JP2012143828A - Surface coated cutting tool having hard coating layer with excellent toughness and chipping resistance - Google Patents

Surface coated cutting tool having hard coating layer with excellent toughness and chipping resistance Download PDF

Info

Publication number
JP2012143828A
JP2012143828A JP2011002835A JP2011002835A JP2012143828A JP 2012143828 A JP2012143828 A JP 2012143828A JP 2011002835 A JP2011002835 A JP 2011002835A JP 2011002835 A JP2011002835 A JP 2011002835A JP 2012143828 A JP2012143828 A JP 2012143828A
Authority
JP
Japan
Prior art keywords
layer
average particle
ticn
particle diameter
thickness direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011002835A
Other languages
Japanese (ja)
Other versions
JP5636971B2 (en
Inventor
Sho Tatsuoka
翔 龍岡
Kohei Tomita
興平 冨田
Akira Osada
晃 長田
Keiji Nakamura
惠滋 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2011002835A priority Critical patent/JP5636971B2/en
Priority to CN201110417261.XA priority patent/CN102581322B/en
Publication of JP2012143828A publication Critical patent/JP2012143828A/en
Application granted granted Critical
Publication of JP5636971B2 publication Critical patent/JP5636971B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a surface coated cutting tool having a hard coating layer with excellent toughness and chipping resistance, and being capable of exhibiting excellent wear resistance over a long period of use.SOLUTION: The surface coated cutting tool has the hard coating layer evaporated on a surface of a tool base consisting of WC cemented carbide and TiCN-based cermet, and the hard coating layer composed of (a) a bottom layer composed of a Ti compound layer contains a modified TiCN layer and (b) a top layer composed of an aluminum oxide layer. When examining a change in the film thickness direction of an average grain size D in each thickness region at thickness intervals of 0.02 μm in the film thickness direction of the modified TiCN layer, the surface coated cutting tool has a grain crystal structure in which the average grain size D of the modified TiCN layer of the bottom layer changes periodically with a period of 0.5 μm to 5 μm along the film thickness direction because at least a plurality of thickness regions having the average grain size D of 0.5 to 1.5 μm and that of 0.05 to 0.3 μm are alternately formed along the film thickness direction of the modified TiCN layer.

Description

この発明は、高熱発生を伴うとともに、切れ刃に高負荷が作用する各種の鋼や鋳鉄の高速重切削加工において、硬質被覆層がすぐれた靭性と耐チッピング性を備えることにより、長期の使用にわたってすぐれた切削性能を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。   The present invention provides high heat generation and high-speed heavy cutting of various steels and cast irons in which a high load acts on the cutting edge, so that the hard coating layer has excellent toughness and chipping resistance. The present invention relates to a surface-coated cutting tool that exhibits excellent cutting performance (hereinafter referred to as a coated tool).

従来、一般に、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された基体(以下、これらを総称して工具基体という)の表面に、
(a)下部層が、いずれも化学蒸着形成された、Tiの炭化物(以下、TiCで示す)層、窒化物(以下、同じくTiNで示す)層、炭窒化物(以下、TiCNで示す)層、炭酸化物(以下、TiCOで示す)層および炭窒酸化物(以下、TiCNOで示す)層のうちの2層以上からなるTi化合物層、
(b)上部層が、化学蒸着形成された酸化アルミニウム(以下、Alで示す)層、
以上(a)および(b)で構成された硬質被覆層を形成してなる被覆工具が知られており、この被覆工具は、各種の鋼や鋳鉄などの切削加工に用いられていることが知られている。
Conventionally, generally on the surface of a substrate (hereinafter collectively referred to as a tool substrate) composed of a tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet. ,
(A) Ti carbide (hereinafter referred to as TiC) layer, nitride (hereinafter also referred to as TiN) layer, carbonitride (hereinafter referred to as TiCN) layer formed by chemical vapor deposition of the lower layers. A Ti compound layer comprising two or more of a carbon oxide (hereinafter referred to as TiCO) layer and a carbonitride oxide (hereinafter referred to as TiCNO) layer,
(B) an aluminum oxide (hereinafter referred to as Al 2 O 3 ) layer in which the upper layer is formed by chemical vapor deposition;
A coated tool formed by forming a hard coating layer composed of (a) and (b) above is known, and this coated tool is known to be used for cutting various steels and cast irons. It has been.

ただ、上記の被覆工具の切削性能は、特に、下部層の組織構造によって大きな影響を受けることから、下部層の結晶粒組織構造について、従来からいくつかの提案がなされている。   However, since the cutting performance of the above-mentioned coated tool is greatly influenced by the structure of the lower layer, some proposals have been made regarding the grain structure of the lower layer.

例えば、引用文献1には、下部層として、TiN層、この上の第2層として、TiCN層、さらにこの上に、TiC層、TiN層、TiCN層等を形成した被覆工具において、上記第2層のTiCNを柱状結晶粒から構成し、該TiCNの平均結晶粒径が、第2層の膜厚が4.0μm以下のときには0.1〜1μmの範囲であり、第2層の膜厚が4.0μmを越え、20μm以下のときには0.5〜3.0μmの範囲とし、第2層の硬度を1600〜2400kg/mmとすることにより、硬質被覆層と母材との密着性を強固にし、硬質被覆層の靭性、耐剥離性、耐摩耗性を高めることが提案されている。 For example, in the cited document 1, in the coated tool in which the TiN layer is formed as the lower layer, the TiCN layer is formed as the second layer thereon, and the TiC layer, TiN layer, TiCN layer, etc. are further formed thereon, the second When the TiCN of the layer is composed of columnar crystal grains, the average crystal grain size of the TiCN is in the range of 0.1 to 1 μm when the thickness of the second layer is 4.0 μm or less, and the thickness of the second layer is When it exceeds 4.0 μm and is 20 μm or less, it is in the range of 0.5 to 3.0 μm, and the hardness of the second layer is 1600 to 2400 kg / mm 2 , thereby strengthening the adhesion between the hard coating layer and the base material. On the other hand, it has been proposed to increase the toughness, peel resistance and wear resistance of the hard coating layer.

また、引用文献2には、基体と接する第1層がTiN、第2層がTiCNからなる下部層において、第2層の膜厚を全膜厚に対して60%以上で、かつ、その粒子の水平方向の平均粒径が0.3〜1.2μmであり、垂直方向の平均粒径が水平方向の平均粒径の2.5倍以上とすることにより、被覆工具の耐剥離性、耐チッピング性、耐摩耗性を高めることが提案されている。   Further, in the cited document 2, in the lower layer in which the first layer in contact with the substrate is TiN and the second layer is TiCN, the thickness of the second layer is 60% or more of the total thickness, and the particles The average particle size in the horizontal direction is 0.3 to 1.2 μm, and the average particle size in the vertical direction is at least 2.5 times the average particle size in the horizontal direction. It has been proposed to increase chipping and wear resistance.

また、引用文献3には、下部層のTi化合物層として、少なくとも、柱状晶のTiCN層を形成し、該TiCN層の上端から該TiCN層の厚さの1/5の距離の位置におけるTiCN柱状結晶粒の水平方向の平均粒径d1と、該TiCN層の下端から該TiCN層の厚さの2/5の距離の位置におけるTiCN柱状結晶粒の水平方向の平均粒径d2の比を1≦d1/d2≦1.3とし、さらに、d1=0.2〜1.5μmすることにより、耐摩耗性、耐欠損性の両方に優れ、断続切削を含む長時間の切削加工における耐欠損性と耐摩耗性の改善を図ることが提案されている。   In the cited document 3, at least a columnar TiCN layer is formed as a lower Ti compound layer, and the TiCN columnar shape is located at a distance of 1/5 of the thickness of the TiCN layer from the upper end of the TiCN layer. The ratio between the horizontal average grain size d1 of the crystal grains and the horizontal average grain size d2 of the TiCN columnar crystal grains at a position 2/5 of the thickness of the TiCN layer from the lower end of the TiCN layer is 1 ≦ By setting d1 / d2 ≦ 1.3 and further d1 = 0.2 to 1.5 μm, both wear resistance and fracture resistance are excellent, and fracture resistance in long-time cutting including intermittent cutting It has been proposed to improve wear resistance.

さらに、引用文献4には、硬質被覆層として、少なくともTiCN層とAl層を有する被覆工具において、該TiCN層は、下部TiCN層と上部TiCN層とからなり、下部TiCN層の膜厚t1は1μm≦t1≦10μm、上部TiCN層の膜厚t2は0.5μm≦t2≦5μmであって、かつ、1<t1/t2≦5の関係を満足し、さらに、上部TiCN層のTiCN粒子の平均結晶幅w2は0.2〜1.5μmであって、下部TiCN層のTiCN粒子の平均結晶幅w1はw2の0.7倍以下とすることによって、硬質被覆層の密着性を高め、層間剥離を防止し、断続切削加工等における耐欠損性、耐摩耗性の改善を図ることが提案されている。 Furthermore, in the cited document 4, in a coated tool having at least a TiCN layer and an Al 2 O 3 layer as a hard coating layer, the TiCN layer is composed of a lower TiCN layer and an upper TiCN layer, and the thickness of the lower TiCN layer t1 is 1 μm ≦ t1 ≦ 10 μm, the film thickness t2 of the upper TiCN layer is 0.5 μm ≦ t2 ≦ 5 μm, and satisfies the relationship of 1 <t1 / t2 ≦ 5. Further, TiCN particles of the upper TiCN layer The average crystal width w2 is 0.2 to 1.5 μm, and the average crystal width w1 of the TiCN particles of the lower TiCN layer is 0.7 times or less of w2, thereby improving the adhesion of the hard coating layer, It has been proposed to prevent delamination and improve fracture resistance and wear resistance in intermittent cutting and the like.

特開平7−285001号公報JP-A-7-285001 特開平10−15711号公報Japanese Patent Laid-Open No. 10-15711 特開平10−109206号公報JP-A-10-109206 特開2005−186221号公報JP 2005-186221 A

近年の切削加工における省力化および省エネ化の要求は強く、これに伴い、被覆工具は一段と過酷な条件下で使用されるようになってきているが、例えば、前記特許文献1〜3に示される被覆工具においても、高熱発生を伴うとともに、切れ刃に高負荷が作用する高速重切削加工に用いられた場合には、下部層の靭性が十分ではないために、切削加工時の高負荷によって切れ刃にチッピングが発生しやすく、その結果、比較的短時間で使用寿命に至るのが現状である。   In recent years, there is a strong demand for energy saving and energy saving in cutting, and with this, the coated tool has come to be used under more severe conditions. Even when a coated tool is used for high-speed heavy cutting with high heat generation and high load acting on the cutting edge, the toughness of the lower layer is not sufficient. The current situation is that chipping tends to occur on the blade, and as a result, the service life is reached in a relatively short time.

そこで、本発明者等は、上述のような観点から、高熱発生を伴い、かつ、切れ刃に高負荷が作用する高速重切削加工に用いられた場合でも、硬質被覆層がすぐれた靭性、耐チッピング性を備え、しかも、長期の使用にわたってすぐれた耐摩耗性を発揮する被覆工具について鋭意研究を行った結果、以下の知見を得たのである。   In view of the above, the present inventors, from the above viewpoint, have high toughness and resistance to hard coating even when used in high-speed heavy cutting with high heat generation and high load acting on the cutting edge. As a result of diligent research on a coated tool that has chipping properties and exhibits excellent wear resistance over a long period of use, the following knowledge was obtained.

即ち、本発明者等は、被覆工具の硬質被覆層、特に、下部層を構成するTi化合物のうちのTiの炭窒化物(以下、TiCNで示す)層の結晶粒組織構造を、柱状組織と微粒組織の混合組織として構成し、しかも、該柱状組織と微粒組織が、層厚方向に周期的に交互に現出するような結晶粒組織構造として構成することにより、Ti化合物層からなる下部層の本来有する特性を何ら損なうことなく、下部層と上部層からなる硬質被覆層の靭性及び耐チッピング性を向上させ得ることを見出したのである。   That is, the present inventors have determined that the grain structure of the hard coating layer of the coated tool, in particular, the Ti carbonitride (hereinafter referred to as TiCN) layer of the Ti compound constituting the lower layer is a columnar structure. A lower layer composed of a Ti compound layer is formed as a mixed structure of a fine-grained structure, and further, the columnar structure and the fine-grained structure are constituted as a crystal grain-structured structure that appears alternately and periodically in the layer thickness direction. It has been found that the toughness and chipping resistance of the hard coating layer composed of the lower layer and the upper layer can be improved without impairing the inherent properties of.

そして、上記結晶粒組織構造を有するTiCN層(以下、改質TiCN層という)は、例えば、以下の化学蒸着法によって成膜することができる。   And the TiCN layer (henceforth a modified TiCN layer) which has the said crystal grain structure can be formed into a film by the following chemical vapor deposition methods, for example.

例えば、工具基体表面に、下部層を構成するTi化合物層の一つとして、TiN層を蒸着形成した後、
(a)上記TiN層の上に、TiCl−CHCN−N−H系反応ガスを用いてTiCN層を蒸着形成し、
(b)上記(a)の成膜過程で、上記反応ガスの導入を停止すると同時に、SF系ガスを導入してSFエッチングを行い、
(c)次いで、上記(a)の工程と上記(b)の工程を繰り返し行ない、目標厚さのTiCN層を形成する。
For example, after depositing a TiN layer as one of the Ti compound layers constituting the lower layer on the tool base surface,
(A) A TiCN layer is deposited on the TiN layer using a TiCl 4 —CH 3 CN—N 2 —H 2 -based reactive gas,
(B) In the film forming process of (a), the introduction of the reactive gas is stopped, and at the same time, SF 6 -based gas is introduced to perform SF 6 etching,
(C) Next, the step (a) and the step (b) are repeated to form a TiCN layer having a target thickness.

上記(a)〜(c)によって、下部層を構成するTi化合物層の一つの層として改質TiCN層が形成されるが、該改質TiCN層について透過型電子顕微鏡で組織観察を行うと、柱状組織と微粒組織の混合組織からなり、しかも、該柱状組織と微粒組織が、層厚方向に周期的に交互に現出するような結晶粒組織構造が形成されていることが確認される。   According to the above (a) to (c), a modified TiCN layer is formed as one of the Ti compound layers constituting the lower layer. When the microstructure of the modified TiCN layer is observed with a transmission electron microscope, It is confirmed that a crystal grain structure is formed which is composed of a mixed structure of a columnar structure and a fine grain structure, and in which the columnar structure and the fine grain structure appear periodically and alternately in the layer thickness direction.

そして、硬質被覆層の下部層を構成するTi化合物層の少なくとも一つの層として、上記結晶粒組織構造を有する改質TiCN層を蒸着形成したこの発明の被覆工具は、高熱発生を伴い、かつ、切れ刃に高負荷が作用する鋼や鋳鉄の高速重切削加工に用いた場合でも、硬質被覆層がすぐれた靭性、耐チッピング性を備え、しかも、長期の使用にわたってすぐれた耐摩耗性を発揮することを見出したのである。   Then, the coated tool of the present invention in which the modified TiCN layer having the grain structure is deposited as at least one of the Ti compound layers constituting the lower layer of the hard coating layer is accompanied by high heat generation, and Even when used for high-speed heavy cutting of steel or cast iron where a high load acts on the cutting edge, the hard coating layer has excellent toughness and chipping resistance, and also exhibits excellent wear resistance over a long period of use. I found out.

この発明は、上記知見に基づいてなされたものであって、
「(1) 炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、
(a)下部層は、少なくともTiの炭窒化物層を含み、かつ、3〜20μmの合計平均層厚を有するTi化合物層、
(b)上部層は、1〜25μmの平均層厚を有する酸化アルミニウム層、
上記(a)、(b)からなる硬質被覆層を化学蒸着した表面被覆切削工具において、
上記(a)の下部層を構成する少なくとも1層のTiの炭窒化物層は、その平均粒径が膜厚方向に沿って0.5μm〜5μmの周期で周期的に変化する結晶粒組織構造を有することを特徴とする表面被覆切削工具。
This invention has been made based on the above findings,
“(1) On the surface of a tool base made of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet,
(A) The lower layer includes a Ti compound layer including at least a Ti carbonitride layer and having a total average layer thickness of 3 to 20 μm,
(B) the upper layer is an aluminum oxide layer having an average layer thickness of 1 to 25 μm;
In the surface-coated cutting tool obtained by chemical vapor deposition of the hard coating layer comprising the above (a) and (b),
The grain structure in which at least one Ti carbonitride layer constituting the lower layer of (a) has an average grain size that periodically changes in a cycle of 0.5 μm to 5 μm along the film thickness direction. A surface-coated cutting tool characterized by comprising:

(2) 上記(a)のTi化合物層は、少なくとも1層のTiの炭窒化物層と、Tiの炭化物層、窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上とからなることを特徴とする前記(1)に記載の表面被覆切削工具。   (2) The Ti compound layer of the above (a) includes at least one Ti carbonitride layer and one or two of a Ti carbide layer, a nitride layer, a carbonate layer, and a carbonitride layer. The surface-coated cutting tool according to the above (1), comprising a layer or more.

(3) 上記(a)の下部層を構成する少なくとも1層のTiの炭窒化物層を、工具基体表面と平行に0.02μmの厚み幅領域に区分し、該厚み幅領域に存在する粒界の数を測定し、1μm当たりの粒界の数の逆数を平均粒径Dとして、膜厚方向に沿う各厚み幅領域の平均粒径Dの変化を求めた場合に、
平均粒径Dが0.5〜1.5μmである厚み幅領域と、平均粒径Dが0.05〜0.3μmである厚み幅領域とが、該層の膜厚方向に沿って、交互に少なくとも複数領域形成されていることによって、上記下部層を構成する少なくとも1層のTiの炭窒化物層の平均粒径Dが膜厚方向に沿って0.5μm〜5μmの周期で周期的に変化する結晶粒組織構造を有することを特徴とする前記(1)または(2)に記載の表面被覆切削工具。」
に特徴を有するものである。
(3) At least one Ti carbonitride layer constituting the lower layer of the above (a) is divided into 0.02 μm thick width regions parallel to the tool base surface, and grains existing in the thick width regions When the number of boundaries is measured, and the reciprocal of the number of grain boundaries per 1 μm is defined as the average particle diameter D, the change in the average particle diameter D of each thickness width region along the film thickness direction is obtained.
A thickness width region having an average particle diameter D of 0.5 to 1.5 μm and a thickness width region having an average particle diameter D of 0.05 to 0.3 μm are alternately arranged along the film thickness direction of the layer. By forming at least a plurality of regions, the average particle diameter D of at least one Ti carbonitride layer constituting the lower layer is periodically in a cycle of 0.5 μm to 5 μm along the film thickness direction. The surface-coated cutting tool according to (1) or (2), wherein the surface-coated cutting tool has a changing grain structure. "
It has the characteristics.

本発明について、以下に詳細に説明する。
下部層のTi化合物層:
Tiの炭化物(TiC)層、窒化物(TiN)層、炭窒化物(TiCN)層、炭酸化物(TiCO)層および炭窒酸化物(TiCNO)層のうちの1層または2層以上のTi化合物層からなる下部層は、通常の化学蒸着条件で形成することができる。
The present invention will be described in detail below.
Lower Ti compound layer:
Ti compound of one or more of Ti carbide (TiC) layer, nitride (TiN) layer, carbonitride (TiCN) layer, carbonate (TiCO) layer and carbonitride oxide (TiCNO) layer The lower layer consisting of layers can be formed under normal chemical vapor deposition conditions.

上記のTi化合物からなる下部層は、それ自体が高温強度を有するため、下部層の存在によって硬質被覆層が高温強度を具備するようになるほか、工具基体とAlからなる上部層のいずれにも強固に密着し、よって硬質被覆層の工具基体に対する密着性向上に寄与する作用をもつ。 Since the lower layer made of the Ti compound itself has high temperature strength, the hard coating layer has high temperature strength due to the presence of the lower layer, and the upper layer made of the tool base and Al 2 O 3 It adheres firmly to both, and thus has the effect of contributing to improved adhesion of the hard coating layer to the tool substrate.

ただ、下部層の合計平均層厚が3μm未満では、前記作用を十分に発揮させることができず、一方その合計平均層厚が20μmを越えると、チッピングを発生しやすくなることから、その合計平均層厚を3〜20μmと定めた。
下部層の改質TiCN層:
この発明では、上記下部層を構成するTi化合物層のうち、少なくとも一つの層を、柱状組織と微粒組織が周期的に交互に現出するような結晶粒組織構造を備える前記改質TiCN層として形成する。
However, if the total average layer thickness of the lower layer is less than 3 μm, the above-mentioned effect cannot be sufficiently exerted. On the other hand, if the total average layer thickness exceeds 20 μm, chipping is likely to occur. The layer thickness was determined to be 3-20 μm.
Lower layer modified TiCN layer:
In the present invention, at least one of the Ti compound layers constituting the lower layer is the modified TiCN layer having a crystal grain structure in which a columnar structure and a fine grain structure appear alternately and periodically. Form.

なお、改質TiCN層は、下部層中に1層だけ形成するのではなく、下部層中に複数層形成することも勿論可能である。   Of course, the modified TiCN layer may be formed not only in the lower layer but in a plurality of layers in the lower layer.

本発明の改質TiCN層は、その層厚方向に沿って結晶粒組織構造を観察した場合、改質TiCN層の平均粒径Dが層厚方向に沿って0.5μm〜5μmの周期で周期的に変化する結晶粒組織構造を有しており、さらに具体的には、改質TiCN層を、工具基体表面と平行に0.02μmの厚み幅領域に区分し、該厚み幅領域に存在する粒界の数を測定し、1μm当たりの粒界の数の逆数を平均粒径Dとして、層厚方向に沿う各厚み幅領域の平均粒径Dの変化を求めた場合に、平均粒径Dが0.5〜1.5μmである厚み幅領域と、平均粒径Dが0.05〜0.3μmである厚み幅領域とが、改質TiCN層の層厚方向に沿って、交互に少なくとも複数領域形成されている結晶粒組織構造を有している。   In the modified TiCN layer of the present invention, when the grain structure is observed along the layer thickness direction, the average grain diameter D of the modified TiCN layer is periodic with a period of 0.5 μm to 5 μm along the layer thickness direction. More specifically, the modified TiCN layer is divided into 0.02 μm thickness width regions parallel to the tool base surface and exists in the thickness width region. When the number of grain boundaries was measured and the change in the average grain diameter D of each thickness width region along the layer thickness direction was determined by taking the reciprocal of the number of grain boundaries per 1 μm as the average grain diameter D, the average grain diameter D Thickness range of 0.5 to 1.5 μm and thickness range of average particle size D of 0.05 to 0.3 μm are alternately at least along the thickness direction of the modified TiCN layer. It has a crystal grain structure formed in a plurality of regions.

そして、このような結晶粒組織構造を有している改質TiCN層を、少なくとも一層、Ti化合物からなる下部層に形成することによって、硬質被覆層全体としての靭性が向上し、その結果、硬質被覆層の耐チッピング性、耐摩耗性の向上が図られる。
改質TiCN層の成膜:
この発明の改質TiCN層は、通常の化学蒸着条件で成膜するTi化合物層からなる下部層の少なくとも一つの層として、成膜することができる。
例えば、通常の化学蒸着装置を用い、
反応ガス組成(容量%):
TiCl:4〜5 %,
:30〜40 %,
:残
反応雰囲気温度:1020〜1060℃、
反応雰囲気圧力:10〜30kPa、
の条件で所定膜厚のTiN層を蒸着形成した後、
(a)上記TiN層の表面に、
反応ガス組成(容量%):
TiCl:1〜3 %,
CHCN:0.5〜1.0 %,
:5〜15 %,
:残
反応雰囲気温度:900〜950℃、
反応雰囲気圧力:5〜20kPa、
の条件で所定膜厚のTiCN層を蒸着形成し
(b)ついで、上記反応ガスの導入を停止し、その代わりに、0.1〜2容量%のガス組成となるようにSFガスを添加したHガスを導入し、このSFガスにより以下の条件、即ち、
反応ガス組成(容量%):
SF:0.1〜2 %,
:残
反応雰囲気温度:800〜1050 ℃、
反応雰囲気圧力:5〜20kPa、
の条件で5〜30分間SFエッチングを行う。
(c)ついで、上記SF系ガスの導入を停止し、装置内に、上記(a)の反応ガスを導入し、上記(a)と同じ条件で、再度TiCN層を蒸着形成する。
And the toughness as the whole hard coating layer improves by forming the modified TiCN layer which has such a crystal grain structure at least in the lower layer which consists of Ti compounds, and, as a result, hard The chipping resistance and wear resistance of the coating layer can be improved.
Deposition of modified TiCN layer:
The modified TiCN layer of the present invention can be formed as at least one lower layer composed of a Ti compound layer formed under normal chemical vapor deposition conditions.
For example, using normal chemical vapor deposition equipment,
Reaction gas composition (volume%):
TiCl 4 : 4-5%,
N 2: 30~40%,
H 2 : residual reaction atmosphere temperature: 1020 to 1060 ° C.
Reaction atmosphere pressure: 10-30 kPa,
After depositing a TiN layer having a predetermined thickness under the conditions of
(A) On the surface of the TiN layer,
Reaction gas composition (volume%):
TiCl 4: 1~3%,
CH 3 CN: 0.5~1.0%,
N 2: 5~15%,
H 2 : residual reaction atmosphere temperature: 900 to 950 ° C.
Reaction atmosphere pressure: 5 to 20 kPa,
(B) Next, the introduction of the reactive gas is stopped, and instead, SF 6 gas is added so that the gas composition is 0.1 to 2% by volume. H 2 gas was introduced, and this SF 6 gas was used for the following conditions:
Reaction gas composition (volume%):
SF 6 : 0.1 to 2%,
H 2 : residual reaction atmosphere temperature: 800 to 1050 ° C.
Reaction atmosphere pressure: 5 to 20 kPa,
The SF 6 etching is performed for 5 to 30 minutes under the above conditions.
(C) Next, the introduction of the SF 6 -based gas is stopped, the reaction gas (a) is introduced into the apparatus, and a TiCN layer is formed again by vapor deposition under the same conditions as (a).

上記(b)と(c)を繰り返し行ない、最終的に目標層厚の改質TiCN層を蒸着形成する。   The above steps (b) and (c) are repeated, and finally a modified TiCN layer having a target layer thickness is formed by vapor deposition.

この後、下部層として必要とするTi化合物層の成膜を行い、目標層厚の下部層を形成し、この上に上部層であるAl層を目標膜厚となるように蒸着形成することによって、硬質被覆層を形成する。
改質TiCN層の結晶粒組織構造:
図1に、上記の化学蒸着条件で形成されたこの発明の改質TiCN層の結晶粒組織構造の概略摸式図を示す。
Thereafter, a Ti compound layer required as a lower layer is formed to form a lower layer having a target layer thickness, and an Al 2 O 3 layer, which is an upper layer, is deposited on the upper layer by vapor deposition. By doing so, a hard coating layer is formed.
Grain structure of the modified TiCN layer:
FIG. 1 shows a schematic diagram of the crystal grain structure of the modified TiCN layer of the present invention formed under the above chemical vapor deposition conditions.

図1に示されるように、この発明の改質TiCN層では、柱状組織のTiCN粒が層厚方向に複数段に形成され、しかも、各段の上下の柱状組織のTiCN粒の境界には、微粒組織のTiCN粒が集積形成された組織構造を備えている。   As shown in FIG. 1, in the modified TiCN layer of the present invention, columnar TiCN grains are formed in a plurality of stages in the layer thickness direction, and at the boundaries between the upper and lower columnar TiCN grains in each stage, It has a structure in which fine-grained TiCN grains are accumulated.

図2には、上記の化学蒸着条件で形成されたこの発明の結晶粒組織構造を有する改質TiCN層における、平均粒径の分布図を示す。   FIG. 2 shows a distribution diagram of average particle diameters in the modified TiCN layer having the grain structure of the present invention formed under the above chemical vapor deposition conditions.

この平均粒径の分布図は、以下の方法で求めることができる。   The distribution chart of the average particle diameter can be obtained by the following method.

まず、改質TiCN層を、工具基体表面と平行に0.02μmの厚み幅領域に夫々区分し(図3において、工具基体表面に平行に引かれた複数の平行線で仕切られた区画が、0.02μmの厚み幅領域に相当する。)、区分された各厚み幅領域に存在する粒界の数nを透過型電子顕微鏡(倍率50000倍)にて合計10μmにわたって測定し、このnを1μm当たりの粒界の数N(=n/10)に換算し、その換算値の逆数を平均粒径D(=1/N)として求め、各厚み幅領域で求められた平均粒径Dを層厚方向に沿ってグラフ化することにより、図2として示される層厚方向平均粒径分布図を作成する。   First, the modified TiCN layer is divided into 0.02 μm thickness width regions in parallel with the tool base surface (in FIG. 3, the sections partitioned by a plurality of parallel lines drawn parallel to the tool base surface are This corresponds to a thickness width region of 0.02 μm.) The number n of grain boundaries existing in each divided thickness width region was measured over a total of 10 μm with a transmission electron microscope (magnification 50000 times), and this n was 1 μm. It is converted into the number N (= n / 10) per grain boundary, the reciprocal of the converted value is obtained as the average particle diameter D (= 1 / N), and the average particle diameter D obtained in each thickness width region is the layer. By making a graph along the thickness direction, a layer thickness direction average particle size distribution diagram shown as FIG. 2 is created.

そして、この発明の改質TiCN層の結晶粒組織構造によれば、該層厚方向平均粒径分布図において、平均粒径Dの値が0.5〜1.5μmの範囲内である厚み幅領域と、平均粒径Dの値が0.05〜0.3μmの範囲内である厚み幅領域とが、改質TiCN層の層厚方向に沿って、周期的かつ交互に少なくとも複数領域形成される。   And according to the grain structure of the modified TiCN layer of this invention, the thickness width in which the value of the average particle diameter D is in the range of 0.5 to 1.5 μm in the layer thickness direction average particle size distribution diagram At least a plurality of regions are formed periodically and alternately along the thickness direction of the modified TiCN layer along the thickness direction of the modified TiCN layer with the average particle diameter D being in the range of 0.05 to 0.3 μm. The

例えば、図2においては、平均粒径Dの値が0.5〜1.5μmの範囲内である厚み幅領域が、層厚方向に4領域形成され、また、平均粒径Dの値が0.05〜0.3μmの範囲内である厚み幅領域が、層厚方向に3領域形成されている。   For example, in FIG. 2, four thickness width regions in which the average particle diameter D is in the range of 0.5 to 1.5 μm are formed in the layer thickness direction, and the average particle diameter D is 0. Three thickness width regions in the range of 0.05 to 0.3 μm are formed in the layer thickness direction.

そしてこの層厚方向平均粒径分布図から、この発明の改質TiCN層では、層厚方向に沿ってTiCN結晶粒の平均粒径が周期的に変化する結晶粒組織構造が形成されていることがわかる。   And from this layer thickness direction average grain size distribution chart, in the modified TiCN layer of the present invention, a grain structure in which the average grain size of TiCN crystal grains periodically changes along the layer thickness direction is formed. I understand.

この発明で、TiCNの平均粒径の変化の周期を0.5μm〜5μmとしたのは、上記周期が0.5μm未満になると周期が短すぎるために周期構造の有するすぐれた靭性とすぐれた耐チッピング性の特徴を十分に発揮できなくなるためであり、一方、上記周期が5μm以上になると周期が長くなり過ぎてしまい周期構造の有する上記特徴を十分に発揮できなくなるため、という理由による。   In this invention, the period of change of the average particle diameter of TiCN was set to 0.5 μm to 5 μm because the period is too short when the period is less than 0.5 μm, and therefore the excellent toughness and excellent resistance to resistance of the periodic structure. This is because the chipping characteristics cannot be sufficiently exhibited, and on the other hand, when the period is 5 μm or more, the period becomes too long and the characteristics of the periodic structure cannot be sufficiently exhibited.

また、この発明で、平均粒径Dの値の上限範囲を0.5〜1.5μmの範囲内と定めたのは、0.5μm未満になると下限範囲の平均粒径Dとの差が小さくなりすぎて周期構造の有する特徴を十分に発揮しえなくなり、一方、1.5μm以上になると粗粒になり高い靭性を維持できなくなるからである。   In the present invention, the upper limit range of the average particle diameter D is determined to be within the range of 0.5 to 1.5 μm. When the average particle diameter is less than 0.5 μm, the difference from the average particle diameter D of the lower limit range is small This is because the characteristics of the periodic structure cannot be fully exhibited due to being too large, and on the other hand, when the thickness is 1.5 μm or more, coarse grains are formed and high toughness cannot be maintained.

また、平均粒径Dの値の下限範囲を0.05〜0.3μmの範囲内と定めたのは、0.05μm未満になると該厚み幅領域でのTiCNの粒子間歪みが増大し改質TiCN層中の粒子の密着性が低下することによりTiCNの高い靭性を維持できなくなり、一方、0.3μm以上になると粗粒になることにより高い靭性を維持できなくなるという理由による。   Further, the lower limit range of the average particle diameter D is determined to be in the range of 0.05 to 0.3 μm. When the average particle diameter D is less than 0.05 μm, the inter-particle strain of TiCN in the thickness width region increases and the modification This is because the high toughness of TiCN cannot be maintained due to a decrease in the adhesion of particles in the TiCN layer, while high toughness cannot be maintained due to coarse grains when the particle size is 0.3 μm or more.

この発明では、硬質被覆層の下部層中に、少なくとも一層の改質TiCN層として、平均粒径Dが上記の上限範囲内と上記の下限範囲内にある厚み幅領域が周期的に交互に現出する結晶粒組織構造を備えていることから、高熱発生を伴い、かつ、切れ刃に高負荷が作用する高速重切削加工においても、上部層のAl層が有する本来の高温硬さと耐熱性とを損なうことなく、硬質被覆層全体としてのすぐれた靭性、耐チッピング性を発揮するようになる。
上部層のAl層:
上部層を構成するAl層が、高温硬さと耐熱性を備えることは既に良く知られているが、この発明のAl層からなる上部層は、その平均層厚が1μm未満では、長期の使用に亘っての耐摩耗性を確保することができず、一方、その平均層厚が25μmを越えるとAl結晶粒が粗大化し易くなり、その結果、高温硬さ、高温強度の低下に加え、高速重切削加工時の耐チッピング性が低下するようになることから、その平均層厚を1〜25μmと定めた。
In the present invention, in the lower layer of the hard coating layer, as at least one modified TiCN layer, thickness width regions in which the average particle diameter D is within the above upper limit range and the above lower limit range appear alternately and periodically. Since it has a crystal grain structure to be produced, the high-temperature hardness of the upper layer of the Al 2 O 3 layer is high, even in high-speed heavy cutting with high heat generation and high load acting on the cutting edge. The excellent toughness and chipping resistance of the hard coating layer as a whole can be exhibited without impairing the heat resistance.
Upper layer Al 2 O 3 layer:
It is well known that the Al 2 O 3 layer constituting the upper layer has high-temperature hardness and heat resistance, but the average layer thickness of the upper layer made of the Al 2 O 3 layer of the present invention is less than 1 μm. In this case, the wear resistance over a long period of use cannot be ensured. On the other hand, if the average layer thickness exceeds 25 μm, the Al 2 O 3 crystal grains are likely to be coarsened. In addition to the decrease in high temperature strength, the chipping resistance at the time of high speed heavy cutting will decrease, so the average layer thickness was set to 1 to 25 μm.

この発明の被覆工具は、硬質被覆層として、Ti化合物層からなる下部層とAl層からなる上部層を被覆形成し、かつ、下部層の少なくとも一つの層として、TiCNの平均粒径が層厚方向に沿って周期的に変化する結晶粒組織構造を有している改質TiCN層を形成することにより、鋼や鋳鉄等の高熱発生を伴い、しかも、切れ刃に高負荷が作用する高速重切削加工に用いた場合でも、靭性、耐チッピング性にすぐれ、その結果、長期の使用にわたってすぐれた耐摩耗性を発揮し、被覆工具の長寿命化が達成されるものである。 In the coated tool of the present invention, as a hard coating layer, a lower layer made of a Ti compound layer and an upper layer made of an Al 2 O 3 layer are coated, and an average particle diameter of TiCN is formed as at least one of the lower layers. By forming a modified TiCN layer having a grain structure that periodically changes along the layer thickness direction, high heat generation occurs in steel, cast iron, etc., and a high load acts on the cutting edge. Even when used for high-speed heavy cutting, excellent toughness and chipping resistance are obtained. As a result, excellent wear resistance is exhibited over a long period of use, and the life of the coated tool is extended.

この発明の改質TiCN層の結晶粒組織構造の概略摸式図を示す。The schematic model figure of the crystal grain structure structure of the modified TiCN layer of this invention is shown. この発明の結晶粒組織構造を有する改質TiCN層についての層厚方向の平均粒径分布図を示す。The average particle size distribution map of the layer thickness direction about the modified TiCN layer which has a crystal grain structure structure of this invention is shown. この発明の改質TiCN層を、工具基体表面に平行に引かれた複数の(仮想)平行線で、0.02μmの厚み幅領域に仕切り、区画した状態の摸式図を示す。The schematic diagram of the state which partitioned the modified TiCN layer of this invention into the thickness width area | region of 0.02 micrometer with the several (imaginary) parallel line drawn | parallel with the tool base | substrate surface is shown.

つぎに、この発明の被覆工具を実施例により具体的に説明する。   Next, the coated tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO・CNMG190612に規定するインサート形状をもったWC基超硬合金製の工具基体A〜Eをそれぞれ製造した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder all having an average particle diameter of 1 to 3 μm are prepared as raw material powders. These raw material powders were blended into the composition shown in Table 1, added with wax, ball milled in acetone for 24 hours, dried under reduced pressure, and pressed into a green compact with a predetermined shape at a pressure of 98 MPa. The green compact was vacuum sintered at a predetermined temperature in the range of 1370 to 1470 ° C. for 1 hour in a vacuum of 5 Pa. After sintering, the cutting edge portion was R: 0.07 mm honing By processing, tool bases A to E made of WC base cemented carbide having an insert shape specified in ISO · CNMG190612 were manufactured.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.07mmのホーニング加工を施すことによりISO規格・CNMG190612のインサート形状をもったTiCN基サーメット製の工具基体a〜eを形成した。 In addition, as raw material powders, TiCN (mass ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder, all having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and pressed into a compact at a pressure of 98 MPa. The green compact was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour, and after the sintering, the cutting edge portion was subjected to a honing process of R: 0.07 mm. Tool bases a to e made of TiCN-based cermet having standard / CNMG190612 insert shapes were formed.

つぎに、これらの工具基体A〜Eおよび工具基体a〜eの表面に、通常の化学蒸着装置を用い、
硬質被覆層の下部層として、表3に示される条件かつ表5に示される目標層厚でTi化合物層を蒸着形成する。
Next, a normal chemical vapor deposition apparatus is used on the surfaces of these tool bases A to E and tool bases a to e,
As a lower layer of the hard coating layer, a Ti compound layer is formed by vapor deposition under the conditions shown in Table 3 and the target layer thickness shown in Table 5.

ただ、Ti化合物層を形成するにあたり、そのうちの少なくとも一つの層は、表4に示す条件で、改質TiCN層を蒸着形成する。   However, in forming the Ti compound layer, at least one of them is formed by vapor deposition of the modified TiCN layer under the conditions shown in Table 4.

改質TiCN層は、
(a)まず、表4に示す成膜条件でTiCN層を形成し、
(b)次いで、表4に示される条件で、成膜したTiCN層を所定時間SFエッチングし、
(c)上記(a)、(b)を所定膜厚の改質TiCN層が得られるまで繰り返し行なうことにより形成する。
The modified TiCN layer is
(A) First, a TiCN layer is formed under the film forming conditions shown in Table 4,
(B) Next, under the conditions shown in Table 4, the formed TiCN layer was etched by SF 6 for a predetermined time,
(C) The above steps (a) and (b) are repeated until a modified TiCN layer having a predetermined thickness is obtained.

所定膜厚の下部層を蒸着形成した後、硬質被覆層の上部層であるAl層を、表3に示される条件で表5に示される目標層厚で蒸着形成する。 After forming a lower layer having a predetermined thickness by vapor deposition, an Al 2 O 3 layer, which is an upper layer of the hard coating layer, is formed by vapor deposition with a target layer thickness shown in Table 5 under the conditions shown in Table 3.

上記蒸着によって、表5に示される下部層および上部層からなる硬質被覆層を蒸着形成することにより本発明被覆工具1〜15を製造した。   The coated tools 1 to 15 of the present invention were manufactured by vapor-depositing a hard coating layer composed of a lower layer and an upper layer shown in Table 5 by the vapor deposition.

上記本発明被覆工具1〜15の改質TiCN層について、透過型電子顕微鏡(倍率50000倍)を用いて複数視野に渡って観察したところ、図1の概略摸式図に示される結晶粒組織構造が観察された。   The modified TiCN layers of the above-mentioned coated tools 1 to 15 of the present invention were observed over a plurality of visual fields using a transmission electron microscope (magnification 50000 times). As a result, the crystal grain structure shown in the schematic diagram of FIG. Was observed.

また、同じく透過型電子顕微鏡(倍率50000倍)を用いて、上記本発明被覆工具1〜15の改質TiCN層について、図3に示されるように層厚方向に0.02μmの厚み幅領域に区分し、該厚み幅領域に存在する粒界の数を測定し、1μm当たりの粒界の数の逆数を平均粒径Dとして、層厚方向に沿う各厚み幅領域の平均粒径Dの変化を求め、横軸を平均粒径D、縦軸を層厚方向深さとして、図2に示される平均粒径分布図を作成した。   Similarly, using a transmission electron microscope (magnification of 50000 times), the modified TiCN layer of the present coated tool 1 to 15 in the thickness width region of 0.02 μm in the layer thickness direction as shown in FIG. The number of grain boundaries present in the thickness width region is measured, and the average particle size D is the reciprocal of the number of grain boundaries per 1 μm. The change in the average particle size D of each thickness width region along the layer thickness direction The average particle diameter distribution chart shown in FIG. 2 was created with the horizontal axis representing the average particle diameter D and the vertical axis representing the depth in the layer thickness direction.

上記図2において、平均粒径Dが0.5〜1.5μmの間にある厚み幅領域における平均粒径Dの最大の値を平均粒径の極大値Dmaxとし、一方、平均粒径Dが0.05〜0.3μmの間にある厚み幅領域における平均粒径Dの最小の値を平均粒径の極小値Dminとし、図2として作成した平均粒径分布図から、DmaxとDminを求め、さらに、層厚方向に沿って、周期的に現れるDmax間の距離を微小空孔密度が変化する周期Cとして求めた。   In FIG. 2, the maximum value of the average particle diameter D in the thickness width region where the average particle diameter D is between 0.5 and 1.5 μm is the maximum value Dmax of the average particle diameter, while the average particle diameter D is The minimum value of the average particle diameter D in the thickness width region between 0.05 and 0.3 μm is set as the minimum value Dmin of the average particle diameter, and Dmax and Dmin are obtained from the average particle diameter distribution chart created as FIG. Furthermore, the distance between Dmax that appears periodically along the layer thickness direction was determined as the period C at which the micropore density changes.

表6に、改質TiCN層について、上記極大値Dmax、極小値Dmin及び周期Cの値を示す。   Table 6 shows the values of the maximum value Dmax, the minimum value Dmin, and the period C for the modified TiCN layer.

また、比較の目的で、工具基体A〜Eおよび工具基体a〜eの表面に、表3に示される条件かつ表7に示される目標層厚で、硬質被覆層の下部層としてのTi化合物層および上部層としてのAl層を蒸着形成することにより、表7に示すTiCN層を有する比較被覆工具1〜10を作製した。(比較被覆工具1〜10では、改質TiCN層の形成を行っていない。)
また、表3に示される条件かつ表7に示される目標層厚で、硬質被覆層の下部層としてのTi化合物層および上部層としてのAl層を蒸着形成するとともに、下部層の一部に、表4に示される条件でTiCNの平均粒径が変化する改質TiCN層を形成することにより、表7に示すTiCN層を有する比較被覆工具11〜15を作製した。
For comparison purposes, a Ti compound layer as a lower layer of the hard coating layer on the surfaces of the tool bases A to E and the tool bases a to e under the conditions shown in Table 3 and the target layer thickness shown in Table 7 Comparative coating tools 1 to 10 having TiCN layers shown in Table 7 were prepared by vapor-depositing Al 2 O 3 layers as upper layers. (The comparative coated tools 1 to 10 do not form a modified TiCN layer.)
Further, the Ti compound layer as the lower layer of the hard coating layer and the Al 2 O 3 layer as the upper layer are formed by vapor deposition under the conditions shown in Table 3 and the target layer thickness shown in Table 7. Comparative coated tools 11 to 15 having the TiCN layer shown in Table 7 were produced by forming a modified TiCN layer in which the average particle size of TiCN changes under the conditions shown in Table 4 in the part.

比較被覆工具1〜10のTiCN層及び比較被覆工具11〜15の改質TiCN層について、透過型電子顕微鏡(倍率50000倍)を用いて、TiCNの平均粒径を測定した。   The average particle diameter of TiCN was measured for the TiCN layer of the comparative coated tools 1 to 10 and the modified TiCN layer of the comparative coated tools 11 to 15 using a transmission electron microscope (magnification 50000 times).

比較被覆工具1〜10については、TiCNの平均粒径は層厚方向に有意な差は認められず、ほぼ均一平均粒径であった。   For the comparative coated tools 1 to 10, the average particle size of TiCN was almost uniform average particle size without any significant difference in the layer thickness direction.

表8には、比較被覆工具1〜10についての層厚方向全体にわたり均一な平均粒径の値を示す。   Table 8 shows the average particle size values that are uniform over the entire layer thickness direction for the comparative coated tools 1-10.

比較被覆工具11〜15については、本発明被覆工具1〜15の場合と同様に層厚方向にわたる平均粒径の変化を測定した。   For the comparative coated tools 11-15, the change in the average particle diameter over the layer thickness direction was measured as in the case of the inventive coated tools 1-15.

表8に、比較被覆工具11〜15について求めた極大値Dmax、極小値Dmin及び周期Cの値を示す。   Table 8 shows values of the maximum value Dmax, the minimum value Dmin, and the period C obtained for the comparative coated tools 11 to 15.

また、本発明被覆工具1〜15及び比較被覆工具1〜15の各構成層の層厚を、走査型電子顕微鏡を用いて測定したところ、いずれも表5,表7に示される目標層厚と実質的に同じ平均層厚を示した。   Moreover, when the layer thickness of each component layer of this invention coated tool 1-15 and comparative coated tool 1-15 was measured using the scanning electron microscope, all are the target layer thickness shown in Table 5, Table 7, and It showed substantially the same average layer thickness.

つぎに、上記本発明被覆工具1〜15及び比較被覆工具1〜15について、表9に示す条件で切削加工試験を実施し、いずれの切削試験でも切刃の逃げ面摩耗幅を測定した。 Next, a cutting test was performed on the above-described inventive coated tools 1 to 15 and comparative coated tools 1 to 15 under the conditions shown in Table 9, and the flank wear width of the cutting edge was measured in any cutting test.

表10に、この測定結果を示した。   Table 10 shows the measurement results.

表5〜10に示される結果から、この発明の被覆工具は、硬質被覆層の下部層として、少なくとも一層の改質TiCNの平均粒径が層厚方向に沿って0.5μm〜5μmの周期で周期的に変化する結晶粒組織構造を有していることにより、鋼や鋳鉄等の高熱発生を伴い、しかも、切れ刃に高負荷が作用する高速重切削加工に用いた場合でも、靭性、耐チッピング性にすぐれ、その結果、長期の使用にわたってすぐれた耐摩耗性を発揮することが明らかである。 From the results shown in Tables 5 to 10, in the coated tool of the present invention, as the lower layer of the hard coating layer, the average particle diameter of at least one modified TiCN is periodically 0.5 μm to 5 μm along the layer thickness direction. Even when used in high-speed heavy cutting where high load is applied to the cutting edge due to the high heat generation of steel, cast iron, etc. due to the periodically changing crystal grain structure structure, It is clear that the chipping property is excellent, and as a result, excellent wear resistance is exhibited over a long period of use.

これに対して、下部層のTiCNがほぼ均一平均粒径である比較被覆工具1〜10、また、本発明範囲外の結晶粒組織構造を有する比較被覆工具11〜15については、高熱発生を伴い、しかも、切れ刃に高負荷が作用する高速重切削加工に用いた場合、チッピング、欠損等の発生により短時間で寿命にいたることが明らかである。   On the other hand, the comparative coating tools 1 to 10 in which the lower layer TiCN has a substantially uniform average particle diameter, and the comparative coating tools 11 to 15 having a grain structure outside the scope of the present invention are accompanied by high heat generation. Moreover, when used for high-speed heavy cutting in which a high load acts on the cutting edge, it is clear that the lifetime is reached in a short time due to the occurrence of chipping, chipping and the like.

上述のように、この発明の被覆工具は、例えば鋼や鋳鉄等の高熱発生を伴い、かつ、切れ刃に高負荷が作用する高速重切削加工において、すぐれた靭性、耐チッピング性を発揮し、使用寿命の延命化を可能とするものであるが、高速重切削加工条件ばかりでなく、高速切削加工条件、高速断続切削加工条件等で使用することも勿論可能である。   As described above, the coated tool of the present invention exhibits excellent toughness and chipping resistance in high-speed heavy cutting with high heat generation such as steel and cast iron, and high load acting on the cutting edge, Although the service life can be extended, it is of course possible to use not only high-speed heavy cutting conditions but also high-speed cutting conditions and high-speed intermittent cutting conditions.

また、引用文献2には、基体と接する第1層がTiN、第2層がTiCNからなる下部層において、第2層の膜厚を全膜厚に対して60%以上で、かつ、その粒子の水平方向の平均粒径が0.3〜1.2μmであり、垂直方向の平均粒径水平方向の平均粒径の2.5倍以上とすることにより、被覆工具の耐剥離性、耐チッピング性、耐摩耗性を高めることが提案されている。 Further, in the cited document 2, in the lower layer in which the first layer in contact with the substrate is TiN and the second layer is TiCN, the thickness of the second layer is 60% or more of the total thickness, and the particles The average particle size in the horizontal direction is 0.3 to 1.2 μm, and the average particle size in the vertical direction is 2.5 times or more than the average particle size in the horizontal direction. It has been proposed to increase chipping and wear resistance.

この後、下部層として必要とするTi化合物層の成膜を行い、目標層厚の下部層を形成し、この上に上部層であるAl層を目標膜厚となるように蒸着形成することによって、硬質被覆層を形成する。
改質TiCN層の結晶粒組織構造:
図1に、上記の化学蒸着条件で形成されたこの発明の改質TiCN層の結晶粒組織構造の概略式図を示す。
Thereafter, a Ti compound layer required as a lower layer is formed to form a lower layer having a target layer thickness, and an Al 2 O 3 layer, which is an upper layer, is deposited on the upper layer by vapor deposition. By doing so, a hard coating layer is formed.
Grain structure of the modified TiCN layer:
Figure 1 shows a schematic view of a grain structure structure of the modified TiCN layer of the invention formed by the chemical vapor deposition conditions.

また、平均粒径Dの値の下限範囲を0.05〜0.3μmの範囲内と定めたのは、0.05μm未満になると該厚み幅領域でのTiCNの粒子間歪みが増大し改質TiCN層中の粒子の密着性が低下することによりTiCNの高い靭性を維持できなくなり、一方、0.3μm以上になると粗粒になることにより高い靭性を維持できなくなるという理由による。 Further, the lower limit range of the average particle diameter D is determined to be in the range of 0.05 to 0.3 μm. When the average particle diameter D is less than 0.05 μm, the inter-particle strain of TiCN in the thickness width region increases and the modification This is because the high toughness of the TiCN layer cannot be maintained due to a decrease in the adhesion of the particles in the TiCN layer , while the high toughness cannot be maintained due to coarse grains when the particle size is 0.3 μm or more.

この発明の改質TiCN層の結晶粒組織構造の概略式図を示す。It shows a schematic view of a grain structure structure of the modified TiCN layer of the present invention. この発明の結晶粒組織構造を有する改質TiCN層についての層厚方向の平均粒径分布図を示す。The average particle size distribution map of the layer thickness direction about the modified TiCN layer which has a crystal grain structure structure of this invention is shown. この発明の改質TiCN層を、工具基体表面に平行に引かれた複数の(仮想)平行線で、0.02μmの厚み幅領域に仕切り、区画した状態の式図を示す。The modified TiCN layer of this invention is divided into 0.02 μm thickness width regions by a plurality of (virtual) parallel lines drawn in parallel to the tool base surface, and a schematic view of the partitioned state is shown.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO・CNMG190612に規定するインサート形状をもったWC基超硬合金製の工具基体A〜Eをそれぞれ製造した。 As raw material powders, both prepared WC powder, TiC powder having an average particle size of 1 to 3 [mu] m, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, your and Co powder, These raw material powders were blended in the blending composition shown in Table 1, added with wax, mixed in a ball mill for 24 hours in acetone, dried under reduced pressure, and then press-molded into a green compact of a predetermined shape at a pressure of 98 MPa, This green compact was vacuum sintered in a vacuum of 5 Pa at a predetermined temperature within a range of 1370 to 1470 ° C. for 1 hour, and after sintering, the cutting edge was subjected to a honing process of R: 0.07 mm. By applying, tool bases A to E made of a WC-base cemented carbide having an insert shape specified in ISO · CNMG190612 were produced.

上記図2において、平均粒径Dが0.5〜1.5μmの間にある厚み幅領域における平均粒径Dの最大の値を平均粒径の極大値Dmaxとし、一方、平均粒径Dが0.05〜0.3μmの間にある厚み幅領域における平均粒径Dの最小の値を平均粒径の極小値Dminとし、図2として作成した平均粒径分布図から、DmaxとDminを求め、さらに、層厚方向に沿って、周期的に現れるDmax間の距離を平均粒径が変化する周期Cとして求めた。 In FIG. 2, the maximum value of the average particle diameter D in the thickness width region where the average particle diameter D is between 0.5 and 1.5 μm is the maximum value Dmax of the average particle diameter, while the average particle diameter D is The minimum value of the average particle diameter D in the thickness width region between 0.05 and 0.3 μm is set as the minimum value Dmin of the average particle diameter, and Dmax and Dmin are obtained from the average particle diameter distribution chart created as FIG. Further, the distance between Dmax that appears periodically along the layer thickness direction was determined as a period C in which the average particle diameter changes.


Claims (3)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、
(a)下部層は、少なくともTiの炭窒化物層を含み、かつ、3〜20μmの合計平均層厚を有するTi化合物層、
(b)上部層は、1〜25μmの平均層厚を有する酸化アルミニウム層、
上記(a)、(b)からなる硬質被覆層を化学蒸着した表面被覆切削工具において、
上記(a)の下部層を構成する少なくとも1層のTiの炭窒化物層は、その平均粒径が膜厚方向に沿って0.5μm〜5μmの周期で周期的に変化する結晶粒組織構造を有することを特徴とする表面被覆切削工具。
On the surface of the tool base composed of tungsten carbide based cemented carbide or titanium carbonitride based cermet,
(A) The lower layer includes a Ti compound layer including at least a Ti carbonitride layer and having a total average layer thickness of 3 to 20 μm,
(B) the upper layer is an aluminum oxide layer having an average layer thickness of 1 to 25 μm;
In the surface-coated cutting tool obtained by chemical vapor deposition of the hard coating layer comprising the above (a) and (b),
The grain structure in which at least one Ti carbonitride layer constituting the lower layer of (a) has an average grain size that periodically changes in a cycle of 0.5 μm to 5 μm along the film thickness direction. A surface-coated cutting tool characterized by comprising:
上記(a)のTi化合物層は、少なくとも1層のTiの炭窒化物層と、Tiの炭化物層、窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上とからなることを特徴とする請求項1に記載の表面被覆切削工具。   The Ti compound layer of (a) includes at least one Ti carbonitride layer and one or more of Ti carbide layer, nitride layer, carbonate layer and carbonitride layer. The surface-coated cutting tool according to claim 1, comprising: 上記(a)の下部層を構成する少なくとも1層のTiの炭窒化物層を、工具基体表面と平行に0.02μmの厚み幅領域に区分し、該厚み幅領域に存在する粒界の数を測定し、1μm当たりの粒界の数の逆数を平均粒径Dとして、膜厚方向に沿う各厚み幅領域の平均粒径Dの変化を求めた場合に、
平均粒径Dが0.5〜1.5μmである厚み幅領域と、平均粒径Dが0.05〜0.3μmである厚み幅領域とが、該層の膜厚方向に沿って、交互に少なくとも複数領域形成されていることによって、上記下部層を構成する少なくとも1層のTiの炭窒化物層の平均粒径Dが膜厚方向に沿って0.5μm〜5μmの周期で周期的に変化する結晶粒組織構造を有することを特徴とする請求項1または2に記載の表面被覆切削工具。
The at least one Ti carbonitride layer constituting the lower layer of (a) is divided into a 0.02 μm thick width region parallel to the tool base surface, and the number of grain boundaries existing in the thick width region When the change of the average particle diameter D of each thickness width region along the film thickness direction is determined with the inverse of the number of grain boundaries per 1 μm being the average particle diameter D,
A thickness width region having an average particle diameter D of 0.5 to 1.5 μm and a thickness width region having an average particle diameter D of 0.05 to 0.3 μm are alternately arranged along the film thickness direction of the layer. By forming at least a plurality of regions, the average particle diameter D of at least one Ti carbonitride layer constituting the lower layer is periodically in a cycle of 0.5 μm to 5 μm along the film thickness direction. The surface-coated cutting tool according to claim 1, wherein the surface-coated cutting tool has a changing grain structure.
JP2011002835A 2011-01-11 2011-01-11 Surface coated cutting tool with excellent toughness and chipping resistance due to hard coating layer Active JP5636971B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011002835A JP5636971B2 (en) 2011-01-11 2011-01-11 Surface coated cutting tool with excellent toughness and chipping resistance due to hard coating layer
CN201110417261.XA CN102581322B (en) 2011-01-11 2011-12-14 Hard coating layer possesses excellent toughness, the resistance to surface-coated cutting tool collapsing cutter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011002835A JP5636971B2 (en) 2011-01-11 2011-01-11 Surface coated cutting tool with excellent toughness and chipping resistance due to hard coating layer

Publications (2)

Publication Number Publication Date
JP2012143828A true JP2012143828A (en) 2012-08-02
JP5636971B2 JP5636971B2 (en) 2014-12-10

Family

ID=46470864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011002835A Active JP5636971B2 (en) 2011-01-11 2011-01-11 Surface coated cutting tool with excellent toughness and chipping resistance due to hard coating layer

Country Status (2)

Country Link
JP (1) JP5636971B2 (en)
CN (1) CN102581322B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013166226A (en) * 2012-02-16 2013-08-29 Mitsubishi Materials Corp Surface coated cutting tool that demonstrates chipping resistance with excellent hard coating layer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH068010A (en) * 1992-06-25 1994-01-18 Mitsubishi Materials Corp Cutting tool made of surface coating tungsten carbide group super hard alloy excellent in chipping resistance property
JPH0657430A (en) * 1992-08-11 1994-03-01 Mitsubishi Materials Corp Cutting tool made of surface coated titanium carbon nitride base cermet excellent in chipping resistance
JP2005103657A (en) * 2003-09-26 2005-04-21 Kyocera Corp Surface coated cutting tool

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5920760A (en) * 1994-05-31 1999-07-06 Mitsubishi Materials Corporation Coated hard alloy blade member
JP4466841B2 (en) * 2004-06-30 2010-05-26 三菱マテリアル株式会社 A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
CN100473483C (en) * 2004-08-11 2009-04-01 三菱综合材料株式会社 Surface-coated cermet cutting tool

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH068010A (en) * 1992-06-25 1994-01-18 Mitsubishi Materials Corp Cutting tool made of surface coating tungsten carbide group super hard alloy excellent in chipping resistance property
JPH0657430A (en) * 1992-08-11 1994-03-01 Mitsubishi Materials Corp Cutting tool made of surface coated titanium carbon nitride base cermet excellent in chipping resistance
JP2005103657A (en) * 2003-09-26 2005-04-21 Kyocera Corp Surface coated cutting tool

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013166226A (en) * 2012-02-16 2013-08-29 Mitsubishi Materials Corp Surface coated cutting tool that demonstrates chipping resistance with excellent hard coating layer

Also Published As

Publication number Publication date
JP5636971B2 (en) 2014-12-10
CN102581322B (en) 2016-04-20
CN102581322A (en) 2012-07-18

Similar Documents

Publication Publication Date Title
JP5590335B2 (en) Surface coated cutting tool with excellent chipping resistance and chipping resistance with excellent hard coating layer
JP6139058B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP5590329B2 (en) Surface coated cutting tool with excellent chipping resistance and chipping resistance with excellent hard coating layer
JP5590327B2 (en) Surface coated cutting tool with excellent chipping resistance and chipping resistance with excellent hard coating layer
JP6139057B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP2009006426A (en) Surface coated cutting tool with hard coating layer exerting superior wear resistance in high speed cutting
JP5246518B2 (en) Surface coated cutting tool with excellent toughness and chipping resistance due to hard coating layer
JP5003308B2 (en) Surface coated cutting tool
JP2013111722A (en) Surface-coated cutting tool whose hard coating layer exhibits excellent chipping resistance during high-speed intermittent cutting
JP5636971B2 (en) Surface coated cutting tool with excellent toughness and chipping resistance due to hard coating layer
JP5850402B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5569740B2 (en) Surface coated cutting tool with excellent chipping resistance
JP4936211B2 (en) Surface-coated cutting tool whose hard coating layer exhibits excellent wear resistance in high-speed cutting
JP2006289546A (en) Surface-coated cermet cutting tool having hard coating layer for exhibiting superior chipping resistance in high speed intermittent cutting work
JP2013116548A (en) Surface coated cutting tool with hard coating layer exhibiting superior chipping resistance
JP5838805B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5686294B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP2013184230A (en) Surface coated cutting tool with hard coating layer having superior chipping resistance and fracture resistance
JP5569739B2 (en) Surface coated cutting tool with excellent chipping resistance
JP5928807B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5928806B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP2015182155A (en) Surface-coated cutting tool with hard coating layer exhibiting superior chipping resistance in intermittent cutting
JP4936212B2 (en) Surface-coated cutting tool whose hard coating layer exhibits excellent wear resistance in high-speed cutting
JP5999350B2 (en) Surface-coated cutting tool that exhibits excellent chipping resistance and wear resistance with a hard coating layer in high-speed intermittent cutting
JP2013006255A (en) Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141007

R150 Certificate of patent or registration of utility model

Ref document number: 5636971

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150