JP2006337005A - Tube for heat exchanger - Google Patents

Tube for heat exchanger Download PDF

Info

Publication number
JP2006337005A
JP2006337005A JP2005166206A JP2005166206A JP2006337005A JP 2006337005 A JP2006337005 A JP 2006337005A JP 2005166206 A JP2005166206 A JP 2005166206A JP 2005166206 A JP2005166206 A JP 2005166206A JP 2006337005 A JP2006337005 A JP 2006337005A
Authority
JP
Japan
Prior art keywords
heat exchanger
flow path
tube
upstream
exchanger tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005166206A
Other languages
Japanese (ja)
Inventor
Jinichi Hiyama
仁一 檜山
Yukio Koyama
幸男 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Corp
Original Assignee
Calsonic Kansei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corp filed Critical Calsonic Kansei Corp
Priority to JP2005166206A priority Critical patent/JP2006337005A/en
Priority to US11/916,738 priority patent/US20090223656A1/en
Priority to CNA2006800198590A priority patent/CN101189485A/en
Priority to EP06732157A priority patent/EP1901021A1/en
Priority to PCT/JP2006/308299 priority patent/WO2006132037A1/en
Publication of JP2006337005A publication Critical patent/JP2006337005A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • F28D1/0391Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits a single plate being bent to form one or more conduits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/15Making tubes of special shape; Making tube fittings
    • B21C37/151Making tubes with multiple passages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/15Making tubes of special shape; Making tube fittings
    • B21C37/156Making tubes with wall irregularities
    • B21C37/158Protrusions, e.g. dimples
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/042Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
    • F28F3/044Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element the deformations being pontual, e.g. dimples
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/042Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
    • F28F3/046Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element the deformations being linear, e.g. corrugations

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a tube for a heat exchanger having a partition wall for partitioning a flow passage and capable of increasing the efficiency of heat exchange. <P>SOLUTION: The tube 10 for a heat exchanger is divided into an upstream flow passage 13a positioned so that airflow passes around its outer periphery along its width direction, with its internal flow passage 13 positioned upstream of the airflow by the partition wall 14, and a downstream flow passage 13b positioned downstream of the airflow. The partition wall 14 is provided in a position where it increases the width W1 of the upstream flow passage 13a and reduces the width W2 of the downstream flow passage 13b. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、外周を流れる空気流と内部の流路を流れる冷媒との間で熱交換を行う熱交換器用チューブに関する。   The present invention relates to a tube for a heat exchanger that performs heat exchange between an air flow that flows around an outer periphery and a refrigerant that flows through an internal flow path.

この種の従来の熱交換器用チューブとして、図12に示す特許文献1に開示されたものがある。この熱交換器用チューブ100は、図12に示すように、断面が偏平楕円形状である外壁部101と、この外壁部101内の流路102を2つに仕切る仕切壁103とから構成されている。仕切壁103は、上流側流路102aの幅W3と下流側流路102bの幅W4が同じ寸法(W3=W4)になる位置に設定され、互いに突き合わされた2枚の仕切片103a,103bから構成されている。このような構成の熱交換器用チューブ100は、例えば一枚の素板より次のように作製される。細長い素板の幅方向の両端を折り曲げて仕切片103a,103bを形成し、次に、素板を偏平楕円形状に折り曲げ、両端の仕切片103a,103bを互いに合わせる。そして、折り曲げによって互いに突き合わされた面同士をろう付け等によって接合すれば完了する。   A conventional heat exchanger tube of this type is disclosed in Patent Document 1 shown in FIG. As shown in FIG. 12, the heat exchanger tube 100 includes an outer wall portion 101 having a flat elliptical cross section, and a partition wall 103 that divides the flow path 102 in the outer wall portion 101 into two. . The partition wall 103 is set at a position where the width W3 of the upstream flow path 102a and the width W4 of the downstream flow path 102b are the same dimension (W3 = W4), and the two partition pieces 103a and 103b that are abutted with each other. It is configured. The heat exchanger tube 100 having such a configuration is manufactured as follows, for example, from a single base plate. Both ends of the elongated base plate in the width direction are bent to form the partition pieces 103a and 103b. Next, the base plate is bent into a flat elliptical shape, and the partition pieces 103a and 103b at both ends are aligned with each other. And it will be completed if the surfaces mutually faced by bending are joined by brazing etc.

このように形成された熱交換器用チューブ100を使用して熱交換器が製作される。熱交換器は、熱交換器用チューブ100の幅方向に沿って空気流が外周を通過するよう配置され、外周を通過する空気流と内部の上流側流路102a及び下流側流路102bを流れる冷媒との間で熱交換が行われる。そして、流路102が仕切壁103によって2分割されているため、流路を押し潰す方向の押圧力に対して強く耐圧性に優れている。
特開平10−305341号公報
A heat exchanger is manufactured using the heat exchanger tube 100 thus formed. The heat exchanger is arranged such that an air flow passes through the outer periphery along the width direction of the heat exchanger tube 100, and the air flow passing through the outer periphery and the refrigerant flowing through the internal upstream flow channel 102a and the downstream flow channel 102b. Heat exchange with the And since the flow path 102 is divided into 2 by the partition wall 103, it is strong with respect to the pressing force of the direction crushing a flow path, and is excellent in pressure | voltage resistance.
Japanese Patent Laid-Open No. 10-305341

ところで、流路102を流れる冷媒の熱交換効率は、外周を通る空気流の上下流の位置によって相違する。しかし、前記従来例の熱交換器用チューブ100では、このような冷媒の熱交換効率を配慮することなく仕切壁103が設置されていたため、仕切壁103を有する熱交換器用チューブ100として熱交換効率の点で最良のものとは言えなかった。   By the way, the heat exchange efficiency of the refrigerant flowing through the flow path 102 differs depending on the upstream and downstream positions of the airflow passing through the outer periphery. However, since the partition wall 103 is installed in the heat exchanger tube 100 according to the conventional example without considering the heat exchange efficiency of the refrigerant, the heat exchanger tube 100 having the partition wall 103 has high heat exchange efficiency. It was not the best in terms.

そこで、本発明は、仕切壁を有するものにあって、熱交換効率の向上を図ることができる熱交換器用チューブを提供することを目的とする。   Then, this invention has what has a partition wall, and it aims at providing the tube for heat exchangers which can aim at the improvement of heat exchange efficiency.

上記課題を達成するための請求項1の発明は、空気流が幅方向に沿って外周を通過するように当該空気流を横切る方向に沿って配置され、内部に形成された流路が、仕切壁によって当該空気流の上流側に位置する上流側流路と、当該空気流の下流側に位置する下流側流路に分割された熱交換器用チューブであって、前記上流側流路の幅が、前記下流側流路の幅よりも広くなるように、前記仕切壁が配置されたことを特徴とする。   In order to achieve the above object, the invention according to claim 1 is arranged so that the air flow passes through the outer periphery along the width direction and is arranged along the direction crossing the air flow, and the flow path formed inside is divided. A heat exchanger tube divided by a wall into an upstream flow path positioned upstream of the air flow and a downstream flow path positioned downstream of the air flow, wherein the upstream flow path has a width of The partition wall is arranged to be wider than the width of the downstream flow path.

請求項2の発明は、請求項1に記載された熱交換器用チューブであって、前記上流側流路には、外壁部の少なくとも一方側から突出する突起部が設けられたことを特徴とする。   Invention of Claim 2 is the tube for heat exchangers described in Claim 1, Comprising: The said upstream flow path was provided with the projection part which protrudes from at least one side of an outer wall part, It is characterized by the above-mentioned. .

請求項3の発明は、請求項2に記載された熱交換器用チューブであって、前記突起部は、長手方向に沿って間隔を開けて複数箇所に設けられたことを特徴とする。   A third aspect of the present invention is the heat exchanger tube according to the second aspect, wherein the protrusions are provided at a plurality of locations at intervals along the longitudinal direction.

請求項1の発明によれば、流路を流れる冷媒の熱交換効率は、空気流の最上流位置で最も高く、下流に向かうに従って徐々に効率が低くなり、中央位置を過ぎた下流位置以降では効率が低い状態のままであるパターンを示し、熱交換効率の高い位置では仕切壁が存在せずに全て冷媒が流れて熱交換に供され、熱交換効率がほぼ最低の効率となる位置に仕切壁が位置することになるため、熱交換器用チューブの全体としての熱交換効率の向上が図られる。   According to the first aspect of the present invention, the heat exchange efficiency of the refrigerant flowing through the flow path is highest at the most upstream position of the air flow, gradually decreases toward the downstream, and after the downstream position after the central position. This shows a pattern where the efficiency remains low, and in the position where the heat exchange efficiency is high, there is no partition wall, all the refrigerant flows and is used for heat exchange, and the heat exchange efficiency is almost the lowest efficiency. Since the wall is positioned, the heat exchange efficiency as a whole of the heat exchanger tube can be improved.

請求項2の発明によれば、請求項1の発明の効果に加え、下流側流路に対して幅が広く上流側流路は耐圧性に劣るが、その上流側流路の耐圧性が突起部によって向上する。従って、熱交換器用チューブの全体としての耐圧性の向上になる。又、突起部によって上流側流路の内周面積とその外壁部の表面積が広くなるとともに、流路内を流れる冷媒の流れがより乱れるため、熱交換効率の向上に寄与する。   According to the invention of claim 2, in addition to the effect of the invention of claim 1, the upstream flow path is wide and inferior in pressure resistance to the downstream flow path, but the pressure resistance of the upstream flow path is protruding. Improve by part. Therefore, the pressure resistance of the heat exchanger tube as a whole is improved. In addition, the protrusions increase the inner peripheral area of the upstream flow path and the surface area of the outer wall, and the flow of the refrigerant flowing in the flow path is more disturbed, contributing to the improvement of heat exchange efficiency.

請求項3の発明によれば、請求項2の発明の効果に加え、上流側流路を流れる冷媒は、複数箇所の突起部によって攪拌され、熱交換が促進される。従って、熱交換効率の向上が図られる。   According to the invention of claim 3, in addition to the effect of the invention of claim 2, the refrigerant flowing in the upstream flow path is agitated by the protrusions at a plurality of locations, and heat exchange is promoted. Therefore, the heat exchange efficiency can be improved.

以下、本発明の実施の形態に係る熱交換器用チューブの詳細を図面に基づいて説明する。図1〜図7は本発明の熱交換器用チューブを適用した熱交換器の第1実施形態を示し、図1は空気流路3内の熱交換器用チューブ10の配置状態を示す断面図、図2は熱交換器用チューブ10の全体斜視図、図3は図2のA−A線断面図、図4は熱交換器用チューブ10の熱交換効率の特性を示す図、図5は熱交換器用チューブ10の製造装置20の概略図、図6は製造装置20の要部斜視図、図7(a)〜(f)は熱交換器用チューブ10の成形過程をそれぞれ示す斜視図である。   Hereinafter, details of the heat exchanger tube according to the embodiment of the present invention will be described with reference to the drawings. FIGS. 1-7 shows 1st Embodiment of the heat exchanger to which the tube for heat exchangers of this invention is applied, FIG. 1 is sectional drawing which shows the arrangement | positioning state of the tube 10 for heat exchangers in the air flow path 3, FIG. 2 is an overall perspective view of the heat exchanger tube 10, FIG. 3 is a cross-sectional view taken along line AA of FIG. 2, FIG. 4 is a diagram showing the characteristics of the heat exchange efficiency of the heat exchanger tube 10, and FIG. FIG. 6 is a perspective view of a main part of the manufacturing apparatus 20, and FIGS. 7A to 7F are perspective views illustrating a forming process of the heat exchanger tube 10.

熱交換器1は、図1に示すように、空調ユニット2の空気流路3に配置されている。熱交換器1は、間隔を開けて平行に配置された複数の熱交換器用チューブ10とこれら複数の熱交換器用チューブ10の両端に固定された一対のヘッダ11とを備えている。ヘッダ11内部に流入された冷媒は、所定の経路によって熱交換器用チューブ10を通じてヘッダ11より流出されるようになっている。各熱交換器用チューブ10は、その幅方向に沿って空気流路3内の空気流が外周を通過するように、空気流を横切る方向に沿って配置されている。   As shown in FIG. 1, the heat exchanger 1 is disposed in the air flow path 3 of the air conditioning unit 2. The heat exchanger 1 includes a plurality of heat exchanger tubes 10 arranged in parallel at intervals, and a pair of headers 11 fixed to both ends of the plurality of heat exchanger tubes 10. The refrigerant flowing into the header 11 flows out of the header 11 through the heat exchanger tube 10 through a predetermined path. Each of the heat exchanger tubes 10 is arranged along the direction crossing the air flow so that the air flow in the air flow path 3 passes the outer periphery along the width direction thereof.

熱交換器用チューブ10は、図2及び図3に示すように、断面が偏平楕円形状である外壁部12と、この外壁部12内の流路13を2つに仕切る仕切壁14とから構成されている。流路13は、仕切壁14によって空気流の上流側に配置される上流側流路13aと空気流の下流側に配置される下流側流路13bに仕切られている。そして、仕切壁14の仕切位置は、上流側流路13aの幅W1が広く、下流側流路13bの幅W2(<W1)が狭くなる位置に設定されている。又、仕切壁14は、外壁部12の幅方向の両端より一体に接続された一対の仕切片14a,14aから構成され、双方の仕切片14a,14a同士の間、及び、各仕切片14a,14aの先端面と外壁部12の内面との間は、ろう付けされている。   As shown in FIGS. 2 and 3, the heat exchanger tube 10 includes an outer wall portion 12 having a flat elliptical cross section, and a partition wall 14 that partitions the flow path 13 in the outer wall portion 12 into two. ing. The flow path 13 is partitioned by the partition wall 14 into an upstream flow path 13a disposed on the upstream side of the air flow and a downstream flow path 13b disposed on the downstream side of the air flow. The partitioning position of the partition wall 14 is set to a position where the width W1 of the upstream channel 13a is wide and the width W2 (<W1) of the downstream channel 13b is narrow. Moreover, the partition wall 14 is comprised from a pair of partition piece 14a, 14a integrally connected from the both ends of the width direction of the outer wall part 12, and between both partition piece 14a, 14a, and each partition piece 14a, The tip surface of 14a and the inner surface of the outer wall portion 12 are brazed.

突起部15は、上流側流路13aの幅方向のほぼ中央位置に設けられている。突起部15は、双方の外壁部12の互いに対向する箇所に設けられた一対の突起片15aから構成されており、双方の突起片15a,15aの先端面同士は当接され、この当接箇所がろう付けされている。突起部15は、熱交換器用チューブ10の長手方向のほぼ全域に亘って連続して設けられている。   The protrusion 15 is provided at a substantially central position in the width direction of the upstream flow path 13a. The projecting portion 15 is composed of a pair of projecting pieces 15a provided at opposite locations of both outer wall portions 12, and the tip surfaces of both projecting pieces 15a and 15a are in contact with each other, and this contacting location. Is brazed. The protrusion 15 is continuously provided over substantially the entire length of the heat exchanger tube 10 in the longitudinal direction.

次に、前記熱交換器用チューブ10の製造過程を説明する。図5に示すように、製造装置20は、第1折曲ロール部21と塗布ロール部22と乾燥部23と第2折曲ロール部24とを備えている。第1折曲ロール部21は、ロール状に巻き付けられた、例えばアルミニューム材の長尺の素材(図7(a)参照)25の両端部を折曲して仕切片14a,14aを形成し、かつ、中央の2カ所を折曲して突起片(ビード)15a,15aを形成する(図7(a)、(b)参照)。塗布ロール部22は、図6に示すように、フラックス、ろう材、バインダの混合材を収容する材料収容部26と第1転写ロール27と第2転写ロール28と転写シート29とから構成されている。そして、第1折曲ロール部21で形成された両側の仕切片14a,14aと2カ所の突起片15a,15aの先端面にフラックス、ろう材、バインダの混合塗布材aを塗布する(図6、図7(d)参照)。乾燥部23は、素材25上に塗布した混合塗布材a中のバインダを揮発させる。第2折曲ロール部24は、所定形態に折曲された素材25を熱交換器用チューブ10の形態に曲げる(図7(e)、(f)参照)。そして、熱交換器1の構成部品として仮組み付けされた熱交換器用チューブ10は、加熱炉で加熱処理されることによって混合塗布材aが塗布された箇所がろう付けされる。   Next, a manufacturing process of the heat exchanger tube 10 will be described. As shown in FIG. 5, the manufacturing apparatus 20 includes a first bending roll unit 21, an application roll unit 22, a drying unit 23, and a second bending roll unit 24. The first folding roll portion 21 is formed in the form of partitioning pieces 14a and 14a by bending both ends of a long material (for example, aluminum material) 25 (see FIG. 7A) wound in a roll shape. In addition, the projecting pieces (beads) 15a and 15a are formed by bending the two central portions (see FIGS. 7A and 7B). As shown in FIG. 6, the coating roll unit 22 includes a material storage unit 26 that stores a mixture of flux, brazing material, and binder, a first transfer roll 27, a second transfer roll 28, and a transfer sheet 29. Yes. Then, a mixed application material a of flux, brazing material, and binder is applied to the front end surfaces of the partition pieces 14a, 14a on both sides formed by the first folding roll portion 21 and the two projecting pieces 15a, 15a (FIG. 6). FIG. 7 (d)). The drying unit 23 volatilizes the binder in the mixed coating material a applied on the material 25. The 2nd bending roll part 24 bend | folds the raw material 25 bent by the predetermined form into the form of the tube 10 for heat exchangers (refer FIG.7 (e), (f)). The heat exchanger tube 10 temporarily assembled as a component of the heat exchanger 1 is brazed at a portion where the mixed coating material a is applied by heat treatment in a heating furnace.

上記構成の熱交換器用チューブ10は、空気流路3を流れる空気流と内部の流路13を流れる冷媒との間で熱交換される。ここで、熱交換効率は、図4に示すように、空気流の最上流位置で最も高く、下流に向かうに従って徐々に効率が低くなり、中央位置を過ぎた下流位置以降では低い状態のままであるパターンを示す。上記熱交換器用チューブ10では、熱交換効率の高い位置では仕切壁14が存在せずに全て冷媒が流れて熱交換に供され、熱交換効率がほぼ最低の効率となる位置に仕切壁14が位置することになるため、熱交換器用チューブ10の全体としての熱交換効率の向上が図られる。   The heat exchanger tube 10 having the above-described configuration is heat-exchanged between the air flow flowing through the air flow path 3 and the refrigerant flowing through the internal flow path 13. Here, as shown in FIG. 4, the heat exchange efficiency is highest at the most upstream position of the air flow, gradually decreases toward the downstream, and remains low after the downstream position past the central position. Shows a pattern. In the heat exchanger tube 10, the partition wall 14 does not exist at a position where the heat exchange efficiency is high, and all the refrigerant flows and is used for heat exchange, and the partition wall 14 is located at a position where the heat exchange efficiency is almost the lowest. Therefore, the heat exchange efficiency as a whole of the heat exchanger tube 10 can be improved.

この第1実施形態では、上流側流路13aには突起部15が設けられたので、下流側流路13bに対して幅の広い上流側流路13aは、耐圧性の強い構成とされている。従って、熱交換器用チューブの全体としての耐圧性を維持することができる。又、突起部15によって上流側流路13aの内周面積とその外壁部12の表面積が広くなるため、熱交換効率の向上に寄与する。   In the first embodiment, since the upstream flow path 13a is provided with the protrusions 15, the upstream flow path 13a, which is wider than the downstream flow path 13b, is configured to have a strong pressure resistance. . Therefore, the pressure resistance of the entire heat exchanger tube can be maintained. Moreover, since the inner peripheral area of the upstream flow path 13a and the surface area of the outer wall part 12 are widened by the protrusion 15, the heat exchange efficiency is improved.

図8は本発明の第2実施形態を示し、熱交換器用チューブ30の一部斜視図である。図8に示すように、この第2実施形態の熱交換器用チューブ30は、突起部31が前記第1実施形態のように熱交換器用チューブの長手方向に連続して設けられているのではなく、間隔を置けて複数に分割して設けられている。   FIG. 8 is a partial perspective view of the heat exchanger tube 30 according to the second embodiment of the present invention. As shown in FIG. 8, in the heat exchanger tube 30 of the second embodiment, the protrusions 31 are not continuously provided in the longitudinal direction of the heat exchanger tube as in the first embodiment. , And are divided into a plurality at intervals.

この第2実施形態によれば、上流側流路13aを流れる冷媒は、複数箇所の突起部31によって攪拌されて流れがみだれるため、熱交換が促進される。従って、熱交換効率の向上が図られる。   According to the second embodiment, the refrigerant flowing in the upstream flow path 13a is agitated by the plurality of protrusions 31 and flows, so heat exchange is promoted. Therefore, the heat exchange efficiency can be improved.

図9は本発明の第3実施形態を示し、熱交換器用チューブ32の一部斜視図である。図9に示すように、この第3実施形態の熱交換器用チューブ32の突起部33は、前記第2実施形態のものと同様に間隔を開けて複数設けられている点で共通するが、前記第2実施形態のように細長い長方形状ではなく、楕円形状である点が相違する。   FIG. 9 shows a third embodiment of the present invention and is a partial perspective view of the heat exchanger tube 32. As shown in FIG. 9, the protrusions 33 of the heat exchanger tube 32 of the third embodiment are common in that a plurality of protrusions 33 are provided at similar intervals as in the second embodiment. The difference is that it is not an elongated rectangular shape as in the second embodiment, but an elliptical shape.

この第3実施形態でも、上流側流路13aを流れる冷媒は、複数箇所の突起部33によって攪拌され、熱交換が促進される。従って、熱交換効率の向上が図られる。   Also in the third embodiment, the refrigerant flowing in the upstream flow path 13a is agitated by the plurality of protrusions 33, and heat exchange is promoted. Therefore, the heat exchange efficiency can be improved.

図10は本発明の第4実施形態を示し、熱交換器用チューブ34の一部斜視図である。図10に示すように、この第4実施形態の熱交換器用チューブ34の突起部35は、前記第3実施形態のものと同様に楕円形状であるが、その楕円形状の向きが熱交換器用チューブ34の長手方向に対して傾斜して設けられている点が相違する。   FIG. 10 shows a fourth embodiment of the present invention and is a partial perspective view of a heat exchanger tube 34. As shown in FIG. 10, the protrusion 35 of the heat exchanger tube 34 of the fourth embodiment has an elliptical shape similar to that of the third embodiment, but the elliptical orientation is the heat exchanger tube. The difference is that it is inclined with respect to the longitudinal direction of 34.

この第4実施形態でも、上流側流路13aを流れる冷媒は、複数箇所の突起部35によって攪拌され、熱交換が促進される。従って、熱交換効率の向上が図られる。   Also in the fourth embodiment, the refrigerant flowing through the upstream flow path 13a is agitated by the plurality of protrusions 35, and heat exchange is promoted. Therefore, the heat exchange efficiency can be improved.

図11は本発明の第5実施形態を示し、熱交換器用チューブ36の一部斜視図である。図11に示すように、この第5実施形態の熱交換器用チューブ36の突起部37は、前記第3、第4実施形態のものと同様に楕円形状であるが、その楕円形状の向きが熱交換器用チューブ36の長手方向と同一方向に長径が向いているものと傾斜方向に長径が向いているものとが交互に設けられている点が相違する。   FIG. 11 shows a fifth embodiment of the present invention and is a partial perspective view of a heat exchanger tube 36. As shown in FIG. 11, the protrusion 37 of the heat exchanger tube 36 of the fifth embodiment has an elliptical shape as in the third and fourth embodiments, but the direction of the elliptical shape is the heat. The difference is that the tubes having the major axis in the same direction as the longitudinal direction of the exchanger tube 36 and those having the major axis in the inclined direction are alternately provided.

この第5実施形態でも、上流側流路13aを流れる冷媒は、複数箇所の突起部37によって攪拌され、熱交換が促進される。従って、熱交換効率の向上が図られる。   Also in the fifth embodiment, the refrigerant flowing in the upstream flow path 13a is agitated by the plurality of protrusions 37, and heat exchange is promoted. Therefore, the heat exchange efficiency can be improved.

尚、前記各実施形態では、突起部15,31,33,35,37は、上流側流路13aを形成する外壁部12の互いに対向する箇所に設けられた一対の突起片15a,(図示せず)から構成されているが、いずれか一方の外壁部12の箇所より内側に突出された突起片のみから構成しても良い。又、各実施形態では、双方の突起片15a,15a,(図示せず)が同じ高さで、上流側流路13aの幅のほぼ1/2高さに形成されているが、一方が1/2高さより高く、他方が1/2高さより低く形成しても良い。   In each of the above-described embodiments, the protrusions 15, 31, 33, 35, and 37 are a pair of protrusions 15a (not shown) provided at locations facing each other on the outer wall 12 that forms the upstream flow path 13a. However, you may comprise only the protrusion piece protruded inside from the location of any one outer wall part 12. FIG. Further, in each embodiment, both the protrusion pieces 15a, 15a (not shown) are formed at the same height and approximately ½ height of the width of the upstream flow path 13a. The height may be higher than / 2 and the other lower than 1/2 height.

本発明の第1実施形態を示し、空気流路内の熱交換器用チューブの配置状態を示す断面図である。It is sectional drawing which shows 1st Embodiment of this invention and shows the arrangement | positioning state of the tube for heat exchangers in an air flow path. 本発明の第1実施形態を示し、熱交換器用チューブの全体斜視図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a whole perspective view of the tube for heat exchangers which shows 1st Embodiment of this invention. 本発明の第1実施形態を示し、図2のA−A線断面図である。FIG. 3 shows the first embodiment of the present invention and is a cross-sectional view taken along line AA in FIG. 2. 本発明の第1実施形態を示し、熱交換器用チューブの熱交換効率の特性を示す図である。It is a figure which shows 1st Embodiment of this invention and shows the characteristic of the heat exchange efficiency of the tube for heat exchangers. 本発明の第1実施形態を示し、熱交換器用チューブの製造装置の概略図である。BRIEF DESCRIPTION OF THE DRAWINGS It is the schematic of the manufacturing apparatus of the tube for heat exchangers which shows 1st Embodiment of this invention. 本発明の第1実施形態を示し、製造装置の要部斜視図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a principal part perspective view of a manufacturing apparatus which shows 1st Embodiment of this invention. 本発明の第1実施形態を示し、(a)〜(f)は熱交換器用チューブの成形過程をそれぞれ示す斜視図である。1st Embodiment of this invention is shown, (a)-(f) is a perspective view which each shows the formation process of the tube for heat exchangers. 本発明の第2実施形態を示し、熱交換器用チューブの要部斜視図である。It is a principal part perspective view of the tube for heat exchangers which shows 2nd Embodiment of this invention. 本発明の第3実施形態を示し、熱交換器用チューブの要部斜視図である。It is a principal part perspective view of the tube for heat exchangers which shows 3rd Embodiment of this invention. 本発明の第4実施形態を示し、熱交換器用チューブの要部斜視図である。The 4th Embodiment of this invention is shown and it is a principal part perspective view of the tube for heat exchangers. 本発明の第5実施形態を示し、熱交換器用チューブの要部斜視図である。It is a principal part perspective view of the tube for heat exchangers which shows 5th Embodiment of this invention. 従来例の熱交換器用チューブの平面図である。It is a top view of the tube for heat exchangers of a prior art example.

符号の説明Explanation of symbols

10,30,32,34,36 熱交換器用チューブ
12 外壁部
13 流路
13a 上流側流路
13b 下流側流路
14 仕切壁
15,31,33,35,37 突起部
W1 上流側流路の幅
W2 下流側流路の幅
10, 30, 32, 34, 36 Heat exchanger tube 12 Outer wall part 13 Flow path 13a Upstream flow path 13b Downstream flow path 14 Partition wall 15, 31, 33, 35, 37 Protrusion W1 Width of upstream flow path W2 Downstream channel width

Claims (3)

空気流が幅方向に沿って外周を通過するように当該空気流を横切る方向に沿って配置され、内部に形成された流路(13)が、仕切壁(14)によって当該空気流の上流側に位置する上流側流路(13a)と、当該空気流の下流側に位置する下流側流路(13b)に分割された熱交換器用チューブ(10),(30),(32),(34),(36)であって、
前記上流側流路(13a)の幅(W1)が、前記下流側流路(13b)の幅(W2)よりも広くなるように、前記仕切壁(14)が配置されたことを特徴とする熱交換器用チューブ。
The flow path (13) formed inside is arranged along the direction crossing the air flow so that the air flow passes the outer periphery along the width direction, and the flow path (13) formed inside is upstream of the air flow by the partition wall (14). The heat exchanger tubes (10), (30), (32), (34) divided into an upstream flow path (13a) located at the downstream side and a downstream flow path (13b) located downstream of the air flow. ), (36)
The partition wall (14) is arranged so that the width (W1) of the upstream flow path (13a) is wider than the width (W2) of the downstream flow path (13b). Tube for heat exchanger.
請求項1に記載された熱交換器用チューブであって、
前記上流側流路(13a)には、外壁部(12)の少なくとも一方側から突出する突起部(15),(31),(33),(35),(37)が設けられたことを特徴とする熱交換器用チューブ。
A heat exchanger tube according to claim 1,
The upstream channel (13a) is provided with projections (15), (31), (33), (35), (37) protruding from at least one side of the outer wall (12). Characteristic heat exchanger tube.
請求項2に記載された熱交換器用チューブであって、
前記突起部(31),(33),(35),(37)は、長手方向に沿って間隔を開けて複数箇所に設けられたことを特徴とする熱交換器用チューブ。
A heat exchanger tube according to claim 2,
The tube for a heat exchanger, wherein the protrusions (31), (33), (35), and (37) are provided at a plurality of locations at intervals along the longitudinal direction.
JP2005166206A 2005-06-06 2005-06-06 Tube for heat exchanger Withdrawn JP2006337005A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2005166206A JP2006337005A (en) 2005-06-06 2005-06-06 Tube for heat exchanger
US11/916,738 US20090223656A1 (en) 2005-06-06 2006-04-20 Heat exchanger tube
CNA2006800198590A CN101189485A (en) 2005-06-06 2006-04-20 Tube for heat exchanger
EP06732157A EP1901021A1 (en) 2005-06-06 2006-04-20 Tube for heat exchanger
PCT/JP2006/308299 WO2006132037A1 (en) 2005-06-06 2006-04-20 Tube for heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005166206A JP2006337005A (en) 2005-06-06 2005-06-06 Tube for heat exchanger

Publications (1)

Publication Number Publication Date
JP2006337005A true JP2006337005A (en) 2006-12-14

Family

ID=37498244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005166206A Withdrawn JP2006337005A (en) 2005-06-06 2005-06-06 Tube for heat exchanger

Country Status (5)

Country Link
US (1) US20090223656A1 (en)
EP (1) EP1901021A1 (en)
JP (1) JP2006337005A (en)
CN (1) CN101189485A (en)
WO (1) WO2006132037A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013195024A (en) * 2012-03-22 2013-09-30 Denso Corp Fin for heat exchanger, and heat exchanger
US10642136B2 (en) 2017-09-12 2020-05-05 Seiko Epson Corporation Heat exchanging apparatus, cooling apparatus, and projector

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010112671A (en) * 2008-11-10 2010-05-20 Showa Denko Kk Method of manufacturing tube for heat exchanger
CN103047759B (en) * 2012-12-28 2016-04-20 罗小兵 A kind of heat exchange combustion chamber
DE102015112833A1 (en) * 2015-08-05 2017-02-09 Valeo Klimasysteme Gmbh Heat exchanger and vehicle air conditioning

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0473592A (en) * 1990-07-11 1992-03-09 Matsushita Electric Ind Co Ltd Heat exchanger
US6371201B1 (en) * 1996-04-03 2002-04-16 Ford Global Technologies, Inc. Heat exchanger and method of assembly for automotive vehicles
JPH10197174A (en) * 1996-12-27 1998-07-31 Zexel Corp Heat exchanger
JP3206806B2 (en) * 1998-04-03 2001-09-10 カルソニックカンセイ株式会社 Aluminum heat exchanger core
FR2788123B1 (en) * 1998-12-30 2001-05-18 Valeo Climatisation EVAPORATOR, HEATING AND/OR AIR CONDITIONING DEVICE AND VEHICLE COMPRISING SUCH EVAPORATOR
JP2001041675A (en) * 1999-07-28 2001-02-16 Mitsubishi Heavy Ind Ltd Tube for heat exchanger and heat exchanger
EP1644682A1 (en) * 2003-07-15 2006-04-12 Outokumpu Copper Products Oy Pressure containing heat transfer tube and method of making thereof
KR100518856B1 (en) * 2003-09-04 2005-09-30 엘지전자 주식회사 Heat exchanger of flat tube
US8267163B2 (en) * 2008-03-17 2012-09-18 Visteon Global Technologies, Inc. Radiator tube dimple pattern

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013195024A (en) * 2012-03-22 2013-09-30 Denso Corp Fin for heat exchanger, and heat exchanger
US9714794B2 (en) 2012-03-22 2017-07-25 Denso Corporation Heat exchanger tube having fins with varying louver inclination angle
US10642136B2 (en) 2017-09-12 2020-05-05 Seiko Epson Corporation Heat exchanging apparatus, cooling apparatus, and projector

Also Published As

Publication number Publication date
WO2006132037A1 (en) 2006-12-14
EP1901021A1 (en) 2008-03-19
US20090223656A1 (en) 2009-09-10
CN101189485A (en) 2008-05-28

Similar Documents

Publication Publication Date Title
JP3864916B2 (en) Heat exchanger
JP4419140B2 (en) Tube for heat exchanger
US20090173480A1 (en) Louvered air center with vortex generating extensions for compact heat exchanger
JP4989979B2 (en) Heat exchanger
JP5453797B2 (en) Heat exchanger
JP2006322698A (en) Heat exchanger
JP2004205124A (en) Plate fin for heat exchanger and heat exchanger core
JP2005326135A (en) Heat exchanger
JP2007278558A (en) Refrigerant radiator
KR20150062165A (en) Fin-and-tube heat exchanger for air conditioner
JP2006337005A (en) Tube for heat exchanger
JP2006078163A (en) Flat tube, plate body for manufacturing flat tube, and heat exchanger
JP5627632B2 (en) Heat exchanger and heat pump device
JP5020886B2 (en) Heat exchanger
JP4483536B2 (en) Heat exchanger
JP2009121708A (en) Heat exchanger
US20040206481A1 (en) Evaporator
JP4147731B2 (en) Heat exchanger for cooling
JP6413760B2 (en) Heat exchanger and heat exchanger unit using the same
WO2022220159A1 (en) Heat exchanger
JP7188564B2 (en) Heat exchanger
JPH09310993A (en) Manufacture of heat exchanger and heat exchanger
JP2007017061A (en) Gas cooler for carbon dioxide air conditioner
JPH1071463A (en) Manufacture of flat heat exchanger tube
JP2009264664A (en) Heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080519

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100222