JP2004332054A - High-strength coated sintered alloy - Google Patents

High-strength coated sintered alloy Download PDF

Info

Publication number
JP2004332054A
JP2004332054A JP2003130440A JP2003130440A JP2004332054A JP 2004332054 A JP2004332054 A JP 2004332054A JP 2003130440 A JP2003130440 A JP 2003130440A JP 2003130440 A JP2003130440 A JP 2003130440A JP 2004332054 A JP2004332054 A JP 2004332054A
Authority
JP
Japan
Prior art keywords
coating
sintered alloy
substrate
compressive stress
coated sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003130440A
Other languages
Japanese (ja)
Inventor
Itsuo Yazaki
逸夫 矢崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tungaloy Corp
Original Assignee
Tungaloy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tungaloy Corp filed Critical Tungaloy Corp
Priority to JP2003130440A priority Critical patent/JP2004332054A/en
Publication of JP2004332054A publication Critical patent/JP2004332054A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a coated sintered alloy which is mainly used as a cutting tool and is superior in abrasion resistance, impact resistance, and fracture resistance. <P>SOLUTION: The substrate of the coated sintered alloy comprises at least one hard phase selected from among carbides and nitrides of metals belonging to groups 4a, 5a and 6a in the periodic table and mutual solid solutions thereof and a bonding phase containing Ni, Co or a Ni-Co alloy as a main component. The coated sintered alloy has a coating formed by a physical vapor deposition method on the surface of the substrate. The hard phase on the surface of the substrate has a compressive stress of 294 to 981 MPa imparted therein, and the coating has a compressive stress of 196 to 490 MPa imparted therein. Thus formed high-strength coated sintered alloy is excellent in abrasion resistance, impact resistance, and fracture resistance. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、耐衝撃性、耐欠損性に優れる高強度被覆焼結合金に関し、特に切削工具または耐摩耗工具に代表される工具用として最適な高強度被覆焼結合金に関するものである。
【0002】
【従来の技術】
超硬合金およびサーメットに代表される焼結合金の基体の表面に、耐摩耗性に優れる硬質な被膜を被覆した被覆焼結合金が用いられているが、硬質な被膜を被覆すると耐欠損性、耐衝撃性、耐チッピング性および強度が低下する。
【0003】
被覆焼結合金の従来の技術として、被覆焼結合金の被膜をクラックで細分化することにより被膜の残留引張応力を緩和し、耐チッピング性、耐欠損性の低下を抑制する工具部材がある(例えば、特許文献1参照。)。しかし、この場合、被覆焼結合金の被膜には圧縮応力が付与されないため、被覆焼結合金の強度低下を防止する効果は十分ではないという問題がある。
【0004】
また、化学蒸着法により焼結合金の基体に被膜を被覆した後、ショットピーニングを行い、基体の表面部に存在する硬質相に30〜80kgf/mm(294〜784MPa)の圧縮応力と、被膜に20kgf/mm(196MPa)以下の圧縮応力を付与することで、耐衝撃性および耐欠損性を高めた被覆焼結合金がある(例えば、特許文献2参照。)。しかし、被膜に付与される圧縮応力が小さく、被覆焼結合金の強度低下を防止する効果は十分ではないという問題がある。
【0005】
さらに、化学蒸着法による被覆焼結合金の基体の表面部に存在する硬質相および/または被膜に、50kgf/mm(490MPa)以上の圧縮応力を付与した被覆焼結合金がある(例えば、特許文献3参照。)。しかしながら、被膜に50kgf/mm(490MPa)以上の圧縮応力を付与すると、使用前あるいは工具として使用中に被膜の自己破壊が生じ寿命低下を招く可能性がある。特に切れ刃が鋭利な切削工具として用いた場合にこのような現象が生じる可能性が高い。また、WCまたはTi(C,N)を主成分とする焼結合金に化学蒸着法によってTiCやAlなどの被膜を被覆すると被膜に残留引張応力を生じる。ショットピーニングにより、被膜の残留引張応力を圧縮応力へ変化させようとすると、基体の表面部に存在する硬質相に過剰な圧縮応力が付与されるが、このとき、基体の表面部に存在する硬質相の圧縮応力と被膜の圧縮応力の差が大きいと、被膜が剥離しやすくなるという問題がある。
【0006】
【特許文献1】
特開平05−116003号公報
【特許文献2】
特開平06−108258号公報
【特許文献3】
特開平01−31972号公報
【0007】
【発明が解決しようとする課題】
本発明は、上述のような従来の問題点を解決したもので、主に切削工具として使用される耐摩耗性、耐衝撃性および耐欠損性に優れた高強度被覆焼結合金の提供を目的とするものである。
【0008】
【課題を解決するための手段】
本発明者は、上記の問題点に対して検討を加えた結果、基体の表面部に存在する硬質相の圧縮応力と被膜の圧縮応力を最適な範囲とすることによって、被覆焼結合金の強度低下を抑制し、被膜の自己破壊を防止して、優れた耐チッピング性、耐欠損性、耐摩耗性、耐剥離性を有する被覆超硬合金を得ることができるという知見を得て本発明を完成した。
【0009】
本発明被覆焼結合金は、周期律表の4a、5a、6a族金属の炭化物、窒化物およびこれらの相互固溶体の中の少なくとも1種の硬質相と、Ni、CoまたはNi−Co合金を主成分とする結合相からなる焼結合金の基体の表面に物理蒸着法により被膜を被覆してなる被覆焼結合金において、該基体の表面部に存在する該硬質相は294〜981MPaの圧縮応力が付与されており、該被膜は196〜490MPaの圧縮応力が付与されていることを特徴とする。
【0010】
本発明被覆焼結合金における基体は、従来から公知公用されている超硬合金またはサーメットであり、周期律表の4a、5a、6a族金属の炭化物、窒化物およびこれらの相互固溶体の中の少なくとも1種の硬質相と、Ni、CoまたはNi−Co合金を主成分とする結合相からなる焼結合金である。具体的には、例えばTiC、ZrC、HfC、VC、NbC、TaC、WC、Cr、MoC、TiN、ZrN、HfN、VN、NbN、TaN、Ti(C,N)、(Ti,Ta)C、(Ti,Ta,W)C、(Ti,Ta,Nb,W)C、(Ti,Ta)(C,N)、(Ti,Ta,W)(C,N)の中から選ばれた少なくとも1種の硬質相:50〜95重量%と、Ni、CoまたはNi−Co合金、もしくはこれらに硬質相の元素やFeが0.1〜20重量%固溶してなる結合相:残部とからなるものである。これらの内、WCを主成分とする硬質相を有する超硬合金、または、TiCまたはTi(C,N)を主成分とする硬質相を有するサーメットからなる基体の場合は、その効果が顕著になることから特に好ましい。
【0011】
本発明の被覆焼結合金における被膜は、被膜材質としては、特に制限を受けないが、具体的には、例えば周期律表4a、5a、6a族金属、Al、Siの炭化物、窒化物、酸化物、ホウ化物およびこれらの相互固溶体の中の少なくとも1種を挙げることができる。その中でも、被膜材質がTi、Al、Si、Crの窒化物、炭化物およびこれらの相互固溶体の中の少なくとも1種で形成されている場合には、基体の表面部に存在する硬質相に付与された圧縮応力および被膜に付与された圧縮応力による耐欠損性への効果が顕著になることから、好ましい。
【0012】
被膜の厚さは、厚くしすぎると剥離しやすくなるために20μm以下、特に10μm以下でなる場合はバラツキも小さく、性能的にも安定し、かつ優れた効果を示すが、0.1μm未満であると効果が少ない。すなわち、被膜の厚さは、0.1〜20μmが好ましく、その中でも0.1〜10μmが特に好ましい。
【0013】
被覆焼結合金は、大別すると、化学蒸着法による被覆焼結合金と物理蒸着法による被覆焼結合金がある。これらの被覆焼結合金は、製造条件に基づく残留応力、または被膜の材質と基体の材質による熱膨張係数の差に基づく残留応力が基体の表面部および被膜に残在している。化学蒸着法による被覆焼結合金の被膜には引張応力が残在するが、ショットピーニング処理などの後処理によって、被膜の引張応力を圧縮応力へ変化させると、基体の表面部に存在する硬質相に過剰な圧縮応力が付与され、所望の圧縮応力が得られにくい。しかしながら、物理蒸着法によって基体に硬質な被膜を被覆すると被膜に圧縮応力が残在するため、基体の表面部に存在する硬質相と被膜にそれぞれ所望の圧縮応力を付与することが容易となる。
【0014】
本発明被覆焼結合金において、基体の表面部に存在する硬質相に付与される圧縮応力が294MPa未満であると耐欠損性を改善する効果が少なく、逆に981MPaを超えて大きくなるとバラツキが高くなり、981MPaを超える圧縮応力を付与することは実用上困難である。基体の表面部に存在する硬質相とは、基体の表面または表面から基体の内部へ向って約10μmの深さまでに存在する硬質相であって、別の表現をすると結晶X線回折装置におけるX線が被膜表面から基体内部へ透過検出し得る深さであり、実質的には、使用X線ターゲット等の測定条件により深さが異なる。
【0015】
本発明被覆焼結合金において、被膜に付与される圧縮応力が196MPa未満であると、被覆焼結合金の強度低下の抑制効果が小さくなる。また、被膜に付与される圧縮応力が490MPaを超えて大きくなると、被膜が自己破壊しやすくなる。被膜が自己破壊を起こした場合、被膜が自己破壊した部分から基体が露出し、切削工具として用いた場合、耐摩耗性が低い基体から摩耗が進み工具寿命が低下する。したがって、被膜に付与される圧縮応力は、196〜490MPaとした。
【0016】
【発明の実施の形態】
本発明被覆焼結合金は、被覆処理前に基体の表面部に存在する硬質相の応力を制御し、物理蒸着法の被覆において成膜条件の調整により、被膜の応力を制御しつつ、基体の表面部に存在する硬質相の応力が必要以上に緩和されないように成膜することによって作製することができる。具体的には、基体の研削加工条件を調整する方法、基体の表面に固体粒子を衝突させる方法(例えば、ショットピーニング処理など)のいずれか1つの方法または2つの方法を用いることにより、基体の表面部に存在する硬質相の圧縮応力を制御することが可能である。その後、通常の洗浄工程を経て被膜の物理蒸着を行なうが、その際、成膜条件、特に加熱温度と基体バイアス電圧を適切に制御することで、基体の表面部に存在する硬質相の圧縮応力と、被膜の圧縮応力とを、それぞれ所望の圧縮応力とすることができる。
【0017】
基体の表面部に存在する硬質相に所望の圧縮応力を付与するための研削加工条件としては、砥石の粗さ:#240〜#500、切込速度:1〜20mm/min、砥石回転数:1100〜1500rpmという条件が挙げることができる。また、基体の表面部に存在する硬質相と被膜に所望の圧縮応力を付与するためのショットピーニング処理条件としては、直径0.3〜1mmの鋼球を飛翔物質に用いて、飛翔速度:5〜50m/secとする条件が挙げることができる。
【0018】
【実施例1】
P30相当の超硬合金の基体を研削加工によりCNMG120408形状とし、ブラシホーニング機によりR0.05mmのラウンドホーニングを施した。その後に、直径0.5mmの鋼球を用いて表1に示す投射速度のショットピーニング処理を施して基材の表面部に存在する硬質相の圧縮応力を変化させた。基体をアルカリ洗剤および有機溶媒を使用して洗浄・乾燥した後、物理蒸着装置内に装入し、プラズマ電流:240A、Arガス流量:100cc/minおよび圧力:0.2Paという条件で表1に示す加熱時間の予備加熱をし、次にプラズマ電流:100A、基体バイアス電圧:−250V、Arガス流量:70cc/min、圧力:0.15Paおよびイオンボンバ−ド時間:30minという条件でイオンボンバ−ド処理を施した。さらに、イオンプレーティング法によりTi蒸発プラズマ電流:250A、表1に示す基体バイアス電圧、Nガス流量:100cc/min、Arガス流量:70cc/min、圧力:1.1Paおよび被覆時間:90minという条件で膜厚3μmの窒化チタン膜を被覆し、本発明品である試料番号1〜6および比較品である試料番号7〜14の被覆焼結合金製切削工具を得た。こうして作製した本発明品と比較品の基体の表面部に存在するWCの圧縮応力と被膜の圧縮応力をX線法(Cuターゲットを使用)により測定し、その値を表1に併記した。また、本発明品と比較品について切削試験▲1▼および切削試験▲2▼を行ない、その結果を表2に示した。切削試験▲1▼では耐欠損性、耐衝撃性を評価し、切削試験▲2▼では耐摩耗性を評価した。
【0019】
切削試験▲1▼:外周断続旋削、被削材S45C(4本溝付き)、
切削速度V=150m/min、送りf=0.3mm/rev、切り込みap=2.0mm、wet
切削試験▲2▼:外周連続旋削、被削材S53C、
切削速度V=150m/min、送りf=0.3mm/rev、切り込みap=1.5mm、wet
【0020】
【表1】

Figure 2004332054
【0021】
【表2】
Figure 2004332054
【0022】
本発明品の試料番号1〜6は、比較品の試料番号7〜14と比較して外周断続旋削における耐衝撃性、耐欠損性において30〜140%向上し、これに伴って寿命も向上する。また、外周連続旋削について、被膜の応力が490MPaを超える比較品の試料番号13と本発明品の試料番号1〜6とを比較すると、本発明品の試料番号1〜6は被膜の自己破壊が抑制されるため、比較品の試料番号13よりも工具寿命が50%程度長い。
【0023】
【実施例2】
P30相当の超硬合金の基体をSDKN42ZTN形状に研削加工した。このときのすくい面の研削条件を表3に示す。研削加工した基材をアルカリ洗剤および有機溶媒を用いて洗浄し乾燥する。洗浄乾燥した基材を物理蒸着装置内に装入し、圧力が0.013Pa以下の高真空中でヒーター加熱により基板温度を500℃まで予備加熱した後、プラズマ電流:100A、基体バイアス電圧:−250V、Arガス流量:70cc/min、圧力:0.15Paおよびイオンボンバード時間:30minという条件でイオンボンバ−ド処理を施した。さらに、陰極ターゲット:TiAl合金(Ti:Al=50:50(原子比))、陰極電流:110A、表3に示す基体バイアス電圧、Nガス流量:500cc/minおよび圧力:1.3Paという条件で膜厚3μmのTiAlN被膜を被覆して本発明品である試料番号15〜20および比較品である試料番号21〜27の被覆焼結合金製切削工具を得た。
【0024】
こうして得た本発明品および比較品について、基体の表面部に存在するWCの残留応力および被膜の残留応力をX線法(Cuターゲットを使用)により測定した。その際、得られた応力値を表3に併記した。作製した試料について以下の切削試験▲3▼を行ない、工具寿命および損傷形態を表4に記載した。
【0025】
切削試験▲3▼:正面フライス削り、フライス工具径φ120mm、一枚刃、
中心削り(フライス工具の中心が被削材の幅の2等分線上を移動する削り)、
被削材SCM440、切削速度Vc=150m/min、1刃当たりの送りfz=0.250mm/rev、
切り込みap=2.0mm、dry
【0026】
【表3】
Figure 2004332054
【0027】
【表4】
Figure 2004332054
【0028】
フライス削りにおいて、本発明品の試料番号15〜20は、比較品の試料番号21〜27と比較して工具寿命が37〜200%向上するという顕著な結果が得られた。
【0029】
【発明の効果】
本発明の高強度被覆焼結合金は、従来の被覆焼結合金と比較して外周断続旋削における耐衝撃性、耐欠損性において優れた性能を示す。被膜の自己破壊が抑制されるため、外周連続旋削において工具寿命が向上する。また、フライス削りにおいて工具寿命が向上する。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a high-strength coated sintered alloy having excellent impact resistance and fracture resistance, and more particularly to a high-strength coated sintered alloy that is optimal for tools represented by cutting tools or wear-resistant tools.
[0002]
[Prior art]
On the surface of the substrate of cemented carbide and a sintered alloy represented by cermet, a coated sintered alloy coated with a hard coating excellent in wear resistance is used. Impact resistance, chipping resistance and strength are reduced.
[0003]
As a conventional technique of the coated sintered alloy, there is a tool member which relieves the residual tensile stress of the coated film by subdividing the coated sintered alloy film with cracks and suppresses a decrease in chipping resistance and fracture resistance ( For example, see Patent Document 1.) However, in this case, since the compressive stress is not applied to the coating of the coated sintered alloy, there is a problem that the effect of preventing the reduction in the strength of the coated sintered alloy is not sufficient.
[0004]
Further, after coating the coating on the sintered alloy substrate by the chemical vapor deposition method, shot peening is performed, and a compressive stress of 30 to 80 kgf / mm 2 (294 to 784 MPa) is applied to the hard phase existing on the surface of the substrate. There is a coated sintered alloy in which impact resistance and fracture resistance are improved by applying a compressive stress of 20 kgf / mm 2 (196 MPa) or less to a steel (for example, see Patent Document 2). However, there is a problem that the compressive stress applied to the coating is small and the effect of preventing the strength of the coated sintered alloy from decreasing is not sufficient.
[0005]
Further, there is a coated sintered alloy in which a compressive stress of 50 kgf / mm 2 (490 MPa) or more is applied to a hard phase and / or a coating present on the surface of a substrate of the coated sintered alloy by a chemical vapor deposition method (for example, Patent Reference 3). However, when compressive stress of 50 kgf / mm 2 (490 MPa) or more is applied to the coating, self-destruction of the coating may occur before use or during use as a tool, possibly leading to a reduction in life. In particular, such a phenomenon is highly likely to occur when the cutting edge is used as a sharp cutting tool. Further, when a coating such as TiC or Al 2 O 3 is coated on a sintered alloy containing WC or Ti (C, N) as a main component by a chemical vapor deposition method, residual tensile stress is generated in the coating. When an attempt is made to change the residual tensile stress of the coating to a compressive stress by shot peening, an excessive compressive stress is applied to the hard phase existing on the surface of the substrate. When the difference between the compressive stress of the phase and the compressive stress of the coating is large, there is a problem that the coating is easily peeled.
[0006]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 05-116003 [Patent Document 2]
Japanese Patent Application Laid-Open No. 06-108258 [Patent Document 3]
JP-A-01-31972
[Problems to be solved by the invention]
An object of the present invention is to solve the above-mentioned conventional problems and to provide a high-strength coated sintered alloy excellent in wear resistance, impact resistance and fracture resistance mainly used as a cutting tool. It is assumed that.
[0008]
[Means for Solving the Problems]
The present inventor has studied the above problems, and found that by setting the compressive stress of the hard phase and the compressive stress of the coating film present on the surface portion of the base material within the optimal ranges, the strength of the coated sintered alloy can be improved. The present invention is based on the finding that a coated cemented carbide having excellent chipping resistance, chipping resistance, abrasion resistance, and peeling resistance can be obtained by suppressing the decrease and preventing the self-destruction of the coating film, and achieving the present invention. completed.
[0009]
The coated sintered alloy of the present invention mainly comprises at least one hard phase among carbides, nitrides and mutual solid solutions of metals belonging to groups 4a, 5a and 6a of the periodic table, and Ni, Co or a Ni-Co alloy. In a coated sintered alloy obtained by coating a surface of a sintered alloy substrate composed of a binder phase as a component with a film by a physical vapor deposition method, the hard phase present on the surface of the substrate has a compressive stress of 294 to 981 MPa. The coating is characterized by having a compressive stress of 196 to 490 MPa.
[0010]
The substrate in the coated sintered alloy of the present invention is a cemented carbide or cermet conventionally known and used, and at least one of carbides, nitrides, and mutual solid solutions of metals of groups 4a, 5a, and 6a of the periodic table. It is a sintered alloy composed of one kind of hard phase and a binder phase containing Ni, Co or a Ni-Co alloy as a main component. Specifically, for example TiC, ZrC, HfC, VC, NbC, TaC, WC, Cr 3 C 2, Mo 2 C, TiN, ZrN, HfN, VN, NbN, TaN, Ti (C, N), (Ti , Ta) C, (Ti, Ta, W) C, (Ti, Ta, Nb, W) C, (Ti, Ta) (C, N), (Ti, Ta, W) (C, N) At least one hard phase selected from the group consisting of 50 to 95% by weight and Ni, Co or a Ni-Co alloy, or a solid solution containing 0.1 to 20% by weight of a hard phase element or Fe; Phase: consists of the remainder. Among them, in the case of a cemented carbide having a hard phase mainly composed of WC or a cermet having a hard phase mainly composed of TiC or Ti (C, N), the effect is remarkable. This is particularly preferred.
[0011]
The coating film of the coated sintered alloy of the present invention is not particularly limited as a coating material, but specifically includes, for example, metals of the periodic table 4a, 5a, 6a group, carbides, nitrides, and oxides of Al and Si. , Borides and their mutual solid solutions. Among them, when the coating material is formed of at least one of nitrides, carbides, and mutual solid solutions of Ti, Al, Si, and Cr, it is applied to the hard phase existing on the surface portion of the base. This is preferable because the effect on the fracture resistance due to the applied compressive stress and the compressive stress applied to the coating film becomes remarkable.
[0012]
The thickness of the coating is 20 μm or less, especially when it is 10 μm or less, since the thickness is too small, the dispersion is small, the performance is stable, and an excellent effect is exhibited, but the thickness is less than 0.1 μm. There is little effect if there is. That is, the thickness of the coating is preferably from 0.1 to 20 μm, and particularly preferably from 0.1 to 10 μm.
[0013]
The coated sintered alloy is roughly classified into a coated sintered alloy by a chemical vapor deposition method and a coated sintered alloy by a physical vapor deposition method. In these coated sintered alloys, residual stress based on the manufacturing conditions or residual stress based on the difference between the thermal expansion coefficient depending on the material of the coating and the material of the substrate remains on the surface portion of the substrate and the coating. Tensile stress remains in the coating of the coated sintered alloy by the chemical vapor deposition method, but when the tensile stress of the coating is changed to compressive stress by post-treatment such as shot peening, the hard phase existing on the surface of the substrate Is given an excessive compressive stress, and it is difficult to obtain a desired compressive stress. However, when a hard film is coated on a substrate by a physical vapor deposition method, a compressive stress remains in the film, so that it becomes easy to apply a desired compressive stress to each of the hard phase and the film present on the surface of the substrate.
[0014]
In the coated sintered alloy of the present invention, when the compressive stress applied to the hard phase present on the surface of the base is less than 294 MPa, the effect of improving the fracture resistance is small, and conversely, when it exceeds 981 MPa, the variation is high. Thus, it is practically difficult to apply a compressive stress exceeding 981 MPa. The hard phase existing on the surface portion of the substrate is a hard phase existing at a depth of about 10 μm from the surface of the substrate or from the surface to the inside of the substrate. This is the depth at which the line can be transmitted and detected from the coating surface to the inside of the substrate, and the depth differs substantially depending on the measurement conditions such as the X-ray target used.
[0015]
In the coated sintered alloy of the present invention, when the compressive stress applied to the coating is less than 196 MPa, the effect of suppressing the reduction in the strength of the coated sintered alloy is reduced. Further, when the compressive stress applied to the coating exceeds 490 MPa, the coating tends to self-destruct. When the coating self-destructs, the base is exposed from the part where the coating self-destructs, and when used as a cutting tool, wear is advanced from the base having low wear resistance and tool life is shortened. Therefore, the compressive stress applied to the coating was 196 to 490 MPa.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
The coated sintered alloy of the present invention controls the stress of the hard phase existing on the surface of the substrate before the coating treatment, and controls the stress of the coated film by adjusting the film forming conditions in the coating by the physical vapor deposition method. It can be manufactured by forming a film so that the stress of the hard phase existing on the surface portion is not unnecessarily relaxed. Specifically, by using one or two of a method of adjusting grinding conditions of the substrate and a method of colliding solid particles with the surface of the substrate (for example, a shot peening process), It is possible to control the compressive stress of the hard phase existing on the surface. After that, the physical vapor deposition of the coating film is performed through a normal cleaning process. At this time, by appropriately controlling the film forming conditions, particularly the heating temperature and the substrate bias voltage, the compressive stress of the hard phase existing on the surface of the substrate is reduced. And the compressive stress of the coating can be respectively set to desired compressive stress.
[0017]
Grinding conditions for imparting a desired compressive stress to the hard phase existing on the surface of the substrate include: grinding wheel roughness: # 240 to # 500, cutting speed: 1 to 20 mm / min, grinding wheel rotation speed: The condition of 1100-1500 rpm can be mentioned. The shot peening treatment conditions for applying a desired compressive stress to the hard phase and the coating film present on the surface of the substrate are as follows: a steel ball having a diameter of 0.3 to 1 mm is used as a flying substance; To 50 m / sec.
[0018]
Embodiment 1
A substrate of a cemented carbide equivalent to P30 was formed into a CNMG120408 shape by grinding, and a round honing of R 0.05 mm was performed by a brush honing machine. Thereafter, shot peening was performed at a projection speed shown in Table 1 using a steel ball having a diameter of 0.5 mm to change the compressive stress of the hard phase existing on the surface of the base material. After the substrate was washed and dried using an alkaline detergent and an organic solvent, it was charged into a physical vapor deposition apparatus, and the conditions were as shown in Table 1 under the conditions of plasma current: 240 A, Ar gas flow rate: 100 cc / min, and pressure: 0.2 Pa. Preheating was performed for the indicated heating time, and then ion bombardment was performed under the following conditions: plasma current: 100 A, substrate bias voltage: -250 V, Ar gas flow rate: 70 cc / min, pressure: 0.15 Pa, and ion bombardment time: 30 min. Process. Further, Ti evaporation plasma current by an ion plating method: 250A, substrate bias voltage shown in Table 1, N 2 gas flow rate: 100 cc / min, Ar gas flow rate: 70 cc / min, pressure: 1.1 Pa and the coating time: that 90min Under these conditions, a titanium nitride film having a thickness of 3 μm was coated to obtain coated sintered alloy cutting tools of Sample Nos. 1 to 6 of the present invention and Samples 7-14 of Comparative Products. The compressive stress of WC and the compressive stress of the film present on the surface portions of the substrates of the present invention product and the comparative product thus produced were measured by an X-ray method (using a Cu target), and the values are also shown in Table 1. In addition, cutting test (1) and cutting test (2) were performed on the product of the present invention and the comparative product, and the results are shown in Table 2. The cutting test (1) evaluated fracture resistance and impact resistance, and the cutting test (2) evaluated wear resistance.
[0019]
Cutting test (1): Intermittent turning, work material S45C (with 4 grooves),
Cutting speed V = 150 m / min, feed f = 0.3 mm / rev, cutting ap = 2.0 mm, wet
Cutting test (2): Continuous turning of outer periphery, work material S53C,
Cutting speed V = 150 m / min, feed f = 0.3 mm / rev, cutting ap = 1.5 mm, wet
[0020]
[Table 1]
Figure 2004332054
[0021]
[Table 2]
Figure 2004332054
[0022]
Sample Nos. 1 to 6 of the product of the present invention have 30 to 140% improvement in impact resistance and fracture resistance in intermittent turning, as compared with Sample Nos. 7 to 14 of the comparative product, and the life is accordingly improved. . In addition, regarding the outer periphery continuous turning, when comparing the sample number 13 of the comparative product with the stress of the coating exceeding 490 MPa with the sample numbers 1 to 6 of the present invention product, the sample numbers 1 to 6 of the present invention product show that the self-destruction of the coating is not caused. Therefore, the tool life is about 50% longer than that of the comparative sample No. 13.
[0023]
Embodiment 2
A substrate of a cemented carbide equivalent to P30 was ground into an SDKN42ZTN shape. Table 3 shows the rake face grinding conditions at this time. The ground substrate is washed and dried using an alkaline detergent and an organic solvent. The washed and dried substrate is placed in a physical vapor deposition apparatus, and the substrate is preheated to 500 ° C. by heating with a heater in a high vacuum having a pressure of 0.013 Pa or less, and then the plasma current is 100 A and the substrate bias voltage is −. The ion bombardment treatment was performed under the conditions of 250 V, Ar gas flow rate: 70 cc / min, pressure: 0.15 Pa, and ion bombard time: 30 min. Further, cathode target: TiAl alloy (Ti: Al = 50: 50 ( atomic ratio)), the cathode current: 110A, substrate bias voltage shown in Table 3, N 2 gas flow rate: 500 cc / min and pressure: conditions of 1.3Pa To obtain a coated sintered alloy cutting tool of Sample Nos. 15 to 20 as a product of the present invention and Sample Nos. 21 to 27 as a comparative product.
[0024]
With respect to the product of the present invention and the comparative product thus obtained, the residual stress of WC and the residual stress of the film present on the surface of the substrate were measured by the X-ray method (using a Cu target). At this time, the obtained stress values are also shown in Table 3. The following cutting test {circle around (3)} was performed on the prepared sample, and the tool life and damage form are described in Table 4.
[0025]
Cutting test (3): Face milling, milling tool diameter φ120mm, single blade,
Center milling (milling where the center of the milling tool moves on the bisector of the width of the work material),
Work material SCM440, cutting speed Vc = 150 m / min, feed per tooth fz = 0.250 mm / rev,
Cut ap = 2.0mm, dry
[0026]
[Table 3]
Figure 2004332054
[0027]
[Table 4]
Figure 2004332054
[0028]
In milling, remarkable results were obtained in which the sample Nos. 15 to 20 of the present invention improved the tool life by 37 to 200% as compared with the sample numbers 21 to 27 of the comparative product.
[0029]
【The invention's effect】
The high-strength coated sintered alloy of the present invention shows superior performance in impact resistance and fracture resistance in intermittent turning in comparison with conventional coated sintered alloys. Since the self-destruction of the coating is suppressed, the tool life is improved in the outer peripheral continuous turning. In addition, tool life is improved in milling.

Claims (1)

周期律表4a、5a、6a族金属の炭化物、窒化物およびこれらの相互固溶体の中の少なくとも1種の硬質相と、Ni、CoまたはNi−Co合金を主成分とする結合相からなる焼結合金の基体の表面に物理蒸着法により被膜を被覆してなる被覆焼結合金において、該基体の表面部に存在する該硬質相は294〜981MPaの圧縮応力が付与されており、該被膜は196〜490MPaの圧縮応力が付与されていることを特徴とする高強度被覆焼結合金。Sintered bond composed of at least one hard phase in carbides, nitrides and mutual solid solutions of metals of the periodic table 4a, 5a, 6a and a binder phase mainly composed of Ni, Co or Ni-Co alloy In a coated sintered alloy obtained by coating a surface of a gold substrate with a coating by a physical vapor deposition method, the hard phase present on the surface of the substrate is given a compressive stress of 294 to 981 MPa, and the coating is 196 A high-strength coated sintered alloy, which is provided with a compressive stress of 90490 MPa.
JP2003130440A 2003-05-08 2003-05-08 High-strength coated sintered alloy Withdrawn JP2004332054A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003130440A JP2004332054A (en) 2003-05-08 2003-05-08 High-strength coated sintered alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003130440A JP2004332054A (en) 2003-05-08 2003-05-08 High-strength coated sintered alloy

Publications (1)

Publication Number Publication Date
JP2004332054A true JP2004332054A (en) 2004-11-25

Family

ID=33505970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003130440A Withdrawn JP2004332054A (en) 2003-05-08 2003-05-08 High-strength coated sintered alloy

Country Status (1)

Country Link
JP (1) JP2004332054A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011083865A (en) * 2009-10-16 2011-04-28 Mitsubishi Materials Corp Surface coated cutting tool

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011083865A (en) * 2009-10-16 2011-04-28 Mitsubishi Materials Corp Surface coated cutting tool

Similar Documents

Publication Publication Date Title
JP5286626B2 (en) Surface-coated cutting tool and manufacturing method thereof
JP5286625B2 (en) Surface-coated cutting tool and manufacturing method thereof
JP2006001006A (en) Cutting tool made of surface coated cemented carbide with hard coating layer exhibiting excellent wear resistance in high speed cutting of high hardness steel
JP2004332054A (en) High-strength coated sintered alloy
JP4678582B2 (en) Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of hardened steel
JP2005028544A (en) Coated tool and method of manufacturing the same
JP3969260B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions
JP4697389B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP4621973B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent wear resistance in high-speed cutting of heat-resistant alloys.
JP2005028520A (en) Hard film coated tool
JP2003136305A (en) Surface coated cemented carbide cutting tool having hard coating layer exerting excellent wear resistance in high-speed cutting
JP2006001005A (en) Cutting tool made of surface coated cemented carbide with hard coating layer exhibiting excellent wear resistance in high speed cutting of high hardness steel
JP2006001004A (en) Cutting tool made of surface coated cemented carbide with hard coating layer exhibiting excellent wear resistance in high speed cutting of high hardness steel
JP4725770B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent wear resistance with a hard coating layer in high-speed cutting of highly reactive materials
JP4621975B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed cutting and hard coating layer
JP4066341B2 (en) Surface-coated cemented carbide cutting tool with a hard coating layer with excellent adhesion and wear resistance
JPH08118109A (en) Surface-coated cemented carbide alloy cutting tool with tungsten carbide group having carbonaceous hard coated layer excellent in adhesion
JP4683266B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent wear resistance in high-speed cutting of heat-resistant alloys.
JP2006001001A (en) Cutting tool made of surface coated cemented carbide with hard coating layer exhibiting excellent wear resistance in high speed cutting of highly reactive material to be cut
JP4621974B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent wear resistance in high-speed cutting of heat-resistant alloys.
JP4725771B2 (en) Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of hardened steel
JPH09295205A (en) Throw away insert made of coated cemented carbide and manufacture thereof
JP2002361516A (en) Surface covered tungsten carbide base cemented carbide made end mill with laminated covered layer to display excellent chipping resistance by high speed overlapped cutting work
JP2006150554A (en) Surface coated cemented carbide made cutting tool with hard coating layer displaying excellent abrasion resistance in high speed cutting of heat resisting alloy
JP2006026887A (en) Surface-coated cemented carbide cutting tool having hard coating layer exhibiting excellent wear resistance in high-speed cutting of highly reactive work material

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060801