JP2012173112A - ラマン分光測定装置及びラマン分光測定方法 - Google Patents

ラマン分光測定装置及びラマン分光測定方法 Download PDF

Info

Publication number
JP2012173112A
JP2012173112A JP2011034944A JP2011034944A JP2012173112A JP 2012173112 A JP2012173112 A JP 2012173112A JP 2011034944 A JP2011034944 A JP 2011034944A JP 2011034944 A JP2011034944 A JP 2011034944A JP 2012173112 A JP2012173112 A JP 2012173112A
Authority
JP
Japan
Prior art keywords
light
sample
raman
optical element
rayleigh
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011034944A
Other languages
English (en)
Inventor
Mitsuhiro Tomota
光弘 友田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2011034944A priority Critical patent/JP2012173112A/ja
Publication of JP2012173112A publication Critical patent/JP2012173112A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

【課題】円筒形状に形成された多層構造の透過性の膜のミクロン単位の膜構造解析をおこなうため、試料の深さ方向解析に必要な情報を含んだ微弱なラマン散乱光を取得しつつ、膜の界面位置情報を含んだレイリー光を精度良く取得する。
【解決手段】円筒形状膜試料40にレーザー光を照射して、膜試料からのレイリー光と散乱光と測定するラマン分光測定装置で、円筒形状試料を把持する把持治具41と、把持治具41をレーザー光に対して垂直、且つ、円筒形状試料の軸に対して垂直な方向(図中、X方向)に移動可能に駆動する把持冶具駆動部42と、表面観察用撮像素子としての観察用CCD43を備える。
【選択図】図3

Description

本発明は、ラマン分光測定装置及びラマン分光測定方法に関するものである。詳しくは、試料に光を当てた時に生じる微弱なラマン散乱光の情報を取得するとともに、試料から反射されるレイリー光の情報を取得するラマン分光測定装置及びラマン分光測定方法に関するものである。
近年、画像形成装置の高速化、小型化及びカラー化が急速に進行するなか、電子写真方式の画像形成装置に用いられる感光体の開発の潮流はデバイスへの高機能付加へと向かっている。このような流れの中で、多層構成の透過性の膜からなる感光体を高感度・高耐久の観点で性能を評価するため、膜のミクロン単位での構造解析の必要性が生じている。
従来、一般的な物質の深さ方向分析を行う分析方法としては、X線マイクロアナリシス(EPMA:electron probe micro-analyzer)、X線光電子分光(XPS:x-ray photoelectron spectroscopy)、2次イオン質量分析(SIMS:secondary ion mass spectroscopy)、ラザフォード後方散乱(RBS:Rutherford backscattering spectrometry)、フーリエ変換赤外分光(FT−IR:Fourier transform Infrared spectroscopy)、ラマン分光等の分析方法が知られている。その中でも、感光体における厚さ5〜40μmの膜の深さ方向分析となると、試料調整を必要としないで応用できる方法は限られており、ラマン分光法を応用した顕微鏡測定装置であるラマン分光測定装置が有用である。
ラマン分光法は、レーザー光のような単色光を物体に照射した際、物体の中の分子に入射光と相互作用するものがあると、入射光の振動数が変化して、その入射光と異なる波長の微弱な散乱光が観測される性質を用いている。ここで、入射光と等しい波長の散乱光をレイリー光(弾性散乱光)と呼び、入射光と波長の異なる散乱光(非弾性散乱光)をラマン散乱光と呼ぶ。入射光に対して観測されるラマン散乱光は、物質に特有のものであり、ラマン散乱光のスペクトルを解析すると、その物体の化学構造、結晶性、配向などに関する情報の取得が可能である。
ラマン分光法を用いるラマン分光測定装置では、顕微光学系を用いることにより、膜試料の深さ方向微小領域の情報が取得可能である。詳しくは、顕微光学系を用いて焦点面の膜試料に入射光を照射すると共に膜試料から反射光を集光し、反射光より微弱なラマン散乱光を抽出してラマン散乱光スペクトルを取得する。このラマン散乱光スペクトルを解析することで、深さ方向に関して焦点面近傍の微小領域の情報が取得可能となる。一般的なラマン分光測定装置の構成としては、膜試料にレーザー光を照射するためのレーザー光源と、試料にレーザー光を照射し膜試料からの散乱光を受光する分離光学素子と対物レンズとを有する顕微鏡光学系と、散乱光を分光する分光手段と、分光された散乱光の強度を検出する光検出手段とを備えている。このようなラマン分光測定装置は、膜試料をデバイス状態のまま非破壊で測定でき、かつ、測定自体が簡易で瞬時におこなえるというメリットがある。
しかし、光透過性の膜試料の分析を行う場合には、通常の顕微光学系では、焦点面のラマン散乱光に非焦点面からのラマン散乱光が重なってしまう。このため、抽出されたラマン散乱光スペクトルは焦点面近傍と非焦点面の情報を同時に含むような滲みが生じ、これによりラマン分光測定装置の空間分解能が低下してしまう。
このような問題を解決するために、近年、共焦点顕微鏡光学系を用いた共焦点レーザーラマン分光測定装置が開発され、ミクロな深さ方向解析の有力な測定装置として注目されている(非特許文献1参照)。共焦点顕微光学系では、焦点面からのラマン散乱光を、対物レンズの焦点面と光学的に共役となる様に配置したピンホールに透過させることにより試料焦点面からのラマン散乱光のみを検出することができる。この状態で試料位置を深さ方向に移動することにより、深さ方向のラマン散乱光スペクトルのプロファイルが得られる。
また、共焦点レーザーラマン分光測定装置で、さらに空間分解能を挙げるという観点から、屈折率を合わせるインデックスマッチングという技術を用いている。これは、顕微鏡光学系で通常の乾燥系レンズを用いると、レンズから空気、空気から試料膜と二箇所で光が通る媒質変化による屈折が生じる。試料膜中でこの屈折に伴う収差の影響によりビーム径が拡がり、表面に対して膜中で励起光エネルギーが低下し、空間分解能が低下してしまう。この問題を解決する方法として、顕微鏡光学系で油浸対物レンズとエマルジョンオイルを組み合わせたものを用い、レンズから試料膜までを試料膜と近い屈折率にすることにより、光の屈折の影響を排除するものである。インデックスマッチングを行った共焦点レーザーラマン分光測定装置では、深さ方向に0.5〜1μm程度の高い空間分解能を得ることが可能である。
しかし、共焦点レーザーラマン分光測定装置では、ラマン散乱光と比較して非常に強度の強いレイリー光が同じ光路を通って分光器や検出器に入る際はラマン散乱光を妨害して検出器を飽和させ、最悪の場合には高価な検出器が破壊される場合もある。この為、妨害光となるレイリー光を、レーザー光遮断光学素子を含めた遮断光学系などで除去し、桁違いに弱いラマン散乱光を分光器に入れる光学配置が採用されてきた。具体的には妨害光となるレイリー光を除去する分離光学素子やレーザー光遮断光学素子を備えた共焦点レーザーラマン分光測定装置が知られている。
このように、共焦点レーザーラマン分光測定装置では、分離光学素子やレーザー光遮断光学素子を介することによりラマン測定における妨害光であるレイリー光を効果的に除去して、微弱なラマン散乱光を精度良く検出できる。しかしながら、上記構成の共焦点レーザーラマン分光測定装置によってミクロン単位のラマン散乱光スペクトルの深さ方向プロファイルが得られたとしても、感光体のような多層構造の膜では、多層間の界面位置情報が正確に得られていないと、ラマン散乱光情報がどの層のものかを正確に特定することが難しい。このため、多層構造の膜のミクロン単位での構造解析という当初の目的を達成することが難しくなっていた。
このような問題に鑑み、本発明者は、ラマン散乱光の情報を取得するとともに、多層構造の透過性の膜試料における界面位置情報を有したレイリー光の情報を取得して利用する思想に至り、特許文献1,2で、微弱なラマン散乱光を検出器で検出しつつ、レイリー光を同一の系統の光学系により測定するラマン分光測定装置を提案している。例えば、特許文献2のラマン分光測定装置は、分離光学素子を経由した光における特定波長の光を透過するフィルター光学素子を設け、フィルター光学素子は、試料からのレイリー光の一部を測定可能に光検出手段に導くか、試料からのレイリー光を遮断して散乱光を光検出手段に導くか、のいずれかに選択可能としている。このような構成のラマン分光測定装置では、ラマン散乱による材料分析の深さ位置方向のプロファイルを得ながら、これと連動してレイリー光による界面位置情報を得て加味することにより、多層構造の膜中のどの位置のラマン散乱光かを同定可能としている。これにより、感光体のような多層構造の膜のミクロン単位の構造解析を、デバイス状態のまま非破壊で迅速におこなうことができる。
しかし、上記何れのラマン分光測定装置または共焦点レーザーラマン分光測定装置も、膜試料とし平面状試料を測定する構成であり、曲率を有する円筒形状試料を測定する構成にはなっていない。
特許文献3には、ラマン分光測定装置で円筒形状試料を測定する構成が記載されている。このラマン分光測定装置では、レーザー光が照射される位置に円筒形状試料の各測定点を移動させるために、試料台上に円筒形状試料をその軸心回りに回動自在に保持し、さらに、試料台を試料の軸心方向に移動自在とした構成である。
上記特許文献3のラマン分光測定装置は、単に、試料台上に円筒形状試料を軸心回りに回転自在に保持して各測定点に移動させることにより、円筒形状試料のマッピングを容易に行うものである。この構成を、特許文献1,2の微弱なラマン散乱光を検出器で検出しつつ、レイリー光を同一の系統の光学系により検出するラマン分光測定装置に用いても、上記感光体のような円筒形状基体の上に多層構造の透過性の膜を形成した円筒形状試料の各測定点において、深さ方向にミクロン単位で膜の構造解析をおこなうことはできない。
詳しくは、レーザー光が照射される位置に測定点に移動させた円筒形状試料を試料台上に静置保持してラマン散乱光を検出すると、ラマン散乱光に関しては、平面状試料と同様な高い空間分解能を有するラマン散乱光が検出できる。しかし、レイリー光の測定では、レーザー光軸と円筒形状試料の曲率中心に僅かなずれによる影響で、レイリー光の強度が変化したり、測定位置がずれることにより膜の構造解析測定精度が低下したりする。
円筒形状試料を静置するまでに機械的移動を伴う場合、駆動部に用いられている歯車のバックラッシュ分のずれ等により静止位置がずれ、レーザー光軸と円筒形状試料の曲率中心のずれが発生しやすい。また、正確な静置位置が再現されている場合でも、温度変化に依る把持治具の伸縮、円筒形状試料の真円度のバラツキによる中心軸の僅かなずれが生じ、レーザー光軸と円筒形状試料の曲率中心のずれが発生しやすい。特に、円筒形状試料の曲率半径が小さくなるほど、レーザー光軸と円筒形状試料の曲率中心のずれは顕著となる。このように、円筒形状試料の測定に際しては、レーザー光軸と円筒形状試料の曲率中心のずれが発生し、この影響でレイリー光測定の精度低下を引き起こしてしまう。すなわち、従来の技術では、ラマン分光測定装置において、円筒形状に形成された多層構造の透過性の膜からなる感光体等の解析に必要なレイリー光を精度良く取り出すことが困難であった。
本発明は以上の問題点に鑑みなされたものであり、円筒形状に形成された多層構造の透過性の膜のミクロン単位の膜構造解析をおこなうため、試料の深さ方向解析に必要な情報を含んだ微弱なラマン散乱光を取得しつつ、膜の界面位置情報を含んだレイリー光を精度良く取得することのできるラマン分光測定装置およびラマン分光測定方法を提供することである。
上記目的を達成するために、請求項1の発明は、レーザー光源と、試料にレーザー光を照射すると共に、該試料からのレイリー光と散乱光とを受光する分離光学素子と対物レンズとを有する顕微光学系と、該分離光学素子を経由した光における特定波長の光を透過するフィルター光学素子と、該フィルター光学素子を透過した光を分光する分光手段と、該分光手段により分光された光の強度を検出する光検出手段とを備え、該フィルター光学素子は該試料からのレイリー光の一部を通過させるか、該試料からのレイリー光を遮断して散乱光を通過させるかの何れかに選択可能に設けたラマン分光測定装置において、上記試料としての円筒形状試料を軸方向に水平に把持する把持治具と、該把持冶具を上記レーザー光に対して垂直、且つ、該円筒形状試料の軸に対して垂直な方向に移動可能とする把持冶具駆動部と、該円筒形状試料表面を観察する表面観察用撮像素子とを有することを特徴とするものである。
また、請求項2の発明は、請求項1のラマン分光測定装置において、上記顕微光学系の対物レンズとして、乾燥系対物レンズと、エマルジョンオイルと組み合わせた油浸対物レンズとが選択可能であることを特徴とするものである。
また、請求項3の発明は、請求項1または2のラマン分光測定装置において、上記顕微光学系は、焦点面と共役な関係にあるピンホールを備える共焦点顕微光学系であることを特徴とするものである。
また、請求項4の発明は、請求項1,2または3の何れかのラマン分光測定装置において、上記フィルター光学素子は、レイリー光と等価なレーザー光を遮断するレーザー光遮断光学素子を抜き差し可能に備えたことを特徴とするものである。
また、請求項5の発明は、請求項1,2または3の何れかのラマン分光測定装置において、上記フィルター光学素子は、レイリー光と等価なレーザー光を遮断する第一のレーザー光遮断光学素子と、該第一のレーザー光遮断光学素子よりも該レーザー光の波長の透過率を上げた第二のレーザー光遮断光学素子とを入れ替え可能に備えたことを特徴とするものである。
また、請求項6の発明は、請求項4または5のラマン分光測定装置において、上記レーザー光遮断光学素子はノッチフィルターおよび/またはエッジフィルターであることを特徴とするものである。
また、請求項7の発明は、請求項1,2,3,4,5または6の何れかのラマン分光測定装置において、上記分離光学素子はダイクロイックミラーであることを特徴とするものである。
また、請求項8の発明は、請求項1,2,3,4,5,6または7の何れかのラマン分光測定装置において、上記顕微光学系に用いられる乾燥系対物レンズのNAは、0.8以下であることを特徴とするものである。
また、請求項9の発明は、請求項1,2,3,4,5,6,7または8の何れかのラマン分光測定装置において、上記顕微光学系に用いられる油浸対物レンズとエマルジョンオイルの組み合わせのNAは1.2以上であることを特徴とするものである。
また、請求項10の発明は、分離光学素子と対物レンズとを有する顕微光学系により、円筒形状試料にレーザー光を照射すると共に、該円筒形状試料からのレイリー光と散乱光とを受光し、フィルター光学素子により該受光したレイリー光の一部または該レイリー光を遮断した散乱光を通過させて分光手段に導き、該分光手段により分光された光の強度を光検出手段より検出して、ラマン散乱光とレイリー光とを測定するラマン分光測定方法において、上記円筒形状試料を上記レーザー光に対して垂直、且つ、該円筒形状試料の軸に対して垂直な方向に移動させながら、上記顕微光学系として乾燥系対物レンズを用いて表面観察用撮像素子で該円筒形状試料の表面を観察して該円筒形状試料の曲率中心と該レーザー光の光軸とを合わせた後、上記顕微光学系としてエマルジョンオイルと組み合わせた油浸対物レンズを用いて、上記ラマン散乱光とレイリー光との測定を行うことを特徴とするものである。
また、請求項11の発明は、請求項1乃至9の何れかのラマン分光測定装置を用いて測定した該円筒形状試料のレイリー光に基づき該試料の膜界面における反射光強度を検出し、該ラマン散乱光による深さ毎の分光データプロファイルと関連付けることを特徴とするものである。
本発明においては、円筒形状に形成された多層構造の透過性の膜からなる円筒形状試料を測定する際、円筒形状試料の曲率中心とレーザー光軸を合わせるよう調整可能とすることにより、円筒形状試料のレイリー光を精度良く測定することができる。詳しくは、円筒形状試料を把持冶具により軸方向に水平に把持し、把持冶具をレーザー光に対して垂直、且つ、該円筒形状試料の軸に対して垂直な方向に移動させながら、円筒形状試料の表面を表面観察用撮像素子により観察し、レーザー光軸と円筒形状試料の曲率中心との一致点を探して、この位置に円筒形状試料を静止させる。このようにして、円筒形状試料の曲率中心とレーザー光軸を合わせることができるので、界面位置情報を含んだレイリー光を、円筒形状試料の曲率の影響を抑えて精度良く測定できる。精度良く測定したレイリー光による界面位置情報を、ラマン散乱光により多層構造の透過性の膜試料の深さ方向解析の情報に加味することで、円筒形状試料においても、多層構造の膜のミクロン単位の構造解析を、デバイス状態のまま非破壊で迅速におこなうことができる。
本発明によれば、円筒形状に形成された多層構造の透過性の膜のミクロン単位の膜構造解析をおこなうため、試料の深さ方向解析に必要な情報を含んだ微弱なラマン散乱光を取得しつつ、膜の界面位置情報を含んだレイリー光を精度良く取得することができるという優れた効果が得られる。
本実施形態に係るラマン分光測定装置の構成を示す断面概略図であり、(a)はレイリー光情報取得時、(b)はラマン散乱光情報取得時を示す。 感光体ドラムの層構成を示す図。 円筒形状試料の把持治具および把持冶具駆動部の構成を示す概略図。 レーザー光源の波長域を反射する特性を有したダイクロイックミラーの特性図。 ノッチフィルターの光学特性図。 エッジフィルターの光学特性図。 本実施形態のラマン分光測定装置によるレイリー光プロファイルの一例。 本実施形態のラマン分光測定装置による深さ方向の位置毎の分光データプロファイルの一例。 従来のラマン分光測定装置によるレイリー光プロファイルの一例。
以下、図面を参照して、本発明のラマン分光測定装置及びラマン分光測定方法を実施形態により詳細に説明する。
まず、本実施形態で円筒形状試料(被検体)となる多層構成の光透過性の膜構成として、代表的な感光体ドラムの例を以下に挙げる。
図2は、感光体ドラムの層構成を示す図である。図2に示すように、感光体ドラムは、導電性基体となるアルミニウムドラム2上に中間層3、電荷発生層4、電荷輸送層5、表面層6を順次形成した多層構成の膜試料1であり、電荷発生層4、電荷輸送層5、表面層6により感光層をなしている。
中間層3は、導電性基体であるアルミニウムドラム2に感光層を接着固定するバインダとしての機能をもち、帯電ムラ等の弊害を抑制するために「顔料の微細粒子」が含有されている。
電荷発生層4は、特定の波長の光照射により「正と負の電荷対」を発生させる層であり、電荷輸送層5と表面層6は電荷発生層4で発生した正と負の電荷のうち、所定極性の電荷を感光層表面へ輸送する機能を持つ層である。
表面層6は、感光体が実機内で物理的な接触・摩耗により感光層が削れ、感光体特性が低下することを防ぐ機能も有している。
中間層3、電荷発生層4、電荷輸送層5、表面層6の膜厚は好ましくはそれぞれ、2〜6μm、1μm以下、15〜35μm、3〜10μm程度であり、従って、感光層としての好ましい厚さは18〜46μm程度となる。
中間層3の層厚は、上記のように、一般的に2〜6μmの範囲であるが、バインダとしての十分な機能や、導電性基体に対する光遮蔽効果を良好にならしめるために、中間層3の厚さは3μm以上であることが好ましい。
この内、本実施形態の装置または方法を、例えば光透過性の膜となる電荷輸送層5と表面層6中の成分傾斜を解析する構造解析に使用するニーズがある。
レイリー光として、表面層6の表面と電荷輸送層5の表面及び中間層3の表面(界面)の反射光を受光することが可能である。
次に、本実施形態に係るラマン分光測定装置の構成について説明する。
図1は、本実施形態に係るラマン分光測定装置の構成を示す断面概略図である。図1(a)は、膜試料1からのレイリー光の一部を散乱光とともに測定可能に検出部36に導く構成を示しており、図1(b)は、膜試料1からのレイリー光を遮断してラマン散乱光を検出部36に導く構成を示している。
ラマン分光測定装置は、レーザー光源30と、膜試料1にレーザー光を照射し、膜試料1からのレイリー光と散乱光を受光する分離光学素子(ダイクロイックミラー33)及び選択可能な対物レンズ34とを有する顕微光学系と、分離光学素子(ダイクロイックミラー33)を経由した光における特定波長の光を透過するフィルター光学素子と、フィルター光学素子を透過した光を分光する分光手段(不図示)と、分光された光の強度を検出する光検出手段(検出部36)と、を備える。顕微光学系の対物レンズ34としては、低倍率の乾燥系対物レンズと、試料の間にエマルジョンオイル(不図示)が充填される油浸レンズとを選択可能に有している。図1(a)のレイリー光の測定時、及び、図1(b)のラマン散乱光の測定時は、対物レンズ34は、エマルジョンオイル(不図示)が充填される油浸レンズを用いる。さらに、図1(b)のラマン散乱光の測定時は、フィルター光学素子の一部であるレーザー光遮断光学素子37を用いる。
また、ラマン分光測定装置の顕微鏡ステージは、Z軸方向駆動部(不図示)が付帯されており、膜試料1のZ軸方向への移動が可能である。Z軸方向駆動部を駆動して、Z軸方向に光透過性の膜試料1の乗った顕微鏡ステージを移動させながら対物レンズでレイリー光または検出光(ラマン散乱光)を集光することで空間分解能を作り出す。顕微鏡ステージのZ軸方向駆動部としてはピエゾ素子或いはステッピングモータ移動機構が設置され光透過性の膜試料のZ方向(厚み方向)の走査が行われる。
共焦点レーザーラマン分光測定装置の場合は、顕微鏡ステージを顕微鏡のZ方向に移動することによって、光透過性の膜試料1に対して光軸方向の走査を行うことが可能となる。空間分解能は、後述するように対物レンズのNAに大きく依存しており、高空間分解能を達成する為、測定時には低倍率の乾燥系の対物レンズではなく油浸対物レンズが用いられる。
しかし、上記感光体ドラムのような円筒形状試料40を測定する場合、レイリー光測定時に円筒形状試料40の曲率半径中心とレーザー光軸が一致していないと、曲率の影響で、膜の界面位置情報を含む正確なレイリー光プロファイルを取得することが困難となる。
そこで、本実施形態のラマン分光測定装置では、円筒形状試料40の曲率半径中心とレーザー光軸とを一致させる調整を可能とする構成を備える。ラマン分光測定装置の顕微鏡ステージは、円筒形状試料40を把持する把持治具(試料受け部)41と、円筒形状試料把握治具をレーザー光と垂直で、且つ、円筒形状試料40の軸方向と垂直となる方向に駆動する把持冶具駆動部42と、表面観察用撮像素子としての観察用CCD43を備えている。図3は、円筒形状試料の把持治具41および把持冶具駆動部42の構成を示す概略図である。円筒形状試料40を軸方向に水平に把持する把持治具41がモーター(不図示)を有する把持冶具駆動部42の上に設けられており、円筒形状試料40は把持冶具駆動部42により把持治具41を介して、レーザー光と垂直で、且つ、円筒形状試料40の軸方向と垂直となる方向に移動可能である。この構成では、把持冶具駆動部42をレーザー光と垂直で、且つ、円筒形状試料40の軸方向と垂直となる方向のみに移動可能としているが、これに限るものではなく、例えば機械的な移動機構を一つ付与し、円筒形状試料40の軸方向に移動可能としても良い。
以下、上記ラマン分光測定装置の構成について詳しく説明する。
レーザー光源30から出射されるレーザー光は、共焦点レーザーラマン分光法で励起に用いるレーザー光であり、検出対象となる膜に吸収や蛍光が無く、ラマン活性が有る波長が選択され、数枚のNDフィルターの組み合わせを用いて一般には減光された状態である。用いるレーザー光強度は、出射口で1〜100mW/cm程度であれば良く、その後、試料となる光透過性の膜試料1上での強度が数nW/μm〜数μW/μmの範囲程度になるように調整すれば良い。
一般には、レーザー光強度が高いほど検出されるラマン散乱光強度も強くなりS/N比は向上するが、試料破壊や褪色化、強光への応答などを考慮して決める必要も有る。光透過性の膜試料毎に吸収強度や光耐性などが異なり、レーザー光強度の条件決定は最も重要な項目の一つとなる。
また波長が短ければ、波長の4乗に反比例してラマン散乱強度が強くなる。
有機膜を対象とした場合は、レーザー波長は対象膜の光ダメージと、ラマン測定に好ましく無い膜の蛍光発生を考えると480nm以上であることが好ましく、また前述の様にラマン散乱強度を考えると、波長は短い程好ましく、検討の結果では900nm以下で有ると好適な測定が可能となってくることが判明している。
また、レーザー光源30の出射口側には、レーザー光源30より発せられたレーザー光束を集光する集光レンズ31と、この集光レンズ31による焦点上に配置される第1のピンホール32と、が設けられている。
分離光学素子として用いるダイクロイックミラー33は、誘電体多層膜により、2つ以上の波長域の光に分離するミラーである。ダイクロイックミラーとしては、レーザー光源30からレーザー光の波長域を反射して、円筒形状基体上に形成された光透過性の膜試料からのラマン散乱光の反射光を透過する特性を有した場合、逆にラマン散乱光となるレーザー光源30より長波長の波長域を透過して、レーザー光源30の波長域光を反射する特性も有する。
図4は、励起レーザー光として488nmの波長光を用いた場合のレーザー光源30の波長域を反射する特性を有したダイクロイックミラーの特性図の例である。ラマン分光測定装置においては、波長を分光し得るダイクロイックミラー等を用いて、円筒形状基体上に形成された光透過性の膜試料1に照射された励起光成分(レイリー光)と光透過性の膜試料から発生したラマン散乱光が一般に分離される。
励起レーザー光の反射光(レイリー光)とラマン散乱光の分離のために用いられるダイクロイックミラー33は、特定の波長を境に二値的に変化する透過率特性を有していることが理想的で有るが、実際の透過率特性は比較的急峻に変化していても、その透過率は0と1とはならない。この為、ダイクロイックミラー33で分離された光にも、ラマン散乱光だけでなく、レイリー光が含まれる。
このことから、ダイクロイックミラー33を配置した状態でも、検出部36側にレイリー光が漏れることとなるが、検出部36の検出器を飽和させてしまう非常に強いレイリー光が検出器に入射することは防いでおり、検出部36でレイリー光を検出可能な受光を実現している。
対物レンズ34は、集光レンズ31に次ぐ第2の集光レンズである。すなわち、励起レーザー光の焦点を対物レンズ34の焦点と一致させ、励起レーザー光が円筒形状基体上に形成された光透過性の膜試料1上の一点になるように照射されるようになっている。なお、対物レンズ34の後焦点に第2のピンホール35を置き、焦点以外のラマン散乱光を効率よくカットしている。高い光学系スループットと小さな集光ビームスポットを両立させるため、対物レンズ34への照射レーザー径は、対物レンズ34の入射径と等しい直径に設定される。
また、顕微光学系における空間分解能は、対物レンズ34のNAとコンフォーカルピンホール径に大きく依存しており、本実施形態では高空間分解能を達成するために、測定時には油浸対物レンズを対物レンズ34として用いる。また、対物レンズ34と円筒形状基体上に形成された膜試料1の間にエマルジョンオイルが充填されており、油浸対物レンズ+エマルジョンオイルの構成となっている。
図1に示すような反射型のラマン分光測定装置では、励起と検出を同一の対物レンズ34で行うことになる。
焦点以外の深さからのラマン散乱光は、第2のピンホール35の位置で焦点を結ばないため、効率良く妨害光がカットされる(図1に示すように、非焦点からの反射光の行路を示す破線部分のほとんどの反射光が第2のピンホール35により遮蔽される)。但し、円筒形状基体上に形成された膜試料1の膜中では屈折率差に依る色収差や球面収差の影響でビーム径が拡がりを見せるため、これらを油浸対物レンズやエマルジョンオイルを用いて拡がりを押さえることが測定上必要となる。
「油浸対物レンズ+エマルジョンオイル」の構成は、一般にはガラス程度の屈折率を持つ油をレンズと膜の間に満たして、空気とレンズの屈折の影響を排除する工夫がなされている。すなわち、乾燥系のレンズでは、レンズから空気、更に対象膜と二箇所で光が通る媒質が変化し屈折が生じる。これに対して、油浸対物レンズと合わせて使用するエマルジョンオイルをレンズや膜と近い屈折率となる1.5〜1.6とすると、光の屈折の影響を排除できる様になる。このことは、NAの大きな対物レンズ34を用いた場合、円筒形状試料上に形成された膜試料1の膜中の空間分解能を高める為に有効な手立てとなる。
また、対物レンズ34のNA(開口数)が1.2以上となる油浸レンズとエマルジョンオイルの組み合わせとなっている。NA1.2以上でなければ、深さ方向解析時の空間分解能:1μmを確保できず、特に5μm以下の薄膜の場合は、明瞭な膜構造解析が不可能になる。
NAは対物レンズの性能を決める重要な値であり、焦点深度(空間分解能)、明るさに関係する値となる。NAが大きく成る程、空間分解能は向上する。NA(=Numerical Aperture)とも呼び、以下の式で表されるものである。但し、通常、市販対物レンズであれば、単体のNAが記載されている。
NA=n・sinθ
(ここで、nは膜試料1における対象膜と対物レンズ34の間の媒質(ここではエマルジョンオイル)の屈折率、θは光軸と対物レンズ34の最も外側に入る光線とがなす角を示す。)
なお、エマルジョンオイルの屈折率に関しては、メーカー測定値を用いることも出来るし、エマルジョンオイルをスピンコーターでSiウェーハ上に超薄膜塗布して、その後に分光エリプソメータで測定したものを用いることもできる。
図1に示すように、本実施形態のラマン分光測定装置における顕微光学系は、物体上の焦点面と共役な関係にあるピンホール(第1のピンホール32,第2のピンホール35)を備えた共焦点顕微光学系である。すなわち、第1のピンホール32が集光レンズ31とダイクロイックミラー33との間に設けられ、第2のピンホール35がダイクロイックミラー33と検出部36との前に設けられて、2つのピンホールはそれぞれ焦点を有する共焦点の位置に有る。これにより、共焦点顕微光学系において、合焦点以外からのラマン散乱光はピンホールによってブロックされるため、焦点以外の膜内からの不要光や光透過性の膜試料内部からのラマン散乱光をほぼ完全に取り除くことが可能となり、深さ方向に優れた空間分解能を達成することができる。
本実施形態のラマン分光測定装置は、ラマン散乱光とレイリー光を同一の検出光学系で測定することが可能に構成している。
フィルター光学素子37は、円筒形状基体上に形成された膜試料1からのレイリー光の一部を散乱光とともに測定可能に検出部36に導くか、円筒形状試料上に形成された膜試料1からのレイリー光を遮断して散乱光を検出部36に導くか、のいずれかに選択可能に設けられている。
共焦点顕微光学系では、レーザー光を対物レンズ34により、狭い領域に集光して円筒形状基体上に形成された光透過性の膜試料1に照射するため、通常の分光測定とは比較にならないくらい高強度の励起光になる。この為、ダイクロイックミラー33から洩れたレイリー光成分でも、あるいは更に1または複数のレーザー光遮断光学素子(フィルター光学素子37)を経たレイリー光成分でも、ラマン散乱光に匹敵する強度を持つこととなる。
本実施形態のラマン分光測定装置では、円筒形状試料40の曲率中心とレーザー光軸を合わせた状態で、ダイクロイックミラー33、またはダイクロイックミラー33及び1または複数のレーザー光遮断光学素子により、円筒形状基体上に形成された膜試料1からのレイリー光成分を検出部36で検出可能な程度に弱め、ついでレイリー光成分を検出部36で検出して円筒形状基体上に形成された膜試料1の被検体である膜の深さ方向の界面位置情報を取得可能にするものである。
本実施形態の顕微光学系では、フィルター光学素子は、1または複数のレーザー光遮断光学素子から構成され、そのうちの少なくとも1つは、レイリー光と等価なレーザー光を遮断するレーザー光遮断光学素子が抜き差し可能に設けられてなることが好ましい。あるいは、前記フィルター光学素子の少なくとも1つは、レイリー光と等価なレーザー光の波長に対する透過率を上げたレーザー光遮断光学素子と該波長のレーザー光を遮断するレーザー光遮断光学素子とが入れ替え可能に設けられてなることが好ましい。
また、ここでいう抜き差し可能に設けられてなるレーザー光遮断光学素子、あるいはレイリー光と等価なレーザー光の波長に対する透過率を上げたレーザー光遮断光学素子と該波長のレーザー光を遮断するレーザー光遮断光学素子とが入れ替え可能に設けられているもののうちの該波長のレーザー光を遮断するレーザー光遮断光学素子は、図1(b)に示すレーザー光遮断光学素子37である。このレーザー光遮断光学素子37を、ダイクロイックミラー33と第2のピンホール35の間(すなわち分光手段となる分光器の手前)に配置されるものである。このレーザー光遮断光学素子37としては、例えばノッチフィルターやエッジフィルターが挙げられ、ノッチフィルターおよび/またはエッジフィルターからなるものである。
このうち、ノッチフィルターは、レイリー光の除去に用いられるレーザー光遮断光学素子の一つであり、誘電体多層膜を用いたフィルターである。図5に、ノッチフィルターの光学特性を示す。図5に例示したように、ノッチフィルターは特定の波長のみを透過させないようにしたものであり、誘電体多層膜を積層して膜厚を最適化すれば、設計波長を中心にして20nm程度のバンド内の光を除去することができる。
しかしながら、ノッチフィルターは、図5からもわかる様に、レイリー光を100%除去できる訳ではない。このレイリー光のフィルターとなる波長領域における透過率を増すことに依って、検出部36の検出器を飽和させてしまう励起レーザー光波長近傍の非常に強いレイリー散乱光が検出器に入射することを防ぎながら、界面位置情報取得に必要なレイリー光を取得できるようにすることが可能である。これがレイリー光と等価なレーザー光の波長に対する透過率を上げたレーザー光遮断光学素子と該波長のレーザー光を遮断するレーザー光遮断光学素子とが入れ替え可能に設けられてなるもののうちのレイリー光と等価なレーザー光の波長に対する透過率を上げたレーザー光遮断光学素子である。
なおノッチフィルターとして、2つの互いにコヒーレントなレーザビームに依って出来る干渉パターンを記録して作られるホログラフィック・ノッチフィルターを用いることもできる。
一方、エッジフィルターの特性は、例えば図6に示すようなものである。ここでは、レーザー光の波長を488nmとした場合の例を示すが、波長490nmより短波長側を完全に除去できるようになっている。例えば、エッジフィルターとして誘電体多層膜を用いたものでは、最適設計を行えば、波長分別設計位置の前後大体30nm程度の間隔を置いて、これより短波長側の光を除去し、反対にラマン散乱光を含む長波長側の光を透過させることが出来る。本実施形態によれば、エッジフィルターをノッチフィルターの代わりに挿入しても、ノッチフィルターと同様の効果をもたせることが可能となる。
このように、レイリー光の情報取得時は、抜き差し可能なレーザー光遮断光学素子37を取り外す。或いは、レイリー光と等価なレーザー光の波長に対する透過率を上げたレーザー光遮断光学素子と該波長のレーザー光を遮断するレーザー光遮断光学素子とが入れ替え可能に設けられてなるもののうち、レイリー光と等価なレーザー光の波長に対する透過率を上げたレーザー光遮断光学素子に置き換える。そして、円筒形状試料の曲率半径とレーザー光軸を正確に一致させた後、円筒形状基体上に形成された膜試料1からの界面反射光即ちレイリー光を検出部36に測定可能に直接導くことで、後述する図7に示すように、充分な感度のレイリー光を受光することが可能となり、膜の界面位置情報を取得できる様になる。
また、ラマン散乱光の情報取得時は、抜き差し可能なレーザー光遮断光学素子37を光路に戻す。或いは、レイリー光と等価なレーザー光の波長に対する透過率を上げたレーザー光遮断光学素子と該波長のレーザー光を遮断するレーザー光遮断光学素子とが入れ替え可能に設けられてなるもののうち、該波長のレーザー光を遮断するレーザー光遮断光学素子37に置き換える。これにより、円筒形状基体上に形成された膜試料1からの光のうち、ラマン散乱光測定時に妨害光となるレイリー光を完全に取り除くことが可能となり、感度の高いラマン分光法による膜構造解析が可能となる。
以上のように、本実施形態のラマン分光測定装置によれば、ラマン散乱光とレイリー光を同一の検出光学系で測定することが可能である。なお、レーザー光遮断光学素子の透過率については、例えば分光反射率測定装置により透過率を求めることが出来る。
検出部36は、分光手段と光検出手段とから構成される。
このうち、分光手段としては、回折格子によりラマン散乱光を分光する分光器が挙げられる。分光器に入る直前光路上に焦点面と共役な点(エリア)がある場合には、その部分のX−Y平面内に2つの直行するスリット(クロススリット)を置くことで、スリットの組に共焦点光学系でいう共焦点ピンホール(第2のピンホール35)の役割を担わせることが可能であり、これにより、Z軸方向の空間分解能が生じる。またこのクロススリットは、ラマンスペクトル取得時の波長分解能にも寄与する。
また、光検出手段としては、マルチチャネル検出器(たとえば、CCD:Charge Coupled Device)、シングルチャネル検出器(たとえば、APD:Avalanche Photodiode)が挙げられる。第2のピンホール35を透過した光は、検出部36に構成された分光器に入射し分散された後、この光検出手段で検出されるようになる。
以上の状態で、レーザー光源30からのレーザー光の焦点位置を円筒形状基板上に形成された膜試料1の膜の深さ方向に走査することに依って、光透過性の膜試料1で、顕微鏡ステージのZ方向の移動によりステップ毎の深さ方向(膜試料の厚み方向)で明瞭なレイリー光プロファイル或いはラマンプロファイルが得られ、高分解能な三次元解析が可能となる。
次に、上記構成のラマン分光測定装置による円筒形状基体上に形成された膜試料1における対象膜の構造解析に関する測定を詳細に説明する。
1.円筒形状試料の曲率中心とレーザー光軸の軸合わせ
図3の把持治具41(試料受け部)に円筒形状試料40を乗せ、対物レンズ34として低倍率(40倍が好ましい)の乾燥系対物レンズを選択する。円筒形状試料40の焦点位置の確認のために、観察用CCD43で観察して意図的に円筒形状試料40の中心で無い任意の位置に把持冶具駆動部42を移動させ、円筒形状試料40表面にZ方向移動機構を用いて焦点を合わせる。この時、顕微鏡筐体に付帯の視野絞りを操作し、観察用CCD43の視野内に視野絞りの羽根が見えるように予め視野絞りの大きさを調整しておく。レーザー光軸(この場合、顕微鏡の対物レンズ光軸)と円筒形状試料40の曲率半径が一致していない場合は、視野絞りの羽根が視野内で片側(エッジ)だけ焦点が合い、片側だけ焦点が合わない像が観察される。この位置を座標Aとする。
この状態でモーターを有する把持冶具駆動部42で焦点位置をレーザー光と垂直で、且つ、円筒形状試料40の軸方向と垂直となる方向(図3中、X方向)に移動させていくと焦点が合わない状態が暫く続き、その後、同様に視野絞りの羽根がフォーカスして見えてくるX方向位置が現れる。この位置を座標Bとする。この位置でも円筒形状試料40の曲率の影響に依り、視野絞りの羽根が視野内で片側だけ焦点が合う状態になる。
この場合、円筒形状試料40のX方向の中心座標、すなわち曲率中心は下式より導かれる。
(座標A−座標B)÷2+座標B
上式で求められた中心座標(レーザー光軸と曲率中心の一致した座標)に円筒形状試料40を移動後、Z方向に焦点を合わせることで、円筒形状試料40の曲率中心とレーザー光軸が一致し、次ステップで正確な深さプロファイル測定が可能になる。
2.試料膜の界面位置情報取得(レイリー光情報の取得)
ラマン分光測定装置を図1(a)の構成とする。対物レンズ34は、油浸対物レンズとして、膜試料との間にエマルジョンンオイル(不図示)を満たす。レーザー光源30より出射され、集光レンズ31、第1のピンホール32を経た拡散するレーザー光束を、ダイクロイックミラー33を介して油浸対物レンズに導き、油浸対物レンズによりエマルジョンオイルを透過させて円筒形状基体上に形成された光透過性の膜試料1上に集光させる。膜試料1上に集光された光束は、膜試料1からラマン散乱光を含んだ光として反射され、エマルジョンオイル、油浸対物レンズ34を経て集束しつつダイクロイックミラー33に戻る。ダイクロイックミラー33に戻った光は、ダイクロイックミラー33の特性により、レイリー光の一部及びラマン散乱光(以下、まとめて光)が検出部36側に向かうようになる。
さらに、この光は検出部36に導かれる前に一旦集光され、フィルター素子を透過する。このとき、フィルター素子は、抜き差し可能なレーザー光遮断光学素子37が取り外された構成か、或いは、レイリー光と等価なレーザー光の波長に対する透過率を上げたレーザー光遮断光学素子と該波長のレーザー光を遮断するレーザー光遮断光学素子37とが入れ替え可能に設けられてなるもののうちのレイリー光と等価なレーザー光の波長に対する透過率を上げたレーザー光遮断光学素子に置き換えられた構成である。このため、フィルター光学素子を透過する光は、検出部36で測定可能な程度に弱められたレイリー光の一部がラマン散乱光とともに透過するようになる。フィルター素子を透過したこのような光は、さらに集光位置に配置された第2のピンホール35を透過して、検出部36に導かれる。そして、検出部36に構成された分光器に入射し分散された後、検出器36でレイリー光の強度が検出される。
このような状態で、円筒形状基体上に形成された光透過性の膜試料1を載せた顕微鏡ステージを必要に応じてZ軸方向にピエゾ駆動或いはステッピングモータ移動機構により走査させて、円筒形状基体上に形成された膜試料1の対象膜のZ軸方向の所定位置での検出を行う。すなわち、レーザー励起光と同一波長の光強度プロファイルを検出部36の検出器で測定して膜における界面位置情報を取り出す。
これにより、界面位置情報となるレイリー光(0cm−1)の光量変化を確認し、その光量がピークとなる位置から光軸方向の界面の位置を特定することができる。例えば、図7に示すような被検体である膜の界面位置情報を取得することができるが、ここでは、3つの反射強度のピークが見られ、それぞれのピーク位置を対象膜の表面層表面(エマルジョンオイルとの界面)と、表面層/電荷輸送層界面とその下層との界面(中間層表面)とに特定することができる。
この時、界面反射であるレイリー光を膜界面から取得できるようにする為には、膜と媒体(例えば油浸レンズを用いる場合はエマルジョンオイル)との屈折率差が重要となり、特に膜表面でのレイリー光を確保する為には、次式
反射率R=((N−N12+κ2)/(N+N12+κ2
N:測定対象膜の屈折率
1:媒体の屈折率
κ:測定対象膜の消光係数
より、界面での反射率:Rが0.1%以上必要であることが見出されている。一般に、屈折率差が大きくなれば界面反射を確保しやすくなるが、その場合は、レンズ−媒体−膜間の屈折率差による収差の影響で、空間分解能とエネルギー密度の低下を誘発することとなる。この為、測定の為には対象となる膜の屈折率から決まる、−0.2〜−0.1の屈折率差を有するエマルジョンオイルを用いることが好適となる。
3.試料膜の構造解析(ラマン散乱光情報の取得)
ラマン分光測定装置を図1(b)の構成とする。対物レンズ34は、油浸対物レンズとして、膜試料との間にエマルジョンンオイル(不図示)を満たす。レーザー光源30より出射され、集光レンズ31、第1のピンホール32を経た拡散するレーザー光束を、ダイクロイックミラー33を介して油浸対物レンズ34に導き、油浸対物レンズ34によりエマルジョンオイルを透過させて円筒形状基体上に形成された光透過性の膜試料1上に集光させる。膜試料1上に集光された光束は、膜試料1からラマン散乱光を含んだ光として反射され、エマルジョンオイル、油浸対物レンズ34を経て集束しつつダイクロイックミラー33に戻る。ダイクロイックミラー33に戻った光は、ダイクロイックミラー33の特性により、レイリー光の一部及びラマン散乱光(以下、まとめて光)が検出部36側に向かうようになる。
さらに、この光は検出部36に導かれる前に一旦集光され、フィルター素子を透過する。このとき、フィルター素子は、抜き差し可能なレーザー光遮断光学素子37が光路に戻された構成か、或いは、レイリー光と等価なレーザー光の波長に対する透過率を上げたレーザー光遮断光学素子と該波長のレーザー光を遮断するレーザー光遮断光学素子とが入れ替え可能に設けられてなるもののうちの該波長のレーザー光を遮断するレーザー光遮断光学素子に置き換えられた構成である。このため、フィルター光学素子を通過する光は、レイリー光が完全除外され検出対象のラマン散乱光に合った波長帯域の光のみが選択に透過するようになる。フィルター素子を透過したこのような光は、さらに集光位置に配置された第2のピンホール35を透過して、検出部36に導かれる。そして、検出部36に構成された分光器に入射し分散された後、検出器36で所定の波長帯域のラマン散乱光の強度が検出される。
このような状態で、円筒形状基体上に形成された光透過性の膜試料1を載せた顕微鏡ステージを必要に応じてZ軸方向にピエゾ駆動或いはステッピングモータ移動機構により走査させて、膜試料1の対象膜のZ軸方向のラマンスペクトルの検出を行う。
そして、検出されたラマンスペクトルと、先だって取得された膜の界面位置情報とを用いて、任意のラマンバンドのピーク値を深さ方向の位置ごとにプロットして、ラマン分光による深さ方向の位置毎の分光データプロファイルを得る。以上の処理により、曲率を有した円筒形状基体上に形成された光透過性の膜試料1から高い空間分解能条件下での膜構造解析が可能となる。
以下、実施例、比較例に基づき説明する。
<実施例>
以下の条件で、円筒形状基体上に形成された膜試料1サンプルである感光体ドラムの膜構造解析を行った。
(1)膜試料1
図2において、円筒形状基体となる直径40mmのアルミニウムドラム2上に形成された光透過性の膜として任意の種類の成分を分散させて膜厚22μmの電荷輸送層5と膜厚2.5μmの表面層6を形成したもの(表面層6と電荷輸送層5の屈折率:1.54)
(2)ラマン分光測定装置
図1に示す構成
・レーザー光源30;レーザー光波長 488nm
・対物レンズ34;乾燥系対物レンズ(OLYMPUS Plan FL N 40× NA=0.6)
油浸対物レンズ(OLYMPUS MPlan Apo 100× NA=1.4(屈折率1.516のエマルジョンオイルを対象膜と対物レンズ34の間に充填することにより)、屈折率1.525)
エマルジョンオイル;屈折率1.516(対象膜とエマルジョンオイルとの屈折率差=0.024)
・レーザー光遮断光学素子37;図5の特性(488nmの波長をカットする機能)を有するノッチフィルター
なお、対象膜の屈折率は、Siウェーハ上に対象膜を超薄膜塗布し、分光エリプソメータ(J.A.Woolam社製、WVASE 32)で複素屈折率(屈折率、消光係数)を測定し求めた。また、エマルジョンオイルの屈折率は、メーカー測定値(製品にデータ添付)をそのまま用いた。また、ノッチフィルターの透過率は、分光透過率測定装置(松下テクノトレーディング F20装置)にて透過率値を測定して確認した。
(3)測定手順
まず、円筒形状基体上に電荷輸送層5と表面層6が形成された膜試料1である円筒形状試料40を把持治具41上に静置する。対物レンズ42としては、低倍率の乾燥系対物レンズを選択する。そして、把持冶具駆動部42、対物レンズ34、観察用CCD43を用いて、円筒形状試料40の表面観察をおこなう。先ず、意図的に円筒形状試料40の中心から離れた位置で、顕微鏡の視野絞りの機能を用いて羽根絞りの片側がはっきりと見えるように焦点合わせを実施する。その状態で把持冶具駆動部42を用いて円筒形状試料40を、レーザー光と垂直で、且つ、円筒形状試料40の軸方向と垂直となる方向(X方向)に移動させていくと羽根絞りは次第に焦点ボケていくが、移動に伴い再度、羽根絞りが明瞭に見える位置が出現する。その両座標を記録し、その中間位置に円筒形状試料40を移動し直して、観察用CCD43で再度焦点合わせをし直す。これにより、円筒形状試料40の曲率中心とレーザー光軸を一致させる。
次に、図1(a)に示すように、ノッチフィルターを取り外した構成とし、対物レンズ34としては、油浸対物レンズを選択し、膜試料1との間にエマルジョンオイルを充填する。そして、レーザー励起光の光束を対物レンズ34で集光して円筒形状基体となる直径40mmのアルミニウムドラム2上に形成された光透過性の膜試料1の1点に照射し、膜試料1からのレイリー光の一部を検出部36の検出器に導いて「レイリー光洩れ光プロファイル(界面反射強度分布図)」を取得した。図7に、取得したレイリー光洩れ光プロファイルを示す。
次に、図1(b)に示すように、ノッチフィルターを取りつけた構成とし、対物レンズ34としては、油浸対物レンズを選択し、膜試料1との間にエマルジョンオイルを充填したものをそのまま使用する。そして、レーザー励起光の光束を対物レンズ34で集光して円筒形状基体となる直径40mmのアルミニウムドラム2上に形成された光透過性の膜試料1の1点に照射し、膜試料1からの光からレイリー光を取り除いた所定波長帯域のラマン散乱光を検出部36の検出器に導いて、深さ方向のラマンスペクトルを取得し、任意の分子の特徴的なラマンバンドのピークを追いかけることによって、「膜中濃度プロファイル」を取得した。
ついで、上記「レイリー光洩れ光プロファイル(界面反射強度分布図)」と上記「膜中濃度プロファイル」とを用いて、任意のラマンバンドのピーク値を深さ方向の位置ごとにプロットして、ラマン分光による深さ方向の位置毎の分光データプロファイルを得た。図8に、以上の測定手順で得られた実施例の測定結果を示す。図8は、円筒形状基体となる直径40mmのアルミニウムドラム2上に形成された光透過性の膜試料1における膜界面位置情報を付与した膜構造のプロファイルであり、電荷輸送層中に任意の一種類の成分を分散させて表面層6と電荷輸送層5の界面側から膜成分のプロファイルが検出される分散構造の電荷輸送層5が確認された。
<比較例1>
比較例1として、図1(a)の装置構成で円筒形状試料40の曲率中心とレーザー光軸を一致させなかった場合の「油浸レンズ+エマルジョンオイル」使用条件下で界面反射光「レイリー光洩れ光プロファイル(界面反射強度分布)」を図9に示す。
図9に示すように、直径40mmの円筒形状試料40の曲率中心とレーザー光軸が一致していない為、図7とは異なり光透過性の膜中の界面にあたる表面層6と電荷輸送層5との明瞭な界面反射光を取得することが出来なかった。また電荷輸送層5と電荷発生層4或いは中間層3との界面反射光がかなり乱れることが確認された。
<比較例2>
従来の、円筒形状試料40で把持冶具駆動部42を備えていない構成のラマン分光測定装置を用いた。円筒形状試料40を把持治具41上に静置した際に、円筒形状試料40の曲率中心とレーザー光軸にズレが生じた。このため、正確な「レイリー光洩れ光プロファイル(界面反射強度分布)」が取得できず、電荷輸送層5におけるラマン分光による深さ方向の位置毎の分光データプロファイルが得られなかった。
また、従来の、観察用CCD43が無いラマン分光測定装置を用いた。この場合、円筒形状試料40の曲率中心とレーザー光軸を合わせる際、顕微鏡の視野絞りの機能を用いた羽根絞りの焦点位置を確認することが出来なくなるため、円筒形状試料40の曲率中心とレーザー光軸を合わせることができなくなる、この軸のズレによって正確な「レイリー光洩れ光プロファイル(界面反射強度分布)」が取得できず、ラマン分光による深さ方向の位置毎の分光データプロファイルが得られなくなる。
以上、本実施形態によれば、レーザー光源30と、膜試料1にレーザー光を照射すると共に、膜試料1からのレイリー光と散乱光とを受光する分離光学素子としてのダイクロイックミラー33及び対物レンズ34とを有する顕微光学系と、ダイクロイックミラー33を経由した光における特定波長の光を透過するフィルター光学素子と、フィルター光学素子を透過した光を分光する分光手段と、分光された光の強度を検出する光検出手段としての検出部36とを備えたラマン分光測定装置である。また、フィルター光学素子は、膜試料1からのレイリー光の一部を通過させるか、膜試料1からのレイリー光を遮断して散乱光を通過させるかの何れかに選択可能である。このラマン分光測定装置では、円筒形状試料40の曲率半径中心とレーザー光軸とを一致させる調整を可能とする構成として、円筒形状試料40を把持する把持治具(試料受け部)41と、把持治具41をレーザー光に対して垂直、且つ、円筒形状試料40の軸に対して垂直な方向に移動可能に駆動する把持冶具駆動部42と、表面観察用撮像素子としての観察用CCD43を備えている。このため、円筒形状試料40の曲率半径中心とレーザー光軸とを一致させた状態として、円筒形状試料40のレイリー光を精度良く測定することができる。これにより、多層構造の透過性の膜試料の深さ方向解析に必要な情報を付与するための微弱なラマン散乱光を検出しつつ、界面位置情報を含んだレイリー光を、円筒形状試料40の曲率の影響を抑えて精度良く測定可能となる。精度良く測定したレイリー光による界面位置情報を、ラマン散乱光により多層構造の透過性の膜試料の深さ方向解析の情報に加味することで、円筒形状試料においても、多層構造の膜のミクロン単位の構造解析を、デバイス状態のまま非破壊で迅速におこなうことができる。
また、本実施形態によれば、顕微光学系の対物レンズ34としては、低倍率の乾燥系対物レンズと、試料の間にエマルジョンオイル(不図示)が充填される油浸レンズとを選択可能である。レイリー光やラマン散乱光の測定時は、エマルジョンオイルと組み合わせた油浸対物レンズを用いることで、インデックスマッチングを行い、空間分解能をあげることができる。一方、上記曲率中心と光軸合わせのために円筒形状試料表面を観察する時は、乾燥系対物レンズを用いることで、インデックスマッチングを行わず、低倍率・低分解能を有するようにして、光軸と曲率中心との一致点を観察し易くする。さらに、乾燥系レンズが高倍率すぎると、拡大しすぎて曲面が認識し難くなることから、低倍率のものを用いて、光軸と曲率中心との一致点を観察し易くする。
また、本実施形態によれば、顕微光学系は、物体上の焦点面と共役な関係にあるピンホール(第1のピンホール32,第2のピンホール35)を備えた共焦点顕微光学系である。共焦点顕微光学系において、合焦点以外からのラマン散乱光はピンホールによってブロックされるため、焦点以外の膜内からの不要光や光透過性の膜試料内部からのラマン散乱光をほぼ完全に取り除くことが可能となり、深さ方向に優れた空間分解能を達成することができる。
また、本実施形態によれば、フィルター光学素子は、レイリー光と等価なレーザー光を遮断するレーザー光遮断光学素子を抜き差し可能に備えている。このレーザー光遮断光学素子を取り外すことにより、膜試料1からの界面反射光即ちレイリー光を検出部36に測定可能に直接導くことができ、膜の界面位置情報を取得できる様になる。また、このレーザー光遮断光学素子を光路に戻すことにより、ラマン散乱光測定時に妨害光となるレイリー光を取り除くことが可能となり、感度の高いラマン分光法による膜構造解析が可能となる。
また、本実施形態によれば、フィルター光学素子は、レイリー光と等価なレーザー光を遮断する第一のレーザー光遮断光学素子と、第一のレーザー光遮断光学素子よりもレーザー光の波長の透過率を上げた第二のレーザー光遮断光学素子とを入れ替え可能に備える。フィルター光学素子を、第二のレーザー光遮断光学素子に入れ替えることにより、膜試料1からの界面反射光即ちレイリー光を検出部36に測定可能に直接導くことができ、膜の界面位置情報を取得できる様になる。また、フィルター光学素子を、第一のレーザー光遮断光学素子に入れ替えることにより、ラマン散乱光測定時に妨害光となるレイリー光を取り除くことが可能となり、感度の高いラマン分光法による膜構造解析が可能となる。
また、本実施形態によれば、レーザー光遮断光学素子はノッチフィルターおよび/またはエッジフィルターを用いる。ノッチフィルターは特定の波長のみを透過させないようにしたものであり、設計波長を中心にして20nm程度のバンド内の光を除去することができる。しかし、ノッチフィルターは、レイリー光を100%除去できる訳ではない。このレイリー光のフィルターとなる波長領域における透過率を増すことに依って、検出部36の検出器を飽和させてしまう励起レーザー光波長近傍の非常に強いレイリー散乱光が検出器に入射することを防ぎながら、界面位置情報取得に必要なレイリー光を取得できるようにすることが可能である。エッジフィルターは、ある波長より短波長側を完全に除去できるものであり、最適設計を行えば、波長分別設計位置の前後大体30nm程度の間隔を置いて、これより短波長側の光を除去し、反対にラマン散乱光を含む長波長側の光を透過させることができる。
また、本実施形態によれば、分離光学素子はダイクロイックミラー33である。ダイクロイックミラー33は、特定の波長を境に変化する透過率特性を有して波長を分光し得る特性を有しており、円筒形状基体上に形成された光透過性の膜試料1に照射された励起光成分(レイリー光)と光透過性の膜試料から発生したラマン散乱光が一般に分離される。
また、本実施形態によれば、顕微光学系に用いられる乾燥系対物レンズのNAは、0.8以下である。これにより、低倍率・低分解能を有するようにして、光軸と曲率中心との一致点を観察し易くできる。
また、本実施形態によれば、顕微光学系に用いられる油浸対物レンズとエマルジョンオイルの組み合わせのNAは1.2以上である。このように、NAの大きなものを用いることで、光の屈折の影響を排除でき、膜試料1の膜中の空間分解能を高めることができる。
また、本実施形態によれば、円筒形状試料40を把持冶具41により軸方向に水平に把持し、顕微光学系として比較的低倍率の乾燥系対物レンズを選択する。そして、円筒形状試料40をレーザー光に対して垂直、且つ、円筒形状試料40の軸に対して垂直な方向(図3中、X方向)に移動させながら、観察用CCD43撮像素子で円筒形状試料40の表面を観察し、円筒形状試料の曲率中心とレーザー光の光軸とを合わせる。その後、顕微光学系としてエマルジョンオイルと組み合わせた油浸対物レンズを用いて、ラマン散乱光とレイリー光との測定を行う。レイリー光やラマン散乱光の測定時は、エマルジョンオイルと組み合わせた油浸対物レンズを用いることで、インデックスマッチングを行い、空間分解能をあげることができる。一方、曲率中心と光軸合わせのために円筒形状試料表面を観察する時は、乾燥系対物レンズを用いることで、インデックスマッチングを行わず、低倍率・低分解能を有するようにして、光軸と曲率中心との一致点を観察し易くする。さらに、乾燥系レンズが高倍率すぎると、拡大しすぎて曲面が認識し難くなることから、低倍率のものを用いて、光軸と曲率中心との一致点を観察し易くする。
これにより、多層構造の透過性の膜試料の深さ方向解析に必要な情報を付与するための微弱なラマン散乱光を検出しつつ、界面位置情報を含んだレイリー光を、円筒形状試料の曲率の影響を抑えて精度良く測定可能となる。
また、本実施形態によれば、上記ラマン分光測定装置を用いて測定した円筒形状試料のレイリー光に基づき試料の膜界面における反射光強度を検出し、ラマン散乱光による深さ毎の分光データプロファイルと関連付ける。これにより、円筒形状に形成された多層構造の透過性の膜試料においても、非破壊での迅速な、ミクロン単位で膜構造解析が可能となる。
1 膜試料
2 アルミニウムドラム
3 中間層
4 電荷発生層
5 電荷輸送層
6 表面層
30 レーザー光源
31 集光レンズ
32 第一のピンホール
33 ダイクロイックミラー
34 対物レンズ
35 第二のピンホール
36 検出器
37 レーザー光遮断光学素子
40 円筒形状試料
41 把持冶具
42 把持冶具駆動部
43 観察用CCD
特開2008−116432号公報 特開2010−117226号公報 特開2001−91448号公報
池原、西、:「共焦点レーザスキャン顕微鏡の活用」、機能材料、Vol.22、No.10、P20〜25(2002)

Claims (11)

  1. レーザー光源と、試料にレーザー光を照射すると共に、該試料からのレイリー光と散乱光とを受光する分離光学素子と対物レンズとを有する顕微光学系と、該分離光学素子を経由した光における特定波長の光を透過するフィルター光学素子と、該フィルター光学素子を透過した光を分光する分光手段と、該分光手段により分光された光の強度を検出する光検出手段とを備え、該フィルター光学素子は該試料からのレイリー光の一部を通過させるか、該試料からのレイリー光を遮断して散乱光を通過させるかの何れかに選択可能に設けたラマン分光測定装置において、
    上記試料としての円筒形状試料を軸方向に水平に把持する把持治具と、該把持冶具を上記レーザー光に対して垂直、且つ、該円筒形状試料の軸に対して垂直な方向に移動可能とする把持冶具駆動部と、該円筒形状試料表面を観察する表面観察用撮像素子とを有することを特徴とするラマン分光測定装置。
  2. 請求項1のラマン分光測定装置において、上記顕微光学系の対物レンズとして、乾燥系対物レンズと、エマルジョンオイルと組み合わせた油浸対物レンズとが選択可能であることを特徴とするラマン分光測定装置。
  3. 請求項1または2のラマン分光測定装置において、上記顕微光学系は、焦点面と共役な関係にあるピンホールを備える共焦点顕微光学系であることを特徴とするラマン分光測定装置。
  4. 請求項1,2または3の何れかのラマン分光測定装置において、上記フィルター光学素子は、レイリー光と等価なレーザー光を遮断するレーザー光遮断光学素子を抜き差し可能に備えたことを特徴とするラマン分光測定装置。
  5. 請求項1,2または3の何れかのラマン分光測定装置において、上記フィルター光学素子は、レイリー光と等価なレーザー光を遮断する第一のレーザー光遮断光学素子と、該第一のレーザー光遮断光学素子よりも該レーザー光の波長の透過率を上げた第二のレーザー光遮断光学素子とを入れ替え可能に備えたことを特徴とするラマン分光測定装置。
  6. 請求項4または5のラマン分光測定装置において、上記レーザー光遮断光学素子はノッチフィルターおよび/またはエッジフィルターであることを特徴とするラマン分光測定装置。
  7. 請求項1,2,3,4,5または6の何れかのラマン分光測定装置において、上記分離光学素子はダイクロイックミラーであることを特徴とするラマン分光測定装置。
  8. 請求項1,2,3,4,5,6または7の何れかのラマン分光測定装置において、上記顕微光学系に用いられる乾燥系対物レンズのNAは、0.8以下であることを特徴とするラマン分光測定装置。
  9. 請求項1,2,3,4,5,6,7または8の何れかのラマン分光測定装置において、上記顕微光学系に用いられる油浸対物レンズとエマルジョンオイルの組み合わせのNAは1.2以上であることを特徴とするラマン分光測定装置。
  10. 分離光学素子と対物レンズとを有する顕微光学系により、円筒形状試料にレーザー光を照射すると共に、該円筒形状試料からのレイリー光と散乱光とを受光し、フィルター光学素子により該受光したレイリー光の一部または該レイリー光を遮断した散乱光を通過させて分光手段に導き、該分光手段により分光された光の強度を光検出手段より検出して、ラマン散乱光とレイリー光とを測定するラマン分光測定方法において、
    上記円筒形状試料を上記レーザー光に対して垂直、且つ、該円筒形状試料の軸に対して垂直な方向に移動させながら、上記顕微光学系として乾燥系対物レンズを用いて表面観察用撮像素子で該円筒形状試料の表面を観察して該円筒形状試料の曲率中心と該レーザー光の光軸とを合わせた後、上記顕微光学系としてエマルジョンオイルと組み合わせた油浸対物レンズを用いて、上記ラマン散乱光とレイリー光との測定を行うことを特徴とするラマン分光測定方法。
  11. 請求項1乃至9の何れかのラマン分光測定装置を用いて測定した該円筒形状試料のレイリー光に基づき該試料の膜界面における反射光強度を検出し、該ラマン散乱光による深さ毎の分光データプロファイルと関連付けることを特徴とするラマン分光測定方法。
JP2011034944A 2011-02-21 2011-02-21 ラマン分光測定装置及びラマン分光測定方法 Pending JP2012173112A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011034944A JP2012173112A (ja) 2011-02-21 2011-02-21 ラマン分光測定装置及びラマン分光測定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011034944A JP2012173112A (ja) 2011-02-21 2011-02-21 ラマン分光測定装置及びラマン分光測定方法

Publications (1)

Publication Number Publication Date
JP2012173112A true JP2012173112A (ja) 2012-09-10

Family

ID=46976155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011034944A Pending JP2012173112A (ja) 2011-02-21 2011-02-21 ラマン分光測定装置及びラマン分光測定方法

Country Status (1)

Country Link
JP (1) JP2012173112A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101446747B1 (ko) * 2014-03-27 2014-11-04 주식회사엠시스 인쇄전자소자용 패턴롤 검사장치
JP2015040705A (ja) * 2013-08-20 2015-03-02 株式会社リコー 微粒子分散性評価装置及び微粒子分散性評価方法
CN107991286A (zh) * 2017-12-26 2018-05-04 同方威视技术股份有限公司 基于反射光功率的拉曼光谱检测设备及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05449A (ja) * 1990-02-07 1993-01-08 Petzetakis George A プラスチツク二軸延伸管の製造方法
JPH09325120A (ja) * 1996-06-03 1997-12-16 Ricoh Co Ltd 感光体表面検査方法および感光体表面検査装置
JP2001091448A (ja) * 1999-09-24 2001-04-06 Horiba Ltd 分析装置
JP2003121129A (ja) * 2001-10-09 2003-04-23 Ricoh Co Ltd 形状測定装置及び形状測定方法
JP2008116432A (ja) * 2006-07-06 2008-05-22 Ricoh Co Ltd ラマン分光測定装置、及びこれを用いたラマン分光測定法
JP2010117226A (ja) * 2008-11-12 2010-05-27 Ricoh Co Ltd ラマン分光測定装置および測定法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05449A (ja) * 1990-02-07 1993-01-08 Petzetakis George A プラスチツク二軸延伸管の製造方法
JPH09325120A (ja) * 1996-06-03 1997-12-16 Ricoh Co Ltd 感光体表面検査方法および感光体表面検査装置
JP2001091448A (ja) * 1999-09-24 2001-04-06 Horiba Ltd 分析装置
JP2003121129A (ja) * 2001-10-09 2003-04-23 Ricoh Co Ltd 形状測定装置及び形状測定方法
JP2008116432A (ja) * 2006-07-06 2008-05-22 Ricoh Co Ltd ラマン分光測定装置、及びこれを用いたラマン分光測定法
JP2010117226A (ja) * 2008-11-12 2010-05-27 Ricoh Co Ltd ラマン分光測定装置および測定法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015040705A (ja) * 2013-08-20 2015-03-02 株式会社リコー 微粒子分散性評価装置及び微粒子分散性評価方法
KR101446747B1 (ko) * 2014-03-27 2014-11-04 주식회사엠시스 인쇄전자소자용 패턴롤 검사장치
CN107991286A (zh) * 2017-12-26 2018-05-04 同方威视技术股份有限公司 基于反射光功率的拉曼光谱检测设备及方法
CN107991286B (zh) * 2017-12-26 2024-02-27 同方威视技术股份有限公司 基于反射光功率的拉曼光谱检测设备及方法

Similar Documents

Publication Publication Date Title
JP4852439B2 (ja) ラマン分光測定装置、及びこれを用いたラマン分光測定法
JP2010117226A (ja) ラマン分光測定装置および測定法
Everall Confocal Raman microscopy: common errors and artefacts
CN103091299B (zh) 激光差动共焦图谱显微成像方法与装置
EP1287337B1 (en) Method and apparatus for surface plasmon microscopy
JP5168168B2 (ja) 屈折率測定装置
JP5957825B2 (ja) ラマン分光装置およびラマン分光測定法
JP2017511880A (ja) 明視野検査、暗視野検査、光熱検査を組み合わせた装置及び方法
TW201447285A (zh) 用於判定在垂直堆疊記憶體中缺陷深度之裝置及方法
TWI636345B (zh) 藉由非接觸式光學方法用以定位光刻遮罩的裝置和方法以及用於曝光晶圓的工具
TWI687674B (zh) 對薄膜執行計量分析的裝置及方法與獲得薄膜性質的方法
JP6485847B2 (ja) 測定装置、顕微鏡、及び測定方法
CN108225195A (zh) 无损测试切削刀片以确定涂层厚度的方法
KR101233941B1 (ko) 형상 측정 장치 및 방법
WO2007061704A2 (en) Overlay metrology using the near infra-red spectral range
JP5363199B2 (ja) 顕微全反射測定装置
CN109932162B (zh) 一种基于白光配准的腔模参数检测装置及检测方法
JP2009540346A (ja) 干渉共焦点顕微鏡
JP2012173112A (ja) ラマン分光測定装置及びラマン分光測定方法
JP2012026733A (ja) 光学式欠陥検出装置及び方法並びにこれを備えた欠陥観察装置
JP5107003B2 (ja) エバネッセント波発生装置及びそれを用いた観察装置
JP2018146410A (ja) 3次元ラマン分光方法
Michaels Surface‐sensitive Raman microscopy with total internal reflection illumination
JP6143155B2 (ja) フィラー微粒子分散性評価装置及びフィラー微粒子分散性評価方法
JP2004117298A (ja) 全反射減衰を利用した測定方法および測定装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140912

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141110

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150424