JP2012152866A - Cutting tool made of surface-coated cubic boron nitride based ultra-high pressure sintered material - Google Patents

Cutting tool made of surface-coated cubic boron nitride based ultra-high pressure sintered material Download PDF

Info

Publication number
JP2012152866A
JP2012152866A JP2011015067A JP2011015067A JP2012152866A JP 2012152866 A JP2012152866 A JP 2012152866A JP 2011015067 A JP2011015067 A JP 2011015067A JP 2011015067 A JP2011015067 A JP 2011015067A JP 2012152866 A JP2012152866 A JP 2012152866A
Authority
JP
Japan
Prior art keywords
layer
cutting
boron nitride
cubic boron
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011015067A
Other languages
Japanese (ja)
Other versions
JP5686247B2 (en
Inventor
Noriji Yumoto
憲志 油本
Chuichi Ohashi
忠一 大橋
Itsuro Tajima
逸郎 田嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2011015067A priority Critical patent/JP5686247B2/en
Publication of JP2012152866A publication Critical patent/JP2012152866A/en
Application granted granted Critical
Publication of JP5686247B2 publication Critical patent/JP5686247B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a surface-coated cutting tool which exhibits excellent wear resistance, chipping resistance, and fusion resistance in high-speed continuous cutting and intermittent cutting of a cut material where a ferrite-phase such as ductile cast iron is greatly deposited.SOLUTION: A lower layer comprised of amorphous BN with an average layer thickness of 0.1-0.3 μm, an intermediate layer comprised of TiBN with an average layer thickness of 0.1-0.3 μm, and an upper layer comprised of TiAlN with an average layer thickness of 1.0-2.0 μm are sequentially vapor-deposited on the surface of a tool base made of a cBN based ultra-high pressure sintered material, and the upper layers of a rake face and a honing face are removed.

Description

本発明は、鋳鉄や焼結合金はパーライト相とフェライト相などが析出するが、特にフェライト相が多く析出したダクタイル鋳鉄や焼結合金などを高速連続切削加工および断続切削加工した場合でも、硬質被覆層がすぐれた潤滑性、耐溶着性を発揮し、長期に亘って安定した切削性能を発揮することができる、立方晶窒化ほう素(以下、cBNで示す)基超高圧焼結材料で構成された切削工具基体(以下、工具基体という)の表面に硬質被覆層を形成した表面被覆立方晶窒化ほう素基超高圧焼結材料製切削工具製表面被覆切削工具(以下、被覆cBN基焼結工具という)に関するものである。   In the present invention, pearlite and ferrite phases are precipitated in cast iron and sintered alloys, and even when ductile cast iron and sintered alloys in which a large amount of ferrite phases are precipitated are hard-coated even when high-speed continuous cutting and intermittent cutting are performed. The layer is composed of cubic boron nitride (hereinafter referred to as cBN) -based ultra-high pressure sintered material that exhibits excellent lubricity and welding resistance, and can exhibit stable cutting performance over a long period of time. A surface-coated cutting tool made of a surface-coated cubic boron nitride-based ultra-high pressure sintered material with a hard coating layer formed on the surface of the cutting tool substrate (hereinafter referred to as a tool substrate) (hereinafter referred to as a coated cBN-based sintered tool) )).

従来、鋼、鋳鉄等の鉄系被削材の切削加工には、被削材との親和性の低い工具材料として、cBN基超高圧焼結材料を用いることは良く知られている。   2. Description of the Related Art Conventionally, it is well known to use a cBN-based ultra-high pressure sintered material as a tool material having low affinity with a work material for cutting of an iron-based work material such as steel or cast iron.

また、特許文献1に示すように、cBN基超高圧焼結材料を工具基体(以下、cBN工具基体という)とし、その表面に4a、5a、6a族元素およびAlから選択される元素の窒化物(例えば、TiAlN)からなる耐摩耗性被膜を形成し、かつ、該耐摩耗性被膜中に、非晶質構造のBN、TiB、SiN(X=0.5〜1.33)等からなる超微粒化合物を含有させたcBN被覆工具(以下、従来被覆工具という)も知られており、この従来被覆工具によれば、切削加工における耐摩耗性、潤滑性、耐焼付き性、加工精度が向上し、工具寿命も改善されるようになることが知られている。 Further, as shown in Patent Document 1, a cBN-based ultrahigh pressure sintered material is used as a tool base (hereinafter referred to as a cBN tool base), and nitrides of elements selected from Group 4a, 5a, and 6a elements and Al are formed on the surface thereof. (For example, a wear-resistant film made of TiAlN) is formed, and the wear-resistant film is made of BN, TiB, SiN x (X = 0.5 to 1.33) having an amorphous structure, or the like. A cBN coated tool containing ultrafine compounds (hereinafter referred to as a conventional coated tool) is also known, and according to this conventional coated tool, wear resistance, lubricity, seizure resistance, and machining accuracy in machining are improved. However, it is known that the tool life will be improved.

ところで、cBN被覆工具においては、一般的に、耐欠損性の向上を図るため、cBN焼結体中のcBN含有割合を高くする試みがなされているが、cBN含有割合を例えば、70vol%程度以上に高くした場合には、硬質被覆層(例えば、前記従来被覆工具におけるTiAlNからなる耐摩耗性被膜)と工具基体との付着強度が低下傾向を示すようになるため、切削条件が過酷になるほど、チッピング、欠損、剥離、溶着等が生じ易くなり工具寿命の改善が十分ではないのが現状である。   By the way, in the cBN coated tool, in general, in order to improve the fracture resistance, attempts have been made to increase the cBN content ratio in the cBN sintered body, but the cBN content ratio is, for example, about 70 vol% or more. In the case of increasing the thickness, the adhesion strength between the hard coating layer (for example, the wear-resistant coating made of TiAlN in the conventional coated tool) and the tool base tends to decrease, so that the severer the cutting condition, At present, chipping, chipping, peeling, welding, etc. are likely to occur and the tool life is not improved sufficiently.

特許第3914687号明細書Japanese Patent No. 3914687

近年の切削加工装置のFA化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は、通常の切削条件に加えて、より高速条件下での切削加工が要求される傾向にあるが、前記従来被覆工具においては、各種の鋼や鋳鉄を通常条件下で切削加工した場合には特段の問題は生じないが、これを、ダクタイル鋳鉄や焼結合金などのフェライト相が多く析出した被削材の高速連続切削加工および断続切削加工に用いた場合には、切削時の高熱発生、高負荷による硬質被覆層の付着強度の低下のため、あるいは、溶着等の発生によって、比較的短期間で使用寿命に至るのが現状である。   In recent years, FA has been remarkable for cutting devices, but on the other hand, there is a strong demand for labor saving and energy saving and further cost reduction for cutting, and accordingly, cutting is performed at higher speed conditions in addition to normal cutting conditions. However, in the conventional coated tool, there is no particular problem when various types of steel and cast iron are machined under normal conditions. When used for high-speed continuous cutting and interrupted cutting of work materials with a large amount of ferrite phase, such as steel and sintered alloys, high heat is generated during cutting, and the adhesion strength of the hard coating layer decreases due to high loads. Alternatively, due to the occurrence of welding or the like, the service life is reached in a relatively short period of time.

そこで、本発明者らは、前述のような観点から、ダクタイル鋳鉄や焼結合金などのフェライト相が多く析出した被削材の高速連続切削加工および断続切削加工で、硬質被覆層がすぐれた付着強度を備えるとともに、すぐれた潤滑性、耐溶着性を発揮して、長期の使用に亘って、すぐれた切削性能を発揮する被覆cBN基焼結工具を開発すべく研究を行なった結果、次のような知見を得た。
(a)cBNの含有割合が高い(70vol%以上)cBN基超高圧焼結材料からなるcBN工具基体の表面に、非晶質構造のBN(以下、aBNで示す)層を下部層として形成し、次いで、この上に、TiとBとNの複合化合物(以下、TiBNで示す)層を中間層として形成し、さらにこの上に、TiとAlの複合窒化物(以下、TiAlNで示す)層を上部層として形成したところ、下部層は、cBN工具基体および中間層の双方に対し強固な付着強度を備えるとともに、中間層は、上部層に対して優れた付着強度を有することを見出した。
In view of the above, the present inventors, from the above-mentioned viewpoint, have excellent adhesion of the hard coating layer in high-speed continuous cutting and intermittent cutting of a work material in which a large amount of ferrite phase such as ductile cast iron and sintered alloy is precipitated. As a result of research to develop a coated cBN-based sintered tool that has strength, exhibits excellent lubricity and welding resistance, and exhibits excellent cutting performance over a long period of use. The following knowledge was obtained.
(A) A BN layer (hereinafter referred to as aBN) having an amorphous structure is formed as a lower layer on the surface of a cBN tool base made of a cBN-based ultrahigh pressure sintered material having a high content of cBN (70 vol% or more). Then, a composite compound of Ti, B, and N (hereinafter referred to as TiBN) is formed thereon as an intermediate layer, and further, a composite nitride of Ti and Al (hereinafter referred to as TiAlN) is further formed thereon. Was formed as an upper layer, the lower layer was found to have strong adhesion strength to both the cBN tool substrate and the intermediate layer, and the intermediate layer had excellent adhesion strength to the upper layer.

したがって、cBN工具基体表面に、前記下部層、中間層および上部層の三層構造からなる硬質被覆層を形成したcBN被覆工具は、すぐれた付着強度を有することとなり、その結果として、ダクタイル鋳鉄や焼結合金などのフェライト相が多く析出した被削材の高速連続切削加工および断続切削加工において、チッピング、欠損、剥離等の異常損傷を発生することなく、長期の使用に亘って、すぐれた耐摩耗性を発揮するとともに、工具寿命の延命化が図られることを見出したのである。
(b)また、TiAlN層は、耐摩耗性にすぐれているが、耐溶着性に劣る。そのため、逃げ面にコーティングすることは、耐摩耗性の向上に繋がるが、切屑と接触するすくい面、ホーニング面では溶着が起こり、膜の剥離や摩耗が大きく、チッピング、欠損の原因となる。そこで、すくい面、ホーニング面に耐溶着性にすぐれたTiBN層を露出させることによって、溶着が起こりにくく、耐クレータ摩耗性が向上し、また、逃げ面には、耐摩耗性にすぐれたTiAlN層を上部層として残すことで、長期の使用に亘ってすぐれた耐摩耗性と耐欠損性を示し、安定した切削性能を発揮する。すなわち、すくい面、ホーニング面の上部層であるTiAlN層を除去して中間層のTiBN層を露出させることにより、TiBN層のもつすぐれた潤滑性、耐溶着性が発揮され、ダクタイル鋳鉄や焼結合金などのフェライト相が多く析出した被削材の高速連続切削加工および断続切削加工を行なった場合においても、溶着が起こりにくく、耐クレータ摩耗性が向上し、長期の使用に亘ってすぐれた耐摩耗性と耐欠損性を示し、安定した切削性能を発揮するものである。
Therefore, the cBN coated tool in which the hard coating layer having the three-layer structure of the lower layer, the intermediate layer, and the upper layer is formed on the surface of the cBN tool base has excellent adhesion strength, and as a result, the ductile cast iron and In high-speed continuous cutting and intermittent cutting of work materials with a large amount of ferrite phase, such as sintered alloys, excellent resistance to long-term use without causing abnormal damage such as chipping, chipping and peeling. It has been found that the wear life can be demonstrated and the tool life can be extended.
(B) The TiAlN layer is excellent in wear resistance, but is inferior in welding resistance. For this reason, coating the flank surface leads to improved wear resistance, but welding occurs on the rake surface and honing surface that come into contact with the chips, resulting in large film peeling and wear, leading to chipping and chipping. Therefore, by exposing the TiBN layer with excellent welding resistance on the rake face and honing surface, welding hardly occurs, crater wear resistance is improved, and the flank face has a TiAlN layer with excellent wear resistance. By leaving as an upper layer, it exhibits excellent wear resistance and fracture resistance over a long period of use, and exhibits stable cutting performance. In other words, by removing the TiAlN layer, which is the upper layer of the rake face and honing face, and exposing the TiBN layer of the intermediate layer, the excellent lubricity and welding resistance of the TiBN layer are exhibited, and ductile cast iron and heat bonding Even when high-speed continuous cutting and intermittent cutting of work materials with a large amount of ferrite such as gold are deposited, welding is less likely to occur, crater wear resistance is improved, and excellent resistance to long-term use. It exhibits wear and fracture resistance and exhibits stable cutting performance.

本発明は、前記知見に基づいてなされたものであって、
「(1) 立方晶窒化ほう素基超高圧焼結材料を母材とする工具本体のすくい面と逃げ面との交差稜線部にホーニングを施した切刃部が形成されているとともに、前記工具本体の表面に、該工具本体側から順に下部層、中間層および上部層からなる硬質被覆層を蒸着形成した表面被覆立方晶窒化ほう素基超高圧焼結材料製切削工具において、
(a)前記下部層は、平均層厚0.1〜0.3μmの非晶質BN層、
(b)前記中間層は、平均層厚0.1〜0.3μmのTiとBとNの複合化合物層、
(c)前記上部層は、平均層厚1.0〜2.0μmのTiとAlの複合窒化物層、であるとともに、
(d)前記工具基体のすくい面とホーニング面は、前記上部層が除去されることにより中間層が主として露出していることを特徴とする表面被覆立方晶窒化ほう素基超高圧焼結材料製切削工具。
(2) 前記中間層は、
組成式:Ti0.33(1−X)0.67(1−X)
で表した場合、Xの値(但し、原子比)が0.05〜0.5を満足する組成割合のTiとBとNの複合化合物層であり、また、
前記上部層は、
組成式:(Ti1−YAl)N層
で表した場合、Yの値(但し、原子比)が0.4〜0.65を満足する組成割合のTiとAlの複合窒化物層である(1)に記載の表面被覆立方晶窒化ほう素基超高圧焼結材料製切削工具。
(3) 前記立方晶窒化ほう素基超高圧焼結材料の立方晶窒化ほう素の含有量が70容量%以上であることを特徴とする(1)または(2)記載の表面被覆立方晶窒化ほう素基超高圧焼結材料製切削工具。」
を特徴とするものである。
The present invention has been made based on the above findings,
“(1) A cutting edge portion formed by honing a cross ridge line portion between a rake face and a flank face of a tool body having a cubic boron nitride-based ultrahigh pressure sintered material as a base material, and the tool In the surface-coated cubic boron nitride-based ultra-high pressure sintered material cutting tool in which a hard coating layer consisting of a lower layer, an intermediate layer and an upper layer is deposited in this order from the tool body side on the surface of the main body,
(A) the lower layer is an amorphous BN layer having an average layer thickness of 0.1 to 0.3 μm;
(B) The intermediate layer is a composite compound layer of Ti, B and N having an average layer thickness of 0.1 to 0.3 μm,
(C) The upper layer is a composite nitride layer of Ti and Al having an average layer thickness of 1.0 to 2.0 μm,
(D) The rake face and the honing face of the tool base are made of a surface-coated cubic boron nitride-based ultra-high pressure sintered material, wherein the intermediate layer is mainly exposed by removing the upper layer. Cutting tools.
(2) The intermediate layer is
Composition formula: Ti 0.33 (1-X) B 0.67 (1-X) N X
Is a composite compound layer of Ti, B, and N having a composition ratio that satisfies the value of X (however, the atomic ratio) is 0.05 to 0.5,
The upper layer is
Composition formula: (Ti 1-Y Al Y ) When represented by an N layer, a composite nitride layer of Ti and Al having a composition ratio in which the value of Y (however, the atomic ratio) satisfies 0.4 to 0.65. The cutting tool made of a surface-coated cubic boron nitride-based ultrahigh pressure sintered material according to (1).
(3) The surface-coated cubic nitriding according to (1) or (2), wherein the cubic boron nitride content of the cubic boron nitride-based ultrahigh pressure sintered material is 70% by volume or more. Cutting tool made of boron-based ultra-high pressure sintered material. "
It is characterized by.

本発明について、以下に説明する。   The present invention will be described below.

立方晶窒化ほう素基超高圧焼結材料製工具基体(cBN工具基体):
超高圧焼結材料製工具基体中の窒化ほう素(cBN)は、きわめて硬質で、焼結材料中で分散相を形成し、そしてこの分散相によって耐摩耗性の向上を図ることができる。
Cubic boron nitride based ultra-high pressure sintered material tool substrate (cBN tool substrate):
Boron nitride (cBN) in a tool base made of an ultra-high pressure sintered material is extremely hard and forms a dispersed phase in the sintered material, and this dispersed phase can improve wear resistance.

一般的には、cBN含有割合が70vol%以上となると、硬さは向上するものの、硬質被覆層との密着性が低下し、欠損発生の原因となるが、本発明では、下部層(非晶質のBN層(aBN層))および中間層(TiBN層)を介在形成することにより、cBN工具基体−上部層(TiAlN層)間の付着強度を十分確保することができるため、cBN含有割合が70vol%以上の高含有量のcBN工具基体をも切削工具として利用することが可能となった。   In general, when the cBN content is 70 vol% or more, the hardness is improved, but the adhesion with the hard coating layer is reduced and the generation of defects is caused. Quality BN layer (aBN layer)) and intermediate layer (TiBN layer) are interposed, so that sufficient adhesion strength between the cBN tool substrate and the upper layer (TiAlN layer) can be secured. A cBN tool base having a high content of 70 vol% or more can be used as a cutting tool.

本発明では、長期の使用に亘って優れた耐摩耗性・耐欠損性を備える表面被覆切削工具を提供するという観点から、cBN含有割合は70vol%以上とすることが好ましい。   In the present invention, from the viewpoint of providing a surface-coated cutting tool having excellent wear resistance and fracture resistance over a long period of use, the cBN content is preferably 70 vol% or more.

なお、cBN焼結体の他の構成成分、例えば、結合相等としては、周期律表VIa、Va、VIa族元素の窒化物、炭化物、硼化物、酸化物ならびにこれらの固溶体からなる群の中から選択された少なくとも1種とアルミニウム化合物のセラミックス系結合材を用いることができる。
下部層(非晶質のBN層(aBN層)):
下部層は、cBN工具基体および中間層(TiBN層)の双方に対し強固な付着強度を有するが、下部層の平均層厚が0.1μm未満では、付着強度向上効果が十分でなく、一方、その平均層厚が0.3μmを超えると耐摩耗性が劣るからであるから、平均層厚は0.1〜0.3μmと定めた。
The other constituents of the cBN sintered body, for example, the binder phase, are selected from the group consisting of nitrides, carbides, borides, oxides of these periodic table VIa, Va, and VIa group elements, and solid solutions thereof. A ceramic binder of at least one selected type and an aluminum compound can be used.
Lower layer (amorphous BN layer (aBN layer)):
The lower layer has strong adhesion strength to both the cBN tool substrate and the intermediate layer (TiBN layer), but if the average layer thickness of the lower layer is less than 0.1 μm, the effect of improving adhesion strength is not sufficient, This is because the wear resistance is poor when the average layer thickness exceeds 0.3 μm, so the average layer thickness was determined to be 0.1 to 0.3 μm.

また、下部層のaBN層は、例えば、六方晶窒化ほう素(h−BN)焼結体をターゲットとしたアルゴン−窒素混合雰囲気中で、RFスパッタリングで成膜することができる。
中間層(TiBN層):
中間層は、TiとBとNの複合化合物層から構成するが、中間層の平均層厚が0.1μm未満では、付着強度向上効果が十分でなく、一方、その平均層厚が0.3μmを超えると、耐摩耗性が低下傾向を示し、長期の使用に亘って満足できる工具特性を発揮することができなくなることから、平均層厚は0.1〜0.3μmと定めた。
The lower aBN layer can be formed by RF sputtering in an argon-nitrogen mixed atmosphere with a hexagonal boron nitride (h-BN) sintered body as a target, for example.
Intermediate layer (TiBN layer):
The intermediate layer is composed of a composite compound layer of Ti, B and N. If the average layer thickness of the intermediate layer is less than 0.1 μm, the effect of improving the adhesion strength is not sufficient, while the average layer thickness is 0.3 μm. If it exceeds 1, the wear resistance tends to decrease, and satisfactory tool characteristics cannot be exhibited over a long period of use. Therefore, the average layer thickness was determined to be 0.1 to 0.3 μm.

この中間層は、N濃度が高い場合に、主としてTiN+aBN+TiB(微量)の混合層からなるが、aBNとTiNの含有割合が高いことから、下部層(aBN層)と上部層(TiAlN層)のいずれに対しても強固な付着強度を有する。 This intermediate layer is mainly composed of a mixed layer of TiN + aBN + TiB 2 (trace amount) when the N concentration is high, but since the content ratio of aBN and TiN is high, the lower layer (aBN layer) and the upper layer (TiAlN layer) Both have strong adhesion strength.

特に、中間層(TiBN層)を、
組成式:Ti0.33(1−X)0.67(1−X)
で表した場合、Xの値(但し、原子比)が0.05〜0.5を満足する組成割合であるときに、下部層と上部層に対して、一段と優れた付着強度を示す。
In particular, the intermediate layer (TiBN layer)
Composition formula: Ti 0.33 (1-X) B 0.67 (1-X) N X
When the value of X (however, the atomic ratio) is a composition ratio that satisfies 0.05 to 0.5, the adhesion strength is further improved with respect to the lower layer and the upper layer.

また、中間層のTiBN層は、例えば、TiB焼結体をターゲットとしたアルゴン−窒素混合雰囲気中で、DCスパッタリングで成膜することができる。
上部層(TiAlN層):
TiAlN層からなる上部層は、すぐれた高温強度、高温硬さ、耐熱性および耐高温酸化性を具備する層であるが、該上部層を、
組成式:(Ti1−YAl)N層
で表した場合、Yの値(但し、原子比)が0.4〜0.65を満足する組成割合であるときに、最も好ましい特性を発揮する。
The intermediate TiBN layer can be formed by DC sputtering, for example, in an argon-nitrogen mixed atmosphere with a TiB 2 sintered body as a target.
Upper layer (TiAlN layer):
The upper layer composed of the TiAlN layer is a layer having excellent high temperature strength, high temperature hardness, heat resistance and high temperature oxidation resistance.
Composition formula: (Ti 1-Y Al Y ) When expressed by an N layer, the most preferable characteristics are exhibited when the Y value (however, the atomic ratio) is a composition ratio satisfying 0.4 to 0.65. To do.

即ち、上部層の構成成分であるTiは所定の高温強度の維持に寄与し、Al成分は高温硬さ、耐熱性、耐高温酸化性の向上に寄与するが、Alの含有割合Yが0.65を超えると耐高温酸化性は向上するものの、Ti含有割合の相対的な減少によって耐摩耗性が低下し、一方、Alの含有割合Yが0.4未満になると、高温硬さ、耐熱性が低下し、その結果、耐摩耗性の低下がみられるようになることから、Alの含有割合Yの値を0.4〜0.65とすることが好ましい。   That is, Ti, which is a constituent component of the upper layer, contributes to maintaining a predetermined high-temperature strength, and the Al component contributes to improvement in high-temperature hardness, heat resistance, and high-temperature oxidation resistance, but the Al content ratio Y is 0.1. If it exceeds 65, the high-temperature oxidation resistance is improved, but the wear resistance is lowered due to the relative decrease in the Ti content. On the other hand, if the Al content Y is less than 0.4, the high-temperature hardness and heat resistance are reduced. As a result, a decrease in wear resistance is observed, so the value of the Al content ratio Y is preferably set to 0.4 to 0.65.

また、上部層の平均層厚が1.0μm未満では、自身のもつ高温硬さ、耐熱性および耐高温酸化性を硬質被覆層に長期に亘って付与できず、工具寿命短命の原因となり、一方その平均層厚が2.0μmを越えると、欠損が生じ易くなることから、その平均層厚を1.0〜2.0μmと定めた。   On the other hand, if the average thickness of the upper layer is less than 1.0 μm, the high temperature hardness, heat resistance and high temperature oxidation resistance possessed by itself cannot be imparted to the hard coating layer over a long period of time, resulting in a short tool life. When the average layer thickness exceeds 2.0 μm, defects tend to occur, so the average layer thickness was set to 1.0 to 2.0 μm.

TiAlN層からなる上部層は、通常用いられるアークイオンプレーティング(AIP)法によって成膜することができる。   The upper layer made of the TiAlN layer can be formed by a commonly used arc ion plating (AIP) method.

また、上部層を構成するTiAlN層は、ダクタイル鋳鉄や焼結合金などのフェライト相が多く析出した被削材を切削する場合には、溶着しやすいため、すくい面とホーニング面の上層部をウエットブラスト処理で除去し、潤滑性および耐溶着性にすぐれたTiBN層を露出させる。   In addition, the TiAlN layer that constitutes the upper layer is easily welded when cutting a work material with a large amount of ferrite phase, such as ductile cast iron or sintered alloy, so the rake face and the upper part of the honing face are wet. The TiBN layer having excellent lubricity and welding resistance is exposed by removing by blasting.

前記のとおり、本発明の被覆cBN基焼結工具は、cBNの配合割合が好ましくは、70vol%以上であるcBN工具基体表面にTiAlN層からなる硬質被覆層を形成するにあたり、cBN工具基体とTiAlN層の間に、下部層としてaBN層、また、中間層としてTiBN層を介在形成するとともに、すくい面とホーニング面の上部層を除去して中間層を露出させることによって、特にすぐれた付着強度を有し、さらに高温硬さ、靭性、耐衝撃性、潤滑性、耐溶着性を兼ね備えることから、ダクタイル鋳鉄や焼結合金などのフェライト相が多く析出した被削材の、高熱発生を伴い、かつ、切刃に高負荷が作用する高速連続切削および断続切削条件下であっても前記硬質被覆層に、剥離や溶着等の発生はなく、長期の使用に亘って、すぐれた耐摩耗性、耐欠損性を発揮することができる。   As described above, in the coated cBN-based sintered tool of the present invention, the cBN mixing ratio of cBN is preferably 70 vol% or more. Between the layers, an aBN layer is formed as a lower layer, and a TiBN layer is formed as an intermediate layer, and the upper layer of the rake face and the honing surface is removed to expose the intermediate layer, thereby providing particularly excellent adhesion strength. In addition, because it combines high-temperature hardness, toughness, impact resistance, lubricity, and welding resistance, it is accompanied by high heat generation in the work material in which ferrite phases such as ductile cast iron and sintered alloy are precipitated, and Even under high-speed continuous cutting and intermittent cutting conditions in which a high load acts on the cutting edge, the hard coating layer does not cause peeling or welding, and can be used over a long period of use. The abrasion resistance can be exhibited chipping resistance.

本発明の被覆工具を構成する硬質被覆層を形成するのに用いたアークイオンプレーティング(AIP)装置、RFマグネトロンスパッタリング(RF−SP)装置とDCスパッタリング(DC−SP)装置を併設した蒸着装置を示し、(a)は概略平面図、(b)は概略正面図である。Vapor deposition apparatus provided with an arc ion plating (AIP) apparatus, an RF magnetron sputtering (RF-SP) apparatus, and a DC sputtering (DC-SP) apparatus used to form a hard coating layer constituting the coated tool of the present invention (A) is a schematic plan view, (b) is a schematic front view. 本発明の被覆cBN基焼結工具の先端部の断面図を示す。Sectional drawing of the front-end | tip part of the covering cBN group sintered tool of this invention is shown.

以下に、本発明の被覆cBN基焼結工具を実施例に基づいて説明する。   The coated cBN-based sintered tool of the present invention will be described below based on examples.

原料粉末として、いずれも0.5〜4μmの範囲内の平均粒径を有するcBN粉末、TiN粉末、AlN粉末、TiC粉末、TiCN粉末、TiAl粉末、TiAl粉末、TiAl粉末、Al粉末、Al粉末、Co粉末、WC粉末を用意し、これら原料粉末を表1に示される配合組成に配合し、ボールミルで80時間湿式混合し、乾燥した後、120MPaの圧力で直径:50mm×厚さ:1.5mmの寸法をもった圧粉体にプレス成形し、ついでこの圧粉体を、圧力:1Paの真空雰囲気中、900〜1300℃の範囲内の所定温度に60分間保持の条件で焼結して切刃片用予備焼結体とし、この予備焼結体を、別途用意した、Co:8質量%、WC:残りの組成、並びに直径:50mm×厚さ:2mmの寸法をもったWC基超硬合金製支持片と重ね合わせた状態で、通常の超高圧焼結装置に装入し、通常の条件である圧力:4GPa、温度:1200〜1400℃の範囲内の所定温度に保持時間:0.8時間の条件で超高圧焼結し、焼結後上下面をダイヤモンド砥石を用いて研磨し、ワイヤー放電加工装置またはダイヤモンド切断機にて一辺3mmの正三角形状に分割し、さらにCo:5質量%、TaC:5質量%、WC:残りの組成およびCIS規格TNGA160408の形状(厚さ:4.76mm×一辺長さ:12.7mmの正方形)をもったWC基超硬合金製インサート本体のろう付け部(コーナー部)に、質量%で、Cu:26%、Ti:5%、Ni:2.5%、Ag:残りからなる組成を有するAg合金のろう材を用いてろう付けし、所定寸法に外周加工した後、切刃部に幅:0.13mm、角度:25°のホーニング加工を施し、さらに仕上げ研摩を施すことによりISO規格TNGA160408のインサート形状をもち、cBN含有割合が70vol%以上である表1に示されるcBN工具基体A〜Fを製造した。 As the raw material powder, cBN powder, TiN powder, AlN powder, TiC powder, TiCN powder, Ti 3 Al powder, Ti 2 Al powder, TiAl 3 powder, Al having an average particle diameter in the range of 0.5 to 4 μm. Powder, Al 2 O 3 powder, Co powder, WC powder are prepared, these raw material powders are blended in the blending composition shown in Table 1, wet-mixed by a ball mill for 80 hours, dried, and then subjected to a diameter of 120 MPa at a pressure of 120 MPa. 50 mm × thickness: pressed into a green compact with a dimension of 1.5 mm, and then this green compact is held at a predetermined temperature in the range of 900 to 1300 ° C. for 60 minutes in a vacuum atmosphere at a pressure of 1 Pa. The pre-sintered body for cutting edge pieces was sintered under the conditions described above, and this pre-sintered body was prepared separately, Co: 8% by mass, WC: remaining composition, and diameter: 50 mm × thickness: 2 mm W with dimensions In a state of being superposed on the base cemented carbide support piece, the sample was inserted into a normal ultra-high pressure sintering apparatus, and maintained at a predetermined temperature within a range of pressure: 4 GPa, temperature: 1200 to 1400 ° C., which are normal conditions. : Sintered under high pressure for 0.8 hours, and after sintering, the upper and lower surfaces were polished with a diamond grindstone, and divided into equilateral triangles with a side of 3 mm using a wire electric discharge machine or diamond cutting machine. : WC based cemented carbide insert having 5 mass%, TaC: 5 mass%, WC: remaining composition and shape of CIS standard TNGA160408 (thickness: 4.76 mm × one side length: 12.7 mm square) The brazing part (corner part) of the main body is brazed using a brazing material of an Ag alloy having a composition of Cu: 26%, Ti: 5%, Ni: 2.5%, and Ag: the remainder. Perimeter processing After that, the cutting edge portion is subjected to honing processing with a width of 0.13 mm and an angle of 25 °, and further subjected to finish polishing, thereby having an ISO standard TNGA160408 insert shape and a cBN content ratio of 70 vol% or more. The cBN tool bases A to F shown in FIG.

Figure 2012152866
ついで、図1に示される成膜装置、即ち、TiB焼結体ターゲットおよびh−BN焼結体ターゲットを備えたスパッタリング装置と、Ti−Al合金ターゲットを備えたアークイオンプレーティング装置を併設した成膜装置の内部にcBN工具基体を装着し、
前記cBN工具基体を、アセトン中で超音波洗浄し、乾燥した状態で、前記装置内に自転公転自在に支持装着し、
(a)まず、装置内を真空排気して0.5Paの真空に保持しながら、ヒーターで装置内を500℃に加熱した後、Arガスを導入し、1.5PaのArガス雰囲気とし、cBN工具基体1に−100Vの直流バイアス電圧を印加して、前記cBN工具基体をArガスボンバード洗浄し、
(b)ついで、前記装置内に、ArとNとの混合ガス(Ar/N=50%)を導入し、作動圧を3.3Paになるように制御し、前記回転テーブル上で自転しながら回転するcBN工具基体側に−20Vの直流バイアス電圧を印加し、h−BN焼結体ターゲット側に500Wの13.56MHzの周波数の高周波を印加することにより、cBN工具基体の上に表2に示される目標膜厚のaBN層(下部層)を形成し、
(c)ついで、前記装置内をArとNとの混合ガス(Ar/N=50%)雰囲気に維持し、かつ、作動圧を3.3Pa,500℃に維持したまま、前記回転テーブル上で自転しながら回転するcBN工具基体に−100Vの直流バイアス電圧を印加して、TiB焼結体のターゲットに直流電源を用いてスパッタを行うことにより、前記aBN層(下部層)の表面に表2に示される目標層厚、所定組成のTiBN層からなる中間層(TiBN層)を形成し、
(d)ついで、装置内を500℃とした状態で、cBN工具基体に−15〜−25Vの直流バイアス電圧を印加して、Ti−Al合金カソード電極とアノード電極との間に120Aの電流を流してアーク放電を発生させ、前記中間層(TiBN層)の表面に表3に示される目標層厚、所定組成のTiAlN層からなる上部層を形成することにより、
ISO規格TNGA160408に規定するスローアウエイチップ形状の本発明被覆cBN基焼結工具1〜6を作製した。
(e)さらに、図2の断面図に示すように、スローアウエイチップ形状の本発明被覆cBN基焼結工具のすくい面とホーニング面の上部層をウエットブラスト処理により、中間層を露出させる。ウエットブラスト処理は、噴射研磨材を含有した液体(一般には水)である研磨液を被処理物に噴射して研磨を行なうものであり、弾性砥石やブラシを用いた機械加工はもとより、乾式のブラスト処理と比べても、液体が被処理物との間で噴射研磨材の運動エネルギーを減衰させるため、加工エネルギーの比較的弱いソフトな加工となる。このため、本発明のような最外層の除去に用いることにより、露出されられた中間層表面への研磨傷の発生も少なく抑えることができ、例えば、算術平均粗さRaで0.1μm以下の表面粗さの平滑なすくい面およびホーニング面を形成することができる。
Figure 2012152866
Next, the film forming apparatus shown in FIG. 1, that is, a sputtering apparatus provided with a TiB 2 sintered body target and an h-BN sintered body target, and an arc ion plating apparatus provided with a Ti—Al alloy target were provided. A cBN tool base is mounted inside the film forming apparatus,
The cBN tool base is ultrasonically cleaned in acetone and dried and supported and mounted in the apparatus so as to rotate and revolve.
(A) First, the inside of the apparatus is heated to 500 ° C. with a heater while the inside of the apparatus is evacuated and kept at a vacuum of 0.5 Pa, and then Ar gas is introduced to form an Ar gas atmosphere of 1.5 Pa. A DC bias voltage of −100 V is applied to the tool base 1, and the cBN tool base is cleaned with Ar gas bombardment.
(B) Next, a mixed gas of Ar and N 2 (Ar / N 2 = 50%) is introduced into the apparatus, the operating pressure is controlled to 3.3 Pa, and the rotation on the rotary table is performed. While applying a DC bias voltage of −20 V to the rotating cBN tool base side and applying a high frequency of 13.56 MHz of 500 W to the h-BN sintered body target side, ABN layer (lower layer) having a target film thickness shown in FIG.
(C) Next, the rotary table is maintained while maintaining the inside of the apparatus in a mixed gas atmosphere of Ar and N 2 (Ar / N 2 = 50%) and maintaining the operating pressure at 3.3 Pa and 500 ° C. The surface of the aBN layer (lower layer) is formed by applying a DC bias voltage of −100 V to the cBN tool substrate rotating while rotating on the surface and performing sputtering using a DC power source on the target of the TiB 2 sintered body. An intermediate layer (TiBN layer) composed of a TiBN layer having a target layer thickness and a predetermined composition shown in Table 2 is formed.
(D) Next, with the inside of the apparatus at 500 ° C., a DC bias voltage of −15 to −25 V is applied to the cBN tool base, and a current of 120 A is applied between the Ti—Al alloy cathode electrode and the anode electrode. By causing an arc discharge to flow, and forming an upper layer composed of a TiAlN layer having a predetermined composition and a target layer thickness shown in Table 3 on the surface of the intermediate layer (TiBN layer),
The present invention coated cBN-based sintered tools 1 to 6 having a throwaway tip shape defined in ISO standard TNGA160408 were produced.
(E) Further, as shown in the cross-sectional view of FIG. 2, the intermediate layer is exposed by wet blasting of the rake face and the upper layer of the honing face of the present invention coated cBN-based sintered tool having a throwaway tip shape. The wet blast treatment is performed by injecting a polishing liquid, which is a liquid (generally water) containing an abrasive material, onto a workpiece, and is a dry process as well as machining using an elastic grindstone or brush. Even when compared with the blasting process, the liquid attenuates the kinetic energy of the jetting abrasive between the object and the object to be processed, so that soft processing with relatively weak processing energy is achieved. For this reason, by using it for the removal of the outermost layer as in the present invention, it is possible to reduce the occurrence of polishing scratches on the exposed intermediate layer surface. For example, the arithmetic average roughness Ra is 0.1 μm or less. A rake surface and a honing surface having a smooth surface roughness can be formed.

最外層除去後の中間層の厚みは0.15〜0.25μmである。   The thickness of the intermediate layer after removal of the outermost layer is 0.15 to 0.25 μm.

比較のため、実施例で使用したcBN工具基体1〜6の上に、前記と同様の方法で硬質被覆層を形成し、前記(e)の工程を行わず、すなわち、すくい面とホーニング面の上部層の除去を行わずに、表2に示される目標組成および目標層厚の硬質被覆層を蒸着形成した比較被覆cBN基焼結工具1〜6を作製した。   For comparison, a hard coating layer is formed on the cBN tool bases 1 to 6 used in the examples by the same method as described above, and the step (e) is not performed. That is, the rake face and the honing face are not formed. Without removing the upper layer, comparative coated cBN-based sintered tools 1 to 6 were produced in which a hard coating layer having the target composition and thickness shown in Table 2 was formed by vapor deposition.

前記本発明被覆cBN基焼結工具1〜6および比較被覆cBN基焼結工具1〜6について、下部層(aBN層)、中間層(TiBN層)および上部層(TiAlN層)の膜組成を、オージェ電子分光分析法により測定したところ、それぞれ目標組成と実質的に同じ組成を示した。   For the inventive coated cBN-based sintered tools 1-6 and comparative coated cBN-based sintered tools 1-6, the film composition of the lower layer (aBN layer), the intermediate layer (TiBN layer) and the upper layer (TiAlN layer) When measured by Auger electron spectroscopy, each showed substantially the same composition as the target composition.

表2における中間層のX値、上部層のX値は、各層の組成の平均値(5ヶ所の平均値)を示す。   The X value of the intermediate layer and the X value of the upper layer in Table 2 indicate the average value of the composition of each layer (average value of five locations).

また、本発明被覆cBN基焼結工具1〜6および比較被覆cBN基焼結工具1〜6の各層の層厚を透過型電子顕微鏡を用いて断面測定したところ、いずれも目標層厚と実質的に同じ平均値(5ヶ所の平均値)を示した。   Further, when the layer thicknesses of the respective layers of the present coated cBN-based sintered tools 1 to 6 and the comparative coated cBN-based sintered tools 1 to 6 were measured using a transmission electron microscope, both were substantially equal to the target layer thickness. The same average value (average value of 5 locations) was shown.

これらの測定値を、表2に示す。   These measured values are shown in Table 2.

Figure 2012152866
前記本発明被覆cBN基焼結工具1〜6および比較被覆cBN基焼結工具1〜6を用い、以下の切削条件で切削加工試験を実施した。
《切削条件1》
被削材:FCD700、
切削速度: 350 m/min、
送り: 0.2 mm/rev、
切込み: 0.15 mm、
切削時間: 15 分
の条件でのダクタイル鋳鉄の乾式・高速連続切削加工試験。逃げ面摩耗量が0.5mmに達するまでの切削時間を工具の寿命とする。(通常の切削条件は、切削速度:250m/min、切り込み:0.2mm、送り:0.15mm/rev)、
《切削条件2》
被削材: 0.5C−1.5Cu−4Ni−0.5Mo−残Fe
切削速度: 190 m/min、
送り: 0.15 mm/rev、
切込み: 0.2 mm、
切削時間: 15 分
の条件での焼結合金の湿式・断続切削加工試験。刃先が欠損するまでの切削時間を工具寿命とする。(通常の切削条件は、切削速度:150mm/min、切り込み:0.1mm、送り:0.15mm/rev)。
Figure 2012152866
Using the coated cBN-based sintered tools 1 to 6 and comparative coated cBN-based sintered tools 1 to 6 of the present invention, a cutting test was performed under the following cutting conditions.
<< Cutting conditions 1 >>
Work material: FCD700,
Cutting speed: 350 m / min,
Feed: 0.2 mm / rev,
Cutting depth: 0.15 mm,
Cutting time: Dry and high-speed continuous cutting test of ductile cast iron under the condition of 15 minutes. The cutting time until the flank wear amount reaches 0.5 mm is defined as the tool life. (Normal cutting conditions are cutting speed: 250 m / min, cutting: 0.2 mm, feed: 0.15 mm / rev),
<< Cutting conditions 2 >>
Work Material: 0.5C-1.5Cu-4Ni-0.5Mo-Remaining Fe
Cutting speed: 190 m / min,
Feed: 0.15 mm / rev,
Cutting depth: 0.2 mm,
Cutting time: Wet / intermittent cutting test of sintered alloy under the condition of 15 minutes. The cutting time until the cutting edge is broken is defined as the tool life. (Normal cutting conditions are cutting speed: 150 mm / min, cutting: 0.1 mm, feeding: 0.15 mm / rev).

上記切削条件1,2による切削加工試験の測定結果を表3に示した。   Table 3 shows the measurement results of the cutting test under the above cutting conditions 1 and 2.

Figure 2012152866
表2および表3に示される結果から、本発明被覆cBN基焼結工具1〜6は、70vol%以上のcBNを含有するcBN工具基体表面に、aBN層からなる下部層、TiBN層からなる中間層を介して、TiAlN層からなる上部層を形成するとともに、すくい面およびホーニング面の上部層を除去したことによって、cBN含有割合の高い工具基体に対しても、硬質被覆層は特にすぐれた付着強度を備え、さらに、高温硬さ、靭性、耐衝撃性、潤滑性、耐溶着性を兼ね備えることから、ダクタイル鋳鉄や焼結合金などのフェライト相が多く析出した被削材の、高熱発生を伴い、かつ、切刃に対して高負荷が作用する高速連続切削および断続切削条件下で用いた場合であっても、前記硬質被覆層に、欠損、剥離、溶着等の発生はなく、長期の使用に亘って、すぐれた耐摩耗性、耐欠損性を発揮することができる。
Figure 2012152866
From the results shown in Table 2 and Table 3, the coated cBN-based sintered tools 1 to 6 of the present invention have a lower layer composed of an aBN layer and an intermediate layer composed of a TiBN layer on the surface of a cBN tool substrate containing 70 vol% or more of cBN. By forming the upper layer composed of the TiAlN layer through the layer and removing the upper layer of the rake face and the honing face, the hard coating layer has a particularly excellent adhesion even to a tool substrate having a high cBN content ratio. In addition to high strength, high-temperature hardness, toughness, impact resistance, lubricity, and welding resistance, it is accompanied by high heat generation in work materials with many ferrite phases precipitated, such as ductile cast iron and sintered alloys. In addition, even when used under high-speed continuous cutting and intermittent cutting conditions in which a high load acts on the cutting edge, the hard coating layer is free from defects, peeling, welding, etc. Over the use, excellent wear resistance can be exhibited chipping resistance.

これに対して、すくい面およびホーニング面の上部層の除去を行わない比較被覆cBN基焼結工具1〜6においては、潤滑性、耐溶着性が十分でないため、被削材とTiAlN層との間で溶着が発生し、そのため、被覆膜の剥離によりチッピングが発生しやすく、また、被削材とTiAlN層との間で潤滑性が悪く、そのため、クレータ摩耗が発生しやすく耐摩耗性、耐欠損性に劣るため、比較的短時間で使用寿命にいたることが明らかである。   On the other hand, in the comparative coated cBN-based sintered tools 1 to 6 that do not remove the upper layer of the rake face and the honing face, the lubricity and welding resistance are not sufficient, so the work material and the TiAlN layer Therefore, chipping is likely to occur due to peeling of the coating film, and lubricity is poor between the work material and the TiAlN layer, so crater wear is likely to occur, and wear resistance, It is apparent that the service life is reached in a relatively short time due to the poor fracture resistance.

前述のように、本発明被覆cBN基焼結工具は、各種の鋼や鋳鉄などの通常の切削条件での切削加工は勿論のこと、特にダクタイル鋳鉄や焼結合金などのフェライト相が多く析出した被削材の高速連続切削加工および断続切削加工であっても、前記硬質被覆層がすぐれた付着強度、潤滑性を有し耐摩耗性、耐欠損性、耐溶着性にすぐれるため、長期に亘って安定した切削性能を発揮するものであるから、切削加工装置の高性能化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated cBN-based sintered tool of the present invention has a large amount of ferrite phase such as ductile cast iron and sintered alloy, as well as cutting under normal cutting conditions such as various steels and cast iron. Even in high-speed continuous cutting and intermittent cutting of work materials, the hard coating layer has excellent adhesion strength, lubricity, and excellent wear resistance, fracture resistance, and welding resistance. Since it exhibits stable cutting performance over time, it can sufficiently satisfactorily cope with higher performance of the cutting device, labor saving and energy saving of cutting, and cost reduction.

Claims (3)

立方晶窒化ほう素基超高圧焼結材料を母材とする工具本体のすくい面と逃げ面との交差稜線部にホーニングを施した切刃部が形成されているとともに、前記工具本体の表面に、該工具本体側から順に下部層、中間層および上部層からなる硬質被覆層を蒸着形成した表面被覆立方晶窒化ほう素基超高圧焼結材料製切削工具において、
(a)前記下部層は、平均層厚0.1〜0.3μmの非晶質BN層、
(b)前記中間層は、平均層厚0.1〜0.3μmのTiとBとNの複合化合物層、
(c)前記上部層は、平均層厚1.0〜2.0μmのTiとAlの複合窒化物層、であるとともに、
(d)前記工具基体のすくい面とホーニング面は、前記上部層が除去されることにより中間層が主として露出していることを特徴とする表面被覆立方晶窒化ほう素基超高圧焼結材料製切削工具。
A cutting edge portion is formed on the surface of the tool body with honing at the intersection ridge line portion of the rake face and flank face of the tool body using a cubic boron nitride-based ultrahigh pressure sintered material as a base material. In the cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material in which a hard coating layer consisting of a lower layer, an intermediate layer and an upper layer is vapor-deposited in order from the tool body side,
(A) the lower layer is an amorphous BN layer having an average layer thickness of 0.1 to 0.3 μm;
(B) The intermediate layer is a composite compound layer of Ti, B and N having an average layer thickness of 0.1 to 0.3 μm,
(C) The upper layer is a composite nitride layer of Ti and Al having an average layer thickness of 1.0 to 2.0 μm,
(D) The rake face and the honing face of the tool base are made of a surface-coated cubic boron nitride-based ultra-high pressure sintered material, wherein the intermediate layer is mainly exposed by removing the upper layer. Cutting tools.
前記中間層は、
組成式:Ti0.33(1−X)0.67(1−X)
で表した場合、Xの値(但し、原子比)が0.05〜0.5を満足する組成割合のTiとBとNの複合化合物層であり、また、
前記上部層は、
組成式:(Ti1−YAl)N層
で表した場合、Yの値(但し、原子比)が0.4〜0.65を満足する組成割合のTiとAlの複合窒化物層である請求項1に記載の表面被覆立方晶窒化ほう素基超高圧焼結材料製切削工具。
The intermediate layer is
Composition formula: Ti 0.33 (1-X) B 0.67 (1-X) N X
Is a composite compound layer of Ti, B, and N having a composition ratio that satisfies the value of X (however, the atomic ratio) is 0.05 to 0.5,
The upper layer is
Composition formula: (Ti 1-Y Al Y ) When represented by an N layer, a composite nitride layer of Ti and Al having a composition ratio in which the value of Y (however, the atomic ratio) satisfies 0.4 to 0.65. The surface-coated cubic boron nitride-based ultrahigh pressure sintered material cutting tool according to claim 1.
前記立方晶窒化ほう素基超高圧焼結材料の立方晶窒化ほう素の含有量が70容量%以上であることを特徴とする請求項1または請求項2記載の表面被覆立方晶窒化ほう素基超高圧焼結材料製切削工具。   3. The surface-coated cubic boron nitride group according to claim 1, wherein the cubic boron nitride content of the ultrahigh pressure sintered material of the cubic boron nitride is 70% by volume or more. Cutting tool made of ultra high pressure sintered material.
JP2011015067A 2011-01-27 2011-01-27 Cutting tool made of surface coated cubic boron nitride based ultra high pressure sintered material Expired - Fee Related JP5686247B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011015067A JP5686247B2 (en) 2011-01-27 2011-01-27 Cutting tool made of surface coated cubic boron nitride based ultra high pressure sintered material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011015067A JP5686247B2 (en) 2011-01-27 2011-01-27 Cutting tool made of surface coated cubic boron nitride based ultra high pressure sintered material

Publications (2)

Publication Number Publication Date
JP2012152866A true JP2012152866A (en) 2012-08-16
JP5686247B2 JP5686247B2 (en) 2015-03-18

Family

ID=46835157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011015067A Expired - Fee Related JP5686247B2 (en) 2011-01-27 2011-01-27 Cutting tool made of surface coated cubic boron nitride based ultra high pressure sintered material

Country Status (1)

Country Link
JP (1) JP5686247B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017077599A (en) * 2015-10-20 2017-04-27 三菱マテリアル株式会社 Surface-coated cutting tool with hard coating layer showing excellent chipping resistance and abrasion resistance and method for manufacturing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001259903A (en) * 2000-02-15 2001-09-25 Kennametal Inc Covering tool having lubricant coating and manufacturing process therefor
JP2005279820A (en) * 2004-03-29 2005-10-13 Kyocera Corp Hard carbon film coated tool
WO2010003902A1 (en) * 2008-07-09 2010-01-14 Oerlikon Trading Ag, Truebbach Coating system, coated workpiece and method for manufacturing the same
JP2010228087A (en) * 2009-03-30 2010-10-14 Mitsubishi Materials Corp Cutting tool formed of surface-coated cubic boron nitride base ultra-high pressure sintered material
JP2010228032A (en) * 2009-03-26 2010-10-14 Mitsubishi Materials Corp Surface-coated cutting tool formed of cubic boron nitride-based ultra high-pressure sintered material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001259903A (en) * 2000-02-15 2001-09-25 Kennametal Inc Covering tool having lubricant coating and manufacturing process therefor
JP2005279820A (en) * 2004-03-29 2005-10-13 Kyocera Corp Hard carbon film coated tool
WO2010003902A1 (en) * 2008-07-09 2010-01-14 Oerlikon Trading Ag, Truebbach Coating system, coated workpiece and method for manufacturing the same
JP2010228032A (en) * 2009-03-26 2010-10-14 Mitsubishi Materials Corp Surface-coated cutting tool formed of cubic boron nitride-based ultra high-pressure sintered material
JP2010228087A (en) * 2009-03-30 2010-10-14 Mitsubishi Materials Corp Cutting tool formed of surface-coated cubic boron nitride base ultra-high pressure sintered material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017077599A (en) * 2015-10-20 2017-04-27 三菱マテリアル株式会社 Surface-coated cutting tool with hard coating layer showing excellent chipping resistance and abrasion resistance and method for manufacturing the same

Also Published As

Publication number Publication date
JP5686247B2 (en) 2015-03-18

Similar Documents

Publication Publication Date Title
JP5995080B2 (en) Surface coated cutting tool made of cubic boron nitride based ultra-high pressure sintered material with excellent crack resistance
JP2012096304A (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material having high peeling resistance
JP5418833B2 (en) Cutting tool made of surface coated cubic boron nitride based ultra high pressure sintered material
JP5402507B2 (en) Surface coated cutting tool
JP4883475B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent wear resistance in high-speed cutting of hardened steel
JP6213269B2 (en) Surface-coated cutting tool that exhibits excellent chipping resistance over a long period of time when cutting hardened steel
JP2008254159A (en) Surface-coated cutting tool made of cubic boron nitride group ultrahigh-pressure sintered material
JP4807575B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent wear resistance in high-speed cutting of hardened steel
JP4883480B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent fracture resistance in high-speed continuous cutting of hard difficult-to-cut materials
JP2007152542A (en) Surface coated cutting tool which is made of cubic boron nitride base ultra high pressure sintered material and has hard coated layer showing excellent chipping resistance in heavy cutting of high hardness steel
JP5447845B2 (en) Surface coated cutting tool
JP5686247B2 (en) Cutting tool made of surface coated cubic boron nitride based ultra high pressure sintered material
JP2012066341A (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high-pressure sintered material
JP2011051060A (en) Surface coating cutting tool
JP5402155B2 (en) Cutting tool made of surface coated cubic boron nitride based ultra high pressure sintered material
JP5246596B2 (en) Cutting tool made of surface coated cubic boron nitride based ultra high pressure sintered material
JP2010284759A (en) Surface coated cutting tool
JP5234515B2 (en) A surface-coated cutting tool with a hard coating layer that provides excellent fracture resistance and wear resistance
JP4748446B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent chipping resistance when cutting hard difficult-to-cut materials
JP5234516B2 (en) A surface-coated cutting tool with a hard coating layer that provides excellent fracture resistance and wear resistance
JP4748447B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent chipping resistance in high-speed cutting of hard difficult-to-cut materials
JP5332737B2 (en) A surface-coated cutting tool with a hard coating layer that provides excellent fracture resistance and wear resistance
JP5407432B2 (en) A surface-coated cutting tool with a hard coating layer that provides excellent fracture resistance and wear resistance
JP6172519B2 (en) Surface-coated cutting tool that exhibits excellent chipping resistance over a long period of time when cutting hardened steel
JP5234351B2 (en) Surface coated cutting tool with excellent wear resistance due to hard coating layer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150107

R150 Certificate of patent or registration of utility model

Ref document number: 5686247

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees