JP2012096304A - Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material having high peeling resistance - Google Patents

Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material having high peeling resistance Download PDF

Info

Publication number
JP2012096304A
JP2012096304A JP2010243772A JP2010243772A JP2012096304A JP 2012096304 A JP2012096304 A JP 2012096304A JP 2010243772 A JP2010243772 A JP 2010243772A JP 2010243772 A JP2010243772 A JP 2010243772A JP 2012096304 A JP2012096304 A JP 2012096304A
Authority
JP
Japan
Prior art keywords
layer
cutting
hardness
thin layer
hard coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010243772A
Other languages
Japanese (ja)
Other versions
JP5574277B2 (en
Inventor
Manyasu Nishiyama
満康 西山
Hidemitsu Takaoka
秀充 高岡
Akira Osada
晃 長田
Giichi Okada
義一 岡田
Takuji Saeki
卓司 佐伯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2010243772A priority Critical patent/JP5574277B2/en
Priority to CN201110329048.3A priority patent/CN102528104B/en
Publication of JP2012096304A publication Critical patent/JP2012096304A/en
Application granted granted Critical
Publication of JP5574277B2 publication Critical patent/JP5574277B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cutting tool formed of a surface-coated cubic boron nitride-based ultra-high pressure sintered material having high peeling resistance during the high-speed cutting of high hard steel.SOLUTION: The cutting tool which is configured by forming a hard cover layer on the surface of the cBN-based ultra-high pressure sintered body having a content of cubit boron nitride of 50 to 85 vol.% is characterized in that: (a) the hard cover layer includes a lower layer and an upper layer each having an average layer thickness of 1.5 to 3 μm; (b) the lower layer is composed of a composite nitride layer of Ti and Al which satisfies a composition formula: [TiA1]N (X is 0.30 to 0.60 at atom ratio); (c) the upper layer has the alternate laminate structure of a thin layer A and a thin layer B each having one layer average thickness of 0.03 to 0.3 μm, the thin layer A is formed of a composite nitride layer of Ti and Al which satisfies a composition formula: [TiA1]N, and the thin layer B is formed of a Ti nitride (TiN) layer; and (d) the surface roughness, residual stress, and nano indentation hardness of a cover surface are set to predetermined values.

Description

本発明は、硬質被覆層がすぐれた高温硬さ、高温強度、耐熱性とともに、すぐれた密着性を具備し、したがって、合金鋼、軸受鋼の焼入れ材などの高硬度鋼の高速切削加工に用いた場合にも、すぐれた耐剥離性を発揮し、長期の切削にわたって被削材のすぐれた仕上げ面精度を維持することができる、立方晶窒化ほう素基超高圧焼結材料で構成された切削工具基体の表面に硬質被覆層を形成した表面被覆立方晶窒化ほう素基超高圧焼結材料製切削工具(以下、被覆cBN基焼結工具という)に関するものである。   The present invention has a hard coating layer with excellent high-temperature hardness, high-temperature strength, and heat resistance, as well as excellent adhesion. Therefore, it is used for high-speed cutting of high-hardness steel such as alloy steel and hardened material of bearing steel. Cutting made of cubic boron nitride-based ultra-high pressure sintered material that provides excellent peel resistance and maintains excellent surface finish accuracy over long-term cutting The present invention relates to a cutting tool made of a surface-coated cubic boron nitride-based ultrahigh pressure sintered material (hereinafter referred to as a coated cBN-based sintered tool) in which a hard coating layer is formed on the surface of a tool substrate.

一般に、被覆cBN基焼結工具には、各種の鋼や鋳鉄などの被削材の旋削加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップや、スローアウエイチップを着脱自在に取り付けて、面削加工や溝加工、さらに肩加工などに用いられるソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミルなどが知られている。   Generally, a throw-away tip or a throw-away tip that can be detachably attached to the tip of a cutting tool when turning various work materials such as steel and cast iron is attached to a coated cBN-based sintered tool. In addition, there is known a slow-away end mill that performs cutting in the same manner as a solid type end mill used for chamfering, grooving, and shoulder machining.

また、被覆cBN基焼結工具としては、各種の立方晶窒化ほう素基超高圧焼結材料(以下、cBN基焼結材料という)で構成された工具本体の表面に、Ti窒化物(TiN)層、TiとAlの複合窒化物([Ti,Al]N)層などの表面被覆層を蒸着形成してなる被覆cBN基焼結工具が知られており、これらが例えば各種の鋼や鋳鉄などの切削加工に用いられていることも知られている。   In addition, as a coated cBN-based sintered tool, Ti nitride (TiN) is formed on the surface of a tool body made of various cubic boron nitride-based ultrahigh pressure sintered materials (hereinafter referred to as cBN-based sintered materials). Coated cBN-based sintered tools are known, which are formed by vapor-depositing a surface coating layer such as a layer, a composite nitride of Ti and Al ([Ti, Al] N) layer, and these include, for example, various steels and cast iron It is also known that it is used for cutting.

さらに、前記被覆cBN基焼結工具が、例えば、図1に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置に前記切削工具基体を装入し、ヒーターで装置内を、例えば、500℃に加熱した状態で、金属Tiや、それぞれ所定の組成を有するTi−Al合金からなるカソード電極(蒸発源)と、アノード電極との間に、例えば、90Aの電流を印加してアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、例えば、2Paの反応雰囲気とし、一方、前記切削工具基体には、例えば、−100Vのバイアス電圧を印加した条件で、前記切削工具基体の表面に、TiN層や[Ti,Al]N層など、所望の成分組成の層を蒸着形成することにより製造されることも知られている(例えば、特許文献1参照)。さらに、前記切削工具基体の表面に形成する硬質被覆層の表面粗さおよび残留応力を調整して耐摩耗性、耐欠損性を向上させた表面被覆切削工具も知られている(例えば、特許文献2参照)。   Further, the coated cBN-based sintered tool, for example, inserts the cutting tool base into an arc ion plating apparatus which is one type of physical vapor deposition apparatus schematically shown in FIG. For example, a current of 90 A is applied between a cathode electrode (evaporation source) made of metal Ti or a Ti—Al alloy having a predetermined composition and an anode electrode while being heated to 500 ° C. At the same time, an arc discharge is generated and nitrogen gas is introduced into the apparatus as a reaction gas to form a reaction atmosphere of 2 Pa, for example. On the other hand, for example, a bias voltage of −100 V is applied to the cutting tool base. In addition, it is also known that it is manufactured by vapor-depositing a layer having a desired component composition such as a TiN layer or a [Ti, Al] N layer on the surface of the cutting tool base (for example, a patent) Document reference 1). Furthermore, a surface-coated cutting tool is also known in which the wear resistance and fracture resistance are improved by adjusting the surface roughness and residual stress of the hard coating layer formed on the surface of the cutting tool base (for example, Patent Documents). 2).

特開2007−190668号公報JP 2007-190668 A 特開2006−263857号公報JP 2006-263857 A

近年の切削加工装置のFA化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は、通常の切削条件に加えて、より高速条件下での切削加工が要求される傾向にあるが、前記従来被覆工具においては、各種の鋼や鋳鉄を通常条件下で切削加工した場合に特段の問題は生じない。しかし、これを、合金鋼、軸受鋼の焼入れ材などのビッカース硬さ(Cスケール)50以上の高い硬さを有する高硬度鋼の高速連続切削あるいは高速断続切削に用いた場合には、cBN基焼結材料と硬質被覆層の付着強度が十分でないために、刃先に剥離が生じて、切削寿命が低下してしまうという課題があった。   In recent years, FA has been remarkable for cutting devices, but on the other hand, there is a strong demand for labor saving and energy saving and further cost reduction for cutting, and accordingly, cutting is performed at higher speed conditions in addition to normal cutting conditions. However, the conventional coated tool does not cause any particular problems when various types of steel and cast iron are cut under normal conditions. However, when this is used for high-speed continuous cutting or high-speed interrupted cutting of high-hardness steel having a high hardness of 50 or more Vickers hardness (C scale) such as a hardened material of alloy steel or bearing steel, Since the adhesion strength between the sintered material and the hard coating layer is not sufficient, there is a problem that the cutting edge is peeled off and the cutting life is shortened.

そこで、本発明者等は、上述のような観点から、特に合金鋼、軸受鋼の焼入れ材などの高硬度鋼の高速連続切削あるいは高速断続切削(以下、単に「高速切削」という)加工で、硬質被覆層が優れた耐剥離性を発揮する被覆cBN基焼結工具を開発すべく研究を行った結果、
a) 硬質被覆層を構成するTiとAlの複合窒化物([Ti1−XAl]N)層は、Alの含有割合X(原子比)の値が、0.30〜0.60の範囲内において所定の耐熱性、高温硬さおよび高温強度を有し、通常の切削加工条件下において必要とされる耐摩耗性は具備しているが、切刃部にきわめて大きな発熱を伴い、あるいは同時に、切刃部に断続的・衝撃的に大きな機械的負荷がかかる高硬度鋼の高速切削加工においては、TiとAlの複合窒化物([Ti1−XAl]N)層からなる硬質被覆層は高温強度が不足するために、切刃の境界部分に境界異常損傷が生じ、そして、これが原因となり被削材の仕上げ面精度を維持することができず、比較的短時間で使用寿命に達してしまうこと。
Therefore, the present inventors, in particular, in high-speed continuous cutting or high-speed intermittent cutting (hereinafter simply referred to as "high-speed cutting") of high hardness steel such as a hardened material of alloy steel and bearing steel from the above viewpoint, As a result of research to develop a coated cBN-based sintered tool in which the hard coating layer exhibits excellent peeling resistance,
a) composite nitride of Ti and Al constituting the hard layer ([Ti 1-X Al X ] N) layer, the value of the content X (atomic ratio) of Al, the 0.30 to 0.60 It has the prescribed heat resistance, high temperature hardness and high temperature strength within the range, and has the wear resistance required under normal cutting conditions, but with extremely large heat generation at the cutting edge, or at the same time, in the high-speed cutting of high-hardness steel according intermittent and impact to high mechanical loads on the cutting edge, the composite nitride of Ti and Al ([Ti 1-X Al X] N) rigid consisting layer Because the coating layer lacks high-temperature strength, abnormal boundary damage occurs at the boundary of the cutting edge, and this makes it impossible to maintain the finished surface accuracy of the work material, and the service life is relatively short. To reach.

(b)一方、Ti窒化物(TiN)層は優れた高温強度、耐衝撃強さを有しているが、耐熱性、高温硬さが十分とはいえないため、大きな発熱を伴い、大きな機械的負荷がかかる高硬度鋼の高速切削加工においては、硬質被覆層を、Ti窒化物(TiN)層のみで構成しても十分な耐摩耗性を具備するとはいえないこと。 (B) On the other hand, the Ti nitride (TiN) layer has excellent high-temperature strength and impact strength, but heat resistance and high-temperature hardness are not sufficient. In high-speed cutting of high-hardness steel subject to a heavy load, even if the hard coating layer is composed of only a Ti nitride (TiN) layer, it cannot be said to have sufficient wear resistance.

(c)上記(a)のAlの含有割合Xが30〜60原子%の耐熱性、高温硬さおよび所定の高温強度を有する[Ti1−XAl]N(ただし、原子比で、Xは0.30〜0.60)層(以下、薄層Aという)と、前記薄層Aに比べれば耐熱性、高温硬さは劣るものの、その一方で、すぐれた高温強度、耐衝撃強度を有するTi窒化物(TiN)層(以下、薄層Bという)を、それぞれの一層平均層厚を0.03〜0.3μmの薄層とした状態で交互積層して硬質被覆層の上部層を構成すると、この交互積層構造の硬質被覆層は、薄層Aのもつすぐれた耐熱性、高温硬さを備えるとともに、薄層Bのもつより一段とすぐれた高温強度と耐衝撃強度を相兼ね備えるようになり、その結果、耐剥離性が向上すること。
(d)さらに上記硬質皮膜層表面に、表面処理技術、例えば、ウエットブラストやショットピーニング処理等を行うことにより、硬質被覆層の逃げ面、すくい面およびホーニング部における表面粗さ、残留応力、ナノインデンテーション硬さをそれぞれ所定の値にすることができ、これによりチッピングの発生が抑制され、その結果、耐摩耗性が向上する。
以上(a)〜(d)に示される研究結果を得たのである。
(C) the content X is 30-60 atomic% of the heat resistance of Al (a), [Ti 1- X Al X] having a high-temperature hardness and predetermined high-temperature strength N (where, in terms of atomic ratio, X 0.30-0.60) layer (hereinafter referred to as thin layer A) and heat resistance and high temperature hardness are inferior to those of the thin layer A, but on the other hand, excellent high temperature strength and impact resistance strength. Ti nitride (TiN) layers (hereinafter referred to as “thin layer B”) are alternately laminated in a state where each layer has a thin average layer thickness of 0.03 to 0.3 μm to form an upper layer of the hard coating layer. When configured, the hard coating layer of this alternately laminated structure has the excellent heat resistance and high temperature hardness of the thin layer A, and also combines the high temperature strength and impact strength superior to those of the thin layer B. As a result, the peel resistance is improved.
(D) Furthermore, surface treatment techniques such as wet blasting and shot peening treatment are performed on the surface of the hard coating layer, so that the surface roughness, residual stress, The indentation hardness can be set to a predetermined value, thereby suppressing the occurrence of chipping, and as a result, the wear resistance is improved.
The research results shown in (a) to (d) above were obtained.

本発明は、上記の研究結果に基づいてなされたものであって、
立方晶窒化ほう素の含有量が50〜85容量%の立方晶窒化ほう素基高圧焼結体からなる切削工具の表面に硬質被覆層を蒸着形成した表面被覆立方晶窒化ほう素基超高圧焼結材料製切削工具において、
前記硬質被覆層が、
(a)1.5〜3μmの平均層厚を有する組成式:[Ti1−XAl]N(ただし、原子比で、Xは0.30〜0.60を示す)を満足するTiとAlの複合窒化物層からなる下部層と、
(b)組成式:[Ti1−XAl]N(ただし、原子比で、Xは0.30〜0.60を示す)を満足するTiとAlの複合窒化物層とTi窒化物(TiN)層とをそれぞれの層厚を平均層厚で0.03〜0.3μmとして交互に積層させ、さらに最外層に0.3〜2μmの平均膜厚を有する組成式:[Ti1−XAl]N(ただし、原子比で、Xは0.30〜0.60を示す)を満足するTiとAlの複合窒化物層を形成させてなる合計平均膜厚が0.5〜3μmの上部層とからなるとともに、
(c)硬質被覆層表面の表面粗さRaが、逃げ面とすくい面において0.08〜0.20μm、ホーニング面において、0.07〜0.10μmであり、
(d)硬質被覆層のTiAlNの残留応力が、逃げ面とすくい面において−1〜−2GPa、ホーニング部において、−1.5〜−3.0GPaであるとともに、残留応力(逃げ面、すくい面)>残留応力(ホーニング部)であり、
(e)最外層TiAlNの荷重100mgで測定したときのナノインデンテーション硬さが、逃げ面とすくい面において30〜38GPa、ホーニング部において33〜50GPaであるとともに、ナノインデンテーション硬さ(逃げ面、すくい面)<ナノインデンテーション硬さ(ホーニング部)であることを特徴とする耐剥離性、耐摩耗性を長期にわたって発揮する表面被覆立方晶窒化ほう素基超高圧焼結材料製切削工具に特徴を有するものである。
The present invention has been made based on the above research results,
Surface-coated cubic boron nitride-based ultra-high pressure firing with a hard coating layer deposited on the surface of a cutting tool comprising a cubic boron nitride-based high-pressure sintered body having a cubic boron nitride content of 50 to 85% by volume In the cutting tool made of binder material,
The hard coating layer is
(A) Ti satisfying the composition formula having an average layer thickness of 1.5 to 3 μm: [Ti 1-X Al X ] N (wherein X is 0.30 to 0.60 in atomic ratio) A lower layer composed of a composite nitride layer of Al;
(B) Composition formula: [Ti 1-X Al X ] N (wherein X is 0.30 to 0.60 in atomic ratio) and a Ti / Al composite nitride layer and Ti nitride ( TiN) layers are alternately laminated with an average layer thickness of 0.03 to 0.3 μm, and the outermost layer has an average film thickness of 0.3 to 2 μm: [Ti 1-X The total average film thickness formed by forming a composite nitride layer of Ti and Al satisfying Al X ] N (wherein X represents 0.30 to 0.60 in atomic ratio) is 0.5 to 3 μm. With the upper layer,
(C) The surface roughness Ra of the hard coating layer surface is 0.08 to 0.20 μm on the flank and rake face, and 0.07 to 0.10 μm on the honing face,
(D) The residual stress of TiAlN of the hard coating layer is −1 to −2 GPa at the flank and rake face, and −1.5 to −3.0 GPa at the honing part, and the residual stress (flank, rake face) )> Residual stress (honing part),
(E) The nanoindentation hardness when measured with a load of 100 mg of the outermost layer TiAlN is 30 to 38 GPa in the flank and rake face, 33 to 50 GPa in the honing part, and the nanoindentation hardness (flank, Rake face) <Nano-indentation hardness (honing part) Characteristic of cutting tools made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits long-term peeling resistance and wear resistance It is what has.

つぎに、本発明の被覆cBN基焼結工具において、これを構成する切削チップ本体のcBN基焼結材料の配合組成および硬質被覆層の組成、層厚を限定した理由を説明する。
(a)切削チップ本体のcBN基焼結材料の配合組成
立方晶窒化ほう素の含有量が85容量%を超えると窒化ほう素基自体の焼結性が低下し、その結果、切れ刃にチッピングが発生しやすくなる。一方、50容量%未満だと所望の優れた耐摩耗性を確保することができない。したがって、立方晶窒化ほう素の含有量を50〜85容量%と定めた。
Next, in the coated cBN-based sintered tool of the present invention, the reason why the blending composition of the cBN-based sintered material, the composition of the hard coating layer, and the layer thickness of the cutting tip body constituting the tool will be described.
(A) Composition of the cBN-based sintered material of the cutting tip body When the content of cubic boron nitride exceeds 85% by volume, the sinterability of the boron nitride group itself decreases, and as a result, chipping occurs on the cutting edge. Is likely to occur. On the other hand, when it is less than 50% by volume, desired excellent wear resistance cannot be ensured. Therefore, the content of cubic boron nitride is set to 50 to 85% by volume.

(b)硬質被覆層の下部層
硬質被覆層の下部層を構成するTiとAlの複合窒化物([Ti1−XAl]N)層におけるTi成分は高温強度の維持、Al成分は高温硬さと耐熱性の向上に寄与することから、硬質被覆層の下部層を構成するTiとAlの複合窒化物([Ti1−XAl]N)層は、所定の高温強度、高温硬さおよび耐熱性を具備する層であって、焼入れ鋼等の高硬度鋼の高速切削加工時における切刃部の耐摩耗性を確保する役割を基本的に担う。ただ、Alの含有割合Xが60原子%を超えると下部層の高温硬さと耐熱性は向上するものの、Ti含有割合の相対的な減少によって、高温強度が低下しチッピングを発生しやすくなり、一方、Alの含有割合Xが30原子%未満になると、高温硬さと耐熱性が低下し、その結果、耐摩耗性の低下がみられるようになることから、Alの含有割合Xの値を0.30〜0.60と定めた。
また、下部層の平均層厚が1.5μm未満では、自身のもつ耐熱性、高温硬さおよび高温強度を硬質被覆層に長期に亘って付与できず、工具寿命短命の原因となり、一方、その平均層厚が3μmを越えると、チッピングが発生し易くなることから、その平均層厚を1.5〜3μmと定めた。
(B) Ti component in the hard coating layer composite nitride of Ti and Al constituting the lower layer of the lower layer hard coating layer of ([Ti 1-X Al X ] N) layer is maintained in the high-temperature strength, Al component hot since contributing to the improvement of hardness and heat resistance, the composite nitride of Ti and Al constituting the lower layer of the hard coating layer ([Ti 1-X Al X ] N) layer a predetermined high-temperature strength, high-temperature hardness And a layer having heat resistance, and basically plays a role of ensuring the wear resistance of the cutting edge portion during high-speed cutting of hardened steel such as hardened steel. However, when the Al content ratio X exceeds 60 atomic%, the high temperature hardness and heat resistance of the lower layer are improved, but due to the relative decrease in the Ti content ratio, the high temperature strength is lowered and chipping is likely to occur. When the Al content ratio X is less than 30 atomic%, the high temperature hardness and heat resistance decrease, and as a result, the wear resistance decreases. 30 to 0.60.
Moreover, if the average layer thickness of the lower layer is less than 1.5 μm, the heat resistance, high temperature hardness and high temperature strength possessed by itself cannot be imparted to the hard coating layer over a long period of time, resulting in a short tool life. When the average layer thickness exceeds 3 μm, chipping is likely to occur. Therefore, the average layer thickness was set to 1.5 to 3 μm.

(c)硬質被覆層の上部層
(イ)上部層の薄層A
上部層の薄層Aを構成するTiとAlの複合窒化物([Ti1−XAl]N)層(ただし、原子比で、Xは0.30〜0.60を示す)は、下部層と実質同様の層であって、所定の耐熱性、高温硬さおよび高温強度を具備し、焼入れ鋼等の高硬度鋼の高速切削加工時における切刃部の耐摩耗性を確保する作用を有する。
(C) Upper layer of hard coating layer (a) Thin layer A of upper layer
Composite nitride of Ti and Al constituting the thin layer A of the upper layer ([Ti 1-X Al X ] N) layer (where an atomic ratio, X is shows the 0.30 to 0.60), the lower It is a layer that is substantially the same as the layer and has the prescribed heat resistance, high temperature hardness, and high temperature strength, and has the effect of ensuring the wear resistance of the cutting edge during high speed cutting of high hardness steel such as hardened steel. Have.

(ロ)上部層の薄層B
Ti窒化物(TiN)層からなる薄層Bは、薄層Aと薄層Bの交互積層構造からなる上部層において、いわば、薄層Aに不足する特性(高温強度、耐衝撃強さ)を補うことを主たる目的とするものである。
すでに述べたように、上部層の薄層Aは、所定の耐熱性、高温硬さと高温強度を有する層であるが、大きな機械的付加が加わるとともに高熱発生を伴う高硬度鋼の高速切削加工では、その高温強度、耐衝撃強さが十分とはいえず、そのため、これらが原因となり切刃の刃先の境界部分に境界異常損傷を生じることになる。
そこで、優れた高温強度と耐衝撃強さを有するTi窒化物(TiN)層からなる薄層Bを、薄層Aと交互に配し交互積層構造を構成することで、隣接する薄層Aの高温強度不足、耐衝撃強さ不足を補い、上部層全体として、前記薄層Aのもつすぐれた耐熱性、高温硬さ、高温強度を何ら損なうことなく、前記薄層Bのもつより一段とすぐれた高温強度と耐衝撃強さを備えた上部層を形成する。
Ti窒化物(TiN)層は、すぐれた高温強度と耐衝撃強さを備え、大きな機械的負荷が加わるとともに高熱発生を伴う焼入れ鋼等の高硬度鋼の高速切削加工において、切刃の刃先の境界部分に生じる境界異常損傷の発生を防止する作用を有する。
(B) Thin layer B of the upper layer
The thin layer B composed of the Ti nitride (TiN) layer has the characteristics (high temperature strength, impact strength) that the thin layer A lacks in the upper layer composed of the alternately laminated structure of the thin layer A and the thin layer B. The main purpose is to supplement.
As already described, the thin layer A as the upper layer is a layer having predetermined heat resistance, high temperature hardness and high temperature strength. However, in the high-speed cutting processing of high hardness steel with high mechanical generation as well as large mechanical addition, The high-temperature strength and impact strength cannot be said to be sufficient, and as a result, boundary abnormal damage occurs at the boundary portion of the cutting edge of the cutting edge.
Therefore, the thin layer B composed of the Ti nitride (TiN) layer having excellent high-temperature strength and impact resistance strength is alternately arranged with the thin layer A to form an alternate laminated structure, thereby forming the adjacent thin layer A. Compensating for lack of high-temperature strength and impact strength, the upper layer as a whole was superior to that of the thin layer B without any loss of the excellent heat resistance, high-temperature hardness, and high-temperature strength of the thin layer A. Form an upper layer with high temperature strength and impact strength.
The Ti nitride (TiN) layer has excellent high-temperature strength and impact strength, and is used for high-speed cutting of hardened steel such as hardened steel with high mechanical load and high heat generation. It has the effect of preventing the occurrence of abnormal boundary damage occurring at the boundary portion.

(ハ)上部層の薄層Aと薄層Bの一層平均層厚
上部層の薄層Aと薄層B、それぞれの一層平均層厚が0.03μm未満ではそれぞれの薄層の備えるすぐれた特性を発揮することができず、この結果、上部層にすぐれた高温硬さ、高温強度および耐熱性と、より一段とすぐれた高温強度と耐衝撃強さを確保することができなくなり、また、それぞれの一層平均層厚が0.3μmを越えるとそれぞれの薄層がもつ欠点、すなわち、薄層Aであれば高温強度、耐衝撃強さの不足、薄層Bであれば耐熱性、高温硬さの不足が層内に局部的に現れるようになり、これが原因で、切刃刃先の剥離が発生したり、摩耗が急速に進行するようになることから、それぞれの一層平均層厚は0.03〜0.3μmと定めた。
すなわち、薄層Bは、上部層により一段とすぐれた高温強度と耐衝撃強さを付与するために設けたものであるが、薄層A、薄層Bそれぞれの一層平均層厚が0.03〜0.3μmの範囲内であれば、薄層Aと薄層Bの交互積層構造からなる上部層は、すぐれた耐熱性、高温硬さと、より一段とすぐれた高温強度、耐衝撃強さを具備したあたかも一つの層であるかのように作用するが、薄層A、薄層Bそれぞれの一層平均層厚が0.3μmを越えると、薄層Aの高温強度、耐衝撃強さの不足、あるいは、薄層Bの耐熱性、高温硬さ不足が層内に局部的に現れるようになり、上部層が全体として一つの層としての良好な特性を呈することができなくなるため、薄層A、薄層Bそれぞれの一層平均層厚を0.03〜0.3μmと定めた。
薄層Aと薄層Bの一層平均層厚を0.03〜0.3μmの範囲内とした交互積層構造からなる上部層を下部層表面に形成することにより、優れた耐熱性、高温硬さとともに、より一段とすぐれた高温強度と耐衝撃強さを兼ね備えた硬質被覆層が得られ、その結果、焼入れ鋼等の高硬度鋼の高速連続切削加工あるいは高速断続切削加工において、切刃の刃先の境界部分に生じる異常損傷の発生を防止することができる。
(ニ)上部層の最外層とその平均層厚
本発明の被覆cBN基焼結工具では、最外層TiAlNの膜厚が0.3μm未満であると所望の耐摩耗性が得られない。また最外表面の被覆層の層厚の違いによって、それぞれ微妙に異なる干渉色を生じ、工具外観が不揃いとなることがある。このような場合には、上部層の最外層として、TiとAlの複合窒化物(TiAlN)層を厚く蒸着形成することによって、工具外観の不揃いを防止することができる。そしてそれは2μmまでの平均層厚があれば外観の不揃いを十分防止できることから、TiとAlの複合窒化物(TiAlN)層の平均層厚は0.3〜2μmと定める。
(ホ)上部層の合計平均層厚
また、上部層の合計平均層厚(即ち、交互積層構造を構成する薄層Aと薄層Bの各層の平均層厚を合計した層厚と最外層の平均層厚とを合計した層厚)は、0.5μm未満では、焼入れ鋼等の高硬度鋼の高速切削加工で必要とされる十分な耐熱性、高温硬さ、高温強度および耐衝撃強さを上部層に付与することができず、工具寿命短命の原因となり、一方その平均層厚が3μmを越えると、チッピングが発生し易くなることから、その合計平均層厚は0.5〜3μmとすることが好ましい。
(C) Upper layer thin layer A and thin layer B one layer average layer thickness Upper layer thin layer A and thin layer B, each layer average layer thickness is less than 0.03 μm, excellent characteristics of each thin layer As a result, it is impossible to ensure excellent high temperature hardness, high temperature strength and heat resistance in the upper layer, and even better high temperature strength and impact resistance. If the average layer thickness exceeds 0.3 μm, the disadvantages of each thin layer, that is, if it is thin layer A, it is insufficient in high-temperature strength and impact resistance, and if it is thin layer B, it has heat resistance and high-temperature hardness. Insufficient deficiency appears locally in the layer, which causes peeling of the cutting edge and rapid progress of wear. It was determined to be 0.3 μm.
That is, the thin layer B is provided to give higher temperature strength and impact strength superior to the upper layer, but the average layer thickness of each of the thin layer A and the thin layer B is 0.03 to 0.03. If it is within the range of 0.3 μm, the upper layer composed of the alternately laminated structure of the thin layer A and the thin layer B has excellent heat resistance and high temperature hardness, and further improved high temperature strength and impact resistance strength. It acts as if it is a single layer, but when the average layer thickness of each of the thin layers A and B exceeds 0.3 μm, the high temperature strength of the thin layer A, the impact strength is insufficient, or The heat resistance of the thin layer B and the lack of high-temperature hardness appear locally in the layer, and the upper layer cannot exhibit good characteristics as a single layer as a whole. The average layer thickness of each layer B was determined to be 0.03 to 0.3 μm.
Excellent heat resistance and high temperature hardness by forming on the lower layer surface an upper layer composed of an alternating laminated structure in which the average layer thickness of the thin layers A and B is in the range of 0.03 to 0.3 μm. In addition, a hard coating layer with even higher high-temperature strength and impact strength is obtained. As a result, the cutting edge of the cutting edge of high-hardness steel such as hardened steel can be cut at high-speed continuous cutting or high-speed intermittent cutting. Occurrence of abnormal damage occurring at the boundary portion can be prevented.
(D) The outermost layer of the upper layer and its average layer thickness In the coated cBN-based sintered tool of the present invention, the desired wear resistance cannot be obtained when the thickness of the outermost layer TiAlN is less than 0.3 μm. Further, depending on the thickness of the coating layer on the outermost surface, slightly different interference colors may be generated, resulting in uneven tool appearance. In such a case, unevenness of the appearance of the tool can be prevented by thickly depositing a Ti and Al composite nitride (TiAlN) layer as the outermost layer of the upper layer. Further, since it is possible to sufficiently prevent the appearance irregularity if the average layer thickness is up to 2 μm, the average layer thickness of the composite nitride (TiAlN) layer of Ti and Al is determined to be 0.3 to 2 μm.
(E) Total average layer thickness of the upper layer Further, the total average layer thickness of the upper layer (that is, the total thickness of the average layers of the thin layers A and B constituting the alternate laminated structure and the outermost layer) If the average layer thickness is less than 0.5 μm, sufficient heat resistance, high temperature hardness, high temperature strength and impact strength required for high speed cutting of hardened steel such as hardened steel Can not be applied to the upper layer, causing a short tool life, while if the average layer thickness exceeds 3 μm, chipping tends to occur, so the total average layer thickness is 0.5 to 3 μm. It is preferable to do.

(ヘ)硬質被覆層表面の表面粗さRa
硬質被覆層表面の表面粗さRaは、逃げ面およびすくい面においては、0.08μm未満とすることは製造コストの上昇につながるため好ましくなく、0.20μmを超えると皮膜表面の切削抵抗が大きくなりチッピングが発生しやすくなるため、0.08〜0.20μmと定めた。また、ホーニング部においては、0.07μm未満とすることは製造コストの上昇につながるため好ましくなく、0.10μmを超えると皮膜表面の切削抵抗が大きくなりチッピングが発生しやすくなるため、0.07〜0.10μmと定めた。
(ト)硬質被覆層のTiAlNの残留応力
硬質被覆層のTiAlNの残留応力は、逃げ面およびすくい面においては、−1GPa未満だと所望の硬さが得られず耐摩耗性が低下するため好ましくなく、−2GPaを超えると高負荷切削では皮膜内部あるいは皮膜と基体の界面にクラックが発生しチッピングしやすくなる。したがって、−1〜−2GPaと定めた。また、ホーニング部においては、−1.5GPa未満だと所望の硬さが得られず耐摩耗性が低下するため好ましくなく、−3.0GPaを超えると高負荷切削では皮膜内部あるいは皮膜と基体の界面にクラックが発生しチッピングしやすくなる。したがって、−1.5〜−3.0GPaと定めた。さらに、−1〜−2GPa、−1.5〜−3.0GPaであるとともに、逃げ面およびすくい面の残留応力の方が、ホーニング部の残留応力よりも小さいとホーニング部のチッピングが生じやすくなるため、残留応力(逃げ面、すくい面)>残留応力(ホーニング部)と定めた。逃げ面、すくい面とホーニング部の残留応力を上記の関係とすることにより、切削時に発生するホーニング部での応力を緩和することができ、切削時に最も切削抵抗が大きくなるホーニング部での剥離を抑制することができる。
(F) Surface roughness Ra of the hard coating layer surface
If the surface roughness Ra of the hard coating layer surface is less than 0.08 μm on the flank and rake surface, it is not preferable because it leads to an increase in manufacturing cost. If the surface roughness Ra exceeds 0.20 μm, the cutting resistance on the coating surface is large. Therefore, the thickness is set to 0.08 to 0.20 μm. Further, in the honing portion, it is not preferable that the thickness is less than 0.07 μm because it leads to an increase in manufacturing cost. If the thickness exceeds 0.10 μm, the cutting resistance of the coating surface increases and chipping is likely to occur. ˜0.10 μm.
(G) Residual stress of TiAlN of hard coating layer The residual stress of TiAlN of the hard coating layer is preferably less than -1 GPa on the flank and rake surface because desired hardness cannot be obtained and wear resistance is reduced. On the other hand, if it exceeds -2 GPa, cracking is likely to occur inside the film or at the interface between the film and the substrate during high-load cutting, and chipping is likely to occur. Therefore, it was set to −1 to −2 GPa. Further, in the honing portion, if it is less than -1.5 GPa, the desired hardness cannot be obtained and the wear resistance is lowered, so that it is not preferable. Cracks occur at the interface and chipping is likely to occur. Therefore, it was set to -1.5 to -3.0 GPa. Further, when the residual stress of the flank and the rake face is smaller than the residual stress of the honing portion, the honing portion is likely to be chipped. Therefore, it was determined that the residual stress (flank, rake face)> residual stress (honing part). By making the residual stress of the flank, rake face and honing part the above relationship, the stress in the honing part generated during cutting can be relieved, and peeling at the honing part where cutting resistance is greatest during cutting can be achieved. Can be suppressed.

(チ)最外層TiAlNの荷重100mgで測定したときのナノインデンテーション硬さ
最外層TiAlNの荷重100mgで測定したときのナノインデンテーション硬さは、逃げ面およびすくい面においては、30GPa未満では耐摩耗性向上効果が得られないため好ましくなく、38GPaを超えると耐摩耗性は向上するがチッピングが発生しやすくなる。したがって、30〜38GPaと定めた。また、ホーニング部においては、33GPa未満では耐摩耗性向上効果が得られないため好ましくなく、50GPaを超えると耐摩耗性は向上するがチッピングが発生しやすくなる。したがって、33〜50GPaと定めた。さらに、30〜38GPa、33〜50GPaであるとともに、逃げ面およびすくい面のナノインデンテーション硬さの方が、ホーニング部のナノインデンテーション硬さよりも大きいとホーニング部のチッピングが生じやすくなるため、ナノインデンテーション硬さ(逃げ面、すくい面)<ナノインデンテーション硬さ(ホーニング部)と定めた。逃げ面、すくい面とホーニング部のナノインデンテーション硬さを上記の関係とすることにより、切削時のホーニング部での衝撃を緩和することができ、切削時に最も切削抵抗が大きくなるホーニング部での剥離を抑制することができる。
(H) Nanoindentation hardness when measured with a load of 100 mg of the outermost layer TiAlN The nanoindentation hardness when measured with a load of 100 mg of the outermost layer of TiAlN is wear-resistant if it is less than 30 GPa on the flank and rake face. It is not preferable because the effect of improving the property cannot be obtained. If it exceeds 38 GPa, the wear resistance is improved, but chipping is likely to occur. Therefore, it was determined as 30 to 38 GPa. Further, in the honing portion, if it is less than 33 GPa, the effect of improving wear resistance is not obtained, which is not preferable. If it exceeds 50 GPa, wear resistance is improved but chipping is likely to occur. Therefore, it was determined as 33 to 50 GPa. Furthermore, since it is 30 to 38 GPa and 33 to 50 GPa, and the nanoindentation hardness of the flank and rake face is larger than the nanoindentation hardness of the honing part, chipping of the honing part is likely to occur. Indentation hardness (flank, rake face) <nanoindentation hardness (honing part). By making the flank, rake face, and nanoindentation hardness of the honing part the above relationship, the impact at the honing part during cutting can be mitigated, and at the honing part where cutting resistance is greatest during cutting. Peeling can be suppressed.

ここで、ナノインデンテーション硬さを求めるナノインデンテーション法について説明する。ナノインデンテーション法は、文献「トライボロジスト、第47巻、第3号、(2002)p177〜183」に詳しく説明されている硬さ試験の一種である。従来のヌープ硬度測定法やビッカース硬度測定法は、押し込み後の圧痕形状から硬度を求めているが、ナノインデンテーション法は、圧子の押し込み時の荷重と深さの関係から硬さやヤング率を求める方法である。   Here, the nanoindentation method for obtaining the nanoindentation hardness will be described. The nanoindentation method is a kind of hardness test described in detail in the document “Tribologist, Vol. 47, No. 3, (2002) p177-183”. Conventional Knoop hardness measurement method and Vickers hardness measurement method obtain hardness from indentation shape after indentation, but nanoindentation method obtains hardness and Young's modulus from the relationship between load and depth when indenter is indented. Is the method.

これらの試験方法を図3に示す。ビッカース硬度やヌープ硬度のような従来の硬度測定法では、光学顕微鏡で人が測定するので、圧痕形状が大きくなければ測定できなかった。従って、図3(B)に示すように、圧子30の押し込み荷重を大きくし、圧痕の幅Wを大きくして測定せざるを得なかった。ところが、このとき被覆膜20と基材10の両方に圧痕が付くので、基材の影響を受けた硬度が得られていた。   These test methods are shown in FIG. In the conventional hardness measurement methods such as Vickers hardness and Knoop hardness, since measurement is performed by a person using an optical microscope, measurement cannot be performed unless the indentation shape is large. Therefore, as shown in FIG. 3B, the indentation load of the indenter 30 is increased, and the width W of the indentation is increased, so that measurement is unavoidable. However, at this time, since both the coating film 20 and the base material 10 are indented, hardness affected by the base material has been obtained.

これに対して本発明では、ナノインデンテーション法により、基材の影響のない、被覆膜だけの硬度を求めた。具体的には、図3(A)に示すように圧子30を被覆膜20の膜厚の約1/10以下の深さになるように荷重100mgで押し込んで、基材10の影響を取り除いて硬度の測定を行なう。例えば、1μmの最外層の硬度を測定する場合、押し込み深さは100nm以下とすることが望ましい。ナノインデンテーション法では機械的に深さを求めるので、上記のような小さな深さでも高精度の測定ができる。最大押し込み深さhmaxだけ圧子30を押し込み、hmaxと荷重から硬度などを算出する。荷重を除去すると、弾性変形分だけ元に戻るので、圧痕の深さはhmaxより浅くなる。   On the other hand, in the present invention, the hardness of only the coating film without the influence of the substrate was determined by the nanoindentation method. Specifically, as shown in FIG. 3A, the indenter 30 is pushed in with a load of 100 mg so as to have a depth of about 1/10 or less of the film thickness of the coating film 20 to remove the influence of the base material 10. To measure the hardness. For example, when measuring the hardness of the outermost layer of 1 μm, the indentation depth is desirably 100 nm or less. In the nanoindentation method, the depth is obtained mechanically, so that high-precision measurement can be performed even at such a small depth. The indenter 30 is pushed in by the maximum pushing depth hmax, and the hardness is calculated from hmax and the load. When the load is removed, the original amount is restored by the amount of elastic deformation, so that the depth of the indentation is shallower than hmax.

ナノインデンテーション法による硬度は、被覆膜表面の凹凸や、平均粒子径、残留応力、被覆膜の厚さの影響を受けるので、従来の硬度とは異なり状況によってかなり値がばらつく。しかし、インデンテーション法による被覆切削工具の最外層の硬度は、切削性能に影響を与える因子の1つである。   The hardness by the nanoindentation method is affected by the unevenness of the coating film surface, the average particle diameter, the residual stress, and the thickness of the coating film, and therefore varies considerably depending on the situation, unlike the conventional hardness. However, the hardness of the outermost layer of the coated cutting tool by the indentation method is one of the factors affecting the cutting performance.

表面処理技術、例えば、ウエットブラストによる処理の場合には以下のような条件で行うとよい。
ブラストの噴射圧力を0.1〜0.15MPa、噴射時間を1〜5secとし、これを3〜10回繰り返す。圧力が0.1MPa未満、時間が1sec未満、あるいは繰り返し回数が2回以下だと、ブラストの効果が弱く、硬質被覆層の逃げ面、すくい面およびホーニング部における耐剥離性向上効果が得られず、また、圧力が0.15MPaより大きく、時間が5secより長く、繰り返し回数が10回を超えると、硬質被覆層の逃げ面、すくい面およびホーニング部における表面粗さ、残留応力、ナノインデンテーション硬さが所定の関係を得られないために耐剥離性向上効果が得られない。なお、ブラストに使用したスラリーは、アルミナ粒子を使用しており、粒子径が220〜1500番、スラリー濃度は15〜60wt%である。
In the case of a surface treatment technique such as wet blasting, the following conditions may be used.
The blast injection pressure is 0.1 to 0.15 MPa, the injection time is 1 to 5 sec, and this is repeated 3 to 10 times. If the pressure is less than 0.1 MPa, the time is less than 1 sec, or the number of repetitions is 2 times or less, the effect of blasting is weak, and the effect of improving the peel resistance on the flank, rake face and honing part of the hard coating layer cannot be obtained. In addition, when the pressure is greater than 0.15 MPa, the time is longer than 5 sec, and the number of repetitions exceeds 10, the surface roughness, residual stress, nanoindentation hardness on the flank, rake face and honing part of the hard coating layer Therefore, the effect of improving the peel resistance cannot be obtained. In addition, the slurry used for the blasting uses alumina particles, the particle diameter is 220 to 1500, and the slurry concentration is 15 to 60 wt%.

本発明の被覆cBN基焼結工具は、硬質被覆層が上部層と下部層からなり、硬質被覆層の上部層を薄層Aと薄層Bの交互積層構造とするとともに、硬質被覆層の表面粗さ、残留応力、ナノインデンテーション硬さを逃げ面、すくい面およびホーニング部のそれぞれについて規定することによってすぐれた耐熱性、高温硬さ、高温強度および耐衝撃強さを兼ね備えることから、特に合金鋼、軸受鋼の焼入れ材などのような高硬度鋼の、高熱発生を伴う、かつ、切刃部に断続的・衝撃的な機械的負荷が加わる高速連続切削あるいは高速断続切削という厳しい条件下の切削加工であっても、前記硬質被覆層に剥離の発生はなく、長期に亘って、すぐれた耐摩耗性を発揮するとともに、被削材のすぐれた仕上げ面精度を維持することができる。   In the coated cBN-based sintered tool of the present invention, the hard coating layer is composed of an upper layer and a lower layer, and the upper layer of the hard coating layer has an alternately laminated structure of thin layers A and B, and the surface of the hard coating layer. By specifying roughness, residual stress, and nanoindentation hardness for each of the flank, rake face, and honing part, it has excellent heat resistance, high temperature hardness, high temperature strength, and impact resistance strength. High-hardness steel such as hardened steel and bearing steel, etc. under severe conditions such as high-speed continuous cutting or high-speed interrupted cutting that generates high heat and causes intermittent and impact mechanical loads on the cutting edge. Even in the cutting process, the hard coating layer is not peeled off, exhibits excellent wear resistance over a long period of time, and maintains the finished surface accuracy of the work material.

本発明の被覆cBN基焼結工具を構成する硬質被覆層を形成するのに用いたアークイオンプレーティング装置を示し、(a)は概略平面図、(b)は概略正面図である。The arc ion plating apparatus used for forming the hard coating layer which comprises the coated cBN group sintered tool of this invention is shown, (a) is a schematic plan view, (b) is a schematic front view. 通常のアークイオンプレーティング装置の概略説明図である。It is a schematic explanatory drawing of a normal arc ion plating apparatus. (A)はナノインデンテーション法の説明図、(B)は従来の高度測定法の説明図である。(A) is explanatory drawing of the nanoindentation method, (B) is explanatory drawing of the conventional altitude measuring method.

つぎに、本発明の被覆cBN基焼結工具を実施例により具体的に説明する。   Next, the coated cBN-based sintered tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも0.5〜4μmの範囲内の平均粒径を有する立方晶窒化硼素(cBN)粉末、窒化チタン(TiN)粉末、Al粉末、酸化アルミニウム(Al)粉末を用意し、これら原料粉末を表1に示される配合組成に配合し、ボールミルで80時間湿式混合し、乾燥した後、120MPaの圧力で直径:50mm×厚さ:1.5mmの寸法をもった圧粉体にプレス成形し、ついでこの圧粉体を、圧力:1Paの真空雰囲気中、900〜1300℃の範囲内の所定温度に60分間保持の条件で焼結して切刃片用予備焼結体とし、この予備焼結体を、別途用意した、Co:8質量%、WC:残りの組成、並びに直径:50mm×厚さ:2mmの寸法をもったWC基超硬合金製支持片と重ね合わせた状態で、通常の超高圧焼結装置に装入し、通常の条件である圧力:5GPa、温度:1200〜1400℃の範囲内の所定温度に保持時間:0.8時間の条件で超高圧焼結し、焼結後上下面をダイヤモンド砥石を用いて研磨し、ワイヤー放電加工装置にて一辺3mmの正三角形状に分割し、さらにCo:5質量%、TaC:5質量%、WC:残りの組成およびCIS規格SNGA120412の形状(厚さ:4.76mm×一辺長さ:12.7mmの正三角形)をもったWC基超硬合金製チップ本体のろう付け部(コーナー部)に、質量%で、Cu:26%、Ti:5%、Ni:2.5%、Ag:残りからなる組成を有するAg合金のろう材を用いてろう付けし、所定寸法に外周加工した後、切刃部に幅:0.13mm、角度:25°のホーニング加工を施し、さらに仕上げ研摩を施すことによりISO規格SNGA120412のチップ形状をもった工具基体A〜Jをそれぞれ製造した。 As raw material powders, cubic boron nitride (cBN) powder, titanium nitride (TiN) powder, Al powder, and aluminum oxide (Al 2 O 3 ) powder each having an average particle size in the range of 0.5 to 4 μm are prepared. These raw material powders were blended in the composition shown in Table 1, wet mixed with a ball mill for 80 hours, dried, and then compacted with a diameter of 50 mm × thickness: 1.5 mm at a pressure of 120 MPa. The green compact is then press-molded, and then the green compact is sintered in a vacuum atmosphere at a pressure of 1 Pa at a predetermined temperature within a range of 900 to 1300 ° C. for 60 minutes and pre-sintered for a cutting edge piece. This pre-sintered body was superposed on a separately prepared support piece made of WC-based cemented carbide having Co: 8 mass%, WC: remaining composition, and diameter: 50 mm × thickness: 2 mm. Normal ultra high pressure sintering It is charged into the apparatus, and is sintered under ultra high pressure at a predetermined temperature within the range of pressure: 5 GPa, temperature: 1200 to 1400 ° C., which is a normal condition, and holding time: 0.8 hours. Polishing with a diamond grindstone, dividing into 3 mm regular triangles with a wire electric discharge machine, Co: 5% by mass, TaC: 5% by mass, WC: remaining composition and shape of CIS standard SNGA12041 (thickness) The brazing part (corner part) of the WC-based cemented carbide chip body having a length of 4.76 mm × one side length: 12.7 mm is Cu: 26%, Ti: 5 %, Ni: 2.5%, Ag: Brazing using a brazing material of an Ag alloy having the remaining composition, and after outer peripheral processing to a predetermined dimension, the width of the cutting edge is 0.13 mm, angle: 25 ° Honing and finishing The tool substrate A~J having a tip shape of ISO standard SNGA120412 by performing grinding was produced, respectively.

(a)ついで、上記の工具基体A〜Jのそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるアークイオンプレーティング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着し、一方側のカソード電極(蒸発源)として、上部層の薄層B形成用金属Tiを、また、他方側のカソード電極(蒸発源)として、それぞれ表3に示される目標組成に対応した成分組成をもった上部層の薄層Aおよび下部層形成用Ti−Al合金を前記回転テーブルを挟んで対向配置し、
(b)まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、Arガスを導入して、0.7Paの雰囲気とすると共に、前記テーブル上で自転しながら回転する工具基体に−200Vの直流バイアス電圧を印加し、もって工具基体表面をアルゴンイオンによってボンバード洗浄し、
(c)装置内に反応ガスとして窒素ガスを導入して3Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する工具基体に−100Vの直流バイアス電圧を印加し、かつ前記薄層Aおよび下部層形成用Ti−Al合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって前記工具基体の表面に、表3に示される目標組成および目標層厚の[Ti,Al]N層を硬質被覆層の下部層として蒸着形成し、
(d)ついで装置内に導入する反応ガスとしての窒素ガスの流量を調整して2Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する工具基体に−10〜−100Vの範囲内の所定の直流バイアス電圧を印加した状態で、前記薄層B形成用金属Tiのカソード電極とアノード電極との間に50〜200Aの範囲内の所定の電流を流してアーク放電を発生させて、前記工具基体の表面に所定層厚の薄層Bを形成し、前記薄層B形成後、アーク放電を停止し、代って前記薄層Aおよび下部層形成用Ti−Al合金のカソード電極とアノード電極間に同じく50〜200Aの範囲内の所定の電流を流してアーク放電を発生させて、所定層厚の薄層Aを形成した後、アーク放電を停止し、再び前記薄層B形成用金属Tiのカソード電極とアノード電極間のアーク放電による薄層Bの形成と、前記薄層Aおよび下部層形成用Ti−Al合金のカソード電極とアノード電極間のアーク放電による薄層Aの形成を交互に繰り返し行い、もって前記工具基体の表面に、層厚方向に沿って表3に示される目標組成および一層目標層厚の薄層Aと薄層Bの交互積層からなる上部層を同じく表3に示される合計層厚(平均層厚)で蒸着形成する。
(e)さらに、ブラスト圧力:0.1〜0.15MPa、ブラスト時間:2〜5秒、繰り返し回数:5〜10回、入射角:すくい面に対して40〜50°、粒子径:220〜1500番、スラリー濃度:15〜60質量%、粒の種類:Alのブラスト条件で断続的にブラスト処理を行うことにより、本発明被覆cBN基焼結工具1〜10をそれぞれ製造した。ブラスト条件を表2に示す。このような断続的なブラスト処理を行うことにより、皮膜内部および積層部の各層間に疲労が蓄積せず、その結果、クラックが存在しない状態で、皮膜表面の平滑性が高く、かつ、硬質皮膜であるTiAlNの残留応力を増加させることで硬さが向上した皮膜を作成することができる。表3に皮膜表面の表面粗さRa、皮膜のTiAlNの残留応力、最外層TiAlNの荷重100mgで測定したときのナノインデンテーション硬さを、逃げ面、すくい面およびホーニング部のそれぞれについて示す。
(A) Next, each of the tool bases A to J is ultrasonically cleaned in acetone and dried, and then in a radial direction from the central axis on the rotary table in the arc ion plating apparatus shown in FIG. Are mounted along the outer periphery at a predetermined distance, and the upper layer thin layer B forming metal Ti is used as the cathode electrode (evaporation source) on one side, and the cathode electrode (evaporation source) on the other side. The upper layer thin layer A and the lower layer forming Ti-Al alloy having the component compositions corresponding to the target compositions shown in Table 3 are arranged opposite to each other with the rotary table interposed therebetween,
(B) First, while the inside of the apparatus is evacuated and kept at a vacuum of 0.1 Pa or less, the inside of the apparatus is heated to 500 ° C. with a heater, and then Ar gas is introduced to create an atmosphere of 0.7 Pa. A DC bias voltage of −200 V is applied to the tool base that rotates while rotating on the table, and the tool base surface is bombarded with argon ions.
(C) Nitrogen gas is introduced as a reaction gas into the apparatus to form a reaction atmosphere of 3 Pa, a DC bias voltage of −100 V is applied to the tool base rotating while rotating on the rotary table, and the thin layer A current of 100 A is allowed to flow between A and the lower layer forming Ti—Al alloy and the anode electrode to generate an arc discharge, so that the target composition and target layer thickness shown in Table 3 are formed on the surface of the tool base. Ti, Al] N layer is deposited as a lower layer of the hard coating layer,
(D) Next, the flow rate of nitrogen gas as a reaction gas introduced into the apparatus is adjusted to obtain a reaction atmosphere of 2 Pa, and within a range of −10 to −100 V on the tool base that rotates while rotating on the rotary table. In a state where a predetermined DC bias voltage is applied, a predetermined current within a range of 50 to 200 A is passed between the cathode electrode and the anode electrode of the thin layer B forming metal Ti to generate arc discharge, A thin layer B having a predetermined layer thickness is formed on the surface of the tool base, and after the thin layer B is formed, the arc discharge is stopped. Instead, the cathode electrode of the thin layer A and the lower layer forming Ti—Al alloy Similarly, a predetermined current in the range of 50 to 200 A is passed between the anode electrodes to generate arc discharge to form a thin layer A having a predetermined layer thickness. Then, the arc discharge is stopped and the thin layer B is formed again. Metal Ti Catho The thin layer B is formed by arc discharge between the electrode and the anode electrode, and the thin layer A is formed by arc discharge between the cathode electrode and the anode electrode of the Ti-Al alloy for forming the thin layer A and the lower layer alternately. Thus, on the surface of the tool base, the upper composition composed of the alternate lamination of the thin layer A and the thin layer B having the target composition shown in Table 3 along with the layer thickness direction along the layer thickness direction is also shown in Table 3. Vapor deposition is performed with a layer thickness (average layer thickness).
(E) Further, blasting pressure: 0.1 to 0.15 MPa, blasting time: 2 to 5 seconds, number of repetitions: 5 to 10 times, incident angle: 40 to 50 ° with respect to the rake face, particle size: 220 to The present invention coated cBN-based sintered tools 1 to 10 were manufactured by intermittently blasting under No. 1500, slurry concentration: 15 to 60% by mass, and grain type: Al 2 O 3 blasting conditions. The blasting conditions are shown in Table 2. By performing such an intermittent blasting process, fatigue does not accumulate inside the film and between each layer of the laminated part, and as a result, the film surface has high smoothness and a hard film in the absence of cracks. By increasing the residual stress of TiAlN, a film with improved hardness can be created. Table 3 shows the surface roughness Ra of the coating surface, the residual stress of TiAlN of the coating, and the nanoindentation hardness when measured with a load of 100 mg of the outermost layer TiAlN for each of the flank, rake face and honing part.

また、比較の目的で、上記の工具基体A〜Jのそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるアークイオンプレーティング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着し、一方側のカソード電極(蒸発源)として、上部層の薄層B形成用金属Tiを、また、他方側のカソード電極(蒸発源)として、それぞれ表4に示される目標組成に対応した成分組成をもった上部層の薄層Aおよび下部層形成用Ti−Al合金を前記回転テーブルを挟んで対向配置し、
(b)まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、Arガスを導入して、0.7Paの雰囲気とすると共に、前記テーブル上で自転しながら回転する工具基体に−200Vの直流バイアス電圧を印加し、もって工具基体表面をアルゴンイオンによってボンバード洗浄し、
(c)装置内に反応ガスとして窒素ガスを導入して3Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する工具基体に−100Vの直流バイアス電圧を印加し、かつ前記薄層Aおよび下部層形成用Ti−Al合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって前記工具基体の表面に、表4に示される目標組成および目標層厚の[Ti,Al]N層を硬質被覆層の下部層として蒸着形成し、
(d)ついで装置内に導入する反応ガスとしての窒素ガスの流量を調整して2Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する工具基体に−10〜−100Vの範囲内の所定の直流バイアス電圧を印加した状態で、前記薄層B形成用金属Tiのカソード電極とアノード電極との間に50〜200Aの範囲内の所定の電流を流してアーク放電を発生させて、前記工具基体の表面に所定層厚の薄層Bを形成し、前記薄層B形成後、アーク放電を停止し、代って前記薄層Aおよび下部層形成用Ti−Al合金のカソード電極とアノード電極間に同じく50〜200Aの範囲内の所定の電流を流してアーク放電を発生させて、所定層厚の薄層Aを形成した後、アーク放電を停止し、再び前記薄層B形成用金属Tiのカソード電極とアノード電極間のアーク放電による薄層Bの形成と、前記薄層Aおよび下部層形成用Ti−Al合金のカソード電極とアノード電極間のアーク放電による薄層Aの形成を交互に繰り返し行い、もって前記工具基体の表面に、層厚方向に沿って表4に示される目標組成および一層目標層厚の薄層Aと薄層Bの交互積層からなる上部層を同じく表4に示される合計層厚(平均層厚)で蒸着形成することにより、従来被覆cBN基焼結工具1〜10をそれぞれ製造した。従来被覆cBN基焼結工具の硬質被覆層は、いずれも[Ti,Al]N層とTiN層の積層構造からなっており、本発明品と異なり、表面粗さ、残留応力、硬さが制御されていない。
In addition, for comparison purposes, each of the tool bases A to J is ultrasonically cleaned in acetone and dried, and the tool bases A to J are separated from the central axis on the rotary table in the arc ion plating apparatus shown in FIG. It is mounted along the outer periphery at a predetermined distance in the radial direction, and the upper layer thin layer B forming metal Ti is used as the cathode electrode (evaporation source) on one side, and the cathode electrode (evaporation source) on the other side. ), Each of the upper layer thin layer A and the lower layer forming Ti—Al alloy having a component composition corresponding to the target composition shown in Table 4 is disposed opposite to each other with the rotary table interposed therebetween,
(B) First, while the inside of the apparatus is evacuated and kept at a vacuum of 0.1 Pa or less, the inside of the apparatus is heated to 500 ° C. with a heater, and then Ar gas is introduced to create an atmosphere of 0.7 Pa. A DC bias voltage of −200 V is applied to the tool base that rotates while rotating on the table, and the tool base surface is bombarded with argon ions.
(C) Nitrogen gas is introduced as a reaction gas into the apparatus to form a reaction atmosphere of 3 Pa, a DC bias voltage of −100 V is applied to the tool base rotating while rotating on the rotary table, and the thin layer A current of 100 A is passed between A and the lower layer forming Ti—Al alloy and the anode electrode to generate an arc discharge, so that the target composition and target layer thickness shown in Table 4 are formed on the surface of the tool base. Ti, Al] N layer is deposited as a lower layer of the hard coating layer,
(D) Next, the flow rate of nitrogen gas as a reaction gas introduced into the apparatus is adjusted to obtain a reaction atmosphere of 2 Pa, and within a range of −10 to −100 V on the tool base that rotates while rotating on the rotary table. In a state where a predetermined DC bias voltage is applied, a predetermined current within a range of 50 to 200 A is passed between the cathode electrode and the anode electrode of the thin layer B forming metal Ti to generate arc discharge, A thin layer B having a predetermined layer thickness is formed on the surface of the tool base, and after the thin layer B is formed, the arc discharge is stopped. Instead, the cathode electrode of the thin layer A and the lower layer forming Ti—Al alloy Similarly, a predetermined current in the range of 50 to 200 A is passed between the anode electrodes to generate arc discharge to form a thin layer A having a predetermined layer thickness. Then, the arc discharge is stopped and the thin layer B is formed again. Metal Ti Catho The thin layer B is formed by arc discharge between the electrode and the anode electrode, and the thin layer A is formed by arc discharge between the cathode electrode and the anode electrode of the Ti-Al alloy for forming the thin layer A and the lower layer alternately. Thus, on the surface of the tool base, the upper layer composed of the alternate lamination of the thin layer A and the thin layer B having the target composition and the single target layer thickness along the layer thickness direction along the layer thickness direction is also shown in Table 4 Conventionally coated cBN-based sintered tools 1 to 10 were produced by vapor deposition with a layer thickness (average layer thickness). The hard coating layer of the conventional coated cBN-based sintered tool has a laminated structure of [Ti, Al] N layer and TiN layer. Unlike the present invention product, the surface roughness, residual stress and hardness are controlled. It has not been.

この結果得られた各種の被覆cBN基焼結工具の切削チップ本体を構成するcBN基焼結材料について、その組織を走査型電子顕微鏡を用いて観察したところ、いずれの切削チップ本体も、実質的に分散相を形成するcBN相と連続相を形成するTiN相との界面に超高圧焼結反応生成物が介在した組織を示した。   Regarding the cBN-based sintered material constituting the cutting tip body of the various coated cBN-based sintered tools obtained as a result, the structure was observed using a scanning electron microscope. 1 shows a structure in which an ultrahigh-pressure sintering reaction product is present at the interface between the cBN phase forming the dispersed phase and the TiN phase forming the continuous phase.

さらに、同表面被覆層について、その組成を透過型電子顕微鏡を用いてのエネルギー分散型X線分析法により測定したところ、それぞれ目標組成と実質的に同じ組成を示し、また、その平均層厚を透過型電子顕微鏡を用いて断面測定したところ、いずれも目標層厚と実質的に同じ平均値(5ヶ所の平均値)を示した。   Further, when the composition of the surface coating layer was measured by energy dispersive X-ray analysis using a transmission electron microscope, the composition showed substantially the same composition as the target composition, and the average layer thickness was When the cross section was measured using a transmission electron microscope, all showed the average value (average value of five places) substantially the same as the target layer thickness.

つぎに、上記の各種の被覆cBN基焼結工具を、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆cBN基焼結工具1〜10および従来被覆cBN基焼結工具1〜10について切削条件A〜Cで高速連続切削試験を実施した。
[切削条件A]
被削材:JIS・SCM415の浸炭焼入れ材(硬さ:HRC61)の丸棒、
切削速度: 295m/min.、
切り込み: 0.23mm、
送り: 0.13mm/rev.、
切削時間: 6分、
の条件での合金鋼の乾式連続高速切削加工試験(通常の切削速度は200m/min.)、
[切削条件B]
被削材:JIS・SCr420の浸炭焼入れ材(硬さ:HRC60)の丸棒、
切削速度: 270m/min.、
切り込み: 0.23mm、
送り: 0.13m/rev.、
切削時間: 6分、
の条件でのクロム鋼の乾式連続高速切削加工試験(通常の切削速度は160m/min.)、
[切削条件C]
被削材:JIS・SUJ2の焼入れ材(硬さ:HRC61)の丸棒、
切削速度: 240m/min.、
切り込み: 0.23mm、
送り: 0.13mm/rev.、
切削時間: 6分、
の条件での軸受鋼の乾式連続高速切削加工試験(通常の切削速度は150m/min.)、
を行い、いずれの切削加工試験でも切刃の逃げ面摩耗幅(mm)と被削材の仕上げ面精度(JIS B0601−2001による算術平均高さ(Raμm)を測定した。この測定結果を表5に示した。
Next, according to the present invention, the coated cBN-based sintered tools 1 to 10 and the conventional coated cBN-based sintered tool, in a state where all the above-mentioned coated cBN-based sintered tools are screwed to the tip of the tool steel tool with a fixing jig. A high-speed continuous cutting test was performed on the cBN-based sintered tools 1 to 10 under the cutting conditions A to C.
[Cutting conditions A]
Work material: JIS SCM415 carburized quenching material (hardness: HRC61) round bar,
Cutting speed: 295 m / min. ,
Cutting depth: 0.23mm,
Feed: 0.13 mm / rev. ,
Cutting time: 6 minutes,
Dry continuous high-speed cutting test of alloy steel under normal conditions (normal cutting speed is 200 m / min.),
[Cutting conditions B]
Work material: JIS / SCr420 carburized quenching material (hardness: HRC60) round bar,
Cutting speed: 270 m / min. ,
Cutting depth: 0.23mm,
Feed: 0.13 m / rev. ,
Cutting time: 6 minutes,
Dry continuous high speed cutting test of chromium steel under the conditions of (normal cutting speed is 160 m / min.),
[Cutting conditions C]
Work material: JIS / SUJ2 hardened material (hardness: HRC61) round bar,
Cutting speed: 240 m / min. ,
Cutting depth: 0.23mm,
Feed: 0.13 mm / rev. ,
Cutting time: 6 minutes,
Dry continuous high speed cutting test of bearing steel under the conditions of (normal cutting speed is 150 m / min.),
In each cutting test, the flank wear width (mm) of the cutting edge and the finished surface accuracy of the work material (arithmetic average height (Raμm) according to JIS B0601-2001) were measured. It was shown to.

表2〜4に示される結果から、本発明被覆cBN基焼結工具は、いずれも硬質被覆層が、一層平均層厚がそれぞれ0.03〜0.3μmの薄層Aと薄層Bの交互積層構造と平均層厚が0.3〜2μmで[Ti,Al]N層からなる最外層を有する平均層厚(合計層厚)0.5〜3μmの上部層と、1.5〜3μmの平均層厚を有する下部層とからなり、前記下部層がすぐれた耐熱性、高温強度とすぐれた高温硬さを備え、さらに、前記上部層がすぐれた耐熱性、高温硬さとより一段とすぐれた高温強度と耐衝撃強さを備えているので、合金鋼、軸受鋼の焼入れ鋼等の高硬度鋼の高速切削加工でも、境界異常損傷およびチッピングの発生なく、すぐれた耐摩耗性を発揮するとともに、被削材のすぐれた仕上げ面精度を確保することができるのに対して、従来被覆cBN基焼結工具は、いずれも硬質被覆層が[Ti,Al]N層とTiN層の積層構造からなっており、本発明品と異なり、表面粗さ、残留応力、硬さが制御されておらず、その結果、特に硬質被覆層の高温強度、耐衝撃強さ不足が原因で、刃先に境界異常損傷やチッピングが発生し、被削材の仕上げ面精度を維持することができないばかりか、比較的短時間で使用寿命に至ることが明らかである。   From the results shown in Tables 2 to 4, the coated cBN-based sintered tool of the present invention has a hard coating layer, and alternates between a thin layer A and a thin layer B each having an average layer thickness of 0.03 to 0.3 μm. An upper layer having an average layer thickness (total layer thickness) of 0.5 to 3 μm and an outer layer composed of a [Ti, Al] N layer having a laminated structure and an average layer thickness of 0.3 to 2 μm, and 1.5 to 3 μm The lower layer has an average layer thickness, and the lower layer has excellent heat resistance, high temperature strength and excellent high temperature hardness, and the upper layer has excellent heat resistance, high temperature hardness and higher temperature. Because it has strength and impact strength, it exhibits excellent wear resistance without causing abnormal boundary damage and chipping even in high-speed cutting of hardened steel such as alloy steel and hardened steel of bearing steel, It is possible to ensure excellent finished surface accuracy of the work material. In the conventional coated cBN-based sintered tool, the hard coating layer has a laminated structure of a [Ti, Al] N layer and a TiN layer. Unlike the present invention product, surface roughness, residual stress, hardness As a result, boundary damage and chipping may occur at the cutting edge due to insufficient high-temperature strength and impact strength of the hard coating layer, and maintain the finished surface accuracy of the work material. It is obvious that not only can it be done, but it will reach its service life in a relatively short time.

上述のように、本発明の被覆cBN基焼結工具は、各種の鋼や鋳鉄などの通常の切削条件での切削加工は勿論のこと、特に合金鋼、軸受鋼の焼入れ材等のような高硬度鋼の、高熱発生を伴い切刃部にきわめて大きな断続的・衝撃的な機械的負荷が加わる高速連続切削あるいは高速断続切削であっても、前記硬質被覆層がすぐれた耐境界異常損傷性を発揮し、すぐれた被削材仕上げ面精度を長期に亘って維持するとともにすぐれた耐摩耗性をも示すものであるから、切削加工装置の高性能化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated cBN-based sintered tool of the present invention can be used not only for cutting under normal cutting conditions such as various steels and cast iron, but particularly for high-strength materials such as hardened materials of alloy steel and bearing steel. Even in high-speed continuous cutting or high-speed intermittent cutting in which hard steel has high heat generation and a very large intermittent / impact mechanical load is applied to the cutting edge, the hard coating layer has excellent boundary abnormal damage resistance. Demonstrates excellent work material finish surface accuracy over a long period of time and exhibits excellent wear resistance. Furthermore, it can cope with cost reduction sufficiently satisfactorily.

本発明は、硬質被覆層がすぐれた高温硬さ、高温強度、耐熱性とともに、すぐれた密着性を具備し、したがって、合金鋼、軸受鋼の焼入れ材などの高硬度鋼の高速切削加工に用いた場合にも、すぐれた耐剥離性を発揮し、長期の切削にわたって被削材のすぐれた仕上げ面精度を維持することができる、立方晶窒化ほう素基超高圧焼結材料で構成された切削工具基体の表面に硬質被覆層を形成した表面被覆立方晶窒化ほう素基超高圧焼結材料製切削工具(以下、被覆cBN基焼結工具という)に関するものである。   The present invention has a hard coating layer with excellent high-temperature hardness, high-temperature strength, and heat resistance, as well as excellent adhesion. Therefore, it is used for high-speed cutting of high-hardness steel such as alloy steel and hardened material of bearing steel. Cutting made of cubic boron nitride-based ultra-high pressure sintered material that provides excellent peel resistance and maintains excellent surface finish accuracy over long-term cutting The present invention relates to a cutting tool made of a surface-coated cubic boron nitride-based ultrahigh pressure sintered material (hereinafter referred to as a coated cBN-based sintered tool) in which a hard coating layer is formed on the surface of a tool substrate.

一般に、被覆cBN基焼結工具には、各種の鋼や鋳鉄などの被削材の旋削加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップや、スローアウエイチップを着脱自在に取り付けて、面削加工や溝加工、さらに肩加工などに用いられるソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミルなどが知られている。   Generally, a throw-away tip or a throw-away tip that can be detachably attached to the tip of a cutting tool when turning various work materials such as steel and cast iron is attached to a coated cBN-based sintered tool. In addition, there is known a slow-away end mill that performs cutting in the same manner as a solid type end mill used for chamfering, grooving, and shoulder machining.

また、被覆cBN基焼結工具としては、各種の立方晶窒化ほう素基超高圧焼結材料(以下、cBN基焼結材料という)で構成された工具本体の表面に、Ti窒化物(TiN)層、TiとAlの複合窒化物([Ti,Al]N)層などの表面被覆層を蒸着形成してなる被覆cBN基焼結工具が知られており、これらが例えば各種の鋼や鋳鉄などの切削加工に用いられていることも知られている。   In addition, as a coated cBN-based sintered tool, Ti nitride (TiN) is formed on the surface of a tool body made of various cubic boron nitride-based ultrahigh pressure sintered materials (hereinafter referred to as cBN-based sintered materials). Coated cBN-based sintered tools are known, which are formed by vapor-depositing a surface coating layer such as a layer, a composite nitride of Ti and Al ([Ti, Al] N) layer, and these include, for example, various steels and cast iron It is also known that it is used for cutting.

さらに、前記被覆cBN基焼結工具が、例えば、図1に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置に前記切削工具基体を装入し、ヒーターで装置内を、例えば、500℃に加熱した状態で、金属Tiや、それぞれ所定の組成を有するTi−Al合金からなるカソード電極(蒸発源)と、アノード電極との間に、例えば、90Aの電流を印加してアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、例えば、2Paの反応雰囲気とし、一方、前記切削工具基体には、例えば、−100Vのバイアス電圧を印加した条件で、前記切削工具基体の表面に、TiN層や[Ti,Al]N層など、所望の成分組成の層を蒸着形成することにより製造されることも知られている(例えば、特許文献1参照)。さらに、前記切削工具基体の表面に形成する硬質被覆層の表面粗さおよび残留応力を調整して耐摩耗性、耐欠損性を向上させた表面被覆切削工具も知られている(例えば、特許文献2参照)。   Further, the coated cBN-based sintered tool, for example, inserts the cutting tool base into an arc ion plating apparatus which is one type of physical vapor deposition apparatus schematically shown in FIG. For example, a current of 90 A is applied between a cathode electrode (evaporation source) made of metal Ti or a Ti—Al alloy having a predetermined composition and an anode electrode while being heated to 500 ° C. At the same time, an arc discharge is generated and nitrogen gas is introduced into the apparatus as a reaction gas to form a reaction atmosphere of 2 Pa, for example. On the other hand, for example, a bias voltage of −100 V is applied to the cutting tool base. In addition, it is also known that it is manufactured by vapor-depositing a layer having a desired component composition such as a TiN layer or a [Ti, Al] N layer on the surface of the cutting tool base (for example, a patent) Document reference 1). Furthermore, a surface-coated cutting tool is also known in which the wear resistance and fracture resistance are improved by adjusting the surface roughness and residual stress of the hard coating layer formed on the surface of the cutting tool base (for example, Patent Documents). 2).

特開2007−190668号公報JP 2007-190668 A 特開2006−263857号公報JP 2006-263857 A

近年の切削加工装置のFA化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は、通常の切削条件に加えて、より高速条件下での切削加工が要求される傾向にあるが、前記従来被覆工具においては、各種の鋼や鋳鉄を通常条件下で切削加工した場合に特段の問題は生じない。しかし、これを、合金鋼、軸受鋼の焼入れ材などのビッカース硬さ(Cスケール)50以上の高い硬さを有する高硬度鋼の高速連続切削あるいは高速断続切削に用いた場合には、cBN基焼結材料と硬質被覆層の付着強度が十分でないために、刃先に剥離が生じて、切削寿命が低下してしまうという課題があった。   In recent years, FA has been remarkable for cutting devices, but on the other hand, there is a strong demand for labor saving and energy saving and further cost reduction for cutting, and accordingly, cutting is performed at higher speed conditions in addition to normal cutting conditions. However, the conventional coated tool does not cause any particular problems when various types of steel and cast iron are cut under normal conditions. However, when this is used for high-speed continuous cutting or high-speed interrupted cutting of high-hardness steel having a high hardness of 50 or more Vickers hardness (C scale) such as a hardened material of alloy steel or bearing steel, Since the adhesion strength between the sintered material and the hard coating layer is not sufficient, there is a problem that the cutting edge is peeled off and the cutting life is shortened.

そこで、本発明者等は、上述のような観点から、特に合金鋼、軸受鋼の焼入れ材などの高硬度鋼の高速連続切削あるいは高速断続切削(以下、単に「高速切削」という)加工で、硬質被覆層が優れた耐剥離性を発揮する被覆cBN基焼結工具を開発すべく研究を行った結果、
a) 硬質被覆層を構成するTiとAlの複合窒化物([Ti1−XAl]N)層は、Alの含有割合X(原子比)の値が、0.30〜0.60の範囲内において所定の耐熱性、高温硬さおよび高温強度を有し、通常の切削加工条件下において必要とされる耐摩耗性は具備しているが、切刃部にきわめて大きな発熱を伴い、あるいは同時に、切刃部に断続的・衝撃的に大きな機械的負荷がかかる高硬度鋼の高速切削加工においては、TiとAlの複合窒化物([Ti1−XAl]N)層からなる硬質被覆層は高温強度が不足するために、切刃の境界部分に境界異常損傷が生じ、そして、これが原因となり被削材の仕上げ面精度を維持することができず、比較的短時間で使用寿命に達してしまうこと。
Therefore, the present inventors, in particular, in high-speed continuous cutting or high-speed intermittent cutting (hereinafter simply referred to as "high-speed cutting") of high hardness steel such as a hardened material of alloy steel and bearing steel from the above viewpoint, As a result of research to develop a coated cBN-based sintered tool in which the hard coating layer exhibits excellent peeling resistance,
a) composite nitride of Ti and Al constituting the hard layer ([Ti 1-X Al X ] N) layer, the value of the content X (atomic ratio) of Al, the 0.30 to 0.60 It has the prescribed heat resistance, high temperature hardness and high temperature strength within the range, and has the wear resistance required under normal cutting conditions, but with extremely large heat generation at the cutting edge, or at the same time, in the high-speed cutting of high-hardness steel according intermittent and impact to high mechanical loads on the cutting edge, the composite nitride of Ti and Al ([Ti 1-X Al X] N) rigid consisting layer Because the coating layer lacks high-temperature strength, abnormal boundary damage occurs at the boundary of the cutting edge, and this makes it impossible to maintain the finished surface accuracy of the work material, and the service life is relatively short. To reach.

(b)一方、Ti窒化物(TiN)層は優れた高温強度、耐衝撃強さを有しているが、耐熱性、高温硬さが十分とはいえないため、大きな発熱を伴い、大きな機械的負荷がかかる高硬度鋼の高速切削加工においては、硬質被覆層を、Ti窒化物(TiN)層のみで構成しても十分な耐摩耗性を具備するとはいえないこと。 (B) On the other hand, the Ti nitride (TiN) layer has excellent high-temperature strength and impact strength, but heat resistance and high-temperature hardness are not sufficient. In high-speed cutting of high-hardness steel subject to a heavy load, even if the hard coating layer is composed of only a Ti nitride (TiN) layer, it cannot be said to have sufficient wear resistance.

(c)上記(a)のAlの含有割合Xが30〜60原子%の耐熱性、高温硬さおよび所定の高温強度を有する[Ti1−XAl]N(ただし、原子比で、Xは0.30〜0.60)層(以下、薄層Aという)と、前記薄層Aに比べれば耐熱性、高温硬さは劣るものの、その一方で、すぐれた高温強度、耐衝撃強度を有するTi窒化物(TiN)層(以下、薄層Bという)を、それぞれの一層平均層厚を0.03〜0.3μmの薄層とした状態で交互積層して硬質被覆層の上部層を構成すると、この交互積層構造の硬質被覆層は、薄層Aのもつすぐれた耐熱性、高温硬さを備えるとともに、薄層Bのもつより一段とすぐれた高温強度と耐衝撃強度を相兼ね備えるようになり、その結果、耐剥離性が向上すること。
(d)さらに上記硬質皮膜層表面に、表面処理技術、例えば、ウエットブラストやショットピーニング処理等を行うことにより、硬質被覆層の逃げ面、すくい面およびホーニング部における表面粗さ、残留応力、ナノインデンテーション硬さをそれぞれ所定の値にすることができ、これによりチッピングの発生が抑制され、その結果、耐摩耗性が向上する。
以上(a)〜(d)に示される研究結果を得たのである。
(C) the content X is 30-60 atomic% of the heat resistance of Al (a), [Ti 1- X Al X] having a high-temperature hardness and predetermined high-temperature strength N (where, in terms of atomic ratio, X 0.30-0.60) layer (hereinafter referred to as thin layer A) and heat resistance and high temperature hardness are inferior to those of the thin layer A, but on the other hand, excellent high temperature strength and impact resistance strength. Ti nitride (TiN) layers (hereinafter referred to as “thin layer B”) are alternately laminated in a state where each layer has a thin average layer thickness of 0.03 to 0.3 μm to form an upper layer of the hard coating layer. When configured, the hard coating layer of this alternately laminated structure has the excellent heat resistance and high temperature hardness of the thin layer A, and also combines the high temperature strength and impact strength superior to those of the thin layer B. As a result, the peel resistance is improved.
(D) Furthermore, surface treatment techniques such as wet blasting and shot peening treatment are performed on the surface of the hard coating layer, so that the surface roughness, residual stress, The indentation hardness can be set to a predetermined value, thereby suppressing the occurrence of chipping, and as a result, the wear resistance is improved.
The research results shown in (a) to (d) above were obtained.

本発明は、上記の研究結果に基づいてなされたものであって、
立方晶窒化ほう素の含有量が50〜85容量%の立方晶窒化ほう素基高圧焼結体からなる切削工具の表面に硬質被覆層を蒸着形成した表面被覆立方晶窒化ほう素基超高圧焼結材料製切削工具において、
前記硬質被覆層が、
(a)1.5〜3μmの平均層厚を有する組成式:[Ti1−XAl]N(ただし、原子比で、Xは0.30〜0.60を示す)を満足するTiとAlの複合窒化物層からなる下部層と、
(b)組成式:[Ti1−XAl]N(ただし、原子比で、Xは0.30〜0.60を示す)を満足するTiとAlの複合窒化物層とTi窒化物(TiN)層とをそれぞれの層厚を平均層厚で0.03〜0.3μmとして交互に積層させ、さらに最外層に0.3〜2μmの平均層厚を有する組成式:[Ti1−XAl]N(ただし、原子比で、Xは0.30〜0.60を示す)を満足するTiとAlの複合窒化物層を形成させてなる合計平均層厚が0.5〜3μmの上部層とからなるとともに、
(c)硬質被覆層表面の表面粗さRaが、逃げ面とすくい面において0.08〜0.20μm、ホーニング部において、0.07〜0.10μmであり、
(d)硬質被覆層のTiAlNの残留応力が、逃げ面とすくい面において−1〜−2GPa、ホーニング部において、−1.5〜−3.0GPaであるとともに、残留応力(逃げ面、すくい面)>残留応力(ホーニング部)であり、
(e)最外層TiAlNの荷重100mgで測定したときのナノインデンテーション硬さが、逃げ面とすくい面において30〜38GPa、ホーニング部において33〜50GPaであるとともに、ナノインデンテーション硬さ(逃げ面、すくい面)<ナノインデンテーション硬さ(ホーニング部)であることを特徴とする耐剥離性、耐摩耗性を長期にわたって発揮する表面被覆立方晶窒化ほう素基超高圧焼結材料製切削工具に特徴を有するものである。
The present invention has been made based on the above research results,
Surface-coated cubic boron nitride-based ultra-high pressure firing with a hard coating layer deposited on the surface of a cutting tool comprising a cubic boron nitride-based high-pressure sintered body having a cubic boron nitride content of 50 to 85% by volume In the cutting tool made of binder material,
The hard coating layer is
(A) Ti satisfying the composition formula having an average layer thickness of 1.5 to 3 μm: [Ti 1-X Al X ] N (wherein X is 0.30 to 0.60 in atomic ratio) A lower layer composed of a composite nitride layer of Al;
(B) Composition formula: [Ti 1-X Al X ] N (wherein X is 0.30 to 0.60 in atomic ratio) and a Ti / Al composite nitride layer and Ti nitride ( TiN) layers are alternately stacked with an average layer thickness of 0.03 to 0.3 μm, and the outermost layer has an average layer thickness of 0.3 to 2 μm : [Ti 1-X The total average layer thickness formed by forming a composite nitride layer of Ti and Al satisfying Al X ] N (wherein X is 0.30 to 0.60 in atomic ratio) is 0.5 to 3 μm . With the upper layer,
(C) The surface roughness Ra of the hard coating layer surface is 0.08 to 0.20 μm at the flank and rake face, and 0.07 to 0.10 μm at the honing part ,
(D) The residual stress of TiAlN of the hard coating layer is −1 to −2 GPa at the flank and rake face, and −1.5 to −3.0 GPa at the honing part, and the residual stress (flank, rake face) )> Residual stress (honing part),
(E) The nanoindentation hardness when measured with a load of 100 mg of the outermost layer TiAlN is 30 to 38 GPa in the flank and rake face, 33 to 50 GPa in the honing part, and the nanoindentation hardness (flank, Rake face) <Nano-indentation hardness (honing part) Characteristic of cutting tools made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits long-term peeling resistance and wear resistance It is what has.

つぎに、本発明の被覆cBN基焼結工具において、これを構成する切削チップ本体のcBN基焼結材料の配合組成および硬質被覆層の組成、層厚を限定した理由を説明する。
(a)切削チップ本体のcBN基焼結材料の配合組成
立方晶窒化ほう素の含有量が85容量%を超えると窒化ほう素基自体の焼結性が低下し、その結果、切れ刃にチッピングが発生しやすくなる。一方、50容量%未満だと所望の優れた耐摩耗性を確保することができない。したがって、立方晶窒化ほう素の含有量を50〜85容量%と定めた。
Next, in the coated cBN-based sintered tool of the present invention, the reason why the blending composition of the cBN-based sintered material, the composition of the hard coating layer, and the layer thickness of the cutting tip body constituting the tool will be described.
(A) Composition of the cBN-based sintered material of the cutting tip body When the content of cubic boron nitride exceeds 85% by volume, the sinterability of the boron nitride group itself decreases, and as a result, chipping occurs on the cutting edge. Is likely to occur. On the other hand, when it is less than 50% by volume, desired excellent wear resistance cannot be ensured. Therefore, the content of cubic boron nitride is set to 50 to 85% by volume.

(b)硬質被覆層の下部層
硬質被覆層の下部層を構成するTiとAlの複合窒化物([Ti1−XAl]N)層におけるTi成分は高温強度の維持、Al成分は高温硬さと耐熱性の向上に寄与することから、硬質被覆層の下部層を構成するTiとAlの複合窒化物([Ti1−XAl]N)層は、所定の高温強度、高温硬さおよび耐熱性を具備する層であって、焼入れ鋼等の高硬度鋼の高速切削加工時における切刃部の耐摩耗性を確保する役割を基本的に担う。ただ、Alの含有割合Xが60原子%を超えると下部層の高温硬さと耐熱性は向上するものの、Ti含有割合の相対的な減少によって、高温強度が低下しチッピングを発生しやすくなり、一方、Alの含有割合Xが30原子%未満になると、高温硬さと耐熱性が低下し、その結果、耐摩耗性の低下がみられるようになることから、Alの含有割合Xの値を0.30〜0.60と定めた。
また、下部層の平均層厚が1.5μm未満では、自身のもつ耐熱性、高温硬さおよび高温強度を硬質被覆層に長期に亘って付与できず、工具寿命短命の原因となり、一方、その平均層厚が3μmを越えると、チッピングが発生し易くなることから、その平均層厚を1.5〜3μmと定めた。
(B) Ti component in the hard coating layer composite nitride of Ti and Al constituting the lower layer of the lower layer hard coating layer of ([Ti 1-X Al X ] N) layer is maintained in the high-temperature strength, Al component hot since contributing to the improvement of hardness and heat resistance, the composite nitride of Ti and Al constituting the lower layer of the hard coating layer ([Ti 1-X Al X ] N) layer a predetermined high-temperature strength, high-temperature hardness And a layer having heat resistance, and basically plays a role of ensuring the wear resistance of the cutting edge portion during high-speed cutting of hardened steel such as hardened steel. However, when the Al content ratio X exceeds 60 atomic%, the high temperature hardness and heat resistance of the lower layer are improved, but due to the relative decrease in the Ti content ratio, the high temperature strength is lowered and chipping is likely to occur. When the Al content ratio X is less than 30 atomic%, the high temperature hardness and heat resistance decrease, and as a result, the wear resistance decreases. 30 to 0.60.
Moreover, if the average layer thickness of the lower layer is less than 1.5 μm, the heat resistance, high temperature hardness and high temperature strength possessed by itself cannot be imparted to the hard coating layer over a long period of time, resulting in a short tool life. When the average layer thickness exceeds 3 μm, chipping is likely to occur. Therefore, the average layer thickness was set to 1.5 to 3 μm.

(c)硬質被覆層の上部層
(イ)上部層の薄層A
上部層の薄層Aを構成するTiとAlの複合窒化物([Ti1−XAl]N)層(ただし、原子比で、Xは0.30〜0.60を示す)は、下部層と実質同様の層であって、所定の耐熱性、高温硬さおよび高温強度を具備し、焼入れ鋼等の高硬度鋼の高速切削加工時における切刃部の耐摩耗性を確保する作用を有する。
(C) Upper layer of hard coating layer (a) Thin layer A of upper layer
Composite nitride of Ti and Al constituting the thin layer A of the upper layer ([Ti 1-X Al X ] N) layer (where an atomic ratio, X is shows the 0.30 to 0.60), the lower It is a layer that is substantially the same as the layer and has the prescribed heat resistance, high temperature hardness, and high temperature strength, and has the effect of ensuring the wear resistance of the cutting edge during high speed cutting of high hardness steel such as hardened steel. Have.

(ロ)上部層の薄層B
Ti窒化物(TiN)層からなる薄層Bは、薄層Aと薄層Bの交互積層構造からなる上部層において、いわば、薄層Aに不足する特性(高温強度、耐衝撃強さ)を補うことを主たる目的とするものである。
すでに述べたように、上部層の薄層Aは、所定の耐熱性、高温硬さと高温強度を有する層であるが、大きな機械的負荷が加わるとともに高熱発生を伴う高硬度鋼の高速切削加工では、その高温強度、耐衝撃強さが十分とはいえず、そのため、これらが原因となり切刃の刃先の境界部分に境界異常損傷を生じることになる。
そこで、優れた高温強度と耐衝撃強さを有するTi窒化物(TiN)層からなる薄層Bを、薄層Aと交互に配し交互積層構造を構成することで、隣接する薄層Aの高温強度不足、耐衝撃強さ不足を補い、上部層全体として、前記薄層Aのもつすぐれた耐熱性、高温硬さ、高温強度を何ら損なうことなく、前記薄層Bのもつより一段とすぐれた高温強度と耐衝撃強さを備えた上部層を形成する。
Ti窒化物(TiN)層は、すぐれた高温強度と耐衝撃強さを備え、大きな機械的負荷が加わるとともに高熱発生を伴う焼入れ鋼等の高硬度鋼の高速切削加工において、切刃の刃先の境界部分に生じる境界異常損傷の発生を防止する作用を有する。
(B) Thin layer B of the upper layer
The thin layer B composed of the Ti nitride (TiN) layer has the characteristics (high temperature strength, impact strength) that the thin layer A lacks in the upper layer composed of the alternately laminated structure of the thin layer A and the thin layer B. The main purpose is to supplement.
As already described, the upper layer thin layer A is a layer having predetermined heat resistance, high temperature hardness and high temperature strength. However, in the high-speed cutting of high hardness steel with high mechanical load and high mechanical load , The high-temperature strength and impact strength cannot be said to be sufficient, and as a result, boundary abnormal damage occurs at the boundary portion of the cutting edge of the cutting edge.
Therefore, the thin layer B composed of the Ti nitride (TiN) layer having excellent high-temperature strength and impact resistance strength is alternately arranged with the thin layer A to form an alternate laminated structure, thereby forming the adjacent thin layer A. Compensating for lack of high-temperature strength and impact strength, the upper layer as a whole was superior to that of the thin layer B without any loss of the excellent heat resistance, high-temperature hardness, and high-temperature strength of the thin layer A. Form an upper layer with high temperature strength and impact strength.
The Ti nitride (TiN) layer has excellent high-temperature strength and impact strength, and is used for high-speed cutting of hardened steel such as hardened steel with high mechanical load and high heat generation. It has the effect of preventing the occurrence of abnormal boundary damage occurring at the boundary portion.

(ハ)上部層の薄層Aと薄層Bの一層平均層厚
上部層の薄層Aと薄層B、それぞれの一層平均層厚が0.03μm未満ではそれぞれの薄層の備えるすぐれた特性を発揮することができず、この結果、上部層にすぐれた高温硬さ、高温強度および耐熱性と、より一段とすぐれた高温強度と耐衝撃強さを確保することができなくなり、また、それぞれの一層平均層厚が0.3μmを越えるとそれぞれの薄層がもつ欠点、すなわち、薄層Aであれば高温強度、耐衝撃強さの不足、薄層Bであれば耐熱性、高温硬さの不足が層内に局部的に現れるようになり、これが原因で、切刃刃先の剥離が発生したり、摩耗が急速に進行するようになることから、それぞれの一層平均層厚は0.03〜0.3μmと定めた。
すなわち、薄層Bは、上部層により一段とすぐれた高温強度と耐衝撃強さを付与するために設けたものであるが、薄層A、薄層Bそれぞれの一層平均層厚が0.03〜0.3μmの範囲内であれば、薄層Aと薄層Bの交互積層構造からなる上部層は、すぐれた耐熱性、高温硬さと、より一段とすぐれた高温強度、耐衝撃強さを具備したあたかも一つの層であるかのように作用するが、薄層A、薄層Bそれぞれの一層平均層厚が0.3μmを越えると、薄層Aの高温強度、耐衝撃強さの不足、あるいは、薄層Bの耐熱性、高温硬さ不足が層内に局部的に現れるようになり、上部層が全体として一つの層としての良好な特性を呈することができなくなるため、薄層A、薄層Bそれぞれの一層平均層厚を0.03〜0.3μmと定めた。
薄層Aと薄層Bの一層平均層厚を0.03〜0.3μmの範囲内とした交互積層構造からなる上部層を下部層表面に形成することにより、優れた耐熱性、高温硬さとともに、より一段とすぐれた高温強度と耐衝撃強さを兼ね備えた硬質被覆層が得られ、その結果、焼入れ鋼等の高硬度鋼の高速連続切削加工あるいは高速断続切削加工において、切刃の刃先の境界部分に生じる異常損傷の発生を防止することができる。
(ニ)上部層の最外層とその平均層厚
本発明の被覆cBN基焼結工具では、最外層TiAlNの層厚が0.3μm未満であると所望の耐摩耗性が得られない。また最外表面の被覆層の層厚の違いによって、それぞれ微妙に異なる干渉色を生じ、工具外観が不揃いとなることがある。このような場合には、上部層の最外層として、TiとAlの複合窒化物(TiAlN)層を厚く蒸着形成することによって、工具外観の不揃いを防止することができる。そしてそれは2μmまでの平均層厚があれば外観の不揃いを十分防止できることから、TiとAlの複合窒化物(TiAlN)層の平均層厚は0.3〜2μmと定める。
(ホ)上部層の合計平均層厚
また、上部層の合計平均層厚(即ち、交互積層構造を構成する薄層Aと薄層Bの各層の平均層厚を合計した層厚と最外層の平均層厚とを合計した層厚)は、0.5μm未満では、焼入れ鋼等の高硬度鋼の高速切削加工で必要とされる十分な耐熱性、高温硬さ、高温強度および耐衝撃強さを上部層に付与することができず、工具寿命短命の原因となり、一方その平均層厚が3μmを越えると、チッピングが発生し易くなることから、その合計平均層厚は0.5〜3μmとすることが好ましい。
(C) Upper layer thin layer A and thin layer B one layer average layer thickness Upper layer thin layer A and thin layer B, each layer average layer thickness is less than 0.03 μm, excellent characteristics of each thin layer As a result, it is impossible to ensure excellent high temperature hardness, high temperature strength and heat resistance in the upper layer, and even better high temperature strength and impact resistance. If the average layer thickness exceeds 0.3 μm, the disadvantages of each thin layer, that is, if it is thin layer A, it is insufficient in high-temperature strength and impact resistance, and if it is thin layer B, it has heat resistance and high-temperature hardness. Insufficient deficiency appears locally in the layer, which causes peeling of the cutting edge and rapid progress of wear. It was determined to be 0.3 μm.
That is, the thin layer B is provided to give higher temperature strength and impact strength superior to the upper layer, but the average layer thickness of each of the thin layer A and the thin layer B is 0.03 to 0.03. If it is within the range of 0.3 μm, the upper layer composed of the alternately laminated structure of the thin layer A and the thin layer B has excellent heat resistance and high temperature hardness, and further improved high temperature strength and impact resistance strength. It acts as if it is a single layer, but when the average layer thickness of each of the thin layers A and B exceeds 0.3 μm, the high temperature strength of the thin layer A, the impact strength is insufficient, or The heat resistance of the thin layer B and the lack of high-temperature hardness appear locally in the layer, and the upper layer cannot exhibit good characteristics as a single layer as a whole. The average layer thickness of each layer B was determined to be 0.03 to 0.3 μm.
Excellent heat resistance and high temperature hardness by forming on the lower layer surface an upper layer composed of an alternating laminated structure in which the average layer thickness of the thin layers A and B is in the range of 0.03 to 0.3 μm. In addition, a hard coating layer with even higher high-temperature strength and impact strength is obtained. As a result, the cutting edge of the cutting edge of high-hardness steel such as hardened steel can be cut at high-speed continuous cutting or high-speed intermittent cutting. Occurrence of abnormal damage occurring at the boundary portion can be prevented.
(D) The outermost layer of the upper layer and its average layer thickness In the coated cBN-based sintered tool of the present invention, if the layer thickness of the outermost layer TiAlN is less than 0.3 μm, desired wear resistance cannot be obtained. Further, depending on the thickness of the coating layer on the outermost surface, slightly different interference colors may be generated, resulting in uneven tool appearance. In such a case, unevenness of the appearance of the tool can be prevented by thickly depositing a Ti and Al composite nitride (TiAlN) layer as the outermost layer of the upper layer. Further, since it is possible to sufficiently prevent the appearance irregularity if the average layer thickness is up to 2 μm, the average layer thickness of the composite nitride (TiAlN) layer of Ti and Al is determined to be 0.3 to 2 μm.
(E) Total average layer thickness of the upper layer Further, the total average layer thickness of the upper layer (that is, the total thickness of the average layers of the thin layers A and B constituting the alternate laminated structure and the outermost layer) If the average layer thickness is less than 0.5 μm, sufficient heat resistance, high temperature hardness, high temperature strength and impact strength required for high speed cutting of hardened steel such as hardened steel Can not be applied to the upper layer, causing a short tool life, while if the average layer thickness exceeds 3 μm, chipping tends to occur, so the total average layer thickness is 0.5 to 3 μm. It is preferable to do.

(ヘ)硬質被覆層表面の表面粗さRa
硬質被覆層表面の表面粗さRaは、逃げ面およびすくい面においては、0.08μm未満とすることは製造コストの上昇につながるため好ましくなく、0.20μmを超えると皮膜表面の切削抵抗が大きくなりチッピングが発生しやすくなるため、0.08〜0.20μmと定めた。また、ホーニング部においては、0.07μm未満とすることは製造コストの上昇につながるため好ましくなく、0.10μmを超えると皮膜表面の切削抵抗が大きくなりチッピングが発生しやすくなるため、0.07〜0.10μmと定めた。
(ト)硬質被覆層のTiAlNの残留応力
硬質被覆層のTiAlNの残留応力は、逃げ面およびすくい面においては、−1GPa未満だと所望の硬さが得られず耐摩耗性が低下するため好ましくなく、−2GPaを超えると高負荷切削では皮膜内部あるいは皮膜と基体の界面にクラックが発生しチッピングしやすくなる。したがって、−1〜−2GPaと定めた。また、ホーニング部においては、−1.5GPa未満だと所望の硬さが得られず耐摩耗性が低下するため好ましくなく、−3.0GPaを超えると高負荷切削では皮膜内部あるいは皮膜と基体の界面にクラックが発生しチッピングしやすくなる。したがって、−1.5〜−3.0GPaと定めた。さらに、−1〜−2GPa、−1.5〜−3.0GPaであるとともに、逃げ面およびすくい面の残留応力の方が、ホーニング部の残留応力よりも小さいとホーニング部のチッピングが生じやすくなるため、残留応力(逃げ面、すくい面)>残留応力(ホーニング部)と定めた。逃げ面、すくい面とホーニング部の残留応力を上記の関係とすることにより、切削時に発生するホーニング部での応力を緩和することができ、切削時に最も切削抵抗が大きくなるホーニング部での剥離を抑制することができる。
(F) Surface roughness Ra of the hard coating layer surface
If the surface roughness Ra of the hard coating layer surface is less than 0.08 μm on the flank and rake surface, it is not preferable because it leads to an increase in manufacturing cost. If the surface roughness Ra exceeds 0.20 μm, the cutting resistance on the coating surface is large. Therefore, the thickness is set to 0.08 to 0.20 μm. Further, in the honing portion, it is not preferable that the thickness is less than 0.07 μm because it leads to an increase in manufacturing cost. If the thickness exceeds 0.10 μm, the cutting resistance of the coating surface increases and chipping is likely to occur. ˜0.10 μm.
(G) Residual stress of TiAlN of hard coating layer The residual stress of TiAlN of the hard coating layer is preferably less than -1 GPa on the flank and rake surface because desired hardness cannot be obtained and wear resistance is reduced. On the other hand, if it exceeds -2 GPa, cracking is likely to occur inside the film or at the interface between the film and the substrate during high-load cutting, and chipping is likely to occur. Therefore, it was set to −1 to −2 GPa. Further, in the honing portion, if it is less than -1.5 GPa, the desired hardness cannot be obtained and the wear resistance is lowered, so that it is not preferable. Cracks occur at the interface and chipping is likely to occur. Therefore, it was set to -1.5 to -3.0 GPa. Further, when the residual stress of the flank and the rake face is smaller than the residual stress of the honing portion, the honing portion is likely to be chipped. Therefore, it was determined that the residual stress (flank, rake face)> residual stress (honing part). By making the residual stress of the flank, rake face and honing part the above relationship, the stress in the honing part generated during cutting can be relieved, and peeling at the honing part where cutting resistance is greatest during cutting can be achieved. Can be suppressed.

(チ)最外層TiAlNの荷重100mgで測定したときのナノインデンテーション硬さ
最外層TiAlNの荷重100mgで測定したときのナノインデンテーション硬さは、逃げ面およびすくい面においては、30GPa未満では耐摩耗性向上効果が得られないため好ましくなく、38GPaを超えると耐摩耗性は向上するがチッピングが発生しやすくなる。したがって、30〜38GPaと定めた。また、ホーニング部においては、33GPa未満では耐摩耗性向上効果が得られないため好ましくなく、50GPaを超えると耐摩耗性は向上するがチッピングが発生しやすくなる。したがって、33〜50GPaと定めた。さらに、30〜38GPa、33〜50GPaであるとともに、逃げ面およびすくい面のナノインデンテーション硬さの方が、ホーニング部のナノインデンテーション硬さよりも大きいとホーニング部のチッピングが生じやすくなるため、ナノインデンテーション硬さ(逃げ面、すくい面)<ナノインデンテーション硬さ(ホーニング部)と定めた。逃げ面、すくい面とホーニング部のナノインデンテーション硬さを上記の関係とすることにより、切削時のホーニング部での衝撃を緩和することができ、切削時に最も切削抵抗が大きくなるホーニング部での剥離を抑制することができる。
(H) Nanoindentation hardness when measured with a load of 100 mg of the outermost layer TiAlN The nanoindentation hardness when measured with a load of 100 mg of the outermost layer of TiAlN is wear-resistant if it is less than 30 GPa on the flank and rake face. It is not preferable because the effect of improving the property cannot be obtained. If it exceeds 38 GPa, the wear resistance is improved, but chipping is likely to occur. Therefore, it was determined as 30 to 38 GPa. Further, in the honing portion, if it is less than 33 GPa, the effect of improving wear resistance is not obtained, which is not preferable. If it exceeds 50 GPa, wear resistance is improved but chipping is likely to occur. Therefore, it was determined as 33 to 50 GPa. Furthermore, since it is 30 to 38 GPa and 33 to 50 GPa, and the nanoindentation hardness of the flank and rake face is larger than the nanoindentation hardness of the honing part, chipping of the honing part is likely to occur. Indentation hardness (flank, rake face) <nanoindentation hardness (honing part). By making the flank, rake face, and nanoindentation hardness of the honing part the above relationship, the impact at the honing part during cutting can be mitigated, and at the honing part where cutting resistance is greatest during cutting. Peeling can be suppressed.

ここで、ナノインデンテーション硬さを求めるナノインデンテーション法について説明する。ナノインデンテーション法は、文献「トライボロジスト、第47巻、第3号、(2002)p177〜183」に詳しく説明されている硬さ試験の一種である。従来のヌープ硬度測定法やビッカース硬度測定法は、押し込み後の圧痕形状から硬度を求めているが、ナノインデンテーション法は、圧子の押し込み時の荷重と深さの関係から硬さやヤング率を求める方法である。   Here, the nanoindentation method for obtaining the nanoindentation hardness will be described. The nanoindentation method is a kind of hardness test described in detail in the document “Tribologist, Vol. 47, No. 3, (2002) p177-183”. Conventional Knoop hardness measurement method and Vickers hardness measurement method obtain hardness from indentation shape after indentation, but nanoindentation method obtains hardness and Young's modulus from the relationship between load and depth when indenter is indented. Is the method.

これらの試験方法を図3に示す。ビッカース硬度やヌープ硬度のような従来の硬度測定法では、光学顕微鏡で人が測定するので、圧痕形状が大きくなければ測定できなかった。従って、図3(B)に示すように、圧子30の押し込み荷重を大きくし、圧痕の幅Wを大きくして測定せざるを得なかった。ところが、このとき被覆膜20と基材10の両方に圧痕が付くので、基材の影響を受けた硬度が得られていた。   These test methods are shown in FIG. In the conventional hardness measurement methods such as Vickers hardness and Knoop hardness, since measurement is performed by a person using an optical microscope, measurement cannot be performed unless the indentation shape is large. Therefore, as shown in FIG. 3B, the indentation load of the indenter 30 is increased, and the width W of the indentation is increased, so that measurement is unavoidable. However, at this time, since both the coating film 20 and the base material 10 are indented, hardness affected by the base material has been obtained.

これに対して本発明では、ナノインデンテーション法により、基材の影響のない、被覆膜だけの硬度を求めた。具体的には、図3(A)に示すように圧子30を被覆膜20の層厚の約1/10以下の深さになるように荷重100mgで押し込んで、基材10の影響を取り除いて硬度の測定を行なう。例えば、1μmの最外層の硬度を測定する場合、押し込み深さは100nm以下とすることが望ましい。ナノインデンテーション法では機械的に深さを求めるので、上記のような小さな深さでも高精度の測定ができる。最大押し込み深さhmaxだけ圧子30を押し込み、hmaxと荷重から硬度などを算出する。荷重を除去すると、弾性変形分だけ元に戻るので、圧痕の深さはhmaxより浅くなる。 On the other hand, in the present invention, the hardness of only the coating film without the influence of the substrate was determined by the nanoindentation method. Specifically, as shown in FIG. 3 (A), the indenter 30 is pushed in with a load of 100 mg so as to have a depth of about 1/10 or less of the layer thickness of the coating film 20 to remove the influence of the base material 10. To measure the hardness. For example, when measuring the hardness of the outermost layer of 1 μm, the indentation depth is desirably 100 nm or less. In the nanoindentation method, the depth is obtained mechanically, so that high-precision measurement can be performed even at such a small depth. The indenter 30 is pushed in by the maximum pushing depth hmax, and the hardness is calculated from hmax and the load. When the load is removed, the original amount is restored by the amount of elastic deformation, so that the depth of the indentation is shallower than hmax.

ナノインデンテーション法による硬度は、被覆膜表面の凹凸や、平均粒子径、残留応力、被覆膜の厚さの影響を受けるので、従来の硬度とは異なり状況によってかなり値がばらつく。しかし、インデンテーション法による被覆切削工具の最外層の硬度は、切削性能に影響を与える因子の1つである。   The hardness by the nanoindentation method is affected by the unevenness of the coating film surface, the average particle diameter, the residual stress, and the thickness of the coating film, and therefore varies considerably depending on the situation, unlike the conventional hardness. However, the hardness of the outermost layer of the coated cutting tool by the indentation method is one of the factors affecting the cutting performance.

表面処理技術、例えば、ウエットブラストによる処理の場合には以下のような条件で行うとよい。
ブラストの噴射圧力を0.1〜0.15MPa、噴射時間を1〜5secとし、これを3〜10回繰り返す。圧力が0.1MPa未満、時間が1sec未満、あるいは繰り返し回数が2回以下だと、ブラストの効果が弱く、硬質被覆層の逃げ面、すくい面およびホーニング部における耐剥離性向上効果が得られず、また、圧力が0.15MPaより大きく、時間が5secより長く、繰り返し回数が10回を超えると、硬質被覆層の逃げ面、すくい面およびホーニング部における表面粗さ、残留応力、ナノインデンテーション硬さが所定の関係を得られないために耐剥離性向上効果が得られない。なお、ブラストに使用したスラリーは、アルミナ粒子を使用しており、粒子径が220〜1500番、スラリー濃度は15〜60wt%である。
In the case of a surface treatment technique such as wet blasting, the following conditions may be used.
The blast injection pressure is 0.1 to 0.15 MPa, the injection time is 1 to 5 sec, and this is repeated 3 to 10 times. If the pressure is less than 0.1 MPa, the time is less than 1 sec, or the number of repetitions is 2 times or less, the effect of blasting is weak, and the effect of improving the peel resistance on the flank, rake face and honing part of the hard coating layer cannot be obtained. In addition, when the pressure is greater than 0.15 MPa, the time is longer than 5 sec, and the number of repetitions exceeds 10, the surface roughness, residual stress, nanoindentation hardness on the flank, rake face and honing part of the hard coating layer Therefore, the effect of improving the peel resistance cannot be obtained. In addition, the slurry used for the blasting uses alumina particles, the particle diameter is 220 to 1500, and the slurry concentration is 15 to 60 wt%.

本発明の被覆cBN基焼結工具は、硬質被覆層が上部層と下部層からなり、硬質被覆層の上部層を薄層Aと薄層Bの交互積層構造とするとともに、硬質被覆層の表面粗さ、残留応力、ナノインデンテーション硬さを逃げ面、すくい面およびホーニング部のそれぞれについて規定することによってすぐれた耐熱性、高温硬さ、高温強度および耐衝撃強さを兼ね備えることから、特に合金鋼、軸受鋼の焼入れ材などのような高硬度鋼の、高熱発生を伴う、かつ、切刃部に断続的・衝撃的な機械的負荷が加わる高速連続切削あるいは高速断続切削という厳しい条件下の切削加工であっても、前記硬質被覆層に剥離の発生はなく、長期に亘って、すぐれた耐摩耗性を発揮するとともに、被削材のすぐれた仕上げ面精度を維持することができる。   In the coated cBN-based sintered tool of the present invention, the hard coating layer is composed of an upper layer and a lower layer, and the upper layer of the hard coating layer has an alternately laminated structure of thin layers A and B, and the surface of the hard coating layer. By specifying roughness, residual stress, and nanoindentation hardness for each of the flank, rake face, and honing part, it has excellent heat resistance, high temperature hardness, high temperature strength, and impact resistance strength. High-hardness steel such as hardened steel and bearing steel, etc. under severe conditions such as high-speed continuous cutting or high-speed interrupted cutting that generates high heat and causes intermittent and impact mechanical loads on the cutting edge. Even in the cutting process, the hard coating layer is not peeled off, exhibits excellent wear resistance over a long period of time, and maintains the finished surface accuracy of the work material.

本発明の被覆cBN基焼結工具を構成する硬質被覆層を形成するのに用いたアークイオンプレーティング装置を示し、(a)は概略平面図、(b)は概略正面図である。The arc ion plating apparatus used for forming the hard coating layer which comprises the coated cBN group sintered tool of this invention is shown, (a) is a schematic plan view, (b) is a schematic front view. 通常のアークイオンプレーティング装置の概略説明図である。It is a schematic explanatory drawing of a normal arc ion plating apparatus. (A)はナノインデンテーション法の説明図、(B)は従来の硬度測定法の説明図である。(A) is explanatory drawing of a nanoindentation method, (B) is explanatory drawing of the conventional hardness measuring method.

つぎに、本発明の被覆cBN基焼結工具を実施例により具体的に説明する。   Next, the coated cBN-based sintered tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも0.5〜4μmの範囲内の平均粒径を有する立方晶窒化硼素(cBN)粉末、窒化チタン(TiN)粉末、Al粉末、酸化アルミニウム(Al)粉末を用意し、これら原料粉末を表1に示される配合組成に配合し、ボールミルで80時間湿式混合し、乾燥した後、120MPaの圧力で直径:50mm×厚さ:1.5mmの寸法をもった圧粉体にプレス成形し、ついでこの圧粉体を、圧力:1Paの真空雰囲気中、900〜1300℃の範囲内の所定温度に60分間保持の条件で焼結して切刃片用予備焼結体とし、この予備焼結体を、別途用意した、Co:8質量%、WC:残りの組成、並びに直径:50mm×厚さ:2mmの寸法をもったWC基超硬合金製支持片と重ね合わせた状態で、通常の超高圧焼結装置に装入し、通常の条件である圧力:5GPa、温度:1200〜1400℃の範囲内の所定温度に保持時間:0.8時間の条件で超高圧焼結し、焼結後上下面をダイヤモンド砥石を用いて研磨し、ワイヤー放電加工装置にて一辺3mmの正三角形状に分割し、さらにCo:5質量%、TaC:5質量%、WC:残りの組成およびCIS規格SNGA120412の形状(厚さ:4.76mm×一辺長さ:12.7mmの正三角形)をもったWC基超硬合金製チップ本体のろう付け部(コーナー部)に、質量%で、Cu:26%、Ti:5%、Ni:2.5%、Ag:残りからなる組成を有するAg合金のろう材を用いてろう付けし、所定寸法に外周加工した後、切刃部に幅:0.13mm、角度:25°のホーニング加工を施し、さらに仕上げ研摩を施すことによりISO規格SNGA120412のチップ形状をもった工具基体A〜Jをそれぞれ製造した。 As raw material powders, cubic boron nitride (cBN) powder, titanium nitride (TiN) powder, Al powder, and aluminum oxide (Al 2 O 3 ) powder each having an average particle size in the range of 0.5 to 4 μm are prepared. These raw material powders were blended in the composition shown in Table 1, wet mixed with a ball mill for 80 hours, dried, and then compacted with a diameter of 50 mm × thickness: 1.5 mm at a pressure of 120 MPa. The green compact is then press-molded, and then the green compact is sintered in a vacuum atmosphere at a pressure of 1 Pa at a predetermined temperature within a range of 900 to 1300 ° C. for 60 minutes and pre-sintered for a cutting edge piece. This pre-sintered body was superposed on a separately prepared support piece made of WC-based cemented carbide having Co: 8 mass%, WC: remaining composition, and diameter: 50 mm × thickness: 2 mm. Normal ultra high pressure sintering It is charged into the apparatus, and is sintered under ultra high pressure at a predetermined temperature within the range of pressure: 5 GPa, temperature: 1200 to 1400 ° C., which is a normal condition, and holding time: 0.8 hours. Polishing with a diamond grindstone, dividing into 3 mm regular triangles with a wire electric discharge machine, Co: 5% by mass, TaC: 5% by mass, WC: remaining composition and shape of CIS standard SNGA12041 (thickness) The brazing part (corner part) of the WC-based cemented carbide chip body having a length of 4.76 mm × one side length: 12.7 mm is Cu: 26%, Ti: 5 %, Ni: 2.5%, Ag: Brazing using a brazing material of an Ag alloy having the remaining composition, and after outer peripheral processing to a predetermined dimension, the width of the cutting edge is 0.13 mm, angle: 25 ° Honing and finishing The tool substrate A~J having a tip shape of ISO standard SNGA120412 by performing grinding was produced, respectively.

(a)ついで、上記の工具基体A〜Jのそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるアークイオンプレーティング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着し、一方側のカソード電極(蒸発源)として、上部層の薄層B形成用金属Tiを、また、他方側のカソード電極(蒸発源)として、それぞれ表3に示される目標組成に対応した成分組成をもった上部層の薄層Aおよび下部層形成用Ti−Al合金を前記回転テーブルを挟んで対向配置し、
(b)まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、Arガスを導入して、0.7Paの雰囲気とすると共に、前記テーブル上で自転しながら回転する工具基体に−200Vの直流バイアス電圧を印加し、もって工具基体表面をアルゴンイオンによってボンバード洗浄し、
(c)装置内に反応ガスとして窒素ガスを導入して3Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する工具基体に−100Vの直流バイアス電圧を印加し、かつ前記薄層Aおよび下部層形成用Ti−Al合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって前記工具基体の表面に、表3に示される目標組成および目標層厚の[Ti,Al]N層を硬質被覆層の下部層として蒸着形成し、
(d)ついで装置内に導入する反応ガスとしての窒素ガスの流量を調整して2Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する工具基体に−10〜−100Vの範囲内の所定の直流バイアス電圧を印加した状態で、前記薄層B形成用金属Tiのカソード電極とアノード電極との間に50〜200Aの範囲内の所定の電流を流してアーク放電を発生させて、前記工具基体の表面に所定層厚の薄層Bを形成し、前記薄層B形成後、アーク放電を停止し、代って前記薄層Aおよび下部層形成用Ti−Al合金のカソード電極とアノード電極間に同じく50〜200Aの範囲内の所定の電流を流してアーク放電を発生させて、所定層厚の薄層Aを形成した後、アーク放電を停止し、再び前記薄層B形成用金属Tiのカソード電極とアノード電極間のアーク放電による薄層Bの形成と、前記薄層Aおよび下部層形成用Ti−Al合金のカソード電極とアノード電極間のアーク放電による薄層Aの形成を交互に繰り返し行い、もって前記工具基体の表面に、層厚方向に沿って表3に示される目標組成および一層目標層厚の薄層Aと薄層Bの交互積層からなる上部層を同じく表3に示される合計層厚(平均層厚)で蒸着形成する。
(e)さらに、ブラスト圧力:0.1〜0.15MPa、ブラスト時間:2〜5秒、繰り返し回数:5〜10回、入射角:すくい面に対して40〜50°、粒子径:220〜1500番、スラリー濃度:15〜60質量%、粒の種類:Alのブラスト条件で断続的にブラスト処理を行うことにより、本発明被覆cBN基焼結工具1〜10をそれぞれ製造した。ブラスト条件を表2に示す。このような断続的なブラスト処理を行うことにより、皮膜内部および積層部の各層間に疲労が蓄積せず、その結果、クラックが存在しない状態で、皮膜表面の平滑性が高く、かつ、硬質皮膜であるTiAlNの残留応力を増加させることで硬さが向上した皮膜を作成することができる。表3に皮膜表面の表面粗さRa、皮膜のTiAlNの残留応力、最外層TiAlNの荷重100mgで測定したときのナノインデンテーション硬さを、逃げ面、すくい面およびホーニング部のそれぞれについて示す。
(A) Next, each of the tool bases A to J is ultrasonically cleaned in acetone and dried, and then in a radial direction from the central axis on the rotary table in the arc ion plating apparatus shown in FIG. Are mounted along the outer periphery at a predetermined distance, and the upper layer thin layer B forming metal Ti is used as the cathode electrode (evaporation source) on one side, and the cathode electrode (evaporation source) on the other side. The upper layer thin layer A and the lower layer forming Ti-Al alloy having the component compositions corresponding to the target compositions shown in Table 3 are arranged opposite to each other with the rotary table interposed therebetween,
(B) First, while the inside of the apparatus is evacuated and kept at a vacuum of 0.1 Pa or less, the inside of the apparatus is heated to 500 ° C. with a heater, and then Ar gas is introduced to create an atmosphere of 0.7 Pa. A DC bias voltage of −200 V is applied to the tool base that rotates while rotating on the table, and the tool base surface is bombarded with argon ions.
(C) Nitrogen gas is introduced as a reaction gas into the apparatus to form a reaction atmosphere of 3 Pa, a DC bias voltage of −100 V is applied to the tool base rotating while rotating on the rotary table, and the thin layer A current of 100 A is allowed to flow between A and the lower layer forming Ti—Al alloy and the anode electrode to generate an arc discharge, so that the target composition and target layer thickness shown in Table 3 are formed on the surface of the tool base. Ti, Al] N layer is deposited as a lower layer of the hard coating layer,
(D) Next, the flow rate of nitrogen gas as a reaction gas introduced into the apparatus is adjusted to obtain a reaction atmosphere of 2 Pa, and within a range of −10 to −100 V on the tool base that rotates while rotating on the rotary table. In a state where a predetermined DC bias voltage is applied, a predetermined current within a range of 50 to 200 A is passed between the cathode electrode and the anode electrode of the thin layer B forming metal Ti to generate arc discharge, A thin layer B having a predetermined layer thickness is formed on the surface of the tool base, and after the thin layer B is formed, the arc discharge is stopped. Instead, the cathode electrode of the thin layer A and the lower layer forming Ti—Al alloy Similarly, a predetermined current in the range of 50 to 200 A is passed between the anode electrodes to generate arc discharge to form a thin layer A having a predetermined layer thickness. Then, the arc discharge is stopped and the thin layer B is formed again. Metal Ti Catho The thin layer B is formed by arc discharge between the electrode and the anode electrode, and the thin layer A is formed by arc discharge between the cathode electrode and the anode electrode of the Ti-Al alloy for forming the thin layer A and the lower layer alternately. Thus, on the surface of the tool base, the upper composition composed of the alternate lamination of the thin layer A and the thin layer B having the target composition shown in Table 3 along with the layer thickness direction along the layer thickness direction is also shown in Table 3. Vapor deposition is performed with a layer thickness (average layer thickness).
(E) Further, blasting pressure: 0.1 to 0.15 MPa, blasting time: 2 to 5 seconds, number of repetitions: 5 to 10 times, incident angle: 40 to 50 ° with respect to the rake face, particle size: 220 to The present invention coated cBN-based sintered tools 1 to 10 were manufactured by intermittently blasting under No. 1500, slurry concentration: 15 to 60% by mass, and grain type: Al 2 O 3 blasting conditions. The blasting conditions are shown in Table 2. By performing such an intermittent blasting process, fatigue does not accumulate inside the film and between each layer of the laminated part, and as a result, the film surface has high smoothness and a hard film in the absence of cracks. By increasing the residual stress of TiAlN, a film with improved hardness can be created. Table 3 shows the surface roughness Ra of the coating surface, the residual stress of TiAlN of the coating, and the nanoindentation hardness when measured with a load of 100 mg of the outermost layer TiAlN for each of the flank, rake face and honing part.

また、比較の目的で、(a)上記の工具基体A〜Jのそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるアークイオンプレーティング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着し、一方側のカソード電極(蒸発源)として、上部層の薄層B形成用金属Tiを、また、他方側のカソード電極(蒸発源)として、それぞれ表4に示される目標組成に対応した成分組成をもった上部層の薄層Aおよび下部層形成用Ti−Al合金を前記回転テーブルを挟んで対向配置し、
(b)まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、Arガスを導入して、0.7Paの雰囲気とすると共に、前記テーブル上で自転しながら回転する工具基体に−200Vの直流バイアス電圧を印加し、もって工具基体表面をアルゴンイオンによってボンバード洗浄し、
(c)装置内に反応ガスとして窒素ガスを導入して3Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する工具基体に−100Vの直流バイアス電圧を印加し、かつ前記薄層Aおよび下部層形成用Ti−Al合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって前記工具基体の表面に、表4に示される目標組成および目標層厚の[Ti,Al]N層を硬質被覆層の下部層として蒸着形成し、
(d)ついで装置内に導入する反応ガスとしての窒素ガスの流量を調整して2Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する工具基体に−10〜−100Vの範囲内の所定の直流バイアス電圧を印加した状態で、前記薄層B形成用金属Tiのカソード電極とアノード電極との間に50〜200Aの範囲内の所定の電流を流してアーク放電を発生させて、前記工具基体の表面に所定層厚の薄層Bを形成し、前記薄層B形成後、アーク放電を停止し、代って前記薄層Aおよび下部層形成用Ti−Al合金のカソード電極とアノード電極間に同じく50〜200Aの範囲内の所定の電流を流してアーク放電を発生させて、所定層厚の薄層Aを形成した後、アーク放電を停止し、再び前記薄層B形成用金属Tiのカソード電極とアノード電極間のアーク放電による薄層Bの形成と、前記薄層Aおよび下部層形成用Ti−Al合金のカソード電極とアノード電極間のアーク放電による薄層Aの形成を交互に繰り返し行い、もって前記工具基体の表面に、層厚方向に沿って表4に示される目標組成および一層目標層厚の薄層Aと薄層Bの交互積層からなる上部層を同じく表4に示される合計層厚(平均層厚)で蒸着形成することにより、従来被覆cBN基焼結工具1〜10をそれぞれ製造した。従来被覆cBN基焼結工具の硬質被覆層は、いずれも[Ti,Al]N層とTiN層の積層構造からなっており、本発明品と異なり、表面粗さ、残留応力、硬さが制御されていない。
For comparison purposes, (a) each of the tool bases A to J is ultrasonically cleaned in acetone and dried, on a rotary table in the arc ion plating apparatus shown in FIG. Attached along the outer peripheral portion at a predetermined distance in the radial direction from the central axis, the upper layer thin layer B forming metal Ti is used as one side cathode electrode (evaporation source), and the other side cathode electrode As the (evaporation source), the upper layer thin layer A and the lower layer forming Ti—Al alloy each having a component composition corresponding to the target composition shown in Table 4 are arranged opposite to each other with the rotary table interposed therebetween,
(B) First, while the inside of the apparatus is evacuated and kept at a vacuum of 0.1 Pa or less, the inside of the apparatus is heated to 500 ° C. with a heater, and then Ar gas is introduced to create an atmosphere of 0.7 Pa. A DC bias voltage of −200 V is applied to the tool base that rotates while rotating on the table, and the tool base surface is bombarded with argon ions.
(C) Nitrogen gas is introduced as a reaction gas into the apparatus to form a reaction atmosphere of 3 Pa, a DC bias voltage of −100 V is applied to the tool base rotating while rotating on the rotary table, and the thin layer A current of 100 A is passed between A and the lower layer forming Ti—Al alloy and the anode electrode to generate an arc discharge, so that the target composition and target layer thickness shown in Table 4 are formed on the surface of the tool base. Ti, Al] N layer is deposited as a lower layer of the hard coating layer,
(D) Next, the flow rate of nitrogen gas as a reaction gas introduced into the apparatus is adjusted to obtain a reaction atmosphere of 2 Pa, and within a range of −10 to −100 V on the tool base that rotates while rotating on the rotary table. In a state where a predetermined DC bias voltage is applied, a predetermined current within a range of 50 to 200 A is passed between the cathode electrode and the anode electrode of the thin layer B forming metal Ti to generate arc discharge, A thin layer B having a predetermined layer thickness is formed on the surface of the tool base, and after the thin layer B is formed, the arc discharge is stopped. Instead, the cathode electrode of the thin layer A and the lower layer forming Ti—Al alloy Similarly, a predetermined current in the range of 50 to 200 A is passed between the anode electrodes to generate arc discharge to form a thin layer A having a predetermined layer thickness. Then, the arc discharge is stopped and the thin layer B is formed again. Metal Ti Catho The thin layer B is formed by arc discharge between the electrode and the anode electrode, and the thin layer A is formed by arc discharge between the cathode electrode and the anode electrode of the Ti-Al alloy for forming the thin layer A and the lower layer alternately. Thus, on the surface of the tool base, the upper layer composed of the alternate lamination of the thin layer A and the thin layer B having the target composition and the single target layer thickness along the layer thickness direction along the layer thickness direction is also shown in Table 4 Conventionally coated cBN-based sintered tools 1 to 10 were produced by vapor deposition with a layer thickness (average layer thickness). The hard coating layer of the conventional coated cBN-based sintered tool has a laminated structure of [Ti, Al] N layer and TiN layer. Unlike the present invention product, the surface roughness, residual stress and hardness are controlled. It has not been.

この結果得られた各種の被覆cBN基焼結工具の切削チップ本体を構成するcBN基焼結材料について、その組織を走査型電子顕微鏡を用いて観察したところ、いずれの切削チップ本体も、実質的に分散相を形成するcBN相と連続相を形成するTiN相との界面に超高圧焼結反応生成物が介在した組織を示した。   Regarding the cBN-based sintered material constituting the cutting tip body of the various coated cBN-based sintered tools obtained as a result, the structure was observed using a scanning electron microscope. 1 shows a structure in which an ultrahigh-pressure sintering reaction product is present at the interface between the cBN phase forming the dispersed phase and the TiN phase forming the continuous phase.

さらに、同表面被覆層について、その組成を透過型電子顕微鏡を用いてのエネルギー分散型X線分析法により測定したところ、それぞれ目標組成と実質的に同じ組成を示し、また、その平均層厚を透過型電子顕微鏡を用いて断面測定したところ、いずれも目標層厚と実質的に同じ平均値(5ヶ所の平均値)を示した。   Further, when the composition of the surface coating layer was measured by energy dispersive X-ray analysis using a transmission electron microscope, the composition showed substantially the same composition as the target composition, and the average layer thickness was When the cross section was measured using a transmission electron microscope, all showed the average value (average value of five places) substantially the same as the target layer thickness.

つぎに、上記の各種の被覆cBN基焼結工具を、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆cBN基焼結工具1〜10および従来被覆cBN基焼結工具1〜10について切削条件A〜Cで高速連続切削試験を実施した。
[切削条件A]
被削材:JIS・SCM415の浸炭焼入れ材(硬さ:HRC61)の丸棒、
切削速度: 295m/min.、
切り込み: 0.23mm、
送り: 0.13mm/rev.、
切削時間: 6分、
の条件での合金鋼の乾式連続高速切削加工試験(通常の切削速度は200m/min.)、
[切削条件B]
被削材:JIS・SCr420の浸炭焼入れ材(硬さ:HRC60)の丸棒、
切削速度: 270m/min.、
切り込み: 0.23mm、
送り: 0.13m/rev.、
切削時間: 6分、
の条件でのクロム鋼の乾式連続高速切削加工試験(通常の切削速度は160m/min.)、
[切削条件C]
被削材:JIS・SUJ2の焼入れ材(硬さ:HRC61)の丸棒、
切削速度: 240m/min.、
切り込み: 0.23mm、
送り: 0.13mm/rev.、
切削時間: 6分、
の条件での軸受鋼の乾式連続高速切削加工試験(通常の切削速度は150m/min.)、
を行い、いずれの切削加工試験でも切刃の逃げ面摩耗幅(mm)と被削材の仕上げ面精度(JIS B0601−2001による算術平均粗さ(Raμm)を測定した。この測定結果を表5に示した。
Next, according to the present invention, the coated cBN-based sintered tools 1 to 10 and the conventional coated cBN-based sintered tool, in a state where all the above-mentioned coated cBN-based sintered tools are screwed to the tip of the tool steel tool with a fixing jig. A high-speed continuous cutting test was performed on the cBN-based sintered tools 1 to 10 under the cutting conditions A to C.
[Cutting conditions A]
Work material: JIS SCM415 carburized quenching material (hardness: HRC61) round bar,
Cutting speed: 295 m / min. ,
Cutting depth: 0.23mm,
Feed: 0.13 mm / rev. ,
Cutting time: 6 minutes,
Dry continuous high-speed cutting test of alloy steel under normal conditions (normal cutting speed is 200 m / min.),
[Cutting conditions B]
Work material: JIS / SCr420 carburized quenching material (hardness: HRC60) round bar,
Cutting speed: 270 m / min. ,
Cutting depth: 0.23mm,
Feed: 0.13 m / rev. ,
Cutting time: 6 minutes,
Dry continuous high speed cutting test of chromium steel under the conditions of (normal cutting speed is 160 m / min.),
[Cutting conditions C]
Work material: JIS / SUJ2 hardened material (hardness: HRC61) round bar,
Cutting speed: 240 m / min. ,
Cutting depth: 0.23mm,
Feed: 0.13 mm / rev. ,
Cutting time: 6 minutes,
Dry continuous high speed cutting test of bearing steel under the conditions of (normal cutting speed is 150 m / min.),
In each of the cutting tests, the flank wear width (mm) of the cutting blade and the finished surface accuracy of the work material (arithmetic average roughness (Raμm) according to JIS B0601-2001) were measured. It was shown to.

表2〜4に示される結果から、本発明被覆cBN基焼結工具は、いずれも硬質被覆層が、一層平均層厚がそれぞれ0.03〜0.3μmの薄層Aと薄層Bの交互積層構造と平均層厚が0.3〜2μmで[Ti,Al]N層からなる最外層を有する平均層厚(合計層厚)0.5〜3μmの上部層と、1.5〜3μmの平均層厚を有する下部層とからなり、前記下部層がすぐれた耐熱性、高温強度とすぐれた高温硬さを備え、さらに、前記上部層がすぐれた耐熱性、高温硬さとより一段とすぐれた高温強度と耐衝撃強さを備えているので、合金鋼、軸受鋼の焼入れ鋼等の高硬度鋼の高速切削加工でも、境界異常損傷およびチッピングの発生なく、すぐれた耐摩耗性を発揮するとともに、被削材のすぐれた仕上げ面精度を確保することができるのに対して、従来被覆cBN基焼結工具は、いずれも硬質被覆層が[Ti,Al]N層とTiN層の積層構造からなっており、本発明品と異なり、表面粗さ、残留応力、硬さが制御されておらず、その結果、特に硬質被覆層の高温強度、耐衝撃強さ不足が原因で、刃先に境界異常損傷やチッピングが発生し、被削材の仕上げ面精度を維持することができないばかりか、比較的短時間で使用寿命に至ることが明らかである。   From the results shown in Tables 2 to 4, the coated cBN-based sintered tool of the present invention has a hard coating layer, and alternates between a thin layer A and a thin layer B each having an average layer thickness of 0.03 to 0.3 μm. An upper layer having an average layer thickness (total layer thickness) of 0.5 to 3 μm and an outer layer composed of a [Ti, Al] N layer having a laminated structure and an average layer thickness of 0.3 to 2 μm, and 1.5 to 3 μm The lower layer has an average layer thickness, and the lower layer has excellent heat resistance, high temperature strength and excellent high temperature hardness, and the upper layer has excellent heat resistance, high temperature hardness and higher temperature. Because it has strength and impact strength, it exhibits excellent wear resistance without causing abnormal boundary damage and chipping even in high-speed cutting of hardened steel such as alloy steel and hardened steel of bearing steel, It is possible to ensure excellent finished surface accuracy of the work material. In the conventional coated cBN-based sintered tool, the hard coating layer has a laminated structure of a [Ti, Al] N layer and a TiN layer. Unlike the present invention product, surface roughness, residual stress, hardness As a result, boundary damage and chipping may occur at the cutting edge due to insufficient high-temperature strength and impact strength of the hard coating layer, and maintain the finished surface accuracy of the work material. It is obvious that not only can it be done, but it will reach its service life in a relatively short time.

上述のように、本発明の被覆cBN基焼結工具は、各種の鋼や鋳鉄などの通常の切削条件での切削加工は勿論のこと、特に合金鋼、軸受鋼の焼入れ材等のような高硬度鋼の、高熱発生を伴い切刃部にきわめて大きな断続的・衝撃的な機械的負荷が加わる高速連続切削あるいは高速断続切削であっても、前記硬質被覆層がすぐれた耐境界異常損傷性を発揮し、すぐれた被削材仕上げ面精度を長期に亘って維持するとともにすぐれた耐摩耗性をも示すものであるから、切削加工装置の高性能化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated cBN-based sintered tool of the present invention can be used not only for cutting under normal cutting conditions such as various steels and cast iron, but particularly for high-strength materials such as hardened materials of alloy steel and bearing steel. Even in high-speed continuous cutting or high-speed intermittent cutting in which hard steel has high heat generation and a very large intermittent / impact mechanical load is applied to the cutting edge, the hard coating layer has excellent boundary abnormal damage resistance. Demonstrates excellent work material finish surface accuracy over a long period of time and exhibits excellent wear resistance. Furthermore, it can cope with cost reduction sufficiently satisfactorily.

Claims (1)

立方晶窒化ほう素の含有量が50〜85容量%の立方晶窒化ほう素基高圧焼結体からなる切削工具の表面に硬質被覆層を蒸着形成した表面被覆立方晶窒化ほう素基超高圧焼結材料製切削工具において、
前記硬質被覆層が、
(a)1.5〜3μmの平均層厚を有する組成式:[Ti1−XAl]N(ただし、原子比で、Xは0.30〜0.60を示す)を満足するTiとAlの複合窒化物層からなる下部層と、
(b)組成式:[Ti1−XAl]N(ただし、原子比で、Xは0.30〜0.60を示す)を満足するTiとAlの複合窒化物層とTi窒化物(TiN)層とをそれぞれの層厚を平均層厚で0.03〜0.3μmとして交互に積層させ、さらに最外層に0.3〜2μmの平均膜厚を有する組成式:[Ti1−XAl]N(ただし、原子比で、Xは0.30〜0.60を示す)を満足するTiとAlの複合窒化物層を形成させてなる合計平均膜厚が0.5〜3μmの上部層とからなるとともに、
(c)硬質被覆層表面の表面粗さRaが、逃げ面とすくい面において0.08〜0.20μm、ホーニング面において0.07〜0.10μmであり、
(d)硬質被覆層のTiAlNの残留応力が、逃げ面とすくい面において−1〜−2GPa、ホーニング部において−1.5〜−3.0GPaであるとともに、残留応力(逃げ面、すくい面)>残留応力(ホーニング部)であり、
(e)最外層TiAlNの荷重100mgで測定したときのナノインデンテーション硬さが、逃げ面とすくい面において30〜38GPa、ホーニング部において33〜50GPaであるとともに、ナノインデンテーション硬さ(逃げ面、すくい面)<ナノインデンテーション硬さ(ホーニング部)であることを特徴とする耐剥離性、耐摩耗性を長期にわたって発揮する表面被覆立方晶窒化ほう素基超高圧焼結材料製切削工具。
Surface-coated cubic boron nitride-based ultra-high pressure firing with a hard coating layer deposited on the surface of a cutting tool comprising a cubic boron nitride-based high-pressure sintered body having a cubic boron nitride content of 50 to 85% by volume In the cutting tool made of binder material,
The hard coating layer is
(A) Ti satisfying the composition formula having an average layer thickness of 1.5 to 3 μm: [Ti 1-X Al X ] N (wherein X is 0.30 to 0.60 in atomic ratio) A lower layer composed of a composite nitride layer of Al;
(B) Composition formula: [Ti 1-X Al X ] N (wherein X is 0.30 to 0.60 in atomic ratio) and a Ti / Al composite nitride layer and Ti nitride ( TiN) layers are alternately laminated with an average layer thickness of 0.03 to 0.3 μm, and the outermost layer has an average film thickness of 0.3 to 2 μm: [Ti 1-X The total average film thickness formed by forming a composite nitride layer of Ti and Al satisfying Al X ] N (wherein X represents 0.30 to 0.60 in atomic ratio) is 0.5 to 3 μm. With the upper layer,
(C) The surface roughness Ra of the hard coating layer surface is 0.08 to 0.20 μm on the flank and rake face, and 0.07 to 0.10 μm on the honing face,
(D) The residual stress of TiAlN of the hard coating layer is −1 to −2 GPa in the flank and rake face, and −1.5 to −3.0 GPa in the honing part, and the residual stress (flank and rake face). > Residual stress (honing part),
(E) The nanoindentation hardness when measured with a load of 100 mg of the outermost layer TiAlN is 30 to 38 GPa in the flank and rake face, 33 to 50 GPa in the honing part, and the nanoindentation hardness (flank, Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits long-term peeling resistance and wear resistance characterized by rake face) <nanoindentation hardness (honing part).
JP2010243772A 2010-10-29 2010-10-29 Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material with excellent peeling resistance Expired - Fee Related JP5574277B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010243772A JP5574277B2 (en) 2010-10-29 2010-10-29 Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material with excellent peeling resistance
CN201110329048.3A CN102528104B (en) 2010-10-29 2011-10-26 Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material having high peeling resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010243772A JP5574277B2 (en) 2010-10-29 2010-10-29 Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material with excellent peeling resistance

Publications (2)

Publication Number Publication Date
JP2012096304A true JP2012096304A (en) 2012-05-24
JP5574277B2 JP5574277B2 (en) 2014-08-20

Family

ID=46336818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010243772A Expired - Fee Related JP5574277B2 (en) 2010-10-29 2010-10-29 Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material with excellent peeling resistance

Country Status (2)

Country Link
JP (1) JP5574277B2 (en)
CN (1) CN102528104B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012232348A (en) * 2011-04-28 2012-11-29 Mitsubishi Materials Corp Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material, having superior peeling resistance
KR20200000546A (en) * 2018-06-25 2020-01-03 두산중공업 주식회사 Composite coating layer having excellent erosion resistance and turbine component comprising the same
WO2020079953A1 (en) * 2018-10-15 2020-04-23 住友電工ハードメタル株式会社 Cutting tool
WO2020079952A1 (en) * 2018-10-15 2020-04-23 住友電工ハードメタル株式会社 Cutting tool
JP2022006231A (en) * 2020-06-24 2022-01-13 株式会社タンガロイ Coating and cutting tool
CN114173969A (en) * 2019-10-10 2022-03-11 住友电工硬质合金株式会社 Cutting tool

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5757232B2 (en) * 2011-12-26 2015-07-29 三菱マテリアル株式会社 Surface coated cutting tool with excellent chipping resistance and wear resistance due to hard coating layer
JP6198142B2 (en) * 2014-03-26 2017-09-20 三菱マテリアル株式会社 Cutting tool made of cubic boron nitride super high pressure sintered material
CN104952971B (en) * 2014-03-28 2017-09-19 三星钻石工业股份有限公司 Groove processing instrument and the scoring device for being provided with the groove processing instrument
JP6696242B2 (en) * 2015-03-19 2020-05-20 三菱マテリアル株式会社 Drilling tip and drilling bit
JP7318662B2 (en) * 2018-12-03 2023-08-01 株式会社プロテリアル Covered mold for hot stamping
WO2021149636A1 (en) * 2020-01-20 2021-07-29 京セラ株式会社 Coated tool
US20240051033A1 (en) * 2022-08-10 2024-02-15 Iscar, Ltd. CUTTING TOOL WITH A TiAlN COATING HAVING RAKE AND RELIEF SURFACES WITH DIFFERENT RESIDUAL STRESSES

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6416302A (en) * 1987-07-10 1989-01-19 Sumitomo Electric Industries Coated cemented carbide tool
JP2005254411A (en) * 2004-03-12 2005-09-22 Sumitomo Electric Hardmetal Corp Coated cutting tool
US20060127671A1 (en) * 2004-12-14 2006-06-15 Korloy Inc. Cutting tool having high toughness and abrasion resistance
JP2007054923A (en) * 2005-08-25 2007-03-08 Kyocera Corp Throw-away tip
JP2007190668A (en) * 2005-12-22 2007-08-02 Mitsubishi Materials Corp Cutting tool made of surface-coated cubic boron nitride-based ultrahigh pressure sintered material exhibiting excellent finished surface accuracy in high-speed machining of high hard steel over long period of time

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08206902A (en) * 1994-12-01 1996-08-13 Sumitomo Electric Ind Ltd Sintered body tip for cutting and its manufacture
CN100408237C (en) * 2002-01-21 2008-08-06 三菱麻铁里亚尔株式会社 Surface-coated cutting tool member having coating layer exhibiting superior wear resistance during high speed cutting operation and method for forming hard coating layer on surface of cutting tool
JP2006263857A (en) * 2005-03-24 2006-10-05 Kyocera Corp Surface coated cutting tool and manufacturing method for it

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6416302A (en) * 1987-07-10 1989-01-19 Sumitomo Electric Industries Coated cemented carbide tool
JP2005254411A (en) * 2004-03-12 2005-09-22 Sumitomo Electric Hardmetal Corp Coated cutting tool
US20060127671A1 (en) * 2004-12-14 2006-06-15 Korloy Inc. Cutting tool having high toughness and abrasion resistance
JP2007054923A (en) * 2005-08-25 2007-03-08 Kyocera Corp Throw-away tip
JP2007190668A (en) * 2005-12-22 2007-08-02 Mitsubishi Materials Corp Cutting tool made of surface-coated cubic boron nitride-based ultrahigh pressure sintered material exhibiting excellent finished surface accuracy in high-speed machining of high hard steel over long period of time

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012232348A (en) * 2011-04-28 2012-11-29 Mitsubishi Materials Corp Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material, having superior peeling resistance
KR20200000546A (en) * 2018-06-25 2020-01-03 두산중공업 주식회사 Composite coating layer having excellent erosion resistance and turbine component comprising the same
KR102083417B1 (en) * 2018-06-25 2020-05-22 두산중공업 주식회사 Composite coating layer having excellent erosion resistance and turbine component comprising the same
WO2020079953A1 (en) * 2018-10-15 2020-04-23 住友電工ハードメタル株式会社 Cutting tool
WO2020079952A1 (en) * 2018-10-15 2020-04-23 住友電工ハードメタル株式会社 Cutting tool
CN114173969A (en) * 2019-10-10 2022-03-11 住友电工硬质合金株式会社 Cutting tool
JP2022006231A (en) * 2020-06-24 2022-01-13 株式会社タンガロイ Coating and cutting tool

Also Published As

Publication number Publication date
JP5574277B2 (en) 2014-08-20
CN102528104B (en) 2015-07-22
CN102528104A (en) 2012-07-04

Similar Documents

Publication Publication Date Title
JP5574277B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material with excellent peeling resistance
JP4985919B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that provides excellent long-term surface accuracy in high-speed cutting of hardened steel
JP5005262B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent surface finish accuracy over a long period of time in high-speed cutting of hardened steel
JP5995080B2 (en) Surface coated cutting tool made of cubic boron nitride based ultra-high pressure sintered material with excellent crack resistance
JP5686253B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material with excellent peeling resistance
JP5402507B2 (en) Surface coated cutting tool
JP4883475B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent wear resistance in high-speed cutting of hardened steel
JP4883480B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent fracture resistance in high-speed continuous cutting of hard difficult-to-cut materials
JP4807575B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent wear resistance in high-speed cutting of hardened steel
JP4883473B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent chipping resistance in hard cutting of hardened steel
JP4985914B2 (en) Cutting tool made of super-high pressure sintered material with surface-coated cubic boron nitride based on excellent finish surface accuracy
JP2009255282A (en) Cutting tool formed of surface-coated cubic boron nitride base ultra high-pressure sintered material
JP4883478B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent finished surface accuracy over a long period of time in high-speed continuous cutting of hard difficult-to-cut materials
JP4883472B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent chipping resistance in hard cutting of hardened steel
JP4883477B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent fracture resistance in high-speed intermittent cutting of high-hardness steel
JP2011051060A (en) Surface coating cutting tool
JP4883471B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent chipping resistance in hard cutting of hardened steel
JP4883479B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent fracture resistance in high-speed intermittent cutting of high-hardness steel
JP2008018505A (en) Cutting tool made of surface coated cubic boron nitride-base very high pressure sintered material exhibiting excellent chipping resistance in high-speed cutting hard material hard to cut
JP2008302439A (en) Cutting tool made of surface coated cubic boron nitride-base very high pressure sintered material
JP4748445B2 (en) Cutting tool made of super-high-pressure sintered material with surface-coated cubic boron nitride that exhibits excellent chipping resistance with a hard coating layer in intermittent cutting of high-hardness steel
JP4748446B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent chipping resistance when cutting hard difficult-to-cut materials
JP2010228087A (en) Cutting tool formed of surface-coated cubic boron nitride base ultra-high pressure sintered material
JP4883474B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent wear resistance in high-speed cutting of hardened steel
JP6172519B2 (en) Surface-coated cutting tool that exhibits excellent chipping resistance over a long period of time when cutting hardened steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140609

R150 Certificate of patent or registration of utility model

Ref document number: 5574277

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140622

LAPS Cancellation because of no payment of annual fees