JP2012112579A - Flat tube for heat exchanger and heat exchanger - Google Patents

Flat tube for heat exchanger and heat exchanger Download PDF

Info

Publication number
JP2012112579A
JP2012112579A JP2010261658A JP2010261658A JP2012112579A JP 2012112579 A JP2012112579 A JP 2012112579A JP 2010261658 A JP2010261658 A JP 2010261658A JP 2010261658 A JP2010261658 A JP 2010261658A JP 2012112579 A JP2012112579 A JP 2012112579A
Authority
JP
Japan
Prior art keywords
flat
flat tube
heat exchanger
groove
fin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010261658A
Other languages
Japanese (ja)
Inventor
宗尚 ▲高▼橋
Munehisa Takahashi
Yasunori Hyogo
靖憲 兵庫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2010261658A priority Critical patent/JP2012112579A/en
Publication of JP2012112579A publication Critical patent/JP2012112579A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05383Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat exchanger in which heat exchange efficiency is improved by increasing a surface area by grooves formed on a surface of a flat tube and generating a turbulent flow, and which has an excellent bondability with a fin.SOLUTION: The plurality of grooves 14 are formed extending while meandering along a flat surface in the longitudinal direction, projection parts are formed at a part of an internal flow path 13 by the grooves 14, and a plane part excluding the grooves 14 on the flat surface is formed so as to have an occupancy ratio to the flat surface 40% or more and 95% or less in any width direction.

Description

本発明は、熱交換器用扁平チューブ及びその扁平チューブの表面にフィンを接合してなる熱交換器に係り、表面に溝を形成した扁平チューブ及び熱交換器に関する。   The present invention relates to a heat exchanger flat tube and a heat exchanger formed by bonding fins to the surface of the flat tube, and more particularly to a flat tube having a groove formed on the surface and a heat exchanger.

自動車用あるいは建物用の空調装置に用いられている熱交換器として、アルミニウム合金の押出成形によって形成した扁平チューブにコルゲートフィン等のフィン部材をろう付けしたものが知られている。このような熱交換器として特許文献1及び特許文献2記載のものがある。   As a heat exchanger used for an air conditioner for automobiles or buildings, a heat exchanger in which a fin member such as a corrugated fin is brazed to a flat tube formed by extrusion molding of an aluminum alloy is known. There exist a thing of patent document 1 and patent document 2 as such a heat exchanger.

特許文献1記載の熱交換器は、一組のヘッダの間に扁平チューブが相互に平行に設けられ、これら扁平チューブの間にコルゲートフィンが接合されている。コルゲートフィンは、アルミニウム合金の薄板がプレス加工により波状に複数回折り返しながら屈曲形成されており、隣合う2本の扁平チューブの間を連絡するように、両扁平チューブの表面にろう付けされることにより、扁平チューブの長手方向に対して直交する方向に多数の流路を形成している。そして、扁平チューブ内を流通する流体と、コルゲートフィンにより形成される流路内を流通する流体との間で熱交換される構成である。
また、各扁平チューブの両面には、その幅方向に沿って、あるいは幅方向に交差する斜め方向に複数本の溝が形成されており、コルゲートフィンは、この溝により凹凸状となっている表面にろう付けされている。
In the heat exchanger described in Patent Document 1, flat tubes are provided in parallel between a pair of headers, and corrugated fins are joined between the flat tubes. The corrugated fin is formed by bending a thin aluminum alloy plate in a wavy shape by pressing and is brazed to the surface of both flat tubes so as to communicate between two adjacent flat tubes. Thus, a large number of flow paths are formed in a direction orthogonal to the longitudinal direction of the flat tube. And it is the structure heat-exchanged between the fluid which distribute | circulates the inside of a flat tube, and the fluid which distribute | circulates the inside of the flow path formed with a corrugated fin.
In addition, a plurality of grooves are formed on both sides of each flat tube along the width direction or in an oblique direction intersecting the width direction, and the corrugated fin has an uneven surface due to the grooves. It is brazed.

特許文献2記載の熱交換器においても、その扁平チューブの表面には、幅方向に交差する斜め方向に沿う溝が複数形成されており、その溝の上にコルゲートフィンがろう付けされている。   Also in the heat exchanger of patent document 2, the groove | channel along the diagonal direction which cross | intersects the width direction is formed in the surface of the flat tube, and the corrugated fin is brazed on the groove | channel.

特開2004−3787号公報JP 2004-3787 A 特開2008−101820号公報JP 2008-101820 A

これら特許文献記載の熱交換器においては、いずれも扁平チューブの表面に溝を形成することにより、扁平チューブの表面積を増やすとともに乱流を生じさせて熱交換効率を高めるようにしているが、扁平チューブの表面は、その上にろう付けされるフィンとの接合面でもあるため、溝によってフィンとチューブが接触しなくなり、接合不良となり易い。   In each of the heat exchangers described in these patent documents, a groove is formed on the surface of the flat tube so as to increase the surface area of the flat tube and generate turbulence to increase the heat exchange efficiency. Since the surface of the tube is also a joint surface with the fin to be brazed thereon, the fin and the tube are not brought into contact with each other by the groove, and the joint is likely to be poor.

本発明は、前記事情に鑑みてなされたもので、扁平チューブの表面に形成した溝により表面積を増大しかつ乱流を生じさせて熱交換効率を高めるとともに、フィンとの接合性も良好な熱交換器を提供することを目的とする。   The present invention has been made in view of the above circumstances, and the groove formed on the surface of the flat tube increases the surface area and generates turbulent flow to increase heat exchange efficiency, and also has good fin bondability. The purpose is to provide an exchanger.

本発明の熱交換器用扁平チューブは、その扁平面に長手方向に沿って蛇行しながら延びる複数本の溝が形成されていることを特徴とする。   The flat tube for a heat exchanger of the present invention is characterized in that a plurality of grooves extending while meandering along the longitudinal direction are formed on the flat surface.

この扁平チューブに接合されるフィンは、波状に折り返しながら屈曲形成され、その折り返し部が扁平チューブの幅方向に沿ってろう付けされる。この場合、チューブ表面の溝の長手方向とフィンの折り返し部とが溝の長手方向に一部重なるように配置されると、溝によってフィンとチューブが接触しなくなり、接合不良となる。これに対して、本発明の扁平チューブにおいては、扁平チューブの長手方向に沿って溝が形成されているため、その上にろう付けされるフィンの折り返し部は溝に交差する方向に配置される。したがって、溝の長手方向にフィンの折り返し部が重なって配置されることがなく、ろうを不足させることなく確実に接合することができる。   The fin joined to the flat tube is bent while being folded in a wave shape, and the folded portion is brazed along the width direction of the flat tube. In this case, if the longitudinal direction of the groove on the tube surface and the folded portion of the fin are arranged so as to partially overlap in the longitudinal direction of the groove, the fin and the tube do not contact with each other, resulting in poor bonding. On the other hand, in the flat tube of the present invention, since the groove is formed along the longitudinal direction of the flat tube, the folded portion of the fin brazed on the flat tube is arranged in a direction intersecting the groove. . Accordingly, the folded portions of the fins are not disposed so as to overlap in the longitudinal direction of the groove, and the bonding can be reliably performed without insufficient brazing.

本発明の熱交換器用扁平チューブにおいて、前記溝により内部流路の一部に突出部が形成され、前記扁平面における前記溝を除く平面部分は、前記扁平面の幅に対する占有比率がいずれの幅方向においても40%以上95%以下となるように形成されているとよい。   In the flat tube for a heat exchanger according to the present invention, a protrusion is formed in a part of the internal flow path by the groove, and the flat portion excluding the groove in the flat surface has any width occupied by the width of the flat surface. It may be formed so as to be 40% or more and 95% or less in the direction.

いずれの幅方向においても平面部分が40%以上占有していれば、幅方向に沿って配置されるフィンの折り返し部に対して十分な接合面積を確保することができる。平面部分の占有比率が40%未満であると、冷媒流路が狭くなって圧力損失が高くなり、熱交換効率が低下する。一方、この溝の形成によって内部流路側に形成される突出部は、内部流路を流通する流体に乱流を生じさせて熱交換効率を高める効果があり、扁平面における平面部分の占有比率が95%を超えると、内部流路内の乱流効果が少なく、熱交換効率が低くなる。このため、平面部分の占有比率は40%以上95%以下が好ましい。   If the plane portion occupies 40% or more in any width direction, a sufficient bonding area can be secured for the folded portion of the fins arranged along the width direction. If the occupation ratio of the planar portion is less than 40%, the refrigerant flow path becomes narrow, the pressure loss increases, and the heat exchange efficiency decreases. On the other hand, the protrusion formed on the internal flow path side by the formation of this groove has the effect of increasing the heat exchange efficiency by generating turbulent flow in the fluid flowing through the internal flow path. If it exceeds 95%, the effect of turbulent flow in the internal flow path is small, and the heat exchange efficiency is low. For this reason, the occupation ratio of the plane portion is preferably 40% or more and 95% or less.

本発明の熱交換器用扁平チューブにおいて、長手方向の両端部の表裏面は、前記溝を有しない平坦面とされているとよい。   In the flat tube for a heat exchanger of the present invention, the front and back surfaces at both ends in the longitudinal direction are preferably flat surfaces not having the groove.

扁平チューブの両端部は熱交換器のヘッダに接合される部分であり、この両端部に溝が形成されていると、その溝を埋めた状態で接合する必要があるが、両端部の表裏面を平坦面とすることにより、ヘッダと隙間なく接合することができる。   Both ends of the flat tube are parts to be joined to the header of the heat exchanger. If grooves are formed at both ends, it is necessary to join the grooves in a filled state. By using a flat surface, it is possible to join the header without any gap.

本発明の熱交換器は、前記扁平チューブと、波状に折り返しながら屈曲形成され、その折り返し部が前記扁平チューブの表面に幅方向に沿ってろう付けされたフィンとを備えていることを特徴とする。   The heat exchanger of the present invention includes the flat tube, and a fin that is bent while being folded in a wave shape, and the folded portion is brazed to the surface of the flat tube along the width direction. To do.

本発明によれば、扁平チューブ表面に形成した溝により熱交換効率が高められるとともに、その溝を長手方向に沿って形成したので、溝の長手方向にフィンの折り返し部が重なって配置されることがなく、確実に接合することができ、接合性も良好である。   According to the present invention, the heat exchange efficiency is enhanced by the grooves formed on the flat tube surface, and the grooves are formed along the longitudinal direction, so that the folded portions of the fins are arranged in the longitudinal direction of the grooves. There is no, and it can join reliably and bondability is also favorable.

本発明の実施形態の熱交換器の一部を省略した分解斜視図である。It is a disassembled perspective view which abbreviate | omitted a part of heat exchanger of embodiment of this invention. 実施形態の熱交換器の全体正面図である。It is a whole front view of the heat exchanger of an embodiment. 実施形態の熱交換器に用いられている扁平チューブの平面図である。It is a top view of the flat tube used for the heat exchanger of an embodiment. 図3のX−X線に沿うフィンとの接合部付近の拡大断面図である。FIG. 4 is an enlarged cross-sectional view of the vicinity of a joint portion with a fin along the line XX in FIG. 3. 図3のY−Y線に沿うフィンとの接合部付近の拡大断面図である。FIG. 4 is an enlarged cross-sectional view of the vicinity of a joint portion with a fin along the line YY in FIG. 3. 扁平チューブとフィンとの接合部における平面部と溝との関係を示す平面図である。It is a top view which shows the relationship between the plane part and groove | channel in the junction part of a flat tube and a fin. 扁平チューブの製造方法を説明する斜視図である。It is a perspective view explaining the manufacturing method of a flat tube. 実施例の熱交換試験をするために用いた試験装置の模式図である。It is a schematic diagram of the test apparatus used in order to perform the heat exchange test of an Example. 扁平チューブの接合部における平面部占有率と温度効率との関係を示すグラフである。It is a graph which shows the relationship between the plane part occupation rate and temperature efficiency in the junction part of a flat tube.

以下、本発明の実施形態を図面を参照しながら説明する。
この熱交換器1は、図1及び図2に示すように、熱媒としての流体を通す複数本の扁平チューブ2と、これら扁平チューブ2の外表面に接触して熱を放散するフィン3と、流体を各扁平チューブ2に分配して供給し、各扁平チューブを経由した流体を再度集合させる一組のヘッダ4,5とを備える構成としている。これら扁平チューブ2、フィン3、ヘッダ4,5は、アルミニウム合金からなり、上下方向に沿って平行に配置された両ヘッダ4,5の間に、各扁平チューブ2がヘッダ4,5の長手方向(上下方向)に相互間隔をおいて平行に並べられるとともに、各扁平チューブ2の両端部がそれぞれヘッダ4,5内に連通するように各ヘッダ4,5に固定されており、各扁平チューブ2の間にフィン3が配置されている。
Embodiments of the present invention will be described below with reference to the drawings.
As shown in FIGS. 1 and 2, the heat exchanger 1 includes a plurality of flat tubes 2 through which a fluid as a heat medium passes, and fins 3 that contact the outer surface of the flat tubes 2 to dissipate heat. The fluid is distributed and supplied to each flat tube 2, and a set of headers 4 and 5 for reassembling the fluid passing through each flat tube is provided. These flat tubes 2, fins 3, and headers 4 and 5 are made of an aluminum alloy, and the flat tubes 2 are arranged in the longitudinal direction of the headers 4 and 5 between the headers 4 and 5 arranged in parallel in the vertical direction. The flat tubes 2 are arranged in parallel with each other in the vertical direction and are fixed to the headers 4 and 5 so that both ends of the flat tubes 2 communicate with the headers 4 and 5, respectively. The fins 3 are arranged between the two.

各扁平チューブ2は、幅寸法に対して高さが小さい扁平な形状であり、その外周を形成する周壁11の内側に幅方向に間隔をおいて複数の仕切り壁12が形成されていることにより、周壁11の内側空間が相互に平行な複数の内部流路13に分割された状態の、いわゆる多穴管である。また、扁平チューブ2の扁平面2aには、図3に示すように長手方向に沿って蛇行しながら延びる複数本の溝14が形成されている。この扁平チューブ2は、押出成形によって形成され、溝14も図7に示すように押出成形時に、溝形成のための凸部15を有するロール16によって押圧しながら連続的に形成される。   Each flat tube 2 has a flat shape with a small height relative to the width dimension, and a plurality of partition walls 12 are formed at intervals in the width direction inside the peripheral wall 11 forming the outer periphery thereof. This is a so-called multi-hole tube in a state where the inner space of the peripheral wall 11 is divided into a plurality of internal flow paths 13 parallel to each other. In addition, a plurality of grooves 14 extending while meandering along the longitudinal direction are formed in the flat surface 2a of the flat tube 2 as shown in FIG. The flat tube 2 is formed by extrusion molding, and the groove 14 is also continuously formed while being pressed by a roll 16 having a convex portion 15 for groove formation at the time of extrusion molding as shown in FIG.

このように扁平チューブ2の周壁11を外側から押圧することにより溝14が形成されていることから、図4及び図5に示すように、その溝14が形成された部分は、周壁11の外表面では凹状に窪んでいるが、周壁11の内表面は、内部流路14を狭めるように周壁11の一部が内方に突出形成されるとともに、仕切り壁12の一部も面方向に押圧されることにより座屈して屈曲している。   Since the groove 14 is formed by pressing the peripheral wall 11 of the flat tube 2 from the outside in this way, the portion where the groove 14 is formed is outside the peripheral wall 11 as shown in FIGS. Although the surface is recessed in a concave shape, the inner surface of the peripheral wall 11 is formed so that a part of the peripheral wall 11 protrudes inward so as to narrow the internal flow path 14, and a part of the partition wall 12 is also pressed in the surface direction. It is buckled and bent.

この扁平チューブ2の諸寸法は特に限定されるものではないが、例えば、幅が15mm、高さが1.5mm、肉厚が0.3mm、内部流路13の数が20個とされる。また、溝14は、幅が0.5mmで深さが0.5mmとされる。ただし、後述するようにフィン3との良好な接合率を確保するために、溝14以外に残る平面部分は、扁平面2aの幅に対する占有比率がいずれの幅方向においても40%以上95%以下となるように形成されていることが重要である。   Various dimensions of the flat tube 2 are not particularly limited. For example, the width is 15 mm, the height is 1.5 mm, the wall thickness is 0.3 mm, and the number of the internal flow paths 13 is 20. The groove 14 has a width of 0.5 mm and a depth of 0.5 mm. However, as will be described later, in order to ensure a good bonding rate with the fin 3, the plane portion remaining other than the groove 14 has an occupation ratio with respect to the width of the flat surface 2a of 40% to 95% in any width direction. It is important to be formed so that

また、各扁平チューブ2の両端部の表裏面は、溝14が押しつぶされて平坦面17が形成されており、一方、ヘッダ4,5の壁には、各扁平チューブ2の両端部を挿通させる矩形の孔18が形成され、その孔18に扁平チューブ2の両端部が挿通してろう付けにより固定されている。   The flat surfaces 17 are formed by crushing the grooves 14 on the front and back surfaces of both ends of each flat tube 2. On the other hand, the both ends of each flat tube 2 are inserted into the walls of the headers 4 and 5. A rectangular hole 18 is formed, and both ends of the flat tube 2 are inserted into the hole 18 and fixed by brazing.

フィン3は、帯板を複数回折り返しながら屈曲形成することにより、山折り又は谷折りの折り返し部21が平面部22を介して交互に連続した波状に形成され、各折り返し部21が扁平チューブ2の扁平面2aにろう付けにより固定されている。この場合、フィン3の各折り返し部21は、扁平チューブ2の幅方向に沿って配置され、扁平チューブ2の表面に形成されている溝14と交差するように固定されている。   The fin 3 is formed by bending the strip while bending the strip a plurality of times, so that the folded portions 21 of mountain folds or valley folds are formed in a continuous wave shape through the flat portions 22, and each folded portion 21 is formed into a flat tube 2. Are fixed to the flat surface 2a by brazing. In this case, each folded-back portion 21 of the fin 3 is disposed along the width direction of the flat tube 2 and is fixed so as to intersect the groove 14 formed on the surface of the flat tube 2.

これらフィン3、扁平チューブ2、及び両ヘッダ4,5のろう付けは、フィン3は芯材の両面に予めろう材がクラッド形成され、一方、扁平チューブ2には、その扁平面2aにろう材が塗布されており、これらを組み合わせた状態で加熱することにより、ろう材が溶融固化して、フィン3、扁平チューブ2、ヘッダ4,5の各接触部を一体化することにより、行われる。図4及び図5の符号23は固化したろう材を示している。   The fin 3, the flat tube 2, and the headers 4, 5 are brazed with the fin 3 having a brazing material clad beforehand on both sides of the core material, while the flat tube 2 has a brazing material on its flat surface 2 a. The brazing material is melted and solidified by heating in a state where these are combined, and the contact portions of the fin 3, the flat tube 2, and the headers 4 and 5 are integrated. 4 and 5 indicates a solidified brazing material.

このように構成した熱交換器1において、フィン3は、その折り返し部21が扁平チューブ2の幅方向に沿って配置されていることから、扁平面2aとの間のろう付け部Aが扁平チューブ2の幅方向に沿って形成される。これに対して、扁平チューブ2表面の溝14は長手方向に沿って形成されているので、ろう付け部Aと溝14とが交差した状態に配置される。また、溝14以外の平面部分が扁平チューブ2の幅の中の40%以上を占めているので、ろう付け部Aは、少なくとも40%以上が平面部分とフィン3とが接合していることになり、強固な接合とすることができる。   In the heat exchanger 1 configured as described above, the fin 3 has the folded portion 21 disposed along the width direction of the flat tube 2, so that the brazed portion A between the flat surface 2 a is a flat tube. 2 along the width direction. On the other hand, since the groove 14 on the surface of the flat tube 2 is formed along the longitudinal direction, the brazed portion A and the groove 14 are arranged in an intersecting state. Further, since the flat portion other than the groove 14 occupies 40% or more of the width of the flat tube 2, at least 40% or more of the brazed portion A is bonded to the flat portion and the fin 3. Thus, it is possible to obtain a strong joint.

図3及び図6には、扁平チューブ2とフィン3とのろう付け部Aを鎖線で示している(図3には1箇所のみ示す)。そして、図6には、このろう付け部Aのうち、溝14以外に残る平面部分をハッチングして示しており、このハッチング領域がろう付け部Aの全体面積の40%以上とされる。   In FIG.3 and FIG.6, the brazing part A of the flat tube 2 and the fin 3 is shown with the chain line (only one place is shown in FIG. 3). In FIG. 6, a plane portion other than the groove 14 is hatched in the brazed portion A, and the hatched area is 40% or more of the entire area of the brazed portion A.

また、この溝14が扁平面2aに形成されていることにより、溝14に直交する方向に流通する空気が、溝14の凹凸によって流れが乱されることから、扁平チューブ2の外表面との間の熱伝達が促進される。一方、扁平チューブ2の内部流路13内においては、溝14の形成によって周壁11の一部に突出部23が形成されているとともに、仕切り壁12も座屈している。このため、内部流路13の内周面にも凹凸が形成されることになり、乱流が生じることから、流体と壁との間での熱伝達も促進され、熱交換効率が向上する。   In addition, since the groove 14 is formed in the flat surface 2a, the air flowing in the direction orthogonal to the groove 14 is disturbed by the unevenness of the groove 14, so that the air flow with the outer surface of the flat tube 2 is reduced. Heat transfer between is promoted. On the other hand, in the internal flow path 13 of the flat tube 2, the protruding portion 23 is formed on a part of the peripheral wall 11 due to the formation of the groove 14, and the partition wall 12 is also buckled. For this reason, irregularities are also formed on the inner peripheral surface of the internal flow path 13 and a turbulent flow is generated, so that heat transfer between the fluid and the wall is also promoted, and heat exchange efficiency is improved.

前述したろう付けによる接合を確実にするには、扁平面2aにおける平面部分の占有比率は大きい方が良いが、この乱流による熱交換効率の向上のためには、溝14による凹凸が大きい方が好ましく、このため、平面部分の占有比率は40%以上で、かつ95%以下とするのが好ましい。   In order to ensure the joining by brazing as described above, the occupation ratio of the flat portion in the flat surface 2a is preferably large. However, in order to improve the heat exchange efficiency by this turbulent flow, the unevenness by the groove 14 is large. Therefore, the occupation ratio of the planar portion is preferably 40% or more and 95% or less.

このように、この熱交換器1は、溝14の形成により残る平面部分が扁平チューブ2の幅に対して40%以上95%以下の占有比率で形成されていることにより、扁平チューブ2とフィン3とが十分な接合面積で接合して、両者の間で速やかに熱伝達されるとともに、扁平チューブ2の内部流路13及び扁平チューブ2の外表面で乱流が生じて熱伝達が促進され、熱交換効率を高めることができる。   Thus, the heat exchanger 1 is configured such that the flat portion remaining due to the formation of the groove 14 is formed with an occupation ratio of 40% or more and 95% or less with respect to the width of the flat tube 2. 3 are joined to each other with a sufficient joint area, and heat is quickly transferred between them, and turbulence is generated on the inner flow path 13 of the flat tube 2 and the outer surface of the flat tube 2 to promote heat transfer. , Heat exchange efficiency can be increased.

扁平チューブとして、アルミニウム合金の押出成形により、幅15mm、高さ1.5mm、内部流路が20個のものを作製し、その扁平面に溝を加工しないでフラットのままとしたもの、及び長手方向に沿って蛇行して延びる正弦波形状の溝を平行に形成したものを作製した。その場合、各溝の幅、本数を変えることにより、溝以外に残る平面部分の占有率を35%から溝を有しない100%のものまでの複数種を作製し、熱交換量を測定した。   A flat tube having a width of 15 mm, a height of 1.5 mm, and 20 internal flow paths is produced by extrusion molding of an aluminum alloy, and the flat surface is left flat without processing grooves. A sinusoidal groove extending in a meandering direction was formed in parallel. In that case, by changing the width and number of each groove, a plurality of types from 35% occupancy ratio of the plane portion other than the groove to 100% having no groove were prepared, and the heat exchange amount was measured.

熱交換量の測定においては、図8に示すように、風洞31内に熱交換器32を設置して、風洞31内の空気の全量が熱交換器32内のフィンを通過するように制御した。また、扁平チューブ内に流通される流体としては、コンプレッサー33、レギュレータ34を経由した冷媒を供給し、一方、フィンにはシロッコファン36によって10m/秒の風速で空気を流通させた。そして、扁平チューブ内を流通する冷媒については、ヘッダ入り口温度(T1)とヘッダ出口温度(T2)とを圧力一定の条件で測定し、フィンを流通する空気のフィン流入温度(T3)とフィンを通過した後の温度(T4)とを測定した。   In the measurement of the heat exchange amount, as shown in FIG. 8, a heat exchanger 32 was installed in the wind tunnel 31, and the total amount of air in the wind tunnel 31 was controlled to pass through the fins in the heat exchanger 32. . Further, as a fluid circulated in the flat tube, a refrigerant passing through the compressor 33 and the regulator 34 was supplied, while air was circulated through the fins by a sirocco fan 36 at a wind speed of 10 m / sec. And about the refrigerant | coolant which distribute | circulates the inside of a flat tube, header inlet temperature (T1) and header outlet temperature (T2) are measured on conditions with constant pressure, and fin inflow temperature (T3) of the air which distribute | circulates a fin and fin are measured. The temperature after passing (T4) was measured.

これらの測定結果から、温度効率η=(T1−T2)/(T1−T3)を算出し、溝により残る平面部分の占有率との関係を調べた。
その結果を図9にグラフとして示す。
From these measurement results, the temperature efficiency η = (T1−T2) / (T1−T3) was calculated, and the relationship with the occupancy ratio of the planar portion remaining by the grooves was examined.
The results are shown as a graph in FIG.

この図9に示されるように、溝により残る平面部分の占有率が80%弱の付近で温度効率ηが最高値となり、それより占有率が低くても高くても、いずれも温度効率ηは低下する結果となり、その占有率が40%以上95%以下であれば、温度効率ηも40%以上とすることができることがわかった。また、ろう付け部に接合不良も認められなかった。   As shown in FIG. 9, the temperature efficiency η reaches its maximum value when the occupation ratio of the plane portion remaining by the groove is less than 80%, and the temperature efficiency η is lower or higher than that. As a result, it was found that when the occupation ratio is 40% or more and 95% or less, the temperature efficiency η can be 40% or more. In addition, no bonding failure was observed at the brazed portion.

なお、本発明は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
例えば、フィンを山折り及び谷折りのV字状の折り返し部を平面部で連続させた構成としたが、折り返し部をクランク状に屈曲させることにより、複数の平面部を連続させた形状とし、そのクランク状の折り返し部に形成される平面部を扁平チューブにろう付けするようにしてもよい。
In addition, this invention is not limited to the said embodiment, A various change can be added in the range which does not deviate from the meaning of this invention.
For example, although the fin has a configuration in which the V-shaped folded portion of the mountain fold and the valley fold is made continuous in the plane portion, the folded portion is bent in a crank shape to form a shape in which a plurality of planar portions are made continuous, You may make it braze the flat part formed in the crank-shaped folding | turning part to a flat tube.

1 熱交換器
2 扁平チューブ
2a 扁平面
3 フィン
4,5 ヘッダ
11 周壁
12 仕切り壁
13 内部流路
14 溝
15 平坦部
16 孔
21 折り返し部
22 平面部
23 突出部
DESCRIPTION OF SYMBOLS 1 Heat exchanger 2 Flat tube 2a Flat surface 3 Fin 4, 5 Header 11 Peripheral wall 12 Partition wall 13 Internal flow path 14 Groove 15 Flat part 16 Hole 21 Folding part 22 Flat part 23 Projection part

Claims (4)

扁平面に長手方向に沿って蛇行しながら延びる複数本の溝が形成されていることを特徴とする熱交換器用偏平チューブ。   A flat tube for a heat exchanger, wherein a plurality of grooves extending while meandering along a longitudinal direction are formed on a flat plane. 前記溝により内部流路の一部に突出部が形成され、前記扁平面における前記溝を除く平面部分は、前記扁平面の幅に対する占有比率がいずれの幅方向においても40%以上95%以下となるように形成されていることを特徴とする請求項1記載の熱交換器用偏平チューブ。   A protrusion is formed in a part of the internal flow path by the groove, and the flat portion excluding the groove in the flat surface has an occupation ratio with respect to the width of the flat surface of 40% or more and 95% or less in any width direction. The flat tube for a heat exchanger according to claim 1, wherein the flat tube is formed as follows. 長手方向の両端部の表裏面は、前記溝を有しない平坦面とされていることを特徴とする請求項1又は2記載の熱交換器用偏平チューブ。   The flat tube for a heat exchanger according to claim 1 or 2, wherein the front and back surfaces of both end portions in the longitudinal direction are flat surfaces not having the groove. 請求項1〜3のいずれか一項に記載の熱交換器用扁平チューブと、波状に折り返しながら屈曲形成され、その折り返し部が前記扁平チューブの表面に幅方向に沿ってろう付けされたフィンとを備えていることを特徴とする熱交換器。   The flat tube for a heat exchanger according to any one of claims 1 to 3, and a fin that is bent while being folded back in a wave shape, and the folded portion is brazed to the surface of the flat tube along the width direction. A heat exchanger characterized by comprising.
JP2010261658A 2010-11-24 2010-11-24 Flat tube for heat exchanger and heat exchanger Pending JP2012112579A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010261658A JP2012112579A (en) 2010-11-24 2010-11-24 Flat tube for heat exchanger and heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010261658A JP2012112579A (en) 2010-11-24 2010-11-24 Flat tube for heat exchanger and heat exchanger

Publications (1)

Publication Number Publication Date
JP2012112579A true JP2012112579A (en) 2012-06-14

Family

ID=46496994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010261658A Pending JP2012112579A (en) 2010-11-24 2010-11-24 Flat tube for heat exchanger and heat exchanger

Country Status (1)

Country Link
JP (1) JP2012112579A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101582146B1 (en) * 2015-02-10 2016-01-05 (주)풍천엔지니어링 wet and dry type multi-flow path heat exchanger

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1005A (en) * 1838-11-12 Ing and heating booms and other apabtments beqtjibing abtrficial
JPH10206054A (en) * 1997-01-20 1998-08-07 Zexel Corp Tubes for heat exchanger
JP2002102974A (en) * 2000-09-11 2002-04-09 Valeo Engine Cooling Ab Fluid transportation tube, manufacturing method and device therefor
JP2003148889A (en) * 2001-11-09 2003-05-21 Gac Corp Heat exchanger and its manufacturing method
JP2005098690A (en) * 2003-09-22 2005-04-14 Visteon Global Technologies Inc Heat exchanger for automobile
JP2005331176A (en) * 2004-05-20 2005-12-02 Mitsubishi Alum Co Ltd Heat exchanger
JP2008232592A (en) * 2007-03-23 2008-10-02 Univ Of Tokyo Heat exchanger
JP2009228949A (en) * 2008-03-21 2009-10-08 Denso Corp Tube for heat exchanger
JP2010144723A (en) * 2008-12-19 2010-07-01 Mahle Internatl Gmbh Exhaust gas cooling device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1005A (en) * 1838-11-12 Ing and heating booms and other apabtments beqtjibing abtrficial
JPH10206054A (en) * 1997-01-20 1998-08-07 Zexel Corp Tubes for heat exchanger
JP2002102974A (en) * 2000-09-11 2002-04-09 Valeo Engine Cooling Ab Fluid transportation tube, manufacturing method and device therefor
JP2003148889A (en) * 2001-11-09 2003-05-21 Gac Corp Heat exchanger and its manufacturing method
JP2005098690A (en) * 2003-09-22 2005-04-14 Visteon Global Technologies Inc Heat exchanger for automobile
JP2005331176A (en) * 2004-05-20 2005-12-02 Mitsubishi Alum Co Ltd Heat exchanger
JP2008232592A (en) * 2007-03-23 2008-10-02 Univ Of Tokyo Heat exchanger
JP2009228949A (en) * 2008-03-21 2009-10-08 Denso Corp Tube for heat exchanger
JP2010144723A (en) * 2008-12-19 2010-07-01 Mahle Internatl Gmbh Exhaust gas cooling device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101582146B1 (en) * 2015-02-10 2016-01-05 (주)풍천엔지니어링 wet and dry type multi-flow path heat exchanger

Similar Documents

Publication Publication Date Title
JP2007278558A (en) Refrigerant radiator
JP6011481B2 (en) Heat exchanger fins
JP2004144460A (en) Heat exchanger
JP2006322698A (en) Heat exchanger
JP2018087684A (en) Vehicle, especially cooling radiator for automotive vehicle
JP2015017776A5 (en)
JP5775971B2 (en) Air heat exchanger
JP2006078163A (en) Flat tube, plate body for manufacturing flat tube, and heat exchanger
JP2009204279A (en) Heat exchanger
JPWO2013057953A1 (en) Heat exchanger
JP2011163666A (en) Heat exchanger
JP2011163666A5 (en)
JP4483536B2 (en) Heat exchanger
JP2010121925A (en) Heat exchanger
JP2009121708A (en) Heat exchanger
JP4936546B2 (en) Heat exchanger
JP2006337005A (en) Tube for heat exchanger
JP2012112579A (en) Flat tube for heat exchanger and heat exchanger
JP2007292453A (en) Louvered fin for heat exchanger
WO2019229180A1 (en) A core of a heat exchanger comprising corrugated fins
JP6111024B2 (en) Heat exchanger
JP2012225521A (en) Heat exchanger in which corrugate fin is attached to flat tube
JP2010255864A (en) Flat tube and heat exchanger
JP2009204278A (en) Heat exchanger
JP2007017061A (en) Gas cooler for carbon dioxide air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130923

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140603

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141111