JP5402507B2 - Surface coated cutting tool - Google Patents
Surface coated cutting tool Download PDFInfo
- Publication number
- JP5402507B2 JP5402507B2 JP2009239153A JP2009239153A JP5402507B2 JP 5402507 B2 JP5402507 B2 JP 5402507B2 JP 2009239153 A JP2009239153 A JP 2009239153A JP 2009239153 A JP2009239153 A JP 2009239153A JP 5402507 B2 JP5402507 B2 JP 5402507B2
- Authority
- JP
- Japan
- Prior art keywords
- coating layer
- hard coating
- residual stress
- cbn
- cutting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005520 cutting process Methods 0.000 title claims description 59
- 239000011247 coating layer Substances 0.000 claims description 73
- 239000000463 material Substances 0.000 claims description 18
- 239000000758 substrate Substances 0.000 claims description 17
- 238000009826 distribution Methods 0.000 claims description 15
- 230000007423 decrease Effects 0.000 claims description 7
- 229910052751 metal Inorganic materials 0.000 claims description 7
- 239000002184 metal Substances 0.000 claims description 7
- 150000004767 nitrides Chemical class 0.000 claims description 7
- 229910052782 aluminium Inorganic materials 0.000 claims description 6
- 229910052582 BN Inorganic materials 0.000 claims description 5
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 claims description 5
- 229910052710 silicon Inorganic materials 0.000 claims description 5
- 229910052719 titanium Inorganic materials 0.000 claims description 5
- 229910052804 chromium Inorganic materials 0.000 claims description 4
- 239000010410 layer Substances 0.000 description 20
- 230000000052 comparative effect Effects 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- 229910000831 Steel Inorganic materials 0.000 description 7
- 239000010408 film Substances 0.000 description 7
- 239000000843 powder Substances 0.000 description 7
- 239000010959 steel Substances 0.000 description 7
- 239000002344 surface layer Substances 0.000 description 7
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 239000012495 reaction gas Substances 0.000 description 6
- 238000007733 ion plating Methods 0.000 description 5
- 238000000691 measurement method Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 239000002356 single layer Substances 0.000 description 5
- 239000010409 thin film Substances 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- 239000011230 binding agent Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000005422 blasting Methods 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 238000005240 physical vapour deposition Methods 0.000 description 4
- 238000005245 sintering Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 229910000760 Hardened steel Inorganic materials 0.000 description 3
- 229910010037 TiAlN Inorganic materials 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 3
- 238000005219 brazing Methods 0.000 description 3
- 239000011651 chromium Substances 0.000 description 3
- 230000035515 penetration Effects 0.000 description 3
- 229910001018 Cast iron Inorganic materials 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 229910003460 diamond Inorganic materials 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 229910001316 Ag alloy Inorganic materials 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- -1 aluminum compound Chemical class 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
Landscapes
- Physical Vapour Deposition (AREA)
- Cutting Tools, Boring Holders, And Turrets (AREA)
Description
本発明は、切刃に衝撃的な負荷が断続的に作用する断続切削加工において、硬質被覆層がすぐれた耐チッピング性を備えることにより、長期の使用に亘ってすぐれた切削性能を発揮する立方晶窒化ほう素(以下、cBNで示す)基超高圧焼結材料製表面被覆切削工具(以下、cBN被覆工具という)に関する。 The present invention provides a cube that exhibits excellent cutting performance over a long period of use by providing a hard coating layer with excellent chipping resistance in intermittent cutting where an impact load is intermittently applied to the cutting edge. The present invention relates to a surface-coated cutting tool (hereinafter referred to as a cBN-coated tool) made of crystalline boron nitride (hereinafter referred to as cBN) based ultra-high pressure sintered material.
従来、鋼、鋳鉄等の鉄系被削材の切削加工には、被削材との親和性の低い工具材料として、cBN基超高圧焼結材料を用いることが知られており、耐摩耗性の向上、工具寿命の改善等の観点から、cBN基超高圧焼結材料の表面に硬質被覆層を被覆形成したcBN被覆工具も良く知られている。
例えば、特許文献1に示すように、cBN基超高圧焼結材料を工具基体(以下、cBN工具基体という)とし、その表面に4a族金属の炭化物、窒化物、炭窒化物、炭酸化物、酸窒化物、酸化物、Al2O3等の1種の単層あるいは2種以上の複層からなり、層中の残留応力が−0.2〜0.2GPa、cBN工具基体の硬質相の残留応力が−0.5〜0GPaである、高温耐塑性変形性、耐摩耗性、耐欠損性に優れたcBN被覆工具が知られている。
また、特許文献2に示すように、cBN工具基体に4a、5a、6a族金属、Al及びSiから選ばれる少なくとも1種の金属元素の炭化物、窒化物、硼化物、酸化物等からなる硬質被覆層中に、0.1〜3GPaの圧縮残留応力を存在させた耐摩耗性、耐欠損性に優れたcBN被覆工具も知られている。
また、硬質被覆層中の応力の分布については、特許文献3に示すように、cBN工具基体表面に形成された硬質被覆層の厚さ方向に圧縮応力が変化しており、硬質被覆層の最表層で最小の圧縮応力を有し、被覆層中間点で極大の圧縮応力を示し、被覆層中間点からcBN工具基体表面までは一定の圧縮応力である応力分布を有するcBN被覆工具も知られており、このcBN被覆工具によれば、靭性、耐摩耗性、耐チッピング性が改善されることが知られている。
Conventionally, it is known to use cBN-based ultra-high pressure sintered material as a tool material having low affinity with a work material for cutting of steel-based work materials such as steel and cast iron. From the viewpoints of improving the tool life and improving the tool life, a cBN-coated tool in which a hard coating layer is formed on the surface of a cBN-based ultrahigh pressure sintered material is also well known.
For example, as shown in Patent Document 1, a cBN-based ultrahigh-pressure sintered material is used as a tool base (hereinafter referred to as a cBN tool base), and a carbide, nitride, carbonitride, carbonate, or acid of group 4a metal is formed on the surface thereof. It consists of one single layer of nitride, oxide, Al 2 O 3 or two or more types of multiple layers, the residual stress in the layer is -0.2 to 0.2 GPa, and the residual hard phase of the cBN tool base A cBN-coated tool having a stress of −0.5 to 0 GPa and excellent in high-temperature plastic deformation resistance, wear resistance, and fracture resistance is known.
Further, as shown in Patent Document 2, a hard coating made of carbide, nitride, boride, oxide, etc. of at least one metal element selected from 4a, 5a, 6a group metals, Al and Si is applied to the cBN tool base. There is also known a cBN-coated tool having excellent wear resistance and fracture resistance in which a compressive residual stress of 0.1 to 3 GPa is present in the layer.
In addition, as shown in Patent Document 3, the stress distribution in the hard coating layer changes in the compressive stress in the thickness direction of the hard coating layer formed on the surface of the cBN tool base. Also known is a cBN coated tool having a minimum compressive stress at the surface layer, a maximum compressive stress at the midpoint of the coating layer, and a stress distribution that is a constant compressive stress from the midpoint of the coating layer to the cBN tool substrate surface. According to this cBN-coated tool, it is known that toughness, wear resistance, and chipping resistance are improved.
近年の切削加工装置のFA化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は、通常の切削条件に加えて、より厳しい条件下での切削加工がおこなわれる傾向にあるが、上記の従来被覆工具においては、通常条件下での切削加工に用いた場合には特段の問題は生じない。しかし、これを、焼入れ鋼等の高硬度鋼の高速断続切削に用いた場合には、切刃には断続的に繰り返し衝撃的な負荷が作用するが、cBN工具基体と硬質被覆層との付着強度が十分でないため、これが原因で、チッピング、欠損を生じやすく、そのため、比較的短時間で使用寿命に至り、長期の使用に亘って、十分な耐摩耗性を発揮することができない。
したがって、長期の使用に亘って、すぐれた切削性能を発揮させるためには、cBN工具基体と硬質被覆層の付着強度を向上させることが大きな課題となっている。
In recent years, the use of FA for cutting machines has been remarkable. On the other hand, there are strong demands for labor saving and energy saving and further cost reduction for cutting, and as a result, cutting has become more severe in addition to normal cutting conditions. Although there is a tendency to perform cutting work below, the above-described conventional coated tool does not cause any particular problem when used for cutting under normal conditions. However, when this is used for high-speed intermittent cutting of hardened steel such as hardened steel, an impact load is intermittently applied to the cutting edge, but adhesion between the cBN tool base and the hard coating layer occurs. Since the strength is not sufficient, chipping and chipping are likely to occur due to this, so that the service life is reached in a relatively short time, and sufficient wear resistance cannot be exhibited over a long period of use.
Therefore, in order to exhibit excellent cutting performance over a long period of use, it has become a big issue to improve the adhesion strength between the cBN tool base and the hard coating layer.
本発明者等は、cBN基超高圧焼結材料を工具基体材料とし、硬質被覆層として、Ti,Cr,Al及びSiから選ばれる少なくとも1種の金属元素の窒化物、炭窒化物のうちの一種の単層あるいは二種以上の複層を形成したcBN被覆工具において、cBN工具基体と硬質被覆層間の付着強度向上を図るため鋭意研究したところ、次のような知見を得た。 The present inventors use a cBN-based ultrahigh pressure sintered material as a tool base material, and as a hard coating layer, a nitride of at least one metal element selected from Ti, Cr, Al and Si, and carbonitride In a cBN coated tool in which one kind of single layer or two or more kinds of multilayers are formed, intensive research was conducted to improve the adhesion strength between the cBN tool base and the hard coating layer, and the following findings were obtained.
まず、本発明者等は、cBN工具基体に、例えば、PVDで硬質被覆層を蒸着形成してcBN被覆工具を作製し、これを、高速断続切削加工に供したところ、硬質被覆層内に存在する残留応力によってcBN工具基体に引張応力が働き、これが付着強度の低下を引き起こし、チッピング、欠損等を発生させる原因の一つであることを突き止めた。
そこで、cBN工具基体と硬質被覆層それぞれの残留応力の値およびcBN工具基体の残留応力と硬質被覆層の残留応力との相関についてさらに調査したところ、cBN工具基体と硬質被覆層の界面における両者の残留応力がそれぞれ−2GPa以下であって、かつ、両者の差の値が0.5GPa以内である場合には、cBN工具基体と硬質被覆層間の付着強度が大きく向上することを見出したのである。
さらに、cBN工具基体と硬質被覆層の界面における両者の残留応力をそれぞれ−2GPa以下とし、かつ、両者の差の値を0.5GPa以内とした上で、硬質被覆層中の残留応力が、硬質被覆層の表面に向かうにしたがって絶対値で次第に減少するような残留応力分布を構成すると、高速断続切削加工時の衝撃的負荷により発生した亀裂の硬質被覆層内への進展を抑制できるようになるため、より一段と、チッピング、欠損の発生を防止し得るようになることを見出したのである。
したがって、cBN工具基体の残留応力及び硬質被覆層の残留応力を所定値以上とし、さらに、cBN工具基体の残留応力と硬質被覆層のそれとの差を所定値以内に抑えたcBN被覆工具、あるいは、これに加えてさらに、硬質被覆層の表面に向かうにしたがって残留応力が絶対値で次第に減少するような残留応力分布を形成せしめたcBN被覆工具は、すぐれた付着強度を有することとなり、その結果として、焼入れ鋼等の高硬度被削材の高速断続切削加工において、チッピング、欠損、剥離等の異常損傷を発生することはなく、優れた耐摩耗性を発揮するとともに、工具寿命の延命化が図られることを見出したのである。
First, the present inventors prepared a cBN-coated tool by vapor-depositing a hard coating layer with, for example, PVD on a cBN tool base, and when this was subjected to high-speed intermittent cutting, it was present in the hard coating layer. It has been determined that tensile stress acts on the cBN tool base due to the residual stress, which causes a decrease in adhesion strength and is one of the causes of chipping, chipping and the like.
Therefore, further investigation was made on the residual stress values of the cBN tool substrate and the hard coating layer and the correlation between the residual stress of the cBN tool substrate and the residual stress of the hard coating layer. It has been found that when the residual stress is −2 GPa or less and the difference between the two is within 0.5 GPa, the adhesion strength between the cBN tool base and the hard coating layer is greatly improved.
Furthermore, the residual stress in the interface between the cBN tool base and the hard coating layer is set to −2 GPa or less, and the difference between the two is set to within 0.5 GPa. By constructing a residual stress distribution that gradually decreases in absolute value as it goes to the surface of the coating layer, it becomes possible to suppress the progress of cracks caused by impact loads during high-speed interrupted cutting into the hard coating layer. Therefore, it has been found that the occurrence of chipping and defects can be further prevented.
Therefore, the residual stress of the cBN tool base and the residual stress of the hard coating layer are set to a predetermined value or more, and the difference between the residual stress of the cBN tool base and the hard coating layer is kept within a predetermined value, or In addition to this, the cBN coated tool in which the residual stress distribution is formed so that the residual stress gradually decreases in absolute value toward the surface of the hard coating layer has excellent adhesion strength, and as a result. In high-speed intermittent cutting of hard materials such as hardened steel, it does not cause abnormal damage such as chipping, chipping, and peeling, and exhibits excellent wear resistance and extends tool life. I found out that
本発明は、上記知見に基づいてなされたものであって、
「(1) 立方晶窒化ほう素基超高圧焼結材料からなる工具基体表面に、硬質被覆層を蒸着形成した表面被覆切削工具であって、
前記工具基体表面と硬質被覆層との界面における、工具基体中の残留応力の値および硬質被覆層中の残留応力の値がいずれも−2GPa以下の残留応力であって、かつ、工具基体中の残留応力と硬質被覆層中の残留応力の差の値が、0.5GPa以下であることを特徴とする表面被覆切削工具。
(2) 前記硬質被覆層が、Ti,Cr,Al及びSiから選ばれる少なくとも1種の金属元素の窒化物、炭窒化物のうちの一種の単層あるいは二種以上の複層で構成されていることを特徴とする前記(1)に記載の表面被覆切削工具。
(3) 前記硬質被覆層中の残留応力の値が、硬質被覆層の表面に向かって絶対値で次第に小さくなる残留応力分布を示すことを特徴とする前記(1)または(2)に記載の表面被覆切削工具。」
を特徴とするものである。
The present invention has been made based on the above findings,
“(1) A surface-coated cutting tool in which a hard coating layer is vapor-deposited on the surface of a tool substrate made of a cubic boron nitride-based ultrahigh-pressure sintered material,
The residual stress value in the tool base and the residual stress value in the hard coating layer at the interface between the tool base surface and the hard coating layer are both residual stresses of −2 GPa or less, and in the tool base A surface-coated cutting tool characterized in that the difference between the residual stress and the residual stress in the hard coating layer is 0.5 GPa or less.
(2) The hard coating layer is composed of a single layer of at least one metal element nitride or carbonitride selected from Ti, Cr, Al and Si, or a multilayer of two or more types. The surface-coated cutting tool according to (1) above, wherein
(3) The residual stress distribution in the hard coating layer exhibits a residual stress distribution that gradually decreases in absolute value toward the surface of the hard coating layer, as described in (1) or (2) above Surface coated cutting tool. "
It is characterized by.
本発明について、以下に説明する。 The present invention will be described below.
立方晶窒化ほう素基超高圧焼結材料製工具基体(cBN工具基体):
超高圧焼結材料製工具基体中の窒化ほう素(cBN)は、きわめて硬質で、焼結材料中で分散相を形成し、そしてこの分散相によって耐摩耗性の向上に寄与する。
cBN工具基体中の他の構成成分、例えば、結合相等としては、周期律表VIa、Va、VIa族元素の窒化物、炭化物、硼化物、酸化物ならびにこれらの固溶体からなる群の中から選択された少なくとも1種とアルミニウム化合物のセラミックス系結合材を用いることができるが、その他の成分が含有されることを何ら妨げるものではない。
Cubic boron nitride based ultra-high pressure sintered material tool substrate (cBN tool substrate):
Boron nitride (cBN) in the tool base made of ultra-high pressure sintered material is extremely hard, forms a dispersed phase in the sintered material, and contributes to improvement of wear resistance by this dispersed phase.
The other constituents in the cBN tool substrate, for example, the binder phase, are selected from the group consisting of nitrides, carbides, borides, oxides, and solid solutions of group VIa, Va, and VIa group elements. In addition, a ceramic binder of at least one kind and an aluminum compound can be used, but it does not prevent any other components from being contained.
cBN工具基体の表面(即ち、硬質被覆層との界面)に所定の残留応力を形成させるためには、例えば、以下の方法を用いることができる。
通常の焼結法によってcBN工具基体を作製した後、例えば、PVDにより硬質被覆層を成膜する際の前処理として、cBN工具基体に対してアルミナ粒子によるウエットブラスト処理を施し、その噴射圧力、時間を調整することにより、cBN工具基体表面から最大5μmの深さにおける残留応力の値をコントロールすることができる。
In order to form a predetermined residual stress on the surface of the cBN tool base (that is, the interface with the hard coating layer), for example, the following method can be used.
After producing a cBN tool base by a normal sintering method, for example, as a pretreatment when forming a hard coating layer by PVD, the cBN tool base is subjected to wet blasting treatment with alumina particles, By adjusting the time, it is possible to control the value of the residual stress at a maximum depth of 5 μm from the surface of the cBN tool substrate.
表1に、cBN粒径が2μm以下であるcBN工具基体の表面にウエットブラスト処理を行った場合、cBN工具基体表面に形成される残留応力の値の一例を示す。
表1によれば、ウエットブラストの噴射圧力を0〜0.24GPa、噴射時間を0〜60secの間で調整することによって、cBN工具基体表面に形成される残留応力の値は、−0.27〜−3.38GPaの範囲にコントロールできることがわかる。
cBN工具基体表面に形成される残留応力の値は、cBN工具基体中に含有されるTiN相について、XRDを利用した「2θ−sin2ψ法」によって測定し、算出した。
Table 1 shows an example of the value of the residual stress formed on the surface of the cBN tool substrate when wet blasting is performed on the surface of the cBN tool substrate having a cBN particle size of 2 μm or less.
According to Table 1, the residual stress value formed on the surface of the cBN tool base by adjusting the spray pressure of the wet blast between 0 and 0.24 GPa and the spray time between 0 and 60 sec is −0.27. It turns out that it can control to the range of --3.38 GPa.
The value of the residual stress formed on the surface of the cBN tool substrate was calculated by measuring the TiN phase contained in the cBN tool substrate by the “2θ-sin 2 ψ method” using XRD.
硬質被覆層:
硬質被覆層としては、Ti,Cr,Al及びSiから選ばれる少なくとも1種の金属元素の窒化物、炭窒化物のうちの一種の単層あるいは二種以上の複層から構成することができ、例えば、TiN層、TiAlN層を用いることができる。
硬質被覆層の成膜は、例えば、アークイオンプレーティング(AIP)として知られるPVD法によって行うことができ、特に、成膜条件の内のバイアス条件の調整によって、成膜される硬質被覆層中の残留応力の値をコントロールすることができる。
Hard coating layer:
The hard coating layer can be composed of a single layer of at least one metal element selected from Ti, Cr, Al and Si, a single layer of carbonitrides or a multilayer of two or more types, For example, a TiN layer or a TiAlN layer can be used.
The hard coating layer can be formed by, for example, the PVD method known as arc ion plating (AIP), and in particular, in the hard coating layer to be formed by adjusting the bias condition among the film forming conditions. The residual stress value of can be controlled.
表2に、AIPによって成膜したTiAlN層中の残留応力の値と、バイアス条件との関連を示す。
なお、AIP成膜の条件は、
反応ガス種 : N2、
反応ガス圧 :3 Pa、
アーク電流値:110 A、
ヒータ温度 :750 ℃、
目標膜厚 :2 μm、
である。
表2によれば、バイアス電圧を−25〜−200Vの間で調整することによって、硬質被覆層(TiAlN層)中に形成される残留応力の値は、−0.9〜−4.9GPaの範囲にコントロールできることがわかる。
また、硬質被覆層中の残留応力の値は、cBN工具基体表面の残留応力測定の場合と同様、層中のTiN相について、XRDを利用した「2θ−sin2ψ法」によって測定することができる。
Table 2 shows the relationship between the residual stress value in the TiAlN layer formed by AIP and the bias condition.
The conditions for AIP film formation are as follows:
Reaction gas species: N 2 ,
Reaction gas pressure: 3 Pa,
Arc current value: 110 A,
Heater temperature: 750 ° C
Target film thickness: 2 μm
It is.
According to Table 2, by adjusting the bias voltage between −25 and −200 V, the value of the residual stress formed in the hard coating layer (TiAlN layer) is −0.9 to −4.9 GPa. It can be seen that the range can be controlled.
Further, the value of the residual stress in the hard coating layer can be measured by the “2θ-sin 2 ψ method” using XRD for the TiN phase in the layer as in the case of the residual stress measurement on the surface of the cBN tool base. it can.
硬質被覆層中の残留応力を、硬質被覆層の表面に向かって絶対値で次第に小さくなる残留応力分布形態とするためには、表2から明らかなように、成膜の進行とともにバイアス電圧を次第に小さくしていけば良い。
なお、層厚方向に対して残留応力の値が変化する場合には、残留応力分布の値は、X線の侵入深さを変化させることにより、層中の深さ別残留応力を測定する、通称「薄膜応力測定法」により測定することができる。
In order to make the residual stress in the hard coating layer into a residual stress distribution form that gradually decreases in absolute value toward the surface of the hard coating layer, as is apparent from Table 2, the bias voltage is gradually increased with the progress of film formation. You can make it smaller.
When the value of residual stress changes in the layer thickness direction, the residual stress distribution value is measured by changing the depth of penetration of X-rays to measure the residual stress according to depth in the layer. It can be measured by the so-called “thin film stress measurement method”.
本発明では、cBN工具基体表面と硬質被覆層との界面における、cBN工具基体中の残留応力の値および硬質被覆層中の残留応力の値をいずれも−2GPa以下の残留応力としているが、いずれか、あるいは、両者の残留応力の値が−2GPaを超える場合には、切削加工時に、硬質被覆層表面に亀裂が発生した場合、膜中へ亀裂が進展しやすくなり、チッピングが生じ易くなる。
また、cBN工具基体中の残留応力と硬質被覆層中の残留応力の差の値が、0.5GPaを超えると、切削加工時に、cBN工具基体と硬質被覆層との界面が脆弱化して、被覆層の剥離が生じ易くなり耐チッピング性が悪化してしまう。
したがって、本発明では、cBN工具基体表面と硬質被覆層との界面における、cBN工具基体中の残留応力の値および硬質被覆層中の残留応力の値をいずれも−2GPa以下の残留応力と定め、また、cBN工具基体中の残留応力と硬質被覆層中の残留応力の差の値は、0.5GPa以下と定めた。
In the present invention, the residual stress value in the cBN tool substrate and the residual stress value in the hard coating layer at the interface between the cBN tool substrate surface and the hard coating layer are both set to −2 GPa or less. Alternatively, when the residual stress value of both exceeds −2 GPa, if a crack occurs on the surface of the hard coating layer during the cutting process, the crack tends to progress into the film and chipping easily occurs.
In addition, if the difference between the residual stress in the cBN tool base and the residual stress in the hard coating layer exceeds 0.5 GPa, the interface between the cBN tool base and the hard coating layer becomes brittle during the cutting process. Peeling of the layer is likely to occur and chipping resistance is deteriorated.
Therefore, in the present invention, the value of the residual stress in the cBN tool base and the value of the residual stress in the hard coating layer at the interface between the cBN tool base surface and the hard coating layer are both determined as a residual stress of −2 GPa or less. The value of the difference between the residual stress in the cBN tool base and the residual stress in the hard coating layer was set to 0.5 GPa or less.
上記のとおり、本発明の表面被覆切削工具は、cBN工具基体と硬質被覆層との界面における、工具基体中の残留応力の値および硬質被覆層中の残留応力の値がいずれも−2GPa以下の残留応力であって、かつ、工具基体中の残留応力と硬質被覆層中の残留応力の差の値が、0.5GPa以下であることから、これを、切刃に断続的・繰り返しの衝撃的な負荷が作用する高硬度鋼の高速断続切削に用いた場合でも、チッピング、欠損、剥離等の異常損傷を発生することはなく、さらに、硬質被覆層中の残留応力分布を、硬質被覆層の表面に向かって絶対値で次第に小さくした場合には、より一段と優れた耐チッピング性、耐欠損性を示し、長期の使用に亘って優れた耐摩耗性を発揮するものである。 As described above, in the surface-coated cutting tool of the present invention, the residual stress value in the tool base and the residual stress value in the hard coating layer at the interface between the cBN tool base and the hard coating layer are both −2 GPa or less. Since the residual stress and the difference between the residual stress in the tool base and the residual stress in the hard coating layer is 0.5 GPa or less, this is applied to the cutting blade intermittently and repeatedly. Even when used for high-speed interrupted cutting of high-hardness steel that is subject to various loads, there is no occurrence of abnormal damage such as chipping, chipping or peeling, and the residual stress distribution in the hard coating layer is When the absolute value is gradually decreased toward the surface, the chipping resistance and chipping resistance are further improved, and excellent wear resistance is exhibited over a long period of use.
以下に、本発明の表面被覆切削工具を実施例に基づいて説明する。 Below, the surface covering cutting tool of this invention is demonstrated based on an Example.
原料粉末として、いずれも0.5〜4μmの範囲内の平均粒径を有するcBN粉末、TiN粉末、AlN粉末、Ni粉末、Al粉末、Co粉末、W粉末を用意し、これら原料粉末を表3に示される配合組成に配合し、ボールミルで80時間湿式混合し、乾燥した後、120MPaの圧力で直径:50mm×厚さ:1.5mmの寸法をもった圧粉体にプレス成形し、ついでこの圧粉体を、圧力:1Paの真空雰囲気中、900〜1300℃の範囲内の所定温度に60分間保持の条件で焼結して切刃片用予備焼結体とし、この予備焼結体を、別途用意した、Co:8質量%、WC:残りの組成、並びに直径:50mm×厚さ:2mmの寸法をもったWC基超硬合金製支持片と重ね合わせた状態で、通常の超高圧焼結装置に装入し、通常の条件である圧力:4GPa、温度:1200〜1400℃の範囲内の所定温度に保持時間:0.8時間の条件で超高圧焼結し、焼結後上下面をダイヤモンド砥石を用いて研磨し、ワイヤー放電加工装置またはダイヤモンド切断機にて一辺3mmの正三角形状に分割し、さらにCo:5質量%、TaC:5質量%、WC:残りの組成およびCIS規格SNGA120412の形状(厚さ:4.76mm×一辺長さ:12.7mmの正方形)をもったWC基超硬合金製インサート本体のろう付け部(コーナー部)に、質量%で、Cu:26%、Ti:5%、Ni:2.5%、Ag:残りからなる組成を有するAg合金のろう材を用いてろう付けし、所定寸法に外周加工した後、切刃部に幅:0.13mm、角度:25°のホーニング加工を施し、さらに仕上げ研摩を施すことによりISO規格SNGA120412のインサート形状をもち、cBN含有割合が30〜60wt%である表3に示される本発明cBN工具基体1〜10を製造した。 As the raw material powder, cBN powder, TiN powder, AlN powder, Ni powder, Al powder, Co powder and W powder each having an average particle diameter in the range of 0.5 to 4 μm are prepared. The mixture is blended in the composition shown in FIG. 1, wet mixed with a ball mill for 80 hours, dried, and then pressed into a green compact having a diameter of 50 mm × thickness: 1.5 mm under a pressure of 120 MPa. The green compact is sintered in a vacuum atmosphere at a pressure of 1 Pa at a predetermined temperature within a range of 900 to 1300 ° C. for 60 minutes to obtain a presintered body for a cutting edge piece. In addition, Co: 8% by mass, WC: remaining composition, and diameter: 50 mm × thickness: 2 mm, superposed on a WC-based cemented carbide support piece with a normal super-high pressure Charged into the sintering machine and under normal conditions Force: 4 GPa, temperature: Presence at a predetermined temperature in the range of 1200-1400 ° C. Holding time: 0.8 hours under high pressure sintering, after sintering, the upper and lower surfaces are polished with a diamond grindstone, and wire electric discharge machining It is divided into equilateral triangles with a side of 3 mm by an apparatus or a diamond cutter, and further Co: 5% by mass, TaC: 5% by mass, WC: remaining composition and shape of CIS standard SNGA120212 (thickness: 4.76 mm × one side) Cu: 26%, Ti: 5%, Ni: 2.5% in the brazing part (corner part) of the WC-base cemented carbide insert body having a length of 12.7 mm square) , Ag: brazing using a brazing material of an Ag alloy having the remaining composition, and after processing the outer periphery to a predetermined dimension, the honing process is performed on the cutting edge portion with a width of 0.13 mm and an angle of 25 °. Finish polishing By applying the present invention, the present invention cBN tool bases 1 to 10 shown in Table 3 having an insert shape of ISO standard SNGA120212 and a cBN content ratio of 30 to 60 wt% were manufactured.
ついで、上記本発明cBN工具基体1〜10に対して、表4に示す噴射圧力、噴射時間にてアルミナ粒子を用いたウエットブラスト処理を施し、その後、アセトン中で超音波洗浄し乾燥した。
乾燥後の上記本発明cBN工具基体1〜10の表面の残留応力σmを、cBN工具基体中の結合相に含有されるTiN相について、XRDを利用した「2θ−sin2ψ法」によって測定することにより算出した。
残留応力の値を表6に示す。
Subsequently, the above-mentioned cBN tool bases 1 to 10 of the present invention were subjected to wet blasting treatment using alumina particles at the spraying pressure and spraying time shown in Table 4, and then ultrasonically washed in acetone and dried.
The residual stress σm of the surface of the present invention cBN tool base 1 to 10 after drying is measured by “2θ-sin 2 ψ method” using XRD for the TiN phase contained in the binder phase in the cBN tool base. Was calculated.
Table 6 shows the residual stress values.
ついで、上記本発明cBN工具基体1〜10を、物理蒸着装置の一種であるアークイオンプレーティング(AIP)装置内に自転公転自在に支持装着し、
まず、装置内を真空排気して0.5Paの真空に保持しながら、ヒーターで装置内を500℃に加熱した後、Arガスを導入し、1.5PaのArガス雰囲気とし、cBN工具基体1に−100Vの直流バイアス電圧を印加して、前記cBN工具基体をArガスボンバード洗浄し、
ついで、前記装置内で、表5に示す条件(バイアス電圧、反応ガスの種類、反応ガス圧力、ターゲットの種類等)でアークイオンプレーティングを行い、所定の目標層厚、層種別の硬質被覆層を形成することにより、
ISO規格SNGA120412に規定するスローアウエイチップ形状の本発明cBN被覆工具1〜10(本発明1〜10という)を作製した。
Next, the above-described cBN tool bases 1 to 10 of the present invention are supported and mounted in an arc ion plating (AIP) apparatus which is a kind of physical vapor deposition apparatus so as to be able to rotate and revolve.
First, while the inside of the apparatus is evacuated and kept at a vacuum of 0.5 Pa, the inside of the apparatus is heated to 500 ° C. with a heater, Ar gas is introduced to form an Ar gas atmosphere of 1.5 Pa, and the cBN tool base 1 A DC bias voltage of −100V is applied to the cBN tool substrate to clean the Ar gas bombardment,
Next, arc ion plating is performed in the apparatus under the conditions shown in Table 5 (bias voltage, reaction gas type, reaction gas pressure, target type, etc.), and a hard coating layer having a predetermined target layer thickness and layer type. By forming
The present invention cBN-coated tools 1 to 10 (referred to as the present invention 1 to 10) having a throwaway tip shape defined in ISO standard SNGA12041 were produced.
上記本発明1〜10について、cBN工具基体表面と硬質被覆層との界面における硬質被覆層中の残留応力σcを、X線の侵入深さを変化させることにより、層中の深さ別残留応力を測定する、通称「薄膜応力測定法」により測定した。
また、成膜中に、バイアス電圧を変化させたものについては、層厚方向の応力分布(硬質被覆層表層における残留応力σs)を、前記と同様に、「薄膜応力測定法」により測定した。
これらの値(但し、層厚方向の応力分布については、これに代えて、硬質被覆層表層における残留応力の値σs)を、表6に示す。
For the present inventions 1 to 10, the residual stress σc in the hard coating layer at the interface between the cBN tool base surface and the hard coating layer is changed by changing the penetration depth of the X-rays, thereby changing the residual stress by depth in the layer. , Measured by the so-called “thin film stress measurement method”.
In addition, for those in which the bias voltage was changed during the film formation, the stress distribution in the layer thickness direction (residual stress σs in the surface layer of the hard coating layer) was measured by the “thin film stress measurement method” in the same manner as described above.
Table 6 shows these values (however, regarding the stress distribution in the layer thickness direction, instead of this, the residual stress value σs in the surface layer of the hard coating layer).
比較のため、実施例で使用したcBN工具基体1〜10に、表7に示す条件でウエットブラスト処理を施し、あるいは、施さず、その後、アセトン中で超音波洗浄し乾燥し、比較例cBN工具基体1〜10を作製した。
乾燥後の上記比較例cBN工具基体1〜10の表面の残留応力σmを、cBN工具基体中の結合相に含有されるTiN相について、XRDを利用して「2θ−sin2ψ法」によって測定し、算出した。
残留応力の値を表9に示す。
For comparison, the cBN tool bases 1 to 10 used in the examples were subjected to wet blasting under the conditions shown in Table 7 or not, and then ultrasonically cleaned in acetone and dried. Bases 1 to 10 were produced.
The residual stress σm of the surface of the comparative example cBN tool bases 1 to 10 after drying was measured by “2θ-sin 2 ψ method” using XRD for the TiN phase contained in the binder phase in the cBN tool base. And calculated.
Table 9 shows the residual stress values.
ついで、上記比較例cBN工具基体1〜10を、アークイオンプレーティング(AIP)装置内に自転公転自在に支持装着し、
まず、装置内を真空排気して0.5Paの真空に保持しながら、ヒーターで装置内を500℃に加熱した後、Arガスを導入し、1.5PaのArガス雰囲気とし、cBN工具基体1に−100Vの直流バイアス電圧を印加して、前記cBN工具基体をArガスボンバード洗浄し、
ついで、前記装置内で、表8に示す条件(バイアス電圧、反応ガスの種類、反応ガス圧力、ターゲットの種類等)でアークイオンプレーティングを行い、所定の目標層厚、層種別の硬質被覆層を形成することにより、
ISO規格SNGA120412に規定するスローアウエイチップ形状の比較例cBN被覆工具1〜10(比較例1〜10という)を作製した。
Next, the comparative cBN tool bases 1 to 10 are supported and mounted in an arc ion plating (AIP) apparatus so as to be capable of rotating and revolving.
First, while the inside of the apparatus is evacuated and kept at a vacuum of 0.5 Pa, the inside of the apparatus is heated to 500 ° C. with a heater, Ar gas is introduced to form an Ar gas atmosphere of 1.5 Pa, and the cBN tool base 1 A DC bias voltage of −100V is applied to the cBN tool substrate to clean the Ar gas bombardment,
Next, arc ion plating is performed in the apparatus under the conditions shown in Table 8 (bias voltage, reaction gas type, reaction gas pressure, target type, etc.), and a hard coating layer having a predetermined target layer thickness and layer type. By forming
Comparative example cBN-coated tools 1 to 10 (referred to as Comparative Examples 1 to 10) having a throwaway tip shape defined in ISO standard SNGA12041 were produced.
上記比較例1〜10について、cBN工具基体表面と硬質被覆層との界面における硬質被覆層中の残留応力σcを、X線の侵入深さを変化させることにより、層中の深さ別残留応力を測定する、通称「薄膜応力測定法」により測定した。
また、成膜中に、バイアス電圧を変化させたものについては、層厚方向の応力分布(硬質被覆層表層における残留応力σs)を、前記と同様に、「薄膜応力測定法」により測定した。
これらの値(但し、層厚方向の応力分布については、これに代えて、硬質被覆層表層における残留応力の値σs)を、表9に示す。
For Comparative Examples 1 to 10, the residual stress σc in the hard coating layer at the interface between the cBN tool base surface and the hard coating layer is changed by changing the penetration depth of the X-rays, thereby changing the residual stress by depth in the layer. , Measured by the so-called “thin film stress measurement method”.
In addition, for those in which the bias voltage was changed during the film formation, the stress distribution in the layer thickness direction (residual stress σs in the surface layer of the hard coating layer) was measured by the “thin film stress measurement method” in the same manner as described above.
Table 9 shows these values (however, regarding the stress distribution in the layer thickness direction, the residual stress value σs in the surface layer of the hard coating layer is substituted for this).
表6及び表9の比較から、本発明1〜10は、いずれも、cBN工具基体と硬質被覆層との界面における、工具基体中の残留応力の値(σm)および硬質被覆層中の残留応力の値(σc)がいずれも−2GPa以下の残留応力であって、かつ、工具基体中の残留応力と硬質被覆層中の残留応力の差の値(σm−σc)が、0.5GPa以下であり、加えて、本発明1〜10は、硬質被覆層の表層の残留応力の値(σs)が、σcより絶対値で小さくなっており、硬質被覆層の表層に向かうにしたがって、残留応力の値が絶対値で減少していることが分かる。
これに対して、比較例1〜10では、σm,σcの何れかが−2GPaを超えているか、または、σm−σcの値が0.5GPaを超えており、いずれも本発明の規定を満たさないものであることが分かる。
From comparison of Tables 6 and 9, each of the present inventions 1 to 10 has a residual stress value (σm) in the tool base and a residual stress in the hard coating layer at the interface between the cBN tool base and the hard coating layer. The value (σc) of each is a residual stress of −2 GPa or less, and the difference value (σm−σc) between the residual stress in the tool base and the residual stress in the hard coating layer is 0.5 GPa or less. In addition, in the present invention 1 to 10, the residual stress value (σs) of the surface layer of the hard coating layer is smaller in absolute value than σc, and the residual stress is increased toward the surface layer of the hard coating layer. It can be seen that the value decreases in absolute value.
On the other hand, in Comparative Examples 1 to 10, either σm or σc exceeds −2 GPa or the value of σm−σc exceeds 0.5 GPa, and both satisfy the provisions of the present invention. It turns out that there is nothing.
上記の本発明1〜10および比較例1〜10を用い、以下の切削条件で切削加工試験を実施した。
《切削条件1》
被削材:JIS・SUJ2の長さ方向等間隔4本縦溝入り丸棒(硬さ:HRA60)、
切削速度: 180 m/min、
送り: 0.10 mm/rev、
切込み: 0.12 mm、
切削時間: 10 分
の条件での、焼入れ軸受鋼の湿式高速断続切削加工試験(通常の切削速度は、120m/min)、
《切削条件2》
被削材:JIS・SCr420の長さ方向等間隔4本縦溝入り丸棒(硬さ:HRA62)、
切削速度: 200 m/min、
送り: 0.10 mm/rev、
切込み: 0.12 mm、
切削時間: 10 分
の条件で、高硬度クロム鋼の湿式高速断続切削加工試験(通常の切削速度は、150m/min)、
を行い、切刃の逃げ面摩耗幅を測定した。
上記切削条件1,2による切削加工試験の測定結果を表10に示した。
Using the present inventions 1 to 10 and Comparative Examples 1 to 10, a cutting test was performed under the following cutting conditions.
<< Cutting conditions 1 >>
Work material: JIS / SUJ2 lengthwise equidistant 4 vertical grooved round bars (Hardness: H R A60),
Cutting speed: 180 m / min,
Feed: 0.10 mm / rev,
Cutting depth: 0.12 mm,
Cutting time: Wet high speed intermittent cutting test of hardened bearing steel under the condition of 10 minutes (normal cutting speed is 120 m / min),
<< Cutting conditions 2 >>
Work material: JIS · SCr420 lengthwise equidistant 4 vertical grooved round bars (Hardness: H R A62),
Cutting speed: 200 m / min,
Feed: 0.10 mm / rev,
Cutting depth: 0.12 mm,
Cutting time: Wet high-speed intermittent cutting test of high hardness chromium steel under the condition of 10 minutes (normal cutting speed is 150 m / min),
The flank wear width of the cutting blade was measured.
The measurement results of the cutting test under the above cutting conditions 1 and 2 are shown in Table 10.
表10に示される結果から、本発明cBN被覆工具1〜10は、切刃に断続的・繰り返しの衝撃的な負荷が作用する高硬度鋼の高速断続切削に用いた場合でも、チッピング、欠損、剥離等の異常損傷を発生することはなく、長期の使用に亘って優れた耐摩耗性を示した。
これに対して、比較例cBN被覆工具1〜10においては、cBN工具基体と硬質被覆層との付着強度が劣るためチッピング、欠損、剥離等を発生し、比較的短時間で使用寿命に至ることが明らかである。
From the results shown in Table 10, the cBN coated tools 1 to 10 of the present invention can be used for high-speed intermittent cutting of high-hardness steel in which intermittent and repeated impact loads are applied to the cutting edge. Abnormal damage such as peeling did not occur, and excellent wear resistance was exhibited over long-term use.
On the other hand, in the comparative example cBN coated tools 1 to 10, since the adhesion strength between the cBN tool base and the hard coating layer is poor, chipping, chipping, peeling, etc. occur, and the service life is reached in a relatively short time. Is clear.
上述のように、この発明のcBN被覆工具は、高硬度鋼の高速断続切削加工用の切削工具として好適であり、切削加工装置の高性能化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものであるが、各種の鋼や鋳鉄などの通常の切削条件での切削加工にも勿論使用可能である。 As described above, the cBN-coated tool of the present invention is suitable as a cutting tool for high-speed intermittent cutting of high-hardness steel, improves the performance of the cutting device, and reduces the labor and energy saving of the cutting. Although it can cope with cost reduction satisfactorily, it can of course be used for cutting under normal cutting conditions such as various types of steel and cast iron.
Claims (3)
前記工具基体表面と硬質被覆層との界面における、工具基体中の残留応力の値および硬質被覆層中の残留応力の値がいずれも−2GPa以下の残留応力であって、かつ、工具基体中の残留応力と硬質被覆層中の残留応力の差の値が、0.5GPa以下であることを特徴とする表面被覆切削工具。 A surface-coated cutting tool in which a hard coating layer is vapor-deposited on the surface of a tool substrate made of a cubic boron nitride-based ultrahigh pressure sintered material,
The residual stress value in the tool base and the residual stress value in the hard coating layer at the interface between the tool base surface and the hard coating layer are both residual stresses of −2 GPa or less, and in the tool base A surface-coated cutting tool characterized in that the difference between the residual stress and the residual stress in the hard coating layer is 0.5 GPa or less.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009239153A JP5402507B2 (en) | 2009-10-16 | 2009-10-16 | Surface coated cutting tool |
CN201010526226.7A CN102061444B (en) | 2009-10-16 | 2010-10-13 | Surface-wrapped cutting tool |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009239153A JP5402507B2 (en) | 2009-10-16 | 2009-10-16 | Surface coated cutting tool |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011083865A JP2011083865A (en) | 2011-04-28 |
JP5402507B2 true JP5402507B2 (en) | 2014-01-29 |
Family
ID=43996948
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009239153A Active JP5402507B2 (en) | 2009-10-16 | 2009-10-16 | Surface coated cutting tool |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5402507B2 (en) |
CN (1) | CN102061444B (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013107143A (en) * | 2011-11-17 | 2013-06-06 | Osg Corp | Tool and method of manufacturing the same |
CN103962816B (en) * | 2013-01-31 | 2018-01-02 | 三菱综合材料株式会社 | Surface-coated cutting tool and its manufacture method |
CN103962590B (en) * | 2013-01-31 | 2017-07-21 | 三菱综合材料株式会社 | Surface-coated cutting tool and its manufacture method |
JP6213269B2 (en) * | 2014-01-30 | 2017-10-18 | 三菱マテリアル株式会社 | Surface-coated cutting tool that exhibits excellent chipping resistance over a long period of time when cutting hardened steel |
RU2710406C2 (en) * | 2015-07-13 | 2019-12-26 | Сандвик Интеллекчуал Проперти Аб | Cutting tool with coating |
US11313028B2 (en) * | 2017-08-31 | 2022-04-26 | Walter Ag | Wear resistant PVD tool coating containing TiAlN nanolayer films |
JP7463772B2 (en) * | 2020-03-12 | 2024-04-09 | 三菱マテリアル株式会社 | Cutting tools |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001353603A (en) * | 2000-06-14 | 2001-12-25 | Sumitomo Electric Ind Ltd | Tool formed of surface-covered cubic boron nitride sintered compact |
JP2004332054A (en) * | 2003-05-08 | 2004-11-25 | Tungaloy Corp | High-strength coated sintered alloy |
JP4593994B2 (en) * | 2004-07-23 | 2010-12-08 | 住友電工ハードメタル株式会社 | Surface coated cutting tool |
SE529143C2 (en) * | 2005-04-18 | 2007-05-15 | Sandvik Intellectual Property | Cutting tool insert for metal machining, comprises material of cemented carbide, cermet, ceramics, boron nitride or steel on functioning portion, and coating comprising plasma vapor deposited layer of metal oxide or composite oxide |
DE102006002371A1 (en) * | 2006-01-17 | 2007-07-19 | Kennametal Widia Produktions Gmbh & Co. Kg | Process for coating a cemented carbide or cermet substrate body and coated cemented carbide or cermet body |
-
2009
- 2009-10-16 JP JP2009239153A patent/JP5402507B2/en active Active
-
2010
- 2010-10-13 CN CN201010526226.7A patent/CN102061444B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN102061444A (en) | 2011-05-18 |
CN102061444B (en) | 2014-10-22 |
JP2011083865A (en) | 2011-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5005262B2 (en) | Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent surface finish accuracy over a long period of time in high-speed cutting of hardened steel | |
JP4985919B2 (en) | Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that provides excellent long-term surface accuracy in high-speed cutting of hardened steel | |
JP5574277B2 (en) | Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material with excellent peeling resistance | |
JP5402507B2 (en) | Surface coated cutting tool | |
JP5995080B2 (en) | Surface coated cutting tool made of cubic boron nitride based ultra-high pressure sintered material with excellent crack resistance | |
JP5686253B2 (en) | Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material with excellent peeling resistance | |
JP5293330B2 (en) | Cutting tool made of surface coated cubic boron nitride based ultra high pressure sintered material | |
JP6213269B2 (en) | Surface-coated cutting tool that exhibits excellent chipping resistance over a long period of time when cutting hardened steel | |
JP4883475B2 (en) | Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent wear resistance in high-speed cutting of hardened steel | |
JP4807575B2 (en) | Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent wear resistance in high-speed cutting of hardened steel | |
JP2008254159A (en) | Surface-coated cutting tool made of cubic boron nitride group ultrahigh-pressure sintered material | |
JP4883473B2 (en) | Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent chipping resistance in hard cutting of hardened steel | |
JP4985914B2 (en) | Cutting tool made of super-high pressure sintered material with surface-coated cubic boron nitride based on excellent finish surface accuracy | |
JP4883472B2 (en) | Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent chipping resistance in hard cutting of hardened steel | |
JP4883471B2 (en) | Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent chipping resistance in hard cutting of hardened steel | |
JP2011051060A (en) | Surface coating cutting tool | |
JP2010284759A (en) | Surface coated cutting tool | |
JP2003245806A (en) | Cutting tool made of surface-coated cubic boron nitride based sintered material having hard coating layer exhibiting excellent chipping resistance in intermittent heavy cutting | |
JP2008302439A (en) | Cutting tool made of surface coated cubic boron nitride-base very high pressure sintered material | |
JP5402155B2 (en) | Cutting tool made of surface coated cubic boron nitride based ultra high pressure sintered material | |
JP4748445B2 (en) | Cutting tool made of super-high-pressure sintered material with surface-coated cubic boron nitride that exhibits excellent chipping resistance with a hard coating layer in intermittent cutting of high-hardness steel | |
JP5686247B2 (en) | Cutting tool made of surface coated cubic boron nitride based ultra high pressure sintered material | |
JP5246596B2 (en) | Cutting tool made of surface coated cubic boron nitride based ultra high pressure sintered material | |
JP4748446B2 (en) | Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent chipping resistance when cutting hard difficult-to-cut materials | |
JP6172519B2 (en) | Surface-coated cutting tool that exhibits excellent chipping resistance over a long period of time when cutting hardened steel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120927 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130925 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131001 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131014 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5402507 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |