給せずに溶解部分を洗い流さなかったことを除いて、実施例と同様に処理した例を参考例とした。 The following tests were conducted to investigate the effects of the embodiment of the present invention. In the developing method shown in the first embodiment, after a liquid pool of the developing solution D is formed on the entire surface of the wafer W, the wafer W is rotated at 2000 rpm for 5 seconds to shake off the developing solution D, and then a rinsing solution An example in which R was supplied for 5 seconds was taken as an example. Further, after forming a liquid pool of the developer D on the entire surface of the wafer W, the same processing as in the example was performed except that the rinse liquid R was supplied from above the liquid pool of the developer D without rotating. The example was used as a comparative example. In addition, after forming the liquid reservoir of the developer D, the developer D was shaken off, and then the wafer W was not supplied with the rinse solution R and the dissolved portion was not washed away. It was set as a reference example.
 実施例、比較例及び参考例のウエハWの各々において、CD(Critical Dimension:限界寸法)を測定し、CDU(Critical Dimension Uniformity:限界寸法均一性)を算出した。表面が各々チップ領域に対応する大きさの437個の矩形領域に分割された評価用のウエハを用い、各矩形領域をマトリックス状に9個に分割した分割領域の中心をCDの測定点(測定位置)とした。即ち、各矩形領域ごとに9個の測定点が設定されている。 In each of the wafers W of Examples, Comparative Examples, and Reference Examples, CD (Critical Dimension: critical dimension) was measured, and CDU (Critical Dimension Uniformity) was calculated. An evaluation wafer whose surface is divided into 437 rectangular areas each having a size corresponding to a chip area is used, and the center of each divided area is divided into nine in the form of a matrix and the center of the divided area is measured as a CD measurement point (measurement). Position). That is, nine measurement points are set for each rectangular area.
 各矩形領域の各測定点において、CDを測定し、ウエハWのCDUを算出した。表1は、参考例、比較例及び実施例の各々のウエハWにおけるCDUを示す。次のようにして求めた値である。各矩形領域の既述の9個の測定点をP1、P2、…P9とすると、各矩形領域のP1におけるCD値を抽出し、それらCD値の平均値をP1のマスク値とする。P2~P9についても同様にマスク値を求める。そして各矩形領域ごとにP1において測定したCD値(実測値)からP1のマスク値m(P1)を差し引く。P2~P9についても同様に、測定したCD値(実測値)から対応する測定点のマスク値を差し引く。こうしてマスク処理後のCD値(実測値からマスク値を差し引いた値)に基づいてCDUを求めている。この計算を機能的に表現すれば、CDの実測データから、露光時のマスクに起因するCD値を差し引くことで、プロセス成分に起因するCD値を求めたということができる。 The CD was measured at each measurement point in each rectangular area, and the CDU of the wafer W was calculated. Table 1 shows CDU in each wafer W of the reference example, the comparative example, and the example. The value obtained as follows. Assuming that the nine measurement points already described in each rectangular area are P1, P2,... P9, the CD value in P1 of each rectangular area is extracted, and the average value of these CD values is used as the mask value of P1. Mask values are similarly obtained for P2 to P9. Then, the mask value m (P1) of P1 is subtracted from the CD value (actually measured value) measured at P1 for each rectangular area. Similarly for P2 to P9, the mask value of the corresponding measurement point is subtracted from the measured CD value (actually measured value). Thus, the CDU is obtained based on the CD value after mask processing (a value obtained by subtracting the mask value from the actual measurement value). If this calculation is expressed functionally, it can be said that the CD value caused by the process component is obtained by subtracting the CD value caused by the mask at the time of exposure from the measured data of CD.
 またインターCDUは各矩形領域ごとにP1~P9の各CD値の平均値である矩形領域平均値を求め、各矩形領域における矩形領域平均値に基づいて算出したCDUである。さらにイントラCDUは、グローバルCDUの算出時に用いたCD値(実測値からマスク値を差し引いた値)から領域平均値(各矩形領域においてP1~P9に対応するCD値は同じ値(平均値)である)を差し引いたCD値である。 Further, the inter CDU is a CDU obtained by obtaining a rectangular area average value that is an average value of the CD values of P1 to P9 for each rectangular area and calculating based on the rectangular area average value in each rectangular area. Further, the intra CDU has a region average value (the CD value corresponding to P1 to P9 in each rectangular region is the same value (average value)) from the CD value (the value obtained by subtracting the mask value from the actual measurement value) used when calculating the global CDU. CD value obtained by subtracting (A).
[表1]
Figure JPOXMLDOC01-appb-I000001
 参考例においては、グローバルCDUが1.04、インターCDUが0.70、イントラCDUが0.78であったが、比較例においては、グローバルCDUが1.11、インターCDUが0.72、イントラCDUが0.85であった。これに対して実施例においては、グローバルCDUが1.04、インターCDUが0.69、イントラCDUが0.78であった。
[Table 1]
Figure JPOXMLDOC01-appb-I000001
In the reference example, the global CDU was 1.04, the inter CDU was 0.70, and the intra CDU was 0.78. However, in the comparative example, the global CDU was 1.11, the inter CDU was 0.72, and the intra CDU was 0.72. The CDU was 0.85. In contrast, in the example, the global CDU was 1.04, the inter CDU was 0.69, and the intra CDU was 0.78.
 この結果によれば、参考例に比べて比較例では、CDUが大きくなっており、現像液Dを供給した後、現像液Dを振り切る工程を行わずにリンス液Rを供給することにより、CDの面内均一性が悪くなると言える。
 また実施例は、比較例に比べてCDUが小さくなっている。従って現像液Dを供給した後、現像液Dを振り切る工程を行わずにリンス液Rを供給する場合に比べて、現像液Dを振り切る工程を行った後、リンス液Rを供給することで、リンス液を供給しない場合と同等のCDが得られており、CDの面内均一性が良好になると言える。
According to this result, the CDU is larger in the comparative example than in the reference example, and after supplying the developing solution D, the rinse solution R is supplied without performing the step of shaking off the developing solution D. It can be said that the in-plane uniformity becomes worse.
In addition, the example has a smaller CDU than the comparative example. Therefore, after supplying the developing solution D, supplying the rinsing solution R after performing the step of shaking off the developing solution D compared to the case of supplying the rinsing solution R without performing the step of shaking off the developing solution D. A CD equivalent to that obtained when no rinse solution is supplied is obtained, and it can be said that the in-plane uniformity of the CD is improved.
3          現像液ノズル
5          リンス液ノズル
8          純水ノズル
12         スピンチャック
13         回転機構
100        制御部
D          現像液
P          純水
R          リンス液
W          ウエハ
 

 
3 Developer Nozzle 5 Rinse Solution Nozzle 8 Pure Water Nozzle 12 Spin Chuck 13 Rotating Mechanism 100 Control Unit D Developer P Pure Water R Rinse Solution W Wafer

Claims (12)

  1.  表面にレジストが塗布され、露光された後の基板に有機系の現像液を供給して現像処理を行う現像方法において、
     露光された後の基板を水平に保持する工程と、
     続いて基板の表面に前記現像液を供給する工程と、
     次いで基板の表面の現像液を除去する工程と、
     その後基板の表面に、基板を洗浄する有機溶剤からなる洗浄液を供給する工程と、を含むことを特徴とする現像方法。
    In a development method in which a resist is applied to the surface and an organic developer is supplied to the exposed substrate to perform development processing.
    Holding the exposed substrate horizontally; and
    Subsequently, supplying the developer to the surface of the substrate;
    Next, removing the developer on the surface of the substrate;
    And thereafter supplying a cleaning liquid comprising an organic solvent for cleaning the substrate to the surface of the substrate.
  2.  前記現像液を除去する工程は、水平に保持した基板を鉛直軸周りに回転させて現像液を振り切って、基板の表面を乾燥させることを特徴とする請求項1に記載の現像方法。 2. The developing method according to claim 1, wherein in the step of removing the developer, the surface of the substrate is dried by rotating the substrate held horizontally around the vertical axis to shake off the developer.
  3.  前記現像液を除去する工程は、基板に置換流体を供給して現像液の液溜まりを置換流体に置換することを特徴とする請求項1に記載の現像方法。 2. The developing method according to claim 1, wherein in the step of removing the developer, a replacement fluid is supplied to the substrate to replace a liquid pool of the developer with a replacement fluid.
  4.  前記置換流体は、置換液であることを特徴とする請求項3に記載の現像方法。 4. The developing method according to claim 3, wherein the replacement fluid is a replacement liquid.
  5.  前記置換流体は、気体またはミストであることを特徴とする請求項3に記載の現像方法。 4. The developing method according to claim 3, wherein the replacement fluid is gas or mist.
  6.  前記レジスト膜は、露光領域が有機現像液に対して不溶解性となるネガ型レジスト膜であることを特徴とする請求項1に記載の現像方法。 2. The developing method according to claim 1, wherein the resist film is a negative resist film in which an exposed region is insoluble in an organic developer.
  7.  表面にレジストが塗布され、露光された後の基板に有機現像処理を行う現像装置において、
     基板を水平に保持する基板保持部と、
     基板保持部を鉛直軸周りに回転させる回転機構と、
     基板の表面に有機系の現像液を供給する現像液供給部と、
     基板の表面に、基板を洗浄する有機溶剤からなる洗浄液を供給する洗浄液供給部と、
     基板の表面の現像液を除去する除去機構と、
     水平に保持した基板の表面に現像液を供給するステップと、次いで除去機構により、基板の表面の現像液を除去するステップと、その後基板の表面に洗浄液を供給するステップとを実行する制御部と、を備えたことを特徴とする現像装置。
    In a developing device that performs organic development processing on a substrate after a resist is applied to the surface and exposed,
    A substrate holder for horizontally holding the substrate;
    A rotation mechanism for rotating the substrate holder around the vertical axis;
    A developer supply unit for supplying an organic developer to the surface of the substrate;
    A cleaning liquid supply unit for supplying a cleaning liquid made of an organic solvent for cleaning the substrate to the surface of the substrate;
    A removal mechanism for removing the developer on the surface of the substrate;
    A controller that executes a step of supplying a developer to the surface of the substrate held horizontally, a step of removing the developer on the surface of the substrate by a removal mechanism, and a step of supplying a cleaning solution to the surface of the substrate thereafter. And a developing device.
  8.  前記除去機構は、基板保持部を鉛直軸周りに回転させる回転機構であり、基板の表面の現像液を除去するステップは、基板を鉛直軸周りに回転させて、現像液を振り切って、基板の表面を乾燥させるステップであることを特徴とする請求項7に記載の現像装置。 The removing mechanism is a rotating mechanism that rotates the substrate holding unit around the vertical axis, and the step of removing the developer on the surface of the substrate rotates the substrate around the vertical axis, shakes off the developer, 8. The developing device according to claim 7, wherein the developing device is a step of drying the surface.
  9.  前記除去機構は、基板の表面に置換流体を供給する置換流体供給部であり、基板の表面の現像液を除去するステップは、基板に置換流体を供給して現像液の液溜まりを置換流体に置換するステップであることを特徴とする請求項7に記載の現像装置。 The removal mechanism is a replacement fluid supply unit that supplies a replacement fluid to the surface of the substrate, and the step of removing the developer on the surface of the substrate supplies the replacement fluid to the substrate and turns the developer pool into the replacement fluid. The developing device according to claim 7, wherein the developing device is a replacing step.
  10.  前記置換流体は、置換液であることを特徴とする請求項9に記載の現像装置。 The developing device according to claim 9, wherein the replacement fluid is a replacement liquid.
  11.  前記置換流体は、気体またはミストであることを特徴とする請求項9に記載の現像装置。 10. The developing device according to claim 9, wherein the replacement fluid is a gas or a mist.
  12.  表面にレジストが塗布され、露光された後の基板に有機現像処理を行う現像装置に用いられるコンピュータプログラムを記憶した記憶媒体であって、
     前記コンピュータプログラムは、請求項1に記載の現像方法を実行するようにステップ群が組まれていることを特徴とする記憶媒体。
     

     
    A storage medium storing a computer program used in a developing device that performs organic development processing on a substrate after a resist is coated on the surface and exposed,
    A storage medium, wherein the computer program includes a group of steps so as to execute the developing method according to claim 1.


PCT/JP2017/014713 2016-04-28 2017-04-10 Development method, development device, and recording medium WO2017187951A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-091125 2016-04-28
JP2016091125 2016-04-28

Publications (1)

Publication Number Publication Date
WO2017187951A1 true WO2017187951A1 (en) 2017-11-02

Family

ID=60160475

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/014713 WO2017187951A1 (en) 2016-04-28 2017-04-10 Development method, development device, and recording medium

Country Status (2)

Country Link
TW (1) TWI689972B (en)
WO (1) WO2017187951A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114764218A (en) * 2021-01-15 2022-07-19 中国科学院微电子研究所 Photoetching machine, developing device and developing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112965347B (en) * 2020-11-12 2023-11-03 重庆康佳光电科技有限公司 Wafer developing device and method and wafer

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0869961A (en) * 1994-08-30 1996-03-12 Nec Environment Eng Ltd Developing method of photoresist
JP2003178946A (en) * 2001-12-10 2003-06-27 Tokyo Electron Ltd Developing method and developing device
JP2009238899A (en) * 2008-03-26 2009-10-15 Dainippon Screen Mfg Co Ltd Substrate processing apparatus and method
JP2011033841A (en) * 2009-07-31 2011-02-17 Fujifilm Corp Processing liquid for forming pattern due to chemically amplified resist composition and method for forming resist pattern using the same
JP2012074564A (en) * 2010-09-29 2012-04-12 Dainippon Screen Mfg Co Ltd Substrate processing apparatus and substrate processing method
JP2012173510A (en) * 2011-02-22 2012-09-10 Tokyo Electron Ltd Organic developing process method and organic developing process device
JP2014135440A (en) * 2013-01-11 2014-07-24 Sokudo Co Ltd Negative developing method and negative developing device
JP2015031923A (en) * 2013-08-06 2015-02-16 東京応化工業株式会社 Organic solvent developer

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0869961A (en) * 1994-08-30 1996-03-12 Nec Environment Eng Ltd Developing method of photoresist
JP2003178946A (en) * 2001-12-10 2003-06-27 Tokyo Electron Ltd Developing method and developing device
JP2009238899A (en) * 2008-03-26 2009-10-15 Dainippon Screen Mfg Co Ltd Substrate processing apparatus and method
JP2011033841A (en) * 2009-07-31 2011-02-17 Fujifilm Corp Processing liquid for forming pattern due to chemically amplified resist composition and method for forming resist pattern using the same
JP2012074564A (en) * 2010-09-29 2012-04-12 Dainippon Screen Mfg Co Ltd Substrate processing apparatus and substrate processing method
JP2012173510A (en) * 2011-02-22 2012-09-10 Tokyo Electron Ltd Organic developing process method and organic developing process device
JP2014135440A (en) * 2013-01-11 2014-07-24 Sokudo Co Ltd Negative developing method and negative developing device
JP2015031923A (en) * 2013-08-06 2015-02-16 東京応化工業株式会社 Organic solvent developer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114764218A (en) * 2021-01-15 2022-07-19 中国科学院微电子研究所 Photoetching machine, developing device and developing method

Also Published As

Publication number Publication date
TWI689972B (en) 2020-04-01
TW201802875A (en) 2018-01-16

Similar Documents

Publication Publication Date Title
US11150558B2 (en) Developing method
JP4005879B2 (en) Development method, substrate processing method, and substrate processing apparatus
JP4900116B2 (en) Development method, development device, and storage medium
JP2007317706A (en) Device, method and program for nozzle cleaning, and recoding medium which can be read by computer and in which the program is recorded
JP5212538B2 (en) Development method, development device, and storage medium
JP2009033054A (en) Developing device, developing method, and storage medium
JP6044428B2 (en) Substrate processing method, substrate processing apparatus, and storage medium
KR20190099124A (en) Liquid processing apparatus
KR101950047B1 (en) Substrate cleaning and drying method and substrate developing method
TWI799290B (en) Substrate processing apparatus and substrate processing method
WO2017187951A1 (en) Development method, development device, and recording medium
JP6481644B2 (en) Substrate processing method, substrate processing apparatus, and storage medium
JP2009094406A (en) Coating/developing apparatus, coating/developing method, and storage medium
JP2009033053A (en) Development method, developement device, and storage medium
JP5104994B2 (en) Developing device, developing method, and storage medium
JP2010141162A (en) Method of processing substrate, program, computer storage medium and substrate processing system
JP2012019160A (en) Developing apparatus and developing method
KR102714523B1 (en) Substrate treatment method, storage medium and developing apparatus
JP2021072406A (en) Substrate processing method and substrate processing apparatus
WO2024203602A1 (en) Substrate processing apparatus and substrate processing method
JP4492931B2 (en) Method for forming photoresist pattern
JP6690717B2 (en) Coating method, coating device and storage medium
JPH08330211A (en) Photoresist developing device, device for manufacturing semiconductor integrated circuit device using it, and development treatment method
TW201809894A (en) Development method, development device, and storage medium
JP2010044233A (en) Coating and developing method, and coating and developing device

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17789238

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17789238

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP