JP2012167015A - 焼結体およびその製造方法 - Google Patents
焼結体およびその製造方法 Download PDFInfo
- Publication number
- JP2012167015A JP2012167015A JP2012132241A JP2012132241A JP2012167015A JP 2012167015 A JP2012167015 A JP 2012167015A JP 2012132241 A JP2012132241 A JP 2012132241A JP 2012132241 A JP2012132241 A JP 2012132241A JP 2012167015 A JP2012167015 A JP 2012167015A
- Authority
- JP
- Japan
- Prior art keywords
- sintered body
- fibrous carbon
- slurry
- yttrium
- carbon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Drying Of Semiconductors (AREA)
Abstract
【解決手段】本発明の焼結体は、酸化イットリウムまたはイットリウム−アルミニウム複合酸化物と、繊維状炭素とを含有してなる焼結体であって、酸化イットリウムまたは前記イットリウム−アルミニウム複合酸化物の粒界に、繊維状炭素が三次元的に分散してなり、繊維状炭素の凝集径は10μm以下であることを特徴とする。
【選択図】なし
Description
しかしながら、このような焼結体には、径が数十μm以上のカーボンナノチューブの凝集体が多数含まれている。このようなカーボンナノチューブの凝集は、基材とカーボンナノチューブとを複合化する際、カーボンナノチューブの分散性が低下し、再び凝集することにより生じるものである。このような凝集体は、ハロゲン系プラズマ雰囲気下にて反応し、消失するものの、この凝集体の消失により、焼結体には、導電性の低下、パーティクルの発生、耐食性の低下などの不具合が生じる。このように、基材とカーボンナノチューブとを複合化した焼結体は、ハロゲン系プラズマ雰囲気下にて使用する時間が長くなるにつれて、導電性や耐食性が低下するという問題があった。
前記繊維状炭素は、単層カーボンナノチューブ、二層カーボンナノチューブ、多層カーボンナノチューブの群から選択されるいずれか1種または2種以上であることが好ましい。
前記繊維状炭素の含有率は、前記酸化イットリウムまたは前記イットリウム−アルミニウム複合酸化物100体積%に対して0.01体積%以上かつ5体積%以下であることが好ましい。
前記焼結体作製工程において、不活性雰囲気下、前記顆粒を1600℃以上かつ1850℃以下にて焼結することが好ましい。
なお、この形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。
本発明の焼結体は、酸化イットリウムまたはイットリウム−アルミニウム複合酸化物と、繊維状炭素とを含有してなる焼結体であって、前記酸化イットリウムまたは前記イットリウム−アルミニウム複合酸化物の粒界に、前記繊維状炭素が三次元的に分散してなり、前記繊維状炭素の凝集径は10μm以下であるものである。
また、繊維状炭素は、酸化イットリウム粒子またはイットリウム−アルミニウム複合酸化物粒子同士の間(粒界)に必ず存在している必要はなく、繊維状炭素が存在しない粒界があってもよい。すなわち、繊維状炭素は、それぞれの粒子の粒界にランダムに存在している。そして、繊維状炭素同士は一部で接触してネットワークを形成しており導電パスを粒界で形成している。
イットリウム−アルミニウム複合酸化物としては、Y3Al5O12(YAG)またはY4Al2O9が好適に用いられる。
なお、本明細書では、酸化イットリウムとイットリウム−アルミニウム複合酸化物を総称して、「イットリウム系酸化物」と言うこともある。
イットリウム系酸化物の粒子の平均粒子径が、0.1μm以上かつ10μm以下が好ましい理由は、それ以下の粒径では焼結体内でイットリウム系酸化物の粒界総数が増加し、導電させるにはカーボンナノチューブの添加量が増加して耐食性が低下することが挙げられ、逆に10μm以上では、少量のカーボンナノチューブの添加で導電性は発現するが、粒界総数の減少によりカーボンナノチューブの存在場所が局所的になり、焼結体内での導電性に偏りが生じるからである。
そして、繊維状炭素が凝集体をなす場合、その凝集体の径(凝集径)は10μm以下であり、好ましくは2μm以下である。
繊維状炭素の凝集径が10μm以下であることが好ましい理由は、繊維状炭素の凝集径が10μmを超えると、ハロゲン系プラズマに対する耐食性が低下し、ハロゲン系プラズマ雰囲気下にて繊維状炭素が消失しやすくなり、導電性の低下、パーティクルの発生、耐食性の低下を起こすからである。
そこで、単層カーボンナノチューブ、二層カーボンナノチューブ、多層カーボンナノチューブなどの繊維状炭素の直径は50nm以下、長さは25μm以下であることが好ましく、より好ましくは繊維状炭素の直径は1nm以上かつ30nm以下である。
繊維状炭素の含有率が、0.01体積%以上かつ5体積%以下であることが好ましい理由は、繊維状炭素の含有率が0.01体積%未満では、焼結体に必要とされる導電性を発現させることができないからである。一方、繊維状炭素の含有率が5体積%を超えると、イットリウム系酸化物の粒界に過剰に繊維状炭素が存在するようになり、繊維状炭素の凝集径が10μm以上になりやすくなり耐食性が低下するためである。また、特にカーボンナノチューブは径方向における熱伝導性が低いため、カーボンナノチューブの含有率が増加するにつれて焼結体の熱伝導性も低下し、プラズマ照射時に焼結体の厚み方向に熱分布が生じて、熱膨張差による焼結体の破断が発生するからである。
本発明の焼結体の製造方法は、本発明の焼結体を製造する方法であって、酸化イットリウムまたはイットリウム−アルミニウム複合酸化物を含むイットリウム系酸化物スラリーと、繊維状炭素を含む繊維状炭素スラリーとを個別に調製するスラリー調製工程と、該スラリー調製工程の後、前記イットリウム系酸化物スラリーと前記繊維状炭素スラリーとを混合して混合スラリーを調製する混合スラリー調製工程と、噴霧乾燥法および造粒により前記混合スラリーから顆粒を作製する顆粒作製工程と、前記顆粒を焼結して焼結体を作製する焼結体作製工程と、を有する方法である。
イットリウム系酸化物スラリーにおけるイットリウム系酸化物の含有率を40質量%以上かつ70質量%とした理由は、イットリウム系酸化物スラリーと繊維状炭素スラリーとを混合して混合スラリーを調製した場合、混合スラリーが高粘度化するのを防ぐためである。
イットリウム系酸化物を含む分散液の混合方法としては、特に限定されないが、例えば、回転二枚刃式ホモジナイザーと湿式ボールミルを組み合わせた方法が用いられる。
繊維状炭素スラリーにおける繊維状炭素の含有率を0.1質量%以上かつ1質量%以下とした理由は、繊維状炭素の含有率が1質量%を超えると、繊維状炭素が再び凝集するおそれがあるばかりでなく、繊維状炭素スラリーが高粘度化するからである。なお、繊維状炭素スラリーにおける繊維状炭素の含有率は1質量%以下であれば特に問題ないが、繊維状炭素の含有率を必要以上に下げると、溶媒の使用量が過剰となって、製造コストの増加などの問題が生じるため、繊維状炭素の含有率は0.1質量%以上であることが好ましい。
そこで、その凝集径が数μmレベルになるまで、繊維状炭素の凝集体を解きほぐす必要がある。そのためには、繊維状炭素を含む分散液(繊維状炭素スラリー)に対して、機械的な力を加え、凝集を解かなければならない。具体的には、繊維状炭素を含む分散液に対して、回転二枚刃式ホモジナイザーにより、おおまかな繊維状炭素の解砕処理を施した後、超音波ホモジナイザーにより、繊維状炭素を細かく分散させる分散処理を施す。そして、解砕処理と分散処理を施した繊維状炭素スラリーを、45μmメッシュのフィルターにより濾過する。
このような繊維状炭素の解砕処理、分散処理および濾過によって、繊維状炭素スラリーに含まれる繊維状炭素の凝集径は45μm以下となる。
なお、繊維状炭素の解砕処理としては、回転二枚刃式ホモジナイザーを用いる方法に限定されず、同様の作用が得られる方法であれば如何なる方法も適用できる。また、繊維状炭素の分散処理としては、超音波ホモジナイザーを用いる方法に限定されず、同様の作用が得られる方法であれば如何なる方法も適用できる。
分散剤やバインダーとしては、例えば、ポリカルボン酸アンモニウム塩や、ポリエチレングリコール、ポリビニルアルコール、ポリビニルピロリドンなどの有機高分子などが用いられる。
噴霧乾燥法によれば、加熱気体中に混合スラリーを噴霧することにより、混合スラリー中のイットリウム系酸化物と繊維状炭素の分散性を保持したまま、これらからなる複合体粒子を急速に乾燥させることができる。
また、顆粒の粒径は、顆粒作製工程よりも後段の成形、脱脂、焼結などの工程において、良好な特性が得られるような大きさに適宜調整される。
焼結体作製工程において、顆粒を1600℃以上かつ1850℃以下にて焼結することが好ましい理由は、焼結温度が1600℃未満では、繊維状炭素がイットリウム系酸化物の焼結を阻害し、十分な相対密度(相対密度95%以上)の焼結体が得られないからであり、一方、焼結温度が1850℃を超えると、イットリウム系酸化物と繊維状炭素が直接反応して炭化物を形成するからである。
「実施例1」
変性エタノールに、直径10nm〜50nm、長さ1μm〜25μmの多層カーボンナノチューブを固形分が0.5質量%となるよう加え、さらに分散剤を加えた後、回転二枚刃式ホモジナイザー装置により、20分間、多層カーボンナノチューブを含む変性エタノールに対して、多層カーボンナノチューブの解砕処理を施した。次いで、超音波ホモジナイザーにより、1時間、この変性エタノールに対して、多層カーボンナノチューブの分散処理を施した後、45μmメッシュのフィルターを通過させてカーボンナノチューブのスラリーを調製した。
また、変性エタノールに、酸化イットリウム粉末(平均粒子径3μm、日本イットリウム社製)を固形分が60質量%となるように加え、回転二枚刃式ホモジナイザー装置により、10分間、酸化イットリウム粉末を含む変性エタノールに対して、酸化イットリウム粉末の分散処理を施して、酸化イットリウムのスラリーを調製した。
次いで、カーボンナノチューブのスラリーと、酸化イットリウムのスラリーとを、カーボンナノチューブの含有率が、0.01体積%となるように、攪拌羽根により攪拌、混合し、混合スラリーを調製した。
次いで、回転二枚刃式ホモジナイザー装置により、この混合スラリーを10分間処理した後、回転式ボールミルにより、18時間、湿式混合を行った。
次いで、窒素雰囲気下、この混合スラリーから、噴霧乾燥法により、カーボンナノチューブと酸化イットリウムの複合体粒子を乾燥するとともに、この複合体粒子を造粒することにより、カーボンナノチューブと酸化イットリウムを複合化してなり、粒子径が30μm以上かつ100μm以下の顆粒を作製した。
次いで、アルゴン雰囲気下で、この顆粒を500℃にて脱脂処理した。
次いで、脱脂後の顆粒を、圧力5MPaで一軸加圧成形した後、アルゴン雰囲気下、1850℃にて、2時間、圧力20MPaでホットプレス焼結し、直径50mm、厚み6mmの円板状の焼結体を得た。
カーボンナノチューブの含有率を、0.1体積%とした以外は実施例1と同様にして焼結体を作製した。
カーボンナノチューブの含有率を、3体積%とした以外は実施例1と同様にして焼結体を作製した。
カーボンナノチューブの含有率を、5体積%とした以外は実施例1と同様にして焼結体を作製した。
カーボンナノチューブのスラリーにおいて、カーボンナノチューブの固形分を1質量%にした以外は実施例1と同様にして焼結体を作製した。
焼結温度を1600℃にした以外は実施例1と同様にして焼結体を作製した。
カーボンナノチューブとして、直径10nm〜50nm、長さ1μm〜25μmの単層カーボンナノチューブを用いた以外は実施例1と同様にして焼結体を作製した。
酸化イットリウムの代りにイットリウム−アルミニウム複合酸化物であるY3Al5O12(YAG、平均粒子径3μm。酸化イットリウムと酸化アルミニウムを大気中1500℃で反応させたものを粉砕して使用。酸化イットリウム原料は実施例1のものを使用。
酸化アルミニウム原料は大明化学社製、平均粒径0.2μm)を用いた以外は実施例1と同様にして焼結体を作製した。
上記実施例1〜8の焼結体の組成および製造方法を表1に示す。
カーボンナノチューブのスラリーを用いずに、酸化イットリウムのスラリーのみを用いた以外は実施例1と同様にして焼結体を作製した。
カーボンナノチューブの含有率を、0.005体積%とした以外は実施例1と同様にして焼結体を作製した。
カーボンナノチューブの含有率を、8体積%とした以外は実施例1と同様にして焼結体を作製した。
カーボンナノチューブの含有率を、3体積%とし、カーボンナノチューブのスラリーに対して、超音波ホモジナイザーによる処理を施さず、45μmメッシュのフィルターを通過させなかった以外は実施例1と同様にして焼結体を作製した。
カーボンナノチューブの含有率を、3体積%とし、カーボンナノチューブのスラリーに対して、回転二枚刃式ホモジナイザー装置による処理を施さず、超音波ホモジナイザーによる処理を施さず、45μmメッシュのフィルターを通過させずに、超音波による10分間の処理のみを施した以外は実施例1と同様にして焼結体を作製した。
噴霧乾燥法を用いずに、混合スラリーを自然乾燥し、乾燥して得られた塊を篩で造粒して、粒子径が250μm以下の顆粒を作製した以外は実施例1と同様にして焼結体を作製した。
カーボンナノチューブのスラリーにおいて、カーボンナノチューブの固形分を1.5質量%にした以外は実施例1と同様にして焼結体を作製した。
上記比較例1〜7の焼結体の組成および製造方法を表2に示す。
実施例1〜8および比較例1〜7の焼結体について、カーボンナノチューブの凝集径、相対密度、体積固有抵抗値(Ω・cm)、熱伝導率、表面粗さ、耐食性、耐食性試験後の外観について評価した。
体積固有抵抗値、表面粗さについては、耐食性試験前後の変化について評価した。
なお、比較例7については、カーボンナノチューブのスラリーの作製の段階でカーボンナノチューブが極度に凝集してゲル化し、焼結体を作製できなかったため、評価していない。
以上の実施例1〜8の評価結果を表3、比較例1〜7の評価結果を表4に示す。
(1)カーボンナノチューブの凝集径
表面をラップ研磨加工した焼結体表面について、電子プローブマイクロアナライザ(EPMA)により炭素の分布状態を示すカラーマップを作成し、カーボンナノチューブの凝集径を測定した。
また、実施例1については、焼結体の破断面を、走査型電子顕微鏡(SEM)を用いて観察した。
焼結体の真密度(d0)をアルキメデス法により測定し、この真密度(d0)の理論密度(dr)に対する比(d0/dr)を百分率で表し、相対密度(%)とした。
日本工業規格:JIS C2141に規定された方法に準じて、体積固有抵抗値が107Ω・cm以下のものについては四端子法、それ以上のものについては三端子法により測定した。また、測定電圧を10Vとした。
日本工業規格:JIS R1611に規定された方法(レーザーフラッシュ法)に準じて測定した。試験片の形状を、直径10mm×長さ2mmとした。
日本工業規格:JIS B0651に規定された方法(触針式)に準じて、中心線平均粗さ(Ra値)を測定した。
炭化ハロゲン系ガス、酸素ガスおよびアルゴンガスの混合ガス中にて、プラズマに8時間、焼結体を曝露し、時間あたりの消耗深さを測定し、耐食性を評価した。
耐食性試験後の外観を、目視により評価した。
ここでは、表面荒れが認められない場合を「○」、試料表面に空孔や陥没が見られる場合を「△」、試料に亀裂や破断が見られる場合を「×」とした。
また、図1は、実施例1の焼結体の破断面の走査型電子顕微鏡像(SEM像)である。
図1中、矢印で示しているのは、カーボンナノチューブである。このSEM像によれば、酸化イットリウムの粒界にカーボンナノチューブが存在していることが分かった。
また、実施例6において1600℃にて焼結した焼結体では、相対密度が95.1%に低下した。焼結体の相対密度が95%を下回ると、表面の開気孔が焼結体内部の空孔とつながり、焼結体内部に入り込んだプラズマがカーボンナノチューブと反応して導電性を低下させるため、1600℃〜1850℃の温度領域における焼結が不可欠であると考えられる。
実施例1〜4に示したように、カーボンナノチューブの含有率が、酸化イットリウム100体積%に対して5体積%以下である焼結体の中でも、カーボンナノチューブの凝集径が10μm以下となるもの、すなわち、カーボンナノチューブの分散状態が良好なものでは、焼結体の体積固有抵抗値は104Ω・cm以下であり、この導電性は耐食性試験後もほとんど変化しないことが分かった。
カーボンナノチューブの含有率が、8体積%以下である比較例3の焼結体では、凝集径が20μmのカーボンナノチューブが一部に見られるものの、大部分のカーボンナノチューブの凝集径は10μm以下であるので、耐食性試験前後において、導電性の変化が少ないことが分かった。
カーボンナノチューブの含有率が、3体積%以下であり、噴霧乾燥法により混合スラリーを乾燥しなかった比較例6の焼結体では、カーボンナノチューブの凝集径が、比較例3の焼結体と同様であったことから、耐食性試験前後において、導電性の変化が少ないことが分かった。
比較例5の焼結体では、カーボンナノチューブの凝集径が50μm〜1500μmとなり、凝集体がほとんど繊維状に解砕されていないため、酸化イットリウムの粒界に分散しているカーボンナノチューブの絶対量が不足し、必要とされる導電性(104Ω・cm以下)が発現しなかった。
なお、導電性材料であるカーボンナノチューブを含まない比較例1の焼結体は、導電性が発現しなかった。
固形分が0.5質量%のカーボンナノチューブのスラリーを用いた実施例1の焼結体と、固形分が1質量%のカーボンナノチューブのスラリーを用いた実施例5の焼結体とは、耐食性試験前後において、導電性の変化が少ないことから、カーボンナノチューブのスラリーの固形分が1質量%以下であれば、上記のカーボンナノチューブのスラリーの製造工程を用いることによって、ハロゲン系プラズマに曝露しても導電性が失われない焼結体が得られることが分かった。
実施例1〜4、比較例1、2において、カーボンナノチューブのスラリーの製造工程が同じであれば、カーボンナノチューブの含有率が増加するにつれて、酸化イットリウムの粒界におけるフォノン散乱も増すため、焼結体の熱伝導率は低下傾向を示すことが分かった。
また、実施例3、比較例4、5において、カーボンナノチューブの含有率が3体積%であれば、カーボンナノチューブのスラリーの製造工程に関わらず、焼結体の熱伝導率に大差ないことが分かった。
一方、カーボンナノチューブの凝集径が10μmを超える比較例3〜6では、ハロゲン系プラズマの照射面において、目視により10μm〜1500μmのカーボンナノチューブの消失痕が多数見られ、試験後の中心線平均粗さ(Ra値)が数μm台まで低下し、消耗深さも2.5〜3.0μm/hrまで低下した。
Claims (6)
- 酸化イットリウムまたはイットリウム−アルミニウム複合酸化物と、繊維状炭素とを含有してなる焼結体であって、
前記酸化イットリウムまたは前記イットリウム−アルミニウム複合酸化物の粒界に、前記繊維状炭素が三次元的に分散してなり、前記繊維状炭素の凝集径は10μm以下であり、
前記繊維状炭素は、単層カーボンナノチューブ、二層カーボンナノチューブ、多層カーボンナノチューブの群から選択されるいずれか1種または2種以上であり、
前記繊維状炭素の含有率は、前記酸化イットリウムまたは前記イットリウム−アルミニウム複合酸化物100体積%に対して0.01体積%以上かつ5体積%以下であり、
中心線表面粗さ(Ra)が24.5nm以下、体積固有抵抗値が1×104Ω・cmであり、かつ、炭化ハロゲン系ガス、酸素ガスおよびアルゴンガスの混合ガス中においてプラズマに8時間曝露する耐食性試験後の中心線表面粗さが597.2nm以下であり、体積固有抵抗値が1×104Ω・cm以下であることを特徴とする焼結体。 - 前記イットリウム−アルミニウム複合酸化物は、Y3Al5O12またはY4Al2O9であることを特徴とする請求項1に記載の焼結体。
- 前記繊維状炭素の直径は50nm以下、前記繊維状炭素の長さは25μm以下であることを特徴とする請求項1に記載の焼結体。
- 請求項1ないし3のいずれか1項に記載の焼結体を製造する方法であって、
酸化イットリウムまたはイットリウム−アルミニウム複合酸化物を含むイットリウム系酸化物スラリーと、繊維状炭素を含む繊維状炭素スラリーとを個別に調製するスラリー調製工程と、該スラリー調製工程の後、前記イットリウム系酸化物スラリーと前記繊維状炭素スラリーとを混合して混合スラリーを調製する混合スラリー調製工程と、噴霧乾燥法および造粒により前記混合スラリーから顆粒を作製する顆粒作製工程と、前記顆粒を焼結して焼結体を作製する焼結体作製工程と、を有することを特徴とする焼結体の製造方法。 - 前記スラリー調製工程において、前記繊維状炭素スラリーの固形分を0.1質量%以上かつ1質量%以下とし、前記繊維状炭素スラリーに対して、繊維状炭素の解砕処理を施し、次いで、繊維状炭素の溶媒への分散処理を施した後、前記繊維状炭素スラリーの残留凝集体を除去することを特徴とする請求項4に記載の焼結体の製造方法。
- 前記焼結体作製工程において、不活性雰囲気下、前記顆粒を1600℃以上かつ1850℃以下にて焼結することを特徴とする請求項4または5に記載の焼結体の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012132241A JP5454623B2 (ja) | 2012-06-11 | 2012-06-11 | 焼結体およびその製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012132241A JP5454623B2 (ja) | 2012-06-11 | 2012-06-11 | 焼結体およびその製造方法 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008026821A Division JP5034992B2 (ja) | 2008-02-06 | 2008-02-06 | 焼結体およびその製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012167015A true JP2012167015A (ja) | 2012-09-06 |
JP5454623B2 JP5454623B2 (ja) | 2014-03-26 |
Family
ID=46971532
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012132241A Active JP5454623B2 (ja) | 2012-06-11 | 2012-06-11 | 焼結体およびその製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5454623B2 (ja) |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63291858A (ja) * | 1987-05-25 | 1988-11-29 | Shinagawa Refract Co Ltd | イットリア質自硬性耐火組成物 |
JPH0419905A (ja) * | 1990-05-14 | 1992-01-23 | Nikkiso Co Ltd | 導電性複合材料 |
JPH06507946A (ja) * | 1991-06-03 | 1994-09-08 | ミネソタ・マイニング・アンド・マニュファクチュアリング・カンパニー | イットリア−アルミナファイバー |
JP2004507434A (ja) * | 2000-08-25 | 2004-03-11 | レンセラール ポリテクニック インスティチュート | 機械的特性を向上させるための炭素ナノチューブを含むセラミック母体のナノ複合体 |
JP2004244273A (ja) * | 2003-02-14 | 2004-09-02 | Nippon Steel Corp | セラミックス焼結体 |
JP2005255503A (ja) * | 2004-03-15 | 2005-09-22 | Matsushita Electric Ind Co Ltd | 低熱膨張複合体 |
JP2006182590A (ja) * | 2004-12-27 | 2006-07-13 | Yokohama National Univ | 導電性窒化ケイ素材料とその製造方法 |
JP2006225205A (ja) * | 2005-02-17 | 2006-08-31 | Osaka Univ | 導電性ジルコニア焼結体及びその製造方法 |
JP2006337118A (ja) * | 2005-05-31 | 2006-12-14 | Tokai Rubber Ind Ltd | エラストマセンサと該エラストマセンサを用いた振動検出方法。 |
US20070142548A1 (en) * | 2005-12-20 | 2007-06-21 | Nejhad Mohammad N G | Polymer matrix composites with nano-scale reinforcements |
CN101221886A (zh) * | 2008-01-21 | 2008-07-16 | 清华大学 | 双壁碳纳米管电灯泡及其制备方法 |
JP5034992B2 (ja) * | 2008-02-06 | 2012-09-26 | 住友大阪セメント株式会社 | 焼結体およびその製造方法 |
-
2012
- 2012-06-11 JP JP2012132241A patent/JP5454623B2/ja active Active
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63291858A (ja) * | 1987-05-25 | 1988-11-29 | Shinagawa Refract Co Ltd | イットリア質自硬性耐火組成物 |
JPH0419905A (ja) * | 1990-05-14 | 1992-01-23 | Nikkiso Co Ltd | 導電性複合材料 |
JPH06507946A (ja) * | 1991-06-03 | 1994-09-08 | ミネソタ・マイニング・アンド・マニュファクチュアリング・カンパニー | イットリア−アルミナファイバー |
JP2004507434A (ja) * | 2000-08-25 | 2004-03-11 | レンセラール ポリテクニック インスティチュート | 機械的特性を向上させるための炭素ナノチューブを含むセラミック母体のナノ複合体 |
JP2004244273A (ja) * | 2003-02-14 | 2004-09-02 | Nippon Steel Corp | セラミックス焼結体 |
JP2005255503A (ja) * | 2004-03-15 | 2005-09-22 | Matsushita Electric Ind Co Ltd | 低熱膨張複合体 |
JP2006182590A (ja) * | 2004-12-27 | 2006-07-13 | Yokohama National Univ | 導電性窒化ケイ素材料とその製造方法 |
JP2006225205A (ja) * | 2005-02-17 | 2006-08-31 | Osaka Univ | 導電性ジルコニア焼結体及びその製造方法 |
JP2006337118A (ja) * | 2005-05-31 | 2006-12-14 | Tokai Rubber Ind Ltd | エラストマセンサと該エラストマセンサを用いた振動検出方法。 |
US20070142548A1 (en) * | 2005-12-20 | 2007-06-21 | Nejhad Mohammad N G | Polymer matrix composites with nano-scale reinforcements |
CN101221886A (zh) * | 2008-01-21 | 2008-07-16 | 清华大学 | 双壁碳纳米管电灯泡及其制备方法 |
JP5034992B2 (ja) * | 2008-02-06 | 2012-09-26 | 住友大阪セメント株式会社 | 焼結体およびその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JP5454623B2 (ja) | 2014-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5034992B2 (ja) | 焼結体およびその製造方法 | |
TWI757686B (zh) | 氮化硼凝集粒子、氮化硼凝集粒子之製造方法、含有該氮化硼凝集粒子之樹脂組成物、成形體及片材 | |
US10850496B2 (en) | Chemical-free production of graphene-reinforced inorganic matrix composites | |
US9403722B2 (en) | Sintered objects and processes for producing same | |
TWI427188B (zh) | 熱噴塗粉末、形成熱噴塗塗層之方法、以及耐電漿侵蝕之構件 | |
JP2008239386A (ja) | 窒化アルミニウム焼結体及び半導体製造装置用部材 | |
JP2005041765A (ja) | 窒化アルミニウム焼結体、静電チャック、導電性部材、半導体製造装置用部材及び窒化アルミニウム焼結体の製造方法 | |
KR102111551B1 (ko) | 방열 소재 및 그 제조방법 | |
EP2690068B1 (en) | Alumina composite, method for manufacturing alumina composite, and polymer composition containing alumina composite | |
JP5768384B2 (ja) | 焼結体及びその製造方法 | |
KR101639600B1 (ko) | 고온 열처리를 통한 고전도성 페이스트 제조방법 및 이를 이용하여 제조된 고전도성 페이스트 조성물 | |
JP5593694B2 (ja) | 耐食性部材及びその製造方法 | |
JP2004327186A (ja) | ニッケル粉末分散体およびその調製方法、ならびにこの粉末分散体を用いた導電ペーストの調製方法 | |
JP5454623B2 (ja) | 焼結体およびその製造方法 | |
JP2011063487A (ja) | ホウ化ランタン焼結体、その焼結体を用いたターゲット及びその焼結体の製造方法 | |
JP5732798B2 (ja) | セラミック部材 | |
JP5720127B2 (ja) | 高周波透過材料 | |
KR101195009B1 (ko) | 질화알루미늄 소재의 제조방법 | |
JP5768378B2 (ja) | 焼結体及びその製造方法 | |
KR101459724B1 (ko) | 탄화규소와 전기 전도성 성분이 함유된 히터용 조성물 및 히터 | |
JP2020083744A (ja) | 導電性セラミックス | |
JP2019048748A (ja) | 導電性セラミックス | |
JP2015059067A (ja) | 焼結体及びその製造方法 | |
KR100855537B1 (ko) | 플라즈마 용사 코팅용 분말을 제조하는 방법 | |
KR101792876B1 (ko) | 탄화규소, 전기 전도성 성분의 흑연 및 금속 입자를 포함하는 히터용 조성물 및 히터 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120611 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A132 Effective date: 20130917 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131118 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131210 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131223 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5454623 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |