JP4483536B2 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP4483536B2
JP4483536B2 JP2004326524A JP2004326524A JP4483536B2 JP 4483536 B2 JP4483536 B2 JP 4483536B2 JP 2004326524 A JP2004326524 A JP 2004326524A JP 2004326524 A JP2004326524 A JP 2004326524A JP 4483536 B2 JP4483536 B2 JP 4483536B2
Authority
JP
Japan
Prior art keywords
flat
fin
tube
air flow
protrusions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004326524A
Other languages
Japanese (ja)
Other versions
JP2006138503A (en
Inventor
昌宏 下谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2004326524A priority Critical patent/JP4483536B2/en
Publication of JP2006138503A publication Critical patent/JP2006138503A/en
Application granted granted Critical
Publication of JP4483536B2 publication Critical patent/JP4483536B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は、チューブとフィンとにより構成される熱交換部の伝熱性能を向上させる熱交換器に関するもので、例えば、車両空調用の熱交換器(冷媒放熱器、冷媒蒸発器、温水放熱器)やエンジン用ラジエータ等に用いて好適なものである。   The present invention relates to a heat exchanger that improves the heat transfer performance of a heat exchanging section composed of tubes and fins, for example, a heat exchanger for vehicle air conditioning (refrigerant radiator, refrigerant evaporator, hot water radiator). ) And radiators for engines and the like.

従来のこの種の熱交換器の代表的なものは、冷媒等の流体が流れる断面扁平状に形成された扁平チューブと、この扁平チューブの外側扁平面に接合される、波状に曲げ形成されたコルゲートフィンとにより熱交換部を構成している。   A typical example of this type of conventional heat exchanger is formed in a wavy shape, joined to a flat tube formed into a flat cross section through which a fluid such as a refrigerant flows, and an outer flat surface of the flat tube. The heat exchange part is constituted by the corrugated fins.

そして、コルゲートフィンには短冊状の細片からなる複数のルーバを斜めに切り起こすことにより、フィン表面での境界層の連続的な発達を分断、阻止して、伝熱性能の向上を図っている。   And by corrugating fins, a plurality of louvers made of strip-shaped strips are diagonally cut up to divide and prevent the continuous development of the boundary layer on the fin surface to improve heat transfer performance. Yes.

また、別形式の熱交換器として、本発明者は図10のように波状に曲げ形成されたコルゲートフィン12に、空気の流れ方向Aに蛇行する突出部20を形成して、空気流れの乱流化により伝熱性能の向上を図ることを特許文献1にて提案している。
特開2004−144460号公報
Further, as another type of heat exchanger, the present inventor forms a protruding portion 20 meandering in the air flow direction A on the corrugated fin 12 bent in a wave shape as shown in FIG. Patent Document 1 proposes to improve heat transfer performance by fluidization.
JP 2004-144460 A

前者の従来技術では、フィンのうち扁平チューブとの接合部分(非ルーバ部分)および扁平チューブの外側扁平面は連続した平坦な面になっているので、境界層が発達して空気への熱伝達が悪化する。   In the former prior art, the joint part (non-louver part) of the flat tube of the fin and the outer flat surface of the flat tube are continuous flat surfaces, so the boundary layer develops and heat transfer to the air Gets worse.

また、本発明者の検討によると、後者の従来技術(特許文献1)では、空気が空気流れ方向Aと交差する一方向(図10の上下方向)のみに蛇行する(矢印A’参照)だけであるので、空気流れの乱流化が不十分となり、伝熱性能の向上効果が不十分であることが判明した。   Further, according to the study of the present inventor, in the latter prior art (Patent Document 1), the air only meanders in one direction (vertical direction in FIG. 10) intersecting the air flow direction A (see arrow A ′). Therefore, it has been found that the turbulence of the air flow becomes insufficient and the effect of improving the heat transfer performance is insufficient.

本発明は、上記点に鑑み、空気流れの乱流化の促進により伝熱性能を向上できる熱交換器を提供することを目的とする。   In view of the above points, an object of the present invention is to provide a heat exchanger that can improve heat transfer performance by promoting turbulence of an air flow.

上記目的を達成するため、請求項1に記載の発明では、流体が流れる複数本のチューブ(11)と、
前記チューブ(11)の外表面に設けられて前記チューブ(11)の周りを流れる空気との熱交換面積を増大させるフィン(12)とを備え、
前記フィン(12)には、隣接する前記チューブ(11)相互間に位置する平板部(12a)が形成されており、
前記平板部(12a)に、前記平板部(12a)の板面から前記板面の表裏両側に所定の高さで突き出す突起部(12c、12d)を形成するとともに、前記突起部(12c、12d)を前記平板部(12a)の板面上の空気流れ方向(A)と直交する方向に蛇行状に形成し、
前記板面の表側に突き出す表側突起部(12c)と前記板面の裏側に突き出す裏側突起部(12d)は、前記空気流れ方向(A)に交互に形成され、
前記表側突起部(12c)と前記裏側突起部(12d)の断面形状はともに矩形状であり、
前記表側突起部(12c)と前記裏側突起部(12d)との間には平坦部が形成されて
おり、
前記平坦部の前記空気流れ方向(A)の長さ(P)が、前記両突起部(12c、12d)の前記空気流れ方向(A)の幅(d)よりも長いことを特徴としている。
In order to achieve the above object, in the invention according to claim 1, a plurality of tubes (11) through which a fluid flows;
A fin (12) provided on the outer surface of the tube (11) to increase the heat exchange area with the air flowing around the tube (11);
The fin (12) is formed with a flat plate portion (12a) positioned between the adjacent tubes (11),
Protrusions (12c, 12d) projecting from the plate surface of the flat plate portion (12a) to the front and back sides of the plate surface at a predetermined height are formed on the flat plate portion (12a), and the projection portions (12c, 12d) ) In a meandering manner in a direction perpendicular to the air flow direction (A) on the plate surface of the flat plate portion (12a),
Front side protrusions (12c) protruding to the front side of the plate surface and back side protrusions (12d) protruding to the back side of the plate surface are alternately formed in the air flow direction (A),
The cross-sectional shapes of the front side protrusion (12c) and the back side protrusion (12d) are both rectangular.
A flat portion is formed between the front side protrusion (12c) and the back side protrusion (12d).
And
A length (P) of the flat portion in the air flow direction (A) is longer than a width (d) of the protrusions (12c, 12d) in the air flow direction (A) .

これによると、突起部(12c、12d)がフィン(12)の板面から突き出すことにより、空気流れに2次流れ(A1)を形成できると同時に、突起部(12c、12d)が平板部(12a)の板面上の空気流れ方向(A)と直交する方向に蛇行状に延びるので、この蛇行形状によっても方向の異なる別の2次流れ(A2)を形成できる。 According to this, since the protrusions (12c, 12d ) protrude from the plate surface of the fin (12), a secondary flow (A1) can be formed in the air flow, and at the same time, the protrusions (12c, 12d ) are flat. Since it extends in a meandering manner in a direction perpendicular to the air flow direction (A) on the plate surface of the portion (12a), another secondary flow (A2) having a different direction can be formed by this meandering shape.

この異なる方向の2つの2次流れ(A1、A2)の形成によって空気流れの乱流化を効果的に促進できる。これによって、空気側熱伝達率を向上でき、熱交換器の伝熱性能を向上できる。   The formation of two secondary flows (A1, A2) in different directions can effectively promote turbulence of the air flow. Thereby, the air side heat transfer rate can be improved and the heat transfer performance of the heat exchanger can be improved.

しかも、請求項に記載の発明では、前記突起部(12c、12d、12e)を前記平板部(12a)の板面の表裏両側に突き出すように形成し、前記板面の表側に突き出す表側突起部(12c)と前記板面の裏側に突き出す裏側突起部(12d)は、前記空気流れ方向(A)に交互に形成され、前記表側突起部(12c)と前記裏側突起部(12d)の断面形状はともに矩形状であり、前記表側突起部(12c)と前記裏側突起部(12d)との間には平坦部が形成されている。このようなフィン構成とすることで、空気流れの乱流化をより一層効果的に達成できる。 Moreover, in the first aspect of the present invention , the protrusions (12c, 12d, 12e) are formed so as to protrude on both the front and back sides of the plate surface of the flat plate portion (12a), and the front protrusions protrude to the front side of the plate surface. The back side protrusions (12d) protruding to the back side of the plate surface and the part (12c) are alternately formed in the air flow direction (A), and the cross section of the front side protrusion (12c) and the back side protrusion (12d). Both of the shapes are rectangular, and a flat portion is formed between the front side protrusion (12c) and the back side protrusion (12d). By setting it as such a fin structure, the turbulent flow of an air flow can be achieved still more effectively.

請求項2に記載の発明のように、請求項1に記載の熱交換器において、前記突起部(12c、12d)は、具体的には、前記空気流れ方向(A)に前記(d)を持つ堤状に形成すればよい。
As in the invention described in claim 2, in the heat exchanger according to claim 1, wherein the protrusions (12c, 12d), specifically, the said width direction of air flow (A) (d) What is necessary is just to form in the shape of a bank with.

請求項に記載の発明では、請求項1または2に記載の熱交換器において、前記チューブ(11)は断面扁平状の扁平チューブであり、
前記フィン(12)は、前記平板部(12a)と前記扁平チューブ(11)の外側扁平面に接合される曲げ連結部(12b)とを有する波形状に形成されたコルゲートフィンであることを特徴とする。
In invention of Claim 3 , in the heat exchanger of Claim 1 or 2 , the said tube (11) is a flat tube of a cross-sectional flat shape,
The fin (12) is a corrugated fin formed in a wave shape having the flat plate portion (12a) and a bending connection portion (12b) joined to an outer flat surface of the flat tube (11). And

請求項に記載の発明では、請求項1または2に記載の熱交換器において、前記フィン(12)は、前記平板部(12a)の板面に前記チューブ(11)が挿入され固定されるチューブ挿入穴(12f)を設けたプレートフィンであることを特徴とする。 According to a fourth aspect of the present invention, in the heat exchanger according to the first or second aspect , the fin (12) is fixed by inserting the tube (11) into a plate surface of the flat plate portion (12a). It is a plate fin provided with a tube insertion hole (12f).

請求項3、4に記載のように、本発明は、コルゲートフィン型熱交換器およびプレートフィン型熱交換器のいずれにおいても良好に実施できる。
As described in the third and fourth aspects, the present invention can be favorably implemented in both the corrugated fin type heat exchanger and the plate fin type heat exchanger.

なお、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。   In addition, the code | symbol in the bracket | parenthesis of each said means shows the correspondence with the specific means as described in embodiment mentioned later.

(第1実施形態)
図1〜図4は本発明の第1実施形態を示すもので、図1は本実施形態による車両空調用冷凍サイクルの冷媒放熱器10を示す。冷媒放熱器10は、車両空調用冷凍サイクルの圧縮機(図示せず)の吐出側に接続されて、圧縮機吐出冷媒(高圧側冷媒)の熱を空気中に放出して冷媒を冷却するものである。
(First embodiment)
1 to 4 show a first embodiment of the present invention, and FIG. 1 shows a refrigerant radiator 10 of a refrigeration cycle for vehicle air conditioning according to the present embodiment. The refrigerant radiator 10 is connected to the discharge side of a compressor (not shown) of a refrigeration cycle for vehicle air conditioning, and releases the heat of the compressor discharge refrigerant (high-pressure side refrigerant) into the air to cool the refrigerant. It is.

通常のフロン系冷媒を用いる冷凍サイクルでは圧縮機の冷媒吐出圧が冷媒の臨界圧力未満であるので、冷媒放熱器10内で冷媒は凝縮しながら放熱を行う。これに対し、冷媒として二酸化炭素(CO2)等の冷媒を用いる冷凍サイクルでは圧縮機の冷媒吐出圧が冷媒の臨界圧力以上になるので、冷媒放熱器10内で冷媒は凝縮することなく超臨界状態にて放熱を行う。   In a refrigeration cycle using a normal chlorofluorocarbon refrigerant, the refrigerant discharge pressure of the compressor is less than the critical pressure of the refrigerant, so that the refrigerant radiates heat while condensing in the refrigerant radiator 10. On the other hand, in a refrigeration cycle using a refrigerant such as carbon dioxide (CO2) as the refrigerant, the refrigerant discharge pressure of the compressor becomes equal to or higher than the critical pressure of the refrigerant, so that the refrigerant is not condensed in the refrigerant radiator 10 and is in a supercritical state. Dissipate heat at.

冷媒放熱器10は、チューブ11とフィン12とにより構成される熱交換部を備えている。チューブ11は所定間隔を置いて図1の上下方向に複数本並列配置され、この複数本のチューブ11相互間にフィン12を設けている。このフィン12は、チューブ11の外表面に接合されて空気との伝熱面積を増大させて冷媒と空気との熱交換を促進するものである。   The refrigerant radiator 10 includes a heat exchanging unit constituted by the tubes 11 and the fins 12. A plurality of tubes 11 are arranged in parallel in the vertical direction of FIG. 1 at a predetermined interval, and fins 12 are provided between the plurality of tubes 11. The fins 12 are joined to the outer surface of the tube 11 to increase the heat transfer area with air and promote heat exchange between the refrigerant and air.

チューブ11の長手方向(図1の左右方向)の両端側にはヘッダタンク13、14を設けている。このヘッダタンク13、14は、チューブ11の長手方向と直交する方向(上下方向)に延びて各チューブ11内の冷媒通路と連通する。そして、チューブ11およびフィン12からなる熱交換部のチューブ・フィン積層方向(図1の上下方向)の両端部に、補強部材をなすサイドプレート15、16を配置している。   Header tanks 13 and 14 are provided on both ends of the tube 11 in the longitudinal direction (left and right direction in FIG. 1). The header tanks 13 and 14 extend in a direction (vertical direction) perpendicular to the longitudinal direction of the tubes 11 and communicate with the refrigerant passages in the tubes 11. And the side plates 15 and 16 which make a reinforcement member are arrange | positioned at the both ends of the tube-fin lamination direction (up-down direction of FIG. 1) of the heat exchange part which consists of the tube 11 and the fin 12. FIG.

ヘッダタンク13、14にはそれぞれ外部冷媒配管(図示せず)との接続用のジョイントブロック17、18が設けられ、この両ジョイントブロック17、18のいずれか一方が冷媒入口部を構成し、他方が冷媒出口部を構成する。   Each of the header tanks 13 and 14 is provided with joint blocks 17 and 18 for connection to an external refrigerant pipe (not shown), and either one of the joint blocks 17 and 18 constitutes a refrigerant inlet, and the other Constitutes the refrigerant outlet.

なお、本実施形態では、チューブ11、フィン12、ヘッダタンク13、14、サイドプレート15、16およびジョイントブロック17、18をすべて、熱伝導性に優れた金属であるアルミニウム合金にて成形し、これらの金属部材11〜16をろう付けにて一体に接合する構成になっている。   In the present embodiment, the tube 11, the fin 12, the header tanks 13, 14, the side plates 15, 16 and the joint blocks 17, 18 are all formed of an aluminum alloy that is a metal having excellent thermal conductivity. The metal members 11 to 16 are integrally joined by brazing.

図2は図1の熱交換部の一部断面図であって、冷媒放熱器10のチューブ11は、図2に示すように押し出し加工又は引き抜き加工により内部に複数個の冷媒通路穴11aが並列に形成された扁平状の多穴チューブである。チューブ11の扁平形状は空気流れ方向Aと平行になっている。   FIG. 2 is a partial cross-sectional view of the heat exchanging portion of FIG. 1. The tube 11 of the refrigerant radiator 10 has a plurality of refrigerant passage holes 11a arranged in parallel by extrusion or drawing as shown in FIG. It is a flat multi-hole tube formed in. The flat shape of the tube 11 is parallel to the air flow direction A.

また、フィン12は図4に示すように平坦な平板部12aと、隣り合う平板部12a相互間を繋ぐ曲げ連結部12bとを有するように波状に曲げ形成されたコルゲートフィンである。曲げ連結部12bの頂部もほぼ平坦な面となっている。   Further, the fin 12 is a corrugated fin bent in a wave shape so as to have a flat flat plate portion 12a and a bent connecting portion 12b connecting adjacent flat plate portions 12a as shown in FIG. The top part of the bending connection part 12b is also a substantially flat surface.

このコルゲートフィン12は、0.5mm程度の薄板金属材料により成形されている。フィン12の曲げ連結部12bは図2に示すようにチューブ11の外側扁平面(外側平坦面)に接触してろう付けされる。   The corrugated fins 12 are formed of a thin metal material having a thickness of about 0.5 mm. The bending connecting portion 12b of the fin 12 is brazed in contact with the outer flat surface (outer flat surface) of the tube 11 as shown in FIG.

図3は図2のX−X断面図であり、フィン12の平板部12aにはその板面の表裏両側(図3の上下両側)へ突き出す突起部12c、12dが一体に形成されている。ここで、突起部12cは図3において平板部12aの板面の上側へ突き出すもので、突起部12dは平板部12aの板面の下側へ突き出すものである。図2と図4では、この両突起部12c、12dの区別を明示するために、一方の突起部12dを便宜上実線ではなく破線で図示している。   3 is a cross-sectional view taken along the line XX of FIG. 2. The flat plate portion 12a of the fin 12 is integrally formed with projections 12c and 12d protruding to both the front and back sides (upper and lower sides in FIG. 3) of the plate surface. Here, the protrusion 12c protrudes above the plate surface of the flat plate portion 12a in FIG. 3, and the protrusion 12d protrudes below the plate surface of the flat plate portion 12a. In FIG. 2 and FIG. 4, in order to clearly show the distinction between the two protrusions 12c and 12d, one protrusion 12d is illustrated by a broken line for convenience.

ここで、突起部12c、12dの断面形状は図3に示すようにほぼ矩形状であり、空気流れ方向Aに所定の幅dを持つ。突起部12cと突起部12dは空気流れ方向Aに所定間隔Pにて交互に形成されている。   Here, the cross-sectional shape of the protrusions 12c and 12d is substantially rectangular as shown in FIG. 3, and has a predetermined width d in the air flow direction A. The protrusions 12c and the protrusions 12d are alternately formed at a predetermined interval P in the air flow direction A.

そして、両突起部12c、12dは、フィン12の平板部12aの板面において空気流れ方向Aと直交する方向(図2、図4の上下方向)に蛇行状に細長く延びる形状、すなわち、堤状の形状になっている。   The protrusions 12c and 12d are elongated in a meandering manner in a direction (vertical direction in FIGS. 2 and 4) perpendicular to the air flow direction A on the plate surface of the flat plate portion 12a of the fin 12, that is, a bank shape It is the shape of.

なお、突起部12c、12dの間隔Pは例えば、0.5mm程度で、突起部12c、12dの突出高さhは例えば、0.25mm程度で、突起部12c、12dの堤形状の幅dは例えば、0.25mm程度である。   The interval P between the protrusions 12c and 12d is, for example, about 0.5 mm, the protrusion height h of the protrusions 12c, 12d is, for example, about 0.25 mm, and the bank-shaped width d of the protrusions 12c, 12d is For example, it is about 0.25 mm.

また、突起部12c、12dの蛇行状の堤形状は、図2、図4から理解されるように平板部12aの板面の幅寸法(空気流れ方向Aと直交する方向の寸法)Wの大部分の範囲、具体的にはWの80〜90%程度の範囲に渡って形成されている。   Further, the meandering bank shape of the protrusions 12c and 12d has a large width dimension (dimension in the direction perpendicular to the air flow direction A) W of the plate surface of the flat plate part 12a as understood from FIGS. It is formed over the range of the part, specifically, about 80 to 90% of W.

上記構成において本実施形態の作用効果を説明する。冷媒放熱器10に対して図示しない送風機により冷却空気が矢印A方向に送風されると、突起部12c、12dがフィン板面表裏両側へ突き出しているため、矢印A方向の空気流れの中に、この板面表裏両側への2次流れA1(図3参照)が生じる。   The operational effects of the present embodiment in the above configuration will be described. When the cooling air is blown in the direction of arrow A by a blower (not shown) with respect to the refrigerant radiator 10, the protrusions 12c and 12d protrude to the front and back sides of the fin plate surface. A secondary flow A1 (see FIG. 3) to both sides of the plate surface occurs.

更に、突起部12c、12dはフィン板面において空気流れ方向Aと直交する方向に蛇行状に細長く延びる堤形状になっているので、この蛇行状の堤形状によって空気流れ直交方向にも2次流れA2(図2参照)が生じる。   Further, since the protrusions 12c and 12d have a bank shape extending in a meandering manner in a direction orthogonal to the air flow direction A on the fin plate surface, the serpentine bank shape causes a secondary flow in the direction perpendicular to the air flow. A2 (see FIG. 2) occurs.

このように突起部12c、12dの形成によって、異なる2方向の2次流れA1、A2が生じるため、フィン平板部12aの板面全域における空気流れの乱流化を促進できる。これにより、フィン平板部12aの板面、フィン曲げ連結部12bおよびチューブ11の外側扁平面における境界層を破壊して、これら各部の熱伝達率を向上できる。従って、冷媒放熱器10の伝熱性能を効果的に向上できる。   As described above, since the secondary flows A1 and A2 in two different directions are generated by the formation of the protrusions 12c and 12d, turbulence of the air flow in the entire plate surface of the fin flat plate portion 12a can be promoted. Thereby, the boundary layer in the plate | board surface of the fin flat plate part 12a, the fin bending connection part 12b, and the outer flat surface of the tube 11 can be destroyed, and the heat transfer rate of these each part can be improved. Therefore, the heat transfer performance of the refrigerant radiator 10 can be effectively improved.

(他の実施形態)
なお、本発明は上述の一実施形態に限定されることなく次のごとく種々変形可能である。例えば、突起部12c、12dの形態は図5〜図8のように種々変更できる。
(Other embodiments)
The present invention is not limited to the above-described embodiment and can be variously modified as follows. For example, the shape of the protrusions 12c and 12d can be variously changed as shown in FIGS.

図5は、突起部12c、12dの空気流れ方向Aに対する蛇行形状の凹凸を図2、図4と逆にしている。   In FIG. 5, the meandering irregularities of the protrusions 12 c and 12 d with respect to the air flow direction A are reversed from those in FIGS. 2 and 4.

図6は図2、図4の突起部12c、12dの両端部に空気流れ下流側に向かう湾曲部a、bを追加した形状にしている。なお、図5の蛇行形状において、突起部12c、12dの両端部に空気流れ上流側に向かう湾曲部を追加してもよい。   FIG. 6 has a shape in which curved portions a and b toward the downstream side of the air flow are added to both ends of the protrusions 12c and 12d in FIGS. In addition, in the meandering shape of FIG. 5, you may add the curved part which goes to an air flow upstream in the both ends of the projection parts 12c and 12d.

上述の図2〜図4では各フィン平板部12aの突起部12c、12dを一定の間隔Pで形成する例を図示しているが、図7では各フィン平板部12aの突起部12c、12dの間隔Pを一定とせずに、空気流れ方向Aに沿って変更する例を示している。このため、フィン平板部12aの突起部12c、12dの位置が空気流れ方向Aに対してずれることになる。   2 to 4 show an example in which the protrusions 12c and 12d of each fin flat plate portion 12a are formed at a constant interval P. In FIG. 7, the protrusions 12c and 12d of each fin flat plate portion 12a are illustrated. An example in which the interval P is changed along the air flow direction A without making the interval P constant is shown. For this reason, the positions of the projecting portions 12c and 12d of the fin flat plate portion 12a are shifted from the air flow direction A.

なお、図2〜図7では、いずれも、各フィン平板部12aの板面の表裏両側に突起部12c、12dを突き出しているが、各フィン平板部12aの板面の表裏両側のうち片側のみに突起部12c、12dを突き出すようにしてもよい。   In FIGS. 2 to 7, the protrusions 12 c and 12 d protrude from both the front and back sides of the plate surface of each fin flat plate portion 12 a, but only one side of the front and back sides of the plate surface of each fin flat plate portion 12 a is projected. Alternatively, the protrusions 12c and 12d may be protruded.

また、図2〜図7では、いずれも、突起部12c、12dを断面矩形状の所定の幅寸法(空気流れ方向Aの幅寸法)を持つ堤形状に形成しているが、図8は突起部12eをフィン平板部12aの板面から直角状(L状)に切り起こした細片で形成している。   2 to 7, the protrusions 12 c and 12 d are both formed in a bank shape having a predetermined width dimension (width dimension in the air flow direction A) having a rectangular cross section. The portion 12e is formed of a strip cut and raised in a right angle (L shape) from the plate surface of the fin flat plate portion 12a.

そして、この切り起こし突起部12eを空気流れ方向Aと直交する方向に蛇行状に延びるように形成する。この切り起こし突起部12eの蛇行形状は図2等と同じでよいので、図示を省略する。なお、切り起こし突起部12eの切り起こし高さHは、0.1〜0.5mm程度の微小寸法である。   And this cut-and-raised protrusion 12e is formed to extend in a meandering manner in a direction orthogonal to the air flow direction A. The meandering shape of the cut and raised protrusion 12e may be the same as in FIG. The cut-and-raised height H of the cut-and-raised protrusion 12e is a minute dimension of about 0.1 to 0.5 mm.

図8の突起部12eに空気流れが衝突することにより、図3の2次流れA1に対応する2次流れA1が形成される。そして、突起部12eの空気流れ方向Aと直交方向への蛇行形状によって、図2の2次流れA2に対応する2次流れ(図示せず)を形成できる。従って、図8の突起部12eにおいても、異なる2方向の2次流れA1、A2を形成でき、乱流化の促進によって伝熱性能を向上できる。   When the air flow collides with the protrusion 12e of FIG. 8, a secondary flow A1 corresponding to the secondary flow A1 of FIG. 3 is formed. And the secondary flow (not shown) corresponding to the secondary flow A2 of FIG. 2 can be formed by the meandering shape of the protrusion 12e in the direction orthogonal to the air flow direction A. Therefore, also in the protrusion 12e in FIG. 8, secondary flows A1 and A2 in two different directions can be formed, and heat transfer performance can be improved by promoting turbulence.

なお、図8では、フィン平板部12aの板面の片側のみ(図8の上側のみ)に突起部12eを切り起こす例を図示しているが、フィン平板部12aの板面の両側(図8の上下両側)に突起部12eを切り起こし形成してもよい。   8 illustrates an example in which the protrusion 12e is cut only on one side of the plate surface of the fin flat plate portion 12a (only on the upper side in FIG. 8), both sides of the plate surface of the fin flat plate portion 12a (FIG. 8). The protrusions 12e may be cut and raised on both the upper and lower sides.

また、上述の一実施形態では、フィン12として波状に曲げ成形されるコルゲートフィンについて説明したが、本発明による突起部12c、12dは図9に示す平板状のプレートフィン12の平板部12aの板面にも同様に形成できるから、チューブ11とプレートフィン12との組み合わせにより構成される熱交換部を持つプレートフィン型熱交換器にも本発明は適用できる。   Further, in the above-described embodiment, the corrugated fin bent and formed in a wave shape as the fin 12 has been described. However, the protrusions 12c and 12d according to the present invention are plates of the flat plate portion 12a of the flat plate fin 12 shown in FIG. Since it can be similarly formed on the surface, the present invention can also be applied to a plate fin type heat exchanger having a heat exchanging portion constituted by a combination of the tube 11 and the plate fin 12.

なお、このプレートフィン型熱交換器では周知のごとくプレートフィン12の平板部12aの板面にチューブ11が貫通するチューブ挿入穴12fを設け、複数枚のプレートフィン12のチューブ挿入穴12fにチューブ11を串刺状に挿入し固定するから、プレートフィンの平板部12aの板面はチューブ11の長手方向に直交する配置となる。   In this plate fin type heat exchanger, as is well known, a tube insertion hole 12f through which the tube 11 passes is provided in the plate surface of the flat plate portion 12a of the plate fin 12, and the tube 11 is inserted into the tube insertion hole 12f of the plurality of plate fins 12. Is inserted and fixed in a skewered manner, the plate surface of the flat plate portion 12 a of the plate fin is arranged perpendicular to the longitudinal direction of the tube 11.

突起部12c、12dの代わりに、図8に示す切り起こし細片からなる突起部12eを図9に示す平板状のプレートフィン12の平板部12aに形成してもよい。   Instead of the projecting portions 12c and 12d, a projecting portion 12e made of a cut and raised strip shown in FIG. 8 may be formed on the flat plate portion 12a of the flat plate fin 12 shown in FIG.

また、上述の一実施形態では、本発明を車両空調用の冷媒放熱器10に適用した例について説明したが、車両空調用の冷媒蒸発器や温水放熱器(ヒータコア)、エンジン用ラジエータ、更に住宅用空調装置の熱交換器等、種々な用途の熱交換器一般には広く適用できる。   Further, in the above-described embodiment, the example in which the present invention is applied to the refrigerant radiator 10 for vehicle air conditioning has been described. It can be widely applied to general heat exchangers for various uses, such as heat exchangers for air conditioners.

本発明の一実施形態を適用する冷媒放熱器の概略斜視図である。It is a schematic perspective view of the refrigerant radiator to which one embodiment of the present invention is applied. 本発明の一実施形態による熱交換部の一部断面図である。It is a partial cross section figure of the heat exchange part by one Embodiment of this invention. 図2のX−X断面図である。It is XX sectional drawing of FIG. 本発明の一実施形態によるフィンの斜視図である。1 is a perspective view of a fin according to an embodiment of the present invention. 本発明の他の実施形態による熱交換部の一部断面図である。It is a partial cross section figure of the heat exchange part by other embodiment of this invention. 本発明の他の実施形態による熱交換部の一部断面図である。It is a partial cross section figure of the heat exchange part by other embodiment of this invention. 本発明の他の実施形態によるフィンの一部断面図である。FIG. 6 is a partial cross-sectional view of a fin according to another embodiment of the present invention. 本発明の他の実施形態によるフィンの一部断面図である。It is a partial sectional view of the fin by other embodiments of the present invention. 本発明の他の実施形態によるフィンの一部平面図である。It is a partial top view of the fin by other embodiment of this invention. 従来技術による熱交換部の一部斜視図である。It is a partial perspective view of the heat exchange part by a prior art.

符号の説明Explanation of symbols

11…チューブ、12…フィン、12a…平板部、12b…曲げ連結部、
12c、12d、12e…突起部。
11 ... Tube, 12 ... Fin, 12a ... Flat plate part, 12b ... Bending connection part,
12c, 12d, 12e ... projections.

Claims (4)

流体が流れる複数本のチューブ(11)と、
前記チューブ(11)の外表面に設けられて前記チューブ(11)の周りを流れる空気との熱交換面積を増大させるフィン(12)とを備え、
前記フィン(12)には、隣接する前記チューブ(11)相互間に位置する平板部(12a)が形成されており、
前記平板部(12a)に、前記平板部(12a)の板面から所定の高さで前記板面の表裏両側に突き出す突起部(12c、12d)を形成するとともに、前記突起部(12c、12d)を前記平板部(12a)の板面上の空気流れ方向(A)と直交する方向に蛇行状に形成し、
前記板面の表側に突き出す表側突起部(12c)と前記板面の裏側に突き出す裏側突起部(12d)は、前記空気流れ方向(A)に交互に形成され、
前記表側突起部(12c)と前記裏側突起部(12d)の断面形状はともに矩形状であり、
前記表側突起部(12c)と前記裏側突起部(12d)との間には平坦部が形成されており、
前記平坦部の前記空気流れ方向(A)の長さ(P)が、前記両突起部(12c、12d)の前記空気流れ方向(A)の幅(d)よりも長いことを特徴とする熱交換器。
A plurality of tubes (11) through which fluid flows;
A fin (12) provided on the outer surface of the tube (11) to increase the heat exchange area with the air flowing around the tube (11);
The fin (12) is formed with a flat plate portion (12a) positioned between the adjacent tubes (11),
Protrusions (12c, 12d) projecting from the plate surface of the flat plate portion (12a) to the front and back sides of the flat plate portion (12c) are formed on the flat plate portion (12a) at a predetermined height. ) In a meandering manner in a direction perpendicular to the air flow direction (A) on the plate surface of the flat plate portion (12a),
Front side protrusions (12c) protruding to the front side of the plate surface and back side protrusions (12d) protruding to the back side of the plate surface are alternately formed in the air flow direction (A),
The cross-sectional shapes of the front side protrusion (12c) and the back side protrusion (12d) are both rectangular.
A flat portion is formed between the front side protrusion (12c) and the back side protrusion (12d) ,
The length (P) of the flat portion in the air flow direction (A) is longer than the width (d) of the projections (12c, 12d) in the air flow direction (A). Exchanger.
前記突起部(12c、12d)は前記空気流れ方向(A)に前記(d)を持つ堤状に形成されることを特徴とする請求項1に記載の熱交換器。 The protrusions (12c, 12d) is a heat exchanger according to claim 1, characterized in that it is formed in a bank shape having the width (d) in the air flow direction (A). 前記チューブ(11)は断面扁平状の扁平チューブであり、
前記フィン(12)は、前記平板部(12a)と前記扁平チューブ(11)の外側扁平面に接合される曲げ連結部(12b)とを有する波形状に形成されたコルゲートフィンであることを特徴とする請求項1または2に記載の熱交換器。
The tube (11) is a flat tube having a flat cross section.
The fin (12) is a corrugated fin formed in a wave shape having the flat plate portion (12a) and a bending connection portion (12b) joined to an outer flat surface of the flat tube (11). The heat exchanger according to claim 1 or 2 .
前記フィン(12)は、前記平板部(12a)の板面に前記チューブ(11)が挿入され固定されるチューブ挿入穴(12f)を設けたプレートフィンであることを特徴とする請求項1または2に記載の熱交換器。 The fin (12), according to claim 1, characterized in that said tube (11) to the plate surface of the flat plate portion (12a) is a plate fin having a tube insertion hole (12f) which is inserted and fixed or 2. The heat exchanger according to 2 .
JP2004326524A 2004-11-10 2004-11-10 Heat exchanger Expired - Fee Related JP4483536B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004326524A JP4483536B2 (en) 2004-11-10 2004-11-10 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004326524A JP4483536B2 (en) 2004-11-10 2004-11-10 Heat exchanger

Publications (2)

Publication Number Publication Date
JP2006138503A JP2006138503A (en) 2006-06-01
JP4483536B2 true JP4483536B2 (en) 2010-06-16

Family

ID=36619436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004326524A Expired - Fee Related JP4483536B2 (en) 2004-11-10 2004-11-10 Heat exchanger

Country Status (1)

Country Link
JP (1) JP4483536B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101589285B (en) * 2007-01-25 2011-10-26 国立大学法人东京大学 Heat exchanger
JP2011112331A (en) * 2009-11-30 2011-06-09 T Rad Co Ltd Heat exchanger for exhaust gas
US20110132570A1 (en) * 2009-12-08 2011-06-09 Wilmot George E Compound geometry heat exchanger fin
JP5156773B2 (en) * 2010-02-25 2013-03-06 株式会社小松製作所 Corrugated fin and heat exchanger provided with the same
JP5989961B2 (en) * 2010-10-07 2016-09-07 東京電力ホールディングス株式会社 Heat exchanger
WO2012102053A1 (en) * 2011-01-27 2012-08-02 パナソニック株式会社 Finned-tube heat exchanger
JP2012198023A (en) * 2012-07-26 2012-10-18 Komatsu Ltd Corrugated fin, and heat exchanger including the same
JP5694282B2 (en) * 2012-12-10 2015-04-01 株式会社小松製作所 Corrugated fin and heat exchanger provided with the same
JP6225042B2 (en) * 2014-02-14 2017-11-01 住友精密工業株式会社 Plate fin heat exchanger and method of manufacturing corrugated fin for heat exchanger
JP2014142180A (en) * 2014-04-24 2014-08-07 Komatsu Ltd Corrugated fin and heat exchanger including the same
JP2015180852A (en) * 2015-07-24 2015-10-15 株式会社小松製作所 Corrugated fin and heat exchanger including the same
JP2019219139A (en) * 2018-06-22 2019-12-26 株式会社ティラド Corrugated fin for heat exchanger

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57188995A (en) * 1981-05-19 1982-11-20 Matsushita Seiko Co Ltd Heat exchanger
JPS6252788U (en) * 1985-09-11 1987-04-02
JPS62172193A (en) * 1986-01-27 1987-07-29 Matsushita Refrig Co Heat exchanger
JPH0415493A (en) * 1990-05-10 1992-01-20 Kubota Corp Heat exchanger
JP2001050678A (en) * 1999-08-09 2001-02-23 Tokyo Radiator Mfg Co Ltd Heat exchanger
JP2001174181A (en) * 1999-10-06 2001-06-29 Mitsubishi Heavy Ind Ltd Fin-and-tube heat exchanger and air conditioner equipped with the same
JP2004271113A (en) * 2003-03-11 2004-09-30 Matsushita Electric Ind Co Ltd Heat exchanger

Also Published As

Publication number Publication date
JP2006138503A (en) 2006-06-01

Similar Documents

Publication Publication Date Title
JP3864916B2 (en) Heat exchanger
JP2006322698A (en) Heat exchanger
US6213196B1 (en) Double heat exchanger for vehicle air conditioner
US9074820B2 (en) Heat exchanger
WO2006028253A1 (en) Heat exchanger
JP2007178015A (en) Heat exchanger
JP2007278558A (en) Refrigerant radiator
JP5421859B2 (en) Heat exchanger
JP6011481B2 (en) Heat exchanger fins
JP4483536B2 (en) Heat exchanger
JP4751662B2 (en) Plate for manufacturing flat tube, method for manufacturing flat tube, and method for manufacturing heat exchanger
JP2007093023A (en) Heat exchanger
JPWO2005073655A1 (en) Heat exchanger and air conditioner including the same
JP2006084078A (en) Thin heat transfer tube unit of thin multitubular heat exchanger
JP2003185374A (en) Tube for heat exchanger with optimized plate
JP2007093024A (en) Heat exchanger
WO2022220159A1 (en) Heat exchanger
JP4147731B2 (en) Heat exchanger for cooling
JP2006337005A (en) Tube for heat exchanger
WO2019229180A1 (en) A core of a heat exchanger comprising corrugated fins
JP2009162433A (en) Heat transfer member
JP5772608B2 (en) Heat exchanger
JP5569410B2 (en) Heat exchanger tubes and heat exchangers
JPH08170888A (en) Tube for integrated heat-exchanger
JP2010032128A (en) Tube for heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100302

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100315

R151 Written notification of patent or utility model registration

Ref document number: 4483536

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S802 Written request for registration of partial abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311802

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees