WO2012102053A1 - Finned-tube heat exchanger - Google Patents

Finned-tube heat exchanger Download PDF

Info

Publication number
WO2012102053A1
WO2012102053A1 PCT/JP2012/000521 JP2012000521W WO2012102053A1 WO 2012102053 A1 WO2012102053 A1 WO 2012102053A1 JP 2012000521 W JP2012000521 W JP 2012000521W WO 2012102053 A1 WO2012102053 A1 WO 2012102053A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat transfer
leeward
windward
rib
fin
Prior art date
Application number
PCT/JP2012/000521
Other languages
French (fr)
Japanese (ja)
Inventor
勝志 谷口
横山 昭一
富之 野間
高橋 正敏
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2012554699A priority Critical patent/JPWO2012102053A1/en
Publication of WO2012102053A1 publication Critical patent/WO2012102053A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/10Secondary fins, e.g. projections or recesses on main fins

Definitions

  • the present invention is used in air conditioners such as room air conditioners, packaged air conditioners, and car air conditioners, heat pump water heaters, refrigerators, freezers, and the like, and gas such as air flowing between a plurality of stacked flat fins.
  • the present invention relates to a finned tube heat exchanger that transfers heat to and from a fluid such as water or refrigerant flowing in a heat transfer tube.
  • a fin-and-tube heat exchanger (hereinafter referred to as a “fin-tube heat exchanger”) composed of a plurality of laminated flat plate-shaped heat transfer fins and heat transfer tubes is shown in FIG.
  • a large number of plate-like fins 101 are stacked in parallel at a constant pitch, and a gas W such as air flows between them, and inserted into these fins 101 at a predetermined pitch at a substantially right angle.
  • a heat transfer tube 104 through which a fluid R such as a refrigerant flows.
  • the heat transfer tube 104 is tightly joined to a cylindrical fin collar 102 that rises perpendicularly to the outer periphery of the through hole of the fin 101.
  • the slit forming portion 103 of the fin 101 of this heat exchanger is provided with a notch 113 as shown in FIGS. 8, 9 and 10, and the upwind fin 101 is raised with respect to the gas flow 1 of the notch.
  • a peak 115 having an opening 114 formed by a notch 113 is provided on the leeward side.
  • ridges 115 are formed, when the gas flows along the ridges 115 and passes through the opening 114 on the leeward side, a vertical vortex is generated, from which the leeward heat transfer fin surface There are some which improve the heat exchanger efficiency by disturbing the temperature boundary layer and improving the heat transfer efficiency (see, for example, Patent Document 1).
  • FIG. 12 and FIG. 13 it is called “corrugated” in which the fin 201 is bent at an angle of ⁇ 1 about a straight line in a direction substantially perpendicular to the gas flow 1 or in the longitudinal direction of the heat transfer fin 201. It is known that heat transfer efficiency is improved by making the shape (for example, see Patent Document 2).
  • the fin strength can be increased by bending the fin into a corrugated shape. There are problems such as an increase and an increase in air pressure loss during operation.
  • the present invention has been made in view of such conventional problems, and while achieving high heat exchanger efficiency, it improves fin strength, reduces manufacturing and transportation man-hours and costs, and is also in operation.
  • the purpose is to minimize the increase in air pressure loss.
  • the finned tube heat exchanger according to the present invention is formed by providing notches in the heat transfer fins, raising the heat transfer fins on the windward side of the cut gas, and cutting the leeward side.
  • a first corrugated rib provided further on the windward side of the plurality of mountain parts, and the windward side of the mountain part that is the most upwind among the plurality of mountain parts.
  • a straight line connecting the apex and the portion of the first corrugated rib that is on the most windward side is arranged so as to be substantially parallel to the gas flow direction.
  • the finned tube heat exchanger of the present invention by providing the wave-shaped ribs, it is possible to improve the heat exchange efficiency while suppressing the increase in air-side pressure loss, improve the fin strength and reduce the cost. It is possible to simultaneously improve manufacturability and handling properties while suppressing the increase.
  • FIG. 1 of the present invention The bottom view of the heat-transfer fin in Embodiment 1 of this invention
  • Front view of heat transfer fin in embodiment 2 of the present invention Front view of heat transfer fin in embodiment 3 of the present invention
  • Front view of heat transfer fin in embodiment 4 of the present invention The bottom view of the heat-transfer fin in Embodiment 4 of this invention
  • Front view of conventional heat transfer fin Bottom view of conventional heat transfer fin Enlarged perspective view of the main part of a conventional heat transfer fin
  • a perspective view of a conventional finned tube heat exchanger Front view of another conventional heat transfer fin Bottom view of another conventional heat transfer fin
  • the first invention includes a plurality of heat transfer fins laminated substantially in parallel at a predetermined interval, and a plurality of heat transfer tubes penetrating the heat transfer fins in a direction substantially orthogonal to the planar direction of the heat transfer fins.
  • a substantially cylindrical fin collar extending in a direction substantially orthogonal to the plane direction of the heat transfer fin is formed around a through hole of the heat transfer fin through which the heat transfer tube passes,
  • a fin tube type heat exchange that is inserted into the through hole in close contact with the fin collar and performs heat exchange between the gas flowing in the plane direction of the heat transfer fin and the thermal refrigerant flowing inside the heat transfer tube.
  • the heat transfer fins are provided with cuts, the heat transfer fins on the windward side of the cuts are raised, and a ridge having an opening formed by the cuts on the leeward side;
  • the mountain part provided And a first corrugated rib provided on the windward side, and the windward apex of the peak portion of the plurality of peak portions on the windward side and the windward side of the first corrugated rib.
  • a straight line connecting the portions is arranged so as to be substantially parallel to the gas flow direction.
  • the longitudinal strength of the heat transfer fin can be increased. Therefore, the heat transfer fin can be bent and caught in the depression of the press machine during the feed process at the time of heat transfer fin press, etc., thereby reducing the machine failure or the heat transfer fin buckling and causing a production loss.
  • the strength of the heat transfer fin in the gas flow direction can be increased. Therefore, for example, in the process of bending the heat exchanger about 90 degrees around the straight line in the vertical direction of the heat exchanger, called L-bending when manufacturing a heat exchanger for a room air conditioner outdoor unit, the phenomenon that the heat transfer fins bend is caused. Can be reduced.
  • the straight line connecting the most windward portion of the corrugated rib and the apex of the mountain portion is arranged so as to be substantially parallel to the wind flow direction. Therefore, the gas divided into the left and right toward the wind flow at the most windward part of the corrugated rib flows smoothly along the slope of the mountain, so it is excellent while minimizing the increase in pressure loss Heat transfer performance can be obtained.
  • the windward apex of the mountain portion that is on the leeward side of the mountain portion that is most windward, and the portion that is the most downstream side of the first corrugated rib is arranged so as to be substantially parallel to the gas flow direction. That is, a configuration is adopted in which the apex of the second and subsequent peaks is provided on the downstream side in the wind flow direction from the most leeward side of the corrugated rib.
  • a line segment connecting a portion of the first corrugated rib that is closest to the leeward side and each of the two windward ridges adjacent to each other on the windward side. are arranged so that their midpoints are substantially parallel to the gas flow direction.
  • a configuration is adopted in which the midpoint of the apex of the first adjacent mountain part counted from the windward is installed in the part of the wave-shaped rib on the downstream side in the wind flow direction from the part on the most leeward side.
  • the air is sent evenly to the peaks arranged in the heat transfer fins, and excellent heat transfer characteristics can be obtained while minimizing the increase in pressure loss, and the frosting condition in cold regions is also achieved. Since it can equalize, the capability fall by frost formation can also be suppressed.
  • a second corrugated rib is provided further on the leeward side of the mountain part that is most leeward, and the windward side of the mountain part that is most leeward.
  • the straight line connecting the apex and the end of the opening of the peak portion is the most windward part of the second corrugated rib, and the most leeward side part adjacent to the windward part. It is arranged to pass between.
  • the second corrugated rib is provided further downstream than the most downstream peak portion, the longitudinal strength of the heat transfer fins is further increased, and machine failure and production loss are further reduced. Can do.
  • the strength of the heat transfer fin in the gas flow direction is further increased, and the problem that the heat transfer fin is bent in the L bending process can be solved.
  • the windward apex and the leeward apex (the end of the opening) of the most downstream peak portion between the most windward side portion and the most leeward side portion of the corrugated rib provided on the downstream side ) Are intersected (passed between). Therefore, since the vertical vortex generated on the downstream side of the peak portion flows smoothly along the second corrugated rib, excellent heat transfer characteristics can be obtained while minimizing an increase in pressure loss. Can do.
  • the height of the first corrugated rib or the second corrugated rib is one third of the stacking interval of the heat transfer fins.
  • the above is 2/3 or less. According to this, since the height of the wave-shaped rib in the heat transfer fin stacking direction is not less than one third and not more than two thirds of the heat transfer fin stacking interval, an increase in pressure loss is suppressed. Fin strength and heat transfer acceleration effect can be obtained.
  • an angle formed by a corrugated tangent of the first corrugated rib or the second corrugated rib and the gas flow direction is It is 45 degrees or more. According to this, since the acute angle formed by the corrugated tangent of the corrugated rib and the wind flow is 45 degrees or more, when the heat exchanger is used as an evaporator, in particular, before the windward side of the heat transfer fin. Condensed water adhering in a large amount in the vicinity of the edge is dripped and drained quickly without staying in the heat transfer fins, so that it is possible to prevent the draft resistance from increasing abnormally. The same applies to the drainage during the defrosting operation.
  • the finned tube heat exchanger according to the present invention penetrates through heat transfer fins in a direction orthogonal to the plane direction of the plurality of heat transfer fins and laminated in parallel at a predetermined interval. And a plurality of heat transfer tubes.
  • a heat medium such as a refrigerant passes through the inside of each heat transfer tube and exchanges heat with a gas (generally air) flowing in the plane direction of the heat transfer fins between the heat transfer fins.
  • FIG. 1 is a front view of a heat transfer fin of the present embodiment
  • FIG. 2 is a bottom view thereof
  • FIG. 3 is an enlarged perspective view of a main part.
  • FIG. 1 shows one of the plurality of heat transfer fins 10, and FIG. 2 penetrates the four heat transfer fins 10 and the heat transfer fins 10 among the plurality of stacked heat transfer fins 10.
  • One of the plurality of heat transfer tubes 12 is shown.
  • each heat transfer fin 10 is formed with a plurality of through holes 11a through which the heat transfer tubes 12 pass (only two through holes are shown in FIG. 1).
  • a substantially cylindrical fin collar 11 is formed extending in a plane direction of the heat transfer fin 10 or a direction substantially perpendicular to the flow direction of the airflow 1.
  • the heat transfer tube 12 is inserted into the through hole 11 a while being in close contact with the fin collar 11.
  • all the fin collars 11 extend from the heat transfer fins 10 in the same direction and have substantially the same height.
  • the diameter expansion of the heat transfer tube 12 will be described in detail.
  • the heat transfer fins 10 are stacked and the heat transfer tubes 12 are inserted into the fin collars 11.
  • the inner diameter of the fin collars 11 at the time of fin pressing is set to the heat transfer tubes.
  • the outer diameter is slightly larger than 12.
  • the heat transfer tube 12 is expanded in diameter using a hydraulic pressure or by a mechanical method, and the heat transfer tube 12 and the fin collar 11 are brought into close contact with each other to perform heat transfer performance. Has improved.
  • the heat transfer fin 10 includes a heat exchanger stage direction (a direction in which the heat transfer fins 10 are stacked) that is substantially perpendicular to the flow direction of the airflow 1 to the heat transfer fin 10.
  • the heat transfer fin 10 on the windward side where the gas flows with respect to the cut 13 is raised on the front side (the front side in FIG. 1 and the upper side in FIG. 2), and the cut 13 is formed on the leeward side.
  • a crest 15 having a substantially triangular opening 14 is formed.
  • the cuts 13 are formed so as to penetrate the heat transfer fins 10 and are formed so as to extend in a direction substantially perpendicular to the flow direction of the airflow 1 and along the surface of the heat transfer fins 10.
  • a plurality of crests 15 having openings 14 on the leeward side are formed on the surface of the heat transfer fin 10 between the fin collars 11 adjacent in the step direction, and a group of crests (hereinafter referred to as the most crests) provided on the most leeward side.
  • the windward mountain portion 15 a is a contact point between the windward mountain portion windward vertex 15 a 1 that is the highest windward vertex of the contact points between the mountain portion 15 and the heat transfer fin 10, and the opening portion 14 and the heat transfer fin 10. It has a windward mountain top leeward apex (not shown).
  • the second tier mountain portion 15b is the second tier mountain portion upwind vertex 15b1, the second tier mountain portion leeward vertex (not shown), and the leeward mountain portion 15c is the leeward mountain top windward vertex. 15c1 and the leeward side mountain part leeward side vertex 15c2.
  • a sawtooth-shaped first corrugated rib 20 is provided between the windward front edge 10a of the heat transfer fin 10 and the windward mountain portion 15a.
  • the first corrugated ribs 20 are provided in the step direction of the heat exchanger, and are formed by raising the heat transfer fins 10 on the surface (the front side in FIG. 1, the upper side in the figure).
  • the first corrugated rib 20 includes a first rib windward convex portion 20a which is the most windward portion of the sawtooth shape, and first rib leeward convex portions 20b1 and 20b2 which are the most leeward portions. It has.
  • the straight line 21, 25 connecting the first rib leeward convex part 20b2 adjacent to the first rib leeward convex part 20b1 and the leeward mountain top windward vertex 15c1 is substantially parallel to the wind flow.
  • a second corrugated rib 27 similar to the first corrugated rib 20 is also provided between the leeward side front edge 10b of the heat transfer fin 10 and the leeward side peak portion 15c.
  • the height H2 of the first wave-shaped rib 20 and the second wave-shaped rib 27 in the stacking direction of the heat transfer fins 10 is not less than one third and not more than two thirds of the stacking interval H1 of the heat transfer fins 10. It has become.
  • the first corrugated ribs 20 and the second corrugated ribs 27 are not limited to being raised on the front side, and may be raised on the back side or mixed. Also good. A plurality of them may be provided.
  • the strength of the heat transfer fin 10 is particularly affected when the heat transfer fin 10 is pressed, transported after the press process, and L-bending.
  • a fin-like shape is formed by sandwiching a sheet-like metal material (for example, aluminum material) from above and below with a mold, and simultaneously cut into a required size.
  • a sheet-like metal material for example, aluminum material
  • the strength in the direction substantially orthogonal to the longitudinal direction of the heat transfer fin 10 or the wind flow direction is sufficient. Become. Therefore, it is possible to sufficiently reduce the deflection of the heat transfer fin 10 in the surface direction, and it is possible to sufficiently reduce the occurrence of being caught or caught in the press machine when the mold is slid after pressing. As a result, it is possible to eliminate loss of the heat transfer fins 10 and damage to the mold.
  • the heat exchanger fins 10 are laminated, the heat transfer tubes 12 are inserted, the diameter is expanded, and the heat exchanger fins 10 and the heat transfer tubes 12 are brought into close contact with each other, and the entire heat exchanger is pressed into an L-shaped mold.
  • the heat exchanger is bent in an L shape.
  • the strength of the wind flow direction is sufficient. It can be prevented from buckling by the force received in the direction.
  • the straight line 22 or 24 connecting the first rib windward convex portion 20a and the windward mountain portion windward vertex 15a1 is arranged so as to be substantially parallel to the wind flow.
  • the gas divided into right and left by the 1st rib windward convex part 20a toward the flow of a wind can flow smoothly along the slope of the windward mountain part 15a.
  • a vertical vortex is effectively generated, from which the temperature boundary layer on the surface of the heat transfer fin 10 on the leeward side is disturbed to improve the heat transfer coefficient, Excellent heat transfer performance can be obtained while minimizing the increase in loss.
  • the air is sent evenly to the second ridge portion 15b arranged in the heat transfer fin 10, and excellent heat transfer characteristics can be obtained while suppressing an increase in pressure loss, and frost formation in a cold region. Since a state can also be equalized, the capability fall by frost formation can also be suppressed.
  • the vertical vortex generated by the first corrugated rib 20 is concentrated by providing the second-step mountain-side upwind vertex 15b1 at the downstream side of the first rib leeward convex portion 20b1 in the wind flow direction.
  • the resulting flow hits the second-step mountain-side upwind vertex 15b1. Therefore, it is possible to obtain excellent heat transfer characteristics by promoting heat transfer due to the collision with the slope of the second hill portion 15b while minimizing an increase in pressure loss.
  • a leeward mountain top windward vertex 15c1 is provided at a portion downstream of the first rib leeward convex portion 20b2 adjacent to the first rib leeward convex portion 20b1 in the wind flow direction.
  • the height H2 of the first wave-shaped rib 20 or the second wave-shaped rib 27 in the heat transfer tube direction is at least one third of the stacking interval H1 of the stacked heat transfer fins 10. It is less than 2 minutes. Therefore, the resistance of the wind flow can be kept low, and a sufficient heat transfer fin strength and heat transfer acceleration effect can be obtained while suppressing an increase in pressure loss.
  • the shape of the first wave-shaped rib 20 or the second wave-shaped rib 27 is a wave shape, the strength of the heat transfer fin 10 in the wind flow direction is increased. Furthermore, the acute angle ⁇ formed by the corrugated tangent line 26 and the wind flow is set to 45 degrees or more. Therefore, particularly when the heat exchanger is used as an evaporator, the condensed water adhering in a large amount in the vicinity of the windward front edge 10a of the heat transfer fin 10 is quickly dropped and drained without staying in the heat transfer fin 10. Ventilation resistance does not increase abnormally. The same applies to the drainage during the defrosting operation.
  • FIG. 4 is a front view of the heat transfer fin in the second embodiment.
  • a third wave-shaped rib 30 that is a wave-shaped (for example, sine curve) rib having a smooth curve without a straight portion is provided.
  • Straight lines 32, 34 connecting the third rib windward convex portion 30 a that is the most windward portion of the third corrugated rib 30 and the windward mountain top windward vertex 15 a 1, the most of the third corrugated rib 30.
  • Straight lines 31 and 35 connecting the leeward mountain top windward vertex 15c1 are substantially parallel to the wind flow direction.
  • a fourth corrugated rib 37 similar to the third corrugated rib 30 is also provided between the leeward front edge 10 b of the heat transfer fin 10 and the leeward mountain peak portion 15 c.
  • the straight wave portion is not used for the wave shape of the third wave-shaped rib 30 or the fourth wave-shaped rib 37, and a smooth curve (for example, a sine curve) is used.
  • a smooth curve for example, a sine curve
  • FIG. 5 is a front view of the heat transfer fin in the third embodiment.
  • first corrugated ribs 20 a plurality of “dog-shaped” ribs 40, 41 that form an angle with the wind flow are provided.
  • second corrugated ribs 27 a plurality of “shaped” ribs 47 and 48 are provided in the same manner.
  • the “shaped” ribs 40 and 41 adjacent to each other in the longitudinal direction of the heat transfer fin 10 pass through the center of the tangent line connecting the furthest windward portions 40a and 41a of the ribs and are substantially parallel to the wind flow direction. Are arranged symmetrically with respect to the straight line 44. And between the adjacent rib-shaped ribs 40 and 41, the ribless parts 50 and 51 which are not raising the heat-transfer fin 10 are provided.
  • a straight line 43 connecting the furthest windward portion 40a of the dog-shaped rib 40 and the windward mountain top windward vertex 15a1 is substantially parallel to the wind flow direction.
  • An upwind vertex 15b1 is installed.
  • the straight lines 42 and 46 which connected the ribless part 51 and the leeward side mountain part upwind vertex 15c1 are substantially parallel to the flow direction of a wind.
  • Rib-free portions 50 and 51 are provided, and the rib-free portions 50 and 51 are in the vicinity of the most leeward side portions of the “shaped” ribs 40 and 41. Further, since the second ridge portion 15b is installed on the leeward side of the ribless portion 50, the most leeward portions 40a and 41a of the " ⁇ "-shaped "ribs 40 and 41 face the wind flow. Thus, the gas divided into right and left can smoothly pass through the ribless portion 50 and smoothly flow along the slope of the second hill portion 15b.
  • the leeward side mountain portion 15c is installed on the leeward side of the rib-free portion 51, the furthest portions 40a and 41a of the dog-shaped ribs 40 and 41 are divided into left and right toward the wind flow.
  • the generated gas can smoothly pass through the ribless portion 51 and smoothly flow along the slope of the leeward mountain portion 15c. Therefore, when passing through the leeward opening 14 of the leeward mountain portion 15c, a vertical vortex is effectively generated, from which the temperature boundary layer on the surface of the leeward heat transfer fin 10 is disturbed and the heat transfer coefficient is increased. By improving, it is possible to obtain excellent heat transfer performance while minimizing an increase in pressure loss.
  • FIGS. 6 is a front view of the heat transfer fin 10 according to the fourth embodiment
  • FIG. 7 is a bottom view thereof.
  • FIG. 6 similarly to the first embodiment, there is a peak 65a having an opening 64a on the leeward side, a peak 65b having an opening 64b on the leeward side, and a peak 65c having an opening 64c on the leeward side.
  • a plurality of heat transfer fins 10 are formed between the fin collars 11 adjacent to each other in the step direction. These are arranged in the order of the mountain parts 65a, 65b, 65c from the windward side.
  • a fifth corrugated rib 70 is provided between the windward front edge 10a of the heat transfer fin 10 and the peak portion 65a.
  • the fifth corrugated rib 70 includes a fifth rib upwind convex portion that is the most windward portion and a fifth rib leeward convex portion 70b that is the most leeward portion of the fifth corrugated rib 70.
  • Each has a plurality.
  • a straight line 75 connecting the fifth rib leeward convex portion 70b and the midpoint of two adjacent fifth rib leeward convex portions 70a is substantially parallel to the wind flow direction.
  • the mountain portion 65c has a windward vertex 65c1 that is the most windward vertex of the contact points between the mountain portion 65c and the heat transfer fin 10, and a leeward vertex 65c2 that is a contact point between the opening 64c and the heat transfer fin 10. is doing.
  • a sixth corrugated rib 71 is also provided between the leeward front edge 10b of the heat transfer fin 10 and the peak portion 65c.
  • a straight line 66 connecting the leeward apex 65c1 and the leeward apex 65c2 of the mountain portion 65c is the sixth rib upwind convex portion 71a which is the furthest windward part of the sixth corrugated rib 71 and the most leeward part. It is configured to pass between a certain sixth rib leeward convex portion 71b.
  • the fifth rib leeward convex portion 70b and the sixth rib leeward convex portion 71b are arranged on a straight line passing through the center of the heat transfer tube 12 and parallel to the wind flow direction. Moreover, the space
  • the flow of the wind that hits the fifth rib windward convex portion 70a, which is the most windward part of the fifth corrugated rib 70, is divided into right and left in the wind direction. Therefore, a large amount of wind flows into the fifth rib leeward convex portion 70b, which is the most leeward portion of the fifth corrugated rib 70. Since the fifth rib leeward convex portion 70b is in the leeward direction from the middle of the two adjacent fifth rib leeward convex portions 70a, many winds may pass between the mountain portions 65a located on the most leeward side. it can. For this reason, it is possible to improve the fin strength while suppressing an increase in pressure loss.
  • a straight line 66 connecting the windward vertex 65c1 and the leeward vertex 65c2 of the mountain 65c is between the sixth rib windward convex portion 71a and the sixth rib leeward convex portion 71b of the sixth corrugated rib 71. It is configured to pass. Therefore, the gas that has passed through the mountain part 65c on the most leeward side generates a vertical vortex when passing through the opening 64c, thereby disturbing the temperature boundary layer on the surface of the heat transfer fin 10 on the leeward side and increasing the heat transfer coefficient. While improving, since it can flow smoothly along the wave fin on the leeward side, excellent heat transfer characteristics can be exhibited while suppressing an increase in pressure loss.
  • the angle formed by the tangent line of the corrugation of the fifth corrugated rib and the wind flow direction is gentler in the portion located on the windward side of the mountain portion 65a than in the portion located on the windward side of the heat transfer tube 12. Excellent heat transfer characteristics can be achieved while suppressing an increase in pressure loss.
  • the angle formed by the corrugated tangent of the sixth corrugated rib and the wind flow direction is gentler in the portion located on the leeward side of the peak portion 65c than in the portion located on the leeward side of the heat transfer tube 12. Excellent heat transfer characteristics can be achieved while suppressing an increase in pressure loss.
  • the second step mountain portion 15b is provided between the windward mountain portion 15a and the leeward mountain portion 15c.
  • a plurality of mountain groups may be provided.
  • the finned tube heat exchanger according to the present invention provides a corrugated rib having a shape suitable for the shape of the peak portion while forming a peak portion having an opening on the leeward side to improve heat exchange efficiency.
  • a heat exchanger used in air conditioners, heat pump water heaters, refrigerators, freezers, etc. it can increase the strength of the fins in all directions while suppressing an increase in pressure loss, and solve manufacturing problems. Useful.

Abstract

A finned-tube heat exchanger in which a ridged part that has an opening on the downwind side thereof is formed. Said heat exchanger is also provided with a first corrugated rib (20), upstream of the aforementioned ridged part (15), that matches the shape of said ridged part (15). This heat exchanger thus exhibits excellent heat-transfer efficiency while having sufficient fin strength, which allows manufacturing and shipping costs to be reduced. Furthermore, increases in air-side compression losses during operation are minimized.

Description

フィンチューブ型熱交換器Finned tube heat exchanger
 本発明は、ルームエアコン、パッケージエアコン、カーエアコン等の空気調和機や、ヒートポンプ式給湯機、冷蔵庫、冷凍庫等に用いられ、多数積層された平板状のフィンの間を流動する空気などの気体と伝熱管内を流動する水や冷媒などの流体との間で熱を授受するフィンチューブ型熱交換器に関するものである。 The present invention is used in air conditioners such as room air conditioners, packaged air conditioners, and car air conditioners, heat pump water heaters, refrigerators, freezers, and the like, and gas such as air flowing between a plurality of stacked flat fins. The present invention relates to a finned tube heat exchanger that transfers heat to and from a fluid such as water or refrigerant flowing in a heat transfer tube.
 一般に、多数積層された平板状の伝熱フィンと伝熱管とで構成されるフィンアンドチューブ式の熱交換器(以降、「フィンチューブ型熱交換器」とする。)は、図11に示すように、一定のピッチで平行に積層されるとともに、その間を空気などの気体Wが流動する多数の平板状のフィン101と、これらのフィン101に略直角に所定のピッチで挿入され、内部を水や冷媒などの流体Rが流動する伝熱管104とで構成されている。伝熱管104は、フィン101の貫通穴の外周に垂直に立ち上げた円筒状のフィンカラー102に密着接合されている。 In general, a fin-and-tube heat exchanger (hereinafter referred to as a “fin-tube heat exchanger”) composed of a plurality of laminated flat plate-shaped heat transfer fins and heat transfer tubes is shown in FIG. In addition, a large number of plate-like fins 101 are stacked in parallel at a constant pitch, and a gas W such as air flows between them, and inserted into these fins 101 at a predetermined pitch at a substantially right angle. And a heat transfer tube 104 through which a fluid R such as a refrigerant flows. The heat transfer tube 104 is tightly joined to a cylindrical fin collar 102 that rises perpendicularly to the outer periphery of the through hole of the fin 101.
 この熱交換器のフィン101のスリット形成部分103に、図8、図9、図10に示すような、切り込み113を設け、切り込みの気体の流れ1に対して風上側のフィン101を隆起させて、風下側に切り込み113により形成される開口部114を有する山部115が設けられている。このような山部115が形成された熱交換器では、気体が山部115に沿って流れ、風下側の開口部114を通過する際に縦渦が発生し、そこから風下の伝熱フィン表面の温度境界層を乱して伝熱効率を向上させることで、熱交換器効率を向上させるものがある(例えば、特許文献1参照)。 The slit forming portion 103 of the fin 101 of this heat exchanger is provided with a notch 113 as shown in FIGS. 8, 9 and 10, and the upwind fin 101 is raised with respect to the gas flow 1 of the notch. On the leeward side, a peak 115 having an opening 114 formed by a notch 113 is provided. In the heat exchanger in which such ridges 115 are formed, when the gas flows along the ridges 115 and passes through the opening 114 on the leeward side, a vertical vortex is generated, from which the leeward heat transfer fin surface There are some which improve the heat exchanger efficiency by disturbing the temperature boundary layer and improving the heat transfer efficiency (see, for example, Patent Document 1).
 また、図12、図13に示すように、気体の流れ1に対して略直交する方向あるいは伝熱フィン201の長手方向の直線を中心としてフィン201をθ1の角度で折り曲げた「コルゲート」と呼ばれる形状にすることで、伝熱効率が向上することが知られている(例えば、特許文献2参照)。 Also, as shown in FIG. 12 and FIG. 13, it is called “corrugated” in which the fin 201 is bent at an angle of θ1 about a straight line in a direction substantially perpendicular to the gas flow 1 or in the longitudinal direction of the heat transfer fin 201. It is known that heat transfer efficiency is improved by making the shape (for example, see Patent Document 2).
特開2010-8034号公報JP 2010-8034 A 特開昭60-216187号公報JP-A-60-216187
 しかしながら、特許文献1に記載の熱交換器では、フィン強度が不十分であり、フィン製造時のプレス機の送り工程やフィンを輸送する際に変形しやすいという課題があり、その対処の為に新たな工数やコストが発生する課題がある。 However, in the heat exchanger described in Patent Document 1, there is a problem that the fin strength is insufficient, and there is a problem that the fin is likely to be deformed when transporting the fins or the feeding process of the press machine during the manufacture of the fins. There is a problem that new man-hours and costs occur.
 また、特許文献1に記載の熱交換器を、特許文献2に記載の熱交換器では、フィンを折り曲げてコルゲート形状にすることでフィン強度を増すことができるが、この方法では、製造工程の増加、運転時の空気圧力損失の増加などの課題がある。 Further, in the heat exchanger described in Patent Document 1, in the heat exchanger described in Patent Document 2, the fin strength can be increased by bending the fin into a corrugated shape. There are problems such as an increase and an increase in air pressure loss during operation.
 本発明は、このような従来の課題に鑑みてなされたものであり、高い熱交換器効率を実現しながら、フィン強度を向上させ、製造や輸送の工数・コストを削減し、なおかつ運転時の空気圧力損失の増加を極小に止めることを目的としている。 The present invention has been made in view of such conventional problems, and while achieving high heat exchanger efficiency, it improves fin strength, reduces manufacturing and transportation man-hours and costs, and is also in operation. The purpose is to minimize the increase in air pressure loss.
 前記従来の課題を解決するために、本発明のフィンチューブ型熱交換器は、伝熱フィンに切り込みを設け、切り込みの気体の風上側の伝熱フィンを隆起させて、風下側に切り込みにより形成される開口部を有する山部と、複数設けられた山部のさらに風上側に設けられた第1の波型リブとを備え、複数の山部のうち最も風上にある山部の風上側頂点と、第1の波型リブの最も風上側となる部分とを結ぶ直線が、気体の流れ方向と略平行となるように配置されたことを特徴とする。 In order to solve the above-described conventional problems, the finned tube heat exchanger according to the present invention is formed by providing notches in the heat transfer fins, raising the heat transfer fins on the windward side of the cut gas, and cutting the leeward side. And a first corrugated rib provided further on the windward side of the plurality of mountain parts, and the windward side of the mountain part that is the most upwind among the plurality of mountain parts. A straight line connecting the apex and the portion of the first corrugated rib that is on the most windward side is arranged so as to be substantially parallel to the gas flow direction.
 本発明のフィンチューブ型熱交換器によれば、波型のリブを設けたことにより空気側圧力損失の増加を抑制しながら、熱交換効率を向上させることと、フィン強度を向上させるとともにコストの増加を抑制しながら、製造性およびハンドリング性を向上させることが両立できる。 According to the finned tube heat exchanger of the present invention, by providing the wave-shaped ribs, it is possible to improve the heat exchange efficiency while suppressing the increase in air-side pressure loss, improve the fin strength and reduce the cost. It is possible to simultaneously improve manufacturability and handling properties while suppressing the increase.
 本発明のこれらの態様と特徴は、添付された図面についての好ましい実施形態に関連した次の記述から明らかになる。
本発明の実施の形態1における伝熱フィンの正面図 本発明の実施の形態1における伝熱フィンの底面図 本発明の実施の形態1における伝熱フィンの要部の拡大斜視図 本発明の実施の形態2における伝熱フィンの正面図 本発明の実施の形態3における伝熱フィンの正面図 本発明の実施の形態4における伝熱フィンの正面図 本発明の実施の形態4における伝熱フィンの底面図 従来の伝熱フィンの正面図 従来の伝熱フィンの底面図 従来の伝熱フィンの要部の拡大斜視図 従来のフィンチューブ型熱交換器の斜視図 別の従来の伝熱フィンの正面図 別の従来の伝熱フィンの底面図
These aspects and features of the invention will become apparent from the following description, taken in conjunction with the preferred embodiments with reference to the accompanying drawings, in which:
Front view of heat transfer fin in embodiment 1 of the present invention The bottom view of the heat-transfer fin in Embodiment 1 of this invention The expanded perspective view of the principal part of the heat-transfer fin in Embodiment 1 of this invention Front view of heat transfer fin in embodiment 2 of the present invention Front view of heat transfer fin in embodiment 3 of the present invention Front view of heat transfer fin in embodiment 4 of the present invention The bottom view of the heat-transfer fin in Embodiment 4 of this invention Front view of conventional heat transfer fin Bottom view of conventional heat transfer fin Enlarged perspective view of the main part of a conventional heat transfer fin A perspective view of a conventional finned tube heat exchanger Front view of another conventional heat transfer fin Bottom view of another conventional heat transfer fin
 第一の発明は、所定の間隔をおいて略平行に積層された複数の伝熱フィンと、前記伝熱フィンの平面方向と略直交する方向に伝熱フィンを貫通する複数の伝熱管とを備え、前記伝熱管が貫通する前記伝熱フィンの貫通孔の周囲には、前記伝熱フィンの平面方向に対し略直交する方向に伸びる略円筒状のフィンカラーが形成され、前記伝熱管は前記フィンカラーに密着した状態で前記貫通孔に挿入され、前記伝熱フィンの平面方向に流れる気体と前記伝熱管の内部を流れる熱冷媒との間で熱交換を行うようにしたフィンチューブ型熱交換器であって、前記伝熱フィンに切り込みを設け、前記切り込みの前記気体の風上側の前記伝熱フィンを隆起させて、風下側に前記切り込みにより形成される開口部を有する山部と、複数設けられた前記山部のさらに風上側に設けられた第1の波型リブとを備え、前記複数の山部のうち最も風上にある山部の風上側頂点と、前記第1の波型リブの最も風上側となる部分とを結ぶ直線が、前記気体の流れ方向と略平行となるように配置されたものである。 The first invention includes a plurality of heat transfer fins laminated substantially in parallel at a predetermined interval, and a plurality of heat transfer tubes penetrating the heat transfer fins in a direction substantially orthogonal to the planar direction of the heat transfer fins. A substantially cylindrical fin collar extending in a direction substantially orthogonal to the plane direction of the heat transfer fin is formed around a through hole of the heat transfer fin through which the heat transfer tube passes, A fin tube type heat exchange that is inserted into the through hole in close contact with the fin collar and performs heat exchange between the gas flowing in the plane direction of the heat transfer fin and the thermal refrigerant flowing inside the heat transfer tube. The heat transfer fins are provided with cuts, the heat transfer fins on the windward side of the cuts are raised, and a ridge having an opening formed by the cuts on the leeward side; The mountain part provided And a first corrugated rib provided on the windward side, and the windward apex of the peak portion of the plurality of peak portions on the windward side and the windward side of the first corrugated rib. A straight line connecting the portions is arranged so as to be substantially parallel to the gas flow direction.
 これによれば、波型リブを設けているので、伝熱フィンの長手方向の強度を増すことができる。そのため、伝熱フィンプレス時の送り工程時などに、伝熱フィンが撓んでプレス機の窪みに引っかかり、機械が故障したり、伝熱フィンが座屈し製造ロスとなることを減らすことができる。また、同様に伝熱フィンの気体流れ方向の強度も増すことができる。そのため、例えばルームエアコン室外機用熱交換器を製造する際のL曲げと呼ばれる、熱交換器の鉛直方向の直線を中心として熱交換器を約90度曲げる工程において、伝熱フィンが折れ曲がる現象を減らすことができる。また、波型リブの最も風上側となる部分と山部の頂点とを結んだ直線が、風の流れ方向に略平行になる様配置している。そのため、波型リブの最も風上側の部分で風の流れに向かって左右に分けられた気体が、滑らかに山部の斜面に沿い流れるので、圧力損失の増加を最小限に抑えつつ、優れた伝熱性能を得ることができる。 According to this, since the corrugated rib is provided, the longitudinal strength of the heat transfer fin can be increased. Therefore, the heat transfer fin can be bent and caught in the depression of the press machine during the feed process at the time of heat transfer fin press, etc., thereby reducing the machine failure or the heat transfer fin buckling and causing a production loss. Similarly, the strength of the heat transfer fin in the gas flow direction can be increased. Therefore, for example, in the process of bending the heat exchanger about 90 degrees around the straight line in the vertical direction of the heat exchanger, called L-bending when manufacturing a heat exchanger for a room air conditioner outdoor unit, the phenomenon that the heat transfer fins bend is caused. Can be reduced. Further, the straight line connecting the most windward portion of the corrugated rib and the apex of the mountain portion is arranged so as to be substantially parallel to the wind flow direction. Therefore, the gas divided into the left and right toward the wind flow at the most windward part of the corrugated rib flows smoothly along the slope of the mountain, so it is excellent while minimizing the increase in pressure loss Heat transfer performance can be obtained.
 第二の発明は、第一の発明において、前記最も風上にある山部よりも風下側にある山部の風上側頂点と、前記第1の波型リブの最も下流側となる部分とを結ぶ直線が、前記気体の流れ方向と略平行となるように配置されたものである。すなわち、波型リブの最も風下側となる部分より風の流れ方向下流側の部分に、風上から数えて2段目以降の山部の頂点が設けられた構成が採用されている。これにより、波型リブによる縦渦が集中している部分の流れが、2段目以降の山部の頂点にぶつかるようになり、圧力損失の増加を抑えつつ、山部の斜面との衝突による伝熱促進による優れた伝熱特性を得ることができる。 According to a second invention, in the first invention, the windward apex of the mountain portion that is on the leeward side of the mountain portion that is most windward, and the portion that is the most downstream side of the first corrugated rib The connecting straight line is arranged so as to be substantially parallel to the gas flow direction. That is, a configuration is adopted in which the apex of the second and subsequent peaks is provided on the downstream side in the wind flow direction from the most leeward side of the corrugated rib. As a result, the flow in the part where the vertical vortices are concentrated due to the corrugated rib comes to the top of the peak after the second stage, and the increase in pressure loss is suppressed, and the collision with the slope of the peak Excellent heat transfer characteristics due to heat transfer enhancement can be obtained.
 第三の発明は、第一の発明において、前記第1の波型リブの最も風下側となる部分と、互いに隣り合う2つの最も風上にある山部のそれぞれの風上側頂点を結ぶ線分の中点とが前記気体の流れ方向に略平行となるように配置されたものである。すなわち、波型リブの最も風下側となる部分より風の流れ方向下流側の部分に、風上から数えて1段目の隣り合う山部の頂点の中間点が設置された構成が採用されている。これにより、波型リブによる縦渦が集中している部分の流れが、1段目の隣り合う山部間の空間を抜けて、2段目以降の山部に流れることができる。したがって、伝熱フィンに配置された山部に均等に風を送ることとなり、圧力損失の増加を最小限に抑えつつ、優れた伝熱特性を得ることができ、寒冷地での着霜状態も均等化できるので、着霜による能力低下も抑えることもできる。 According to a third invention, in the first invention, a line segment connecting a portion of the first corrugated rib that is closest to the leeward side and each of the two windward ridges adjacent to each other on the windward side. Are arranged so that their midpoints are substantially parallel to the gas flow direction. In other words, a configuration is adopted in which the midpoint of the apex of the first adjacent mountain part counted from the windward is installed in the part of the wave-shaped rib on the downstream side in the wind flow direction from the part on the most leeward side. Yes. Thereby, the flow of the part where the vertical vortex by the corrugated rib is concentrated can pass through the space between the adjacent peak parts of the first stage and flow to the peak parts of the second and subsequent stages. Therefore, the air is sent evenly to the peaks arranged in the heat transfer fins, and excellent heat transfer characteristics can be obtained while minimizing the increase in pressure loss, and the frosting condition in cold regions is also achieved. Since it can equalize, the capability fall by frost formation can also be suppressed.
 第四の発明は、第一から第三のいずれか1つの発明において、最も風下にある山部のさらに風下側に、第2の波型リブを設け、前記最も風下にある山部の風上側頂点からその山部の前記開口部の端部を結ぶ直線が、前記第2の波型リブの最も風上側となる部分と、前記最も風上側となる部分と隣り合う最も風下側となる部分との間を通るように配置されたものである。これによれば、最下流の山部よりもさらに下流側に第2の波型リブを設けているので、伝熱フィンの長手方向の強度がさらに増し、機械の故障や製造ロスをさらに減らすことができる。また、同様に伝熱フィンの気体流れ方向の強度もさらに増し、L曲げ工程において、伝熱フィンが折れ曲がる問題を解決することができる。また、前記下流側に設けられた波型リブの最も風上側となる部分と最も風下側となる部分の間に、最も下流側の山部の風上側頂点と風下側頂点(開口部の端部)とを結ぶ直線が交わる(間を通る)ようになっている。したがって、該山部の下流側で発生した縦渦が滑らかに第2の波型リブに沿って流れることとなるので、圧力損失の増加を最小限に抑えつつ、優れた伝熱特性を得ることができる。 According to a fourth invention, in any one of the first to third inventions, a second corrugated rib is provided further on the leeward side of the mountain part that is most leeward, and the windward side of the mountain part that is most leeward. The straight line connecting the apex and the end of the opening of the peak portion is the most windward part of the second corrugated rib, and the most leeward side part adjacent to the windward part. It is arranged to pass between. According to this, since the second corrugated rib is provided further downstream than the most downstream peak portion, the longitudinal strength of the heat transfer fins is further increased, and machine failure and production loss are further reduced. Can do. Similarly, the strength of the heat transfer fin in the gas flow direction is further increased, and the problem that the heat transfer fin is bent in the L bending process can be solved. Further, the windward apex and the leeward apex (the end of the opening) of the most downstream peak portion between the most windward side portion and the most leeward side portion of the corrugated rib provided on the downstream side ) Are intersected (passed between). Therefore, since the vertical vortex generated on the downstream side of the peak portion flows smoothly along the second corrugated rib, excellent heat transfer characteristics can be obtained while minimizing an increase in pressure loss. Can do.
 第五の発明は、第一から第四のいずれか1つの発明において、前記第1の波型リブまたは前記第2の波型リブの高さが、伝熱フィンの積層間隔の3分の1以上、3分の2以下であるものである。これによれば、波型リブの伝熱フィン積層方向の高さが、伝熱フィンの積層間隔の3分の1以上、3分の2以下となっているので、圧力損失の増加を抑えつつ、フィン強度および伝熱促進効果を得ることができる。 According to a fifth invention, in any one of the first to fourth inventions, the height of the first corrugated rib or the second corrugated rib is one third of the stacking interval of the heat transfer fins. The above is 2/3 or less. According to this, since the height of the wave-shaped rib in the heat transfer fin stacking direction is not less than one third and not more than two thirds of the heat transfer fin stacking interval, an increase in pressure loss is suppressed. Fin strength and heat transfer acceleration effect can be obtained.
 第六の発明は、第一から第五のいずれか1つの発明において、前記第1の波型リブまたは前記第2の波型リブの波型の接線と前記気体の流れ方向とが成す角度が45度以上である。これによれば、波型リブの波型の接線と風の流れとが成す鋭角の角度が45度以上であるので、熱交換器を蒸発器として使用した場合、特に伝熱フィンの風上側前縁近傍に多量に付着した凝縮水が、伝熱フィンに滞留することなく速やかに滴下し、排水されるので、通風抵抗が異常に増大することをなくすことができる。これは、除霜運転時の排水についても同様である。 According to a sixth invention, in any one of the first to fifth inventions, an angle formed by a corrugated tangent of the first corrugated rib or the second corrugated rib and the gas flow direction is It is 45 degrees or more. According to this, since the acute angle formed by the corrugated tangent of the corrugated rib and the wind flow is 45 degrees or more, when the heat exchanger is used as an evaporator, in particular, before the windward side of the heat transfer fin. Condensed water adhering in a large amount in the vicinity of the edge is dripped and drained quickly without staying in the heat transfer fins, so that it is possible to prevent the draft resistance from increasing abnormally. The same applies to the drainage during the defrosting operation.
 以下、本発明の実施例について、図面を参照しながら詳細に説明する。なお、この実施の形態によってこの発明が限定されるものではない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The present invention is not limited to the embodiments.
 本発明に係るフィンチューブ型熱交換器は、所定の間隔をおいて略平行に積層された複数の伝熱フィンと、これら複数の伝熱フィンの平面方向と直交する方向に伝熱フィンを貫通する複数の伝熱管とを備えている。冷媒等の熱媒体は各伝熱管の内部を通過し、伝熱フィンの間を伝熱フィンの平面方向に流れる気体(一般に空気)と熱交換を行う。 The finned tube heat exchanger according to the present invention penetrates through heat transfer fins in a direction orthogonal to the plane direction of the plurality of heat transfer fins and laminated in parallel at a predetermined interval. And a plurality of heat transfer tubes. A heat medium such as a refrigerant passes through the inside of each heat transfer tube and exchanges heat with a gas (generally air) flowing in the plane direction of the heat transfer fins between the heat transfer fins.
 (実施の形態1)
 本発明の第1の実施の形態について、図1~図3に従い説明する。図1は本実施の形態の伝熱フィンの正面図、図2は同底面図、図3は要部拡大斜視図である。図1は、複数の伝熱フィン10の1枚を示しており、図2は、積層された複数の伝熱フィン10のうち、4枚の伝熱フィン10と、伝熱フィン10を貫通する複数の伝熱管12の1本を示している。
(Embodiment 1)
A first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a front view of a heat transfer fin of the present embodiment, FIG. 2 is a bottom view thereof, and FIG. 3 is an enlarged perspective view of a main part. FIG. 1 shows one of the plurality of heat transfer fins 10, and FIG. 2 penetrates the four heat transfer fins 10 and the heat transfer fins 10 among the plurality of stacked heat transfer fins 10. One of the plurality of heat transfer tubes 12 is shown.
 図1及び図2に示されるように、各伝熱フィン10には、伝熱管12が貫通する複数の貫通孔11a(図1では二つの貫通孔のみ示している)が形成されている。各貫通孔11aの周囲には伝熱フィン10の平面方向あるいは気流1の流れ方向に対し略直行する方向に延びる略円筒状のフィンカラー11が形成されている。例えば、各伝熱管12を拡径することにより伝熱管12はフィンカラー11に密着した状態で貫通孔11aに挿通されている。なお、全てのフィンカラー11は伝熱フィン10から同一方向に延び、略同一の高さを有している。 As shown in FIGS. 1 and 2, each heat transfer fin 10 is formed with a plurality of through holes 11a through which the heat transfer tubes 12 pass (only two through holes are shown in FIG. 1). Around each through-hole 11a, a substantially cylindrical fin collar 11 is formed extending in a plane direction of the heat transfer fin 10 or a direction substantially perpendicular to the flow direction of the airflow 1. For example, by expanding the diameter of each heat transfer tube 12, the heat transfer tube 12 is inserted into the through hole 11 a while being in close contact with the fin collar 11. Note that all the fin collars 11 extend from the heat transfer fins 10 in the same direction and have substantially the same height.
 ここで、伝熱管12の拡径について詳述する。熱交換器を製造するに際し、伝熱フィン10を積層して、フィンカラー11に伝熱管12を挿入するが、作業性を良好にするため、フィンプレス時のフィンカラー11の内径は、伝熱管12の外径より多少大きく加工されている。しかしながら、伝熱管12のフィンカラー11への挿入後、液圧を利用して、あるいは機械的な方法等で伝熱管12を拡径し、伝熱管12とフィンカラー11を密着させて伝熱性能を向上させている。 Here, the diameter expansion of the heat transfer tube 12 will be described in detail. When manufacturing the heat exchanger, the heat transfer fins 10 are stacked and the heat transfer tubes 12 are inserted into the fin collars 11. In order to improve the workability, the inner diameter of the fin collars 11 at the time of fin pressing is set to the heat transfer tubes. The outer diameter is slightly larger than 12. However, after the heat transfer tube 12 is inserted into the fin collar 11, the heat transfer tube 12 is expanded in diameter using a hydraulic pressure or by a mechanical method, and the heat transfer tube 12 and the fin collar 11 are brought into close contact with each other to perform heat transfer performance. Has improved.
 また、図1~図3に示すように、伝熱フィン10には、伝熱フィン10に気流1の流れ方向に略直角方向となる熱交換器の段方向(伝熱フィン10の積層方向)だけに切り込み13を設け、切り込み13に対して気体が流動する風上側の伝熱フィン10を表側(図1の手前側、図2の上側)に隆起させて、風下側に切り込み13により形成される略三角形状の開口部14を有する山部15が形成されている。なお、切り込み13は伝熱フィン10を貫通するように形成されるとともに、気流1の流れ方向に略直交しかつ伝熱フィン10の表面沿いの方向に延在するように形成される。 Further, as shown in FIGS. 1 to 3, the heat transfer fin 10 includes a heat exchanger stage direction (a direction in which the heat transfer fins 10 are stacked) that is substantially perpendicular to the flow direction of the airflow 1 to the heat transfer fin 10. The heat transfer fin 10 on the windward side where the gas flows with respect to the cut 13 is raised on the front side (the front side in FIG. 1 and the upper side in FIG. 2), and the cut 13 is formed on the leeward side. A crest 15 having a substantially triangular opening 14 is formed. The cuts 13 are formed so as to penetrate the heat transfer fins 10 and are formed so as to extend in a direction substantially perpendicular to the flow direction of the airflow 1 and along the surface of the heat transfer fins 10.
 風下側に開口部14を有する山部15は、段方向に隣接するフィンカラー11の間の伝熱フィン10面に複数形成されており、最も風上側に設けられた山部の群(以下、風上側山部)15a、風上から数えて2段目に設けられた山部の群(以下、2段目山部)15b、最も風下側に設けられた山部の群(以下、風下側山部)15cに分けられる。 A plurality of crests 15 having openings 14 on the leeward side are formed on the surface of the heat transfer fin 10 between the fin collars 11 adjacent in the step direction, and a group of crests (hereinafter referred to as the most crests) provided on the most leeward side. Upwind mountain part) 15a, a group of mountain parts provided in the second tier counted from the windward (hereinafter, second mountain part) 15b, a group of mountain parts provided on the most leeward side (hereinafter referred to as leeward side) Yamabe) 15c.
 風上側山部15aは、山部15と伝熱フィン10との接点のうち最も風上側の頂点である風上側山部風上側頂点15a1と、開口部14と伝熱フィン10との接点である風上側山部風下側頂点(図示せず)を有している。同様に、2段目山部15bは、2段目山部風上側頂点15b1、2段目山部風下側頂点(図示せず)を、風下側山部15cは、風下側山部風上側頂点15c1、風下側山部風下側頂点15c2を有している。 The windward mountain portion 15 a is a contact point between the windward mountain portion windward vertex 15 a 1 that is the highest windward vertex of the contact points between the mountain portion 15 and the heat transfer fin 10, and the opening portion 14 and the heat transfer fin 10. It has a windward mountain top leeward apex (not shown). Similarly, the second tier mountain portion 15b is the second tier mountain portion upwind vertex 15b1, the second tier mountain portion leeward vertex (not shown), and the leeward mountain portion 15c is the leeward mountain top windward vertex. 15c1 and the leeward side mountain part leeward side vertex 15c2.
 さらに、伝熱フィン10の風上側前縁10aと風上側山部15aとの間にのこぎり歯状の第1の波型リブ20を設けている。第1の波型リブ20は、熱交換器の段方向に設けられており、伝熱フィン10を表面(図1の手前側、図の上側)に隆起させて形成している。第1の波型リブ20は、のこぎり歯状形状のうち最も風上側の部分である第1リブ風上側凸部20aと、最も風下側の部分である第1リブ風下側凸部20b1、20b2とを備えている。 Furthermore, a sawtooth-shaped first corrugated rib 20 is provided between the windward front edge 10a of the heat transfer fin 10 and the windward mountain portion 15a. The first corrugated ribs 20 are provided in the step direction of the heat exchanger, and are formed by raising the heat transfer fins 10 on the surface (the front side in FIG. 1, the upper side in the figure). The first corrugated rib 20 includes a first rib windward convex portion 20a which is the most windward portion of the sawtooth shape, and first rib leeward convex portions 20b1 and 20b2 which are the most leeward portions. It has.
 仮想的に、第1リブ風上側凸部20aと風上側山部風上側頂点15a1とを結んだ直線22、24、第1リブ風下側凸部20b1と2段目山部風上側頂点15b1を結んだ直線23、第1リブ風下側凸部20b1に隣接する第1リブ風下側凸部20b2と風下側山部風上側頂点15c1を結んだ直線21、25が、風の流れと略平行となっている。さらに、伝熱フィン10の風下側前縁10bと風下側山部15cとの間にも第1の波型リブ20と同様の第2の波型リブ27を設けている。 Virtually connecting straight lines 22 and 24 connecting the first rib windward convex portion 20a and the windward mountain top windward vertex 15a1, and connecting the first rib windward convex portion 20b1 and the second step mountain windward vertex 15b1. The straight line 21, 25 connecting the first rib leeward convex part 20b2 adjacent to the first rib leeward convex part 20b1 and the leeward mountain top windward vertex 15c1 is substantially parallel to the wind flow. Yes. Further, a second corrugated rib 27 similar to the first corrugated rib 20 is also provided between the leeward side front edge 10b of the heat transfer fin 10 and the leeward side peak portion 15c.
 また、第1の波型リブ20および第2の波型リブ27の伝熱フィン10の積層方向の高さH2は、伝熱フィン10の積層間隔H1の3分の1以上3分の2以下となっている。 The height H2 of the first wave-shaped rib 20 and the second wave-shaped rib 27 in the stacking direction of the heat transfer fins 10 is not less than one third and not more than two thirds of the stacking interval H1 of the heat transfer fins 10. It has become.
 なお、第1の波型リブ20および第2の波型リブ27は、表側に隆起させて形成されるだけに限定するものではなく、裏側に隆起させて形成されてもよいし、混在させても良い。また、複数設けてもよい。 The first corrugated ribs 20 and the second corrugated ribs 27 are not limited to being raised on the front side, and may be raised on the back side or mixed. Also good. A plurality of them may be provided.
 以上のように構成された熱交換器について、以下その動作、作用を説明する。 The operation and action of the heat exchanger configured as described above will be described below.
 熱交換器の製造にはさまざまな工程があるが、伝熱フィン10の強度が特に影響するのは、伝熱フィン10のプレス加工時、プレス加工後の輸送時およびL曲げ加工時である。 There are various processes in manufacturing the heat exchanger, but the strength of the heat transfer fin 10 is particularly affected when the heat transfer fin 10 is pressed, transported after the press process, and L-bending.
 プレス加工では、シート状の金属材料(例えばアルミ材)を金型で上下から挟み込むことで、フィン形状を成型し、同時に必要とする大きさに切り取っている。この時、第1の波型リブ20あるいは第2の波型リブ27が設けられていることにより、伝熱フィン10の長手方向あるいは風の流れ方向に対して略直交する方向の強度が十分となる。そのため、伝熱フィン10の面方向へのたわみを十分に少なくすることが可能となり、プレス後、金型を滑らせる時にプレス機にひっかかったり、挟まったりすることを十分に少なくすることができる。これにより伝熱フィン10のロスや金型の損傷をなくすことが可能となる。 In the press working, a fin-like shape is formed by sandwiching a sheet-like metal material (for example, aluminum material) from above and below with a mold, and simultaneously cut into a required size. At this time, since the first corrugated rib 20 or the second corrugated rib 27 is provided, the strength in the direction substantially orthogonal to the longitudinal direction of the heat transfer fin 10 or the wind flow direction is sufficient. Become. Therefore, it is possible to sufficiently reduce the deflection of the heat transfer fin 10 in the surface direction, and it is possible to sufficiently reduce the occurrence of being caught or caught in the press machine when the mold is slid after pressing. As a result, it is possible to eliminate loss of the heat transfer fins 10 and damage to the mold.
 プレス加工後の輸送では、プレス加工が完了した伝熱フィン10を容器に入れて輸送するのが一般的である。この時、第1の波型リブ20あるいは第2の波型リブ27が設けられていることにより、伝熱フィン10の長手方向の強度だけでなく、風の流れ方向の強度およびひねりに対する強度も十分である。そのため、容器に入れる際や輸送中に伝熱フィン10が曲がったり、ひねったりする問題を十分に少なくすることができる。 In transportation after pressing, it is common to transport the heat transfer fins 10 that have been subjected to pressing in a container. At this time, since the first corrugated rib 20 or the second corrugated rib 27 is provided, not only the strength in the longitudinal direction of the heat transfer fin 10 but also the strength in the direction of wind flow and the strength against twisting. It is enough. Therefore, the problem that the heat transfer fin 10 bends or twists when being put in a container or during transportation can be sufficiently reduced.
 L曲げ加工では、伝熱フィン10を積層し、伝熱管12を挿入、拡径して伝熱フィン10と伝熱管12を密着させた後の熱交換器全体を、L字の型にプレスすることで、熱交換器をL字状に曲げている。この時、第1の波型リブ20あるいは第2の波型リブ27が設けられていることにより、風の流れ方向の強度が十分であるため、L字型に押し付けられたフィンが風の流れ方向に受けた力により座屈しないようにできる。 In the L bending process, the heat exchanger fins 10 are laminated, the heat transfer tubes 12 are inserted, the diameter is expanded, and the heat exchanger fins 10 and the heat transfer tubes 12 are brought into close contact with each other, and the entire heat exchanger is pressed into an L-shaped mold. Thus, the heat exchanger is bent in an L shape. At this time, since the first corrugated rib 20 or the second corrugated rib 27 is provided, the strength of the wind flow direction is sufficient. It can be prevented from buckling by the force received in the direction.
 また、第1リブ風上側凸部20aと風上側山部風上側頂点15a1とを結んだ直線22あるいは24が、風の流れに略平行になる様配置している。これにより、第1リブ風上側凸部20aで風の流れに向かって左右に分けられた気体が、滑らかに風上側山部15aの斜面に沿い流れることができる。さらにその後、風下側の開口部14通過するとき縦渦が効果的に発生し、そこから風下側の伝熱フィン10の表面の温度境界層を乱して熱伝達率を向上させることにより、圧力損失の増加を最小限に抑えつつ、優れた伝熱性能を得ることができる。 Further, the straight line 22 or 24 connecting the first rib windward convex portion 20a and the windward mountain portion windward vertex 15a1 is arranged so as to be substantially parallel to the wind flow. Thereby, the gas divided into right and left by the 1st rib windward convex part 20a toward the flow of a wind can flow smoothly along the slope of the windward mountain part 15a. Furthermore, after that, when passing through the opening 14 on the leeward side, a vertical vortex is effectively generated, from which the temperature boundary layer on the surface of the heat transfer fin 10 on the leeward side is disturbed to improve the heat transfer coefficient, Excellent heat transfer performance can be obtained while minimizing the increase in loss.
 また、第1リブ風下側凸部20b1より風の流れ方向に略平行となる部分に、互いに隣り合う2つの風上側山部15aの風上側山部風上側頂点15a1を結ぶ線分の中点を設置している。すなわち、第1リブ風下側凸部20b1より風の流れ方向に略平行となる部分には、風上側山部15aを設けていない。このような構成により、第1の波型リブ20による縦渦が集中している部分の流れが、隣り合う2つの風上側山部15aの間を抜けて、2段目山部15bに流れることができる。よって、伝熱フィン10に配置された2段目山部15bに均等に風を送ることとなり、圧力損失の増加を抑えつつ、優れた伝熱特性を得ることができ、寒冷地での着霜状態も均等化できるので、着霜による能力低下も抑えることもできる。 In addition, the midpoint of the line segment connecting the windward mountain top windward vertex 15a1 of the two windward mountain tops 15a adjacent to each other to the portion that is substantially parallel to the wind flow direction from the first rib leeward convex portion 20b1. It is installed. That is, the windward mountain portion 15a is not provided in a portion that is substantially parallel to the wind flow direction from the first rib leeward convex portion 20b1. With such a configuration, the flow of the portion where the vertical vortices are concentrated by the first corrugated rib 20 passes between the two adjacent windward mountain portions 15a and flows to the second-stage mountain portion 15b. Can do. Therefore, the air is sent evenly to the second ridge portion 15b arranged in the heat transfer fin 10, and excellent heat transfer characteristics can be obtained while suppressing an increase in pressure loss, and frost formation in a cold region. Since a state can also be equalized, the capability fall by frost formation can also be suppressed.
 また、第1リブ風下側凸部20b1より風の流れ方向下流側の部分に、2段目山部風上側頂点15b1を設けたことにより、第1の波型リブ20により発生した縦渦が集中した流れが、2段目山部風上側頂点15b1にぶつかるようになる。したがって、圧力損失の増加を最小限に抑えつつ、2段目山部15bの斜面との衝突による伝熱促進による優れた伝熱特性を得ることができる。 Further, the vertical vortex generated by the first corrugated rib 20 is concentrated by providing the second-step mountain-side upwind vertex 15b1 at the downstream side of the first rib leeward convex portion 20b1 in the wind flow direction. The resulting flow hits the second-step mountain-side upwind vertex 15b1. Therefore, it is possible to obtain excellent heat transfer characteristics by promoting heat transfer due to the collision with the slope of the second hill portion 15b while minimizing an increase in pressure loss.
 また、第1リブ風下側凸部20b1に隣接する第1リブ風下側凸部20b2より風の流れ方向下流側の部分に、風下側山部風上側頂点15c1を設けている。これにより、第1の波型リブ20により発生した縦渦が集中した流れが、風下側山部風上側頂点15c1にぶつかるようになる。よって、圧力損失の増加を抑えつつ、風下側山部15cの斜面との衝突による伝熱促進による優れた伝熱特性を得ることができる。 Further, a leeward mountain top windward vertex 15c1 is provided at a portion downstream of the first rib leeward convex portion 20b2 adjacent to the first rib leeward convex portion 20b1 in the wind flow direction. As a result, the flow in which the vertical vortices generated by the first corrugated ribs 20 collide with the leeward mountain side upwind vertex 15c1. Therefore, it is possible to obtain an excellent heat transfer characteristic by promoting heat transfer due to a collision with the slope of the leeward mountain portion 15c while suppressing an increase in pressure loss.
 さらに、第1の波型リブ20あるいは第2の波型リブ27の伝熱管方向(積層方向)の高さH2が、積層された伝熱フィン10の積層間隔H1の3分の1以上、3分の2以下となっている。したがって、風の流れの抵抗を低くとどめることができ、圧力損失の増加を抑えつつ、十分な伝熱フィン強度および伝熱促進効果を得ることができる。 Furthermore, the height H2 of the first wave-shaped rib 20 or the second wave-shaped rib 27 in the heat transfer tube direction (stacking direction) is at least one third of the stacking interval H1 of the stacked heat transfer fins 10. It is less than 2 minutes. Therefore, the resistance of the wind flow can be kept low, and a sufficient heat transfer fin strength and heat transfer acceleration effect can be obtained while suppressing an increase in pressure loss.
 また、第1の波型リブ20あるいは第2の波型リブ27の形状を波型としていることで、伝熱フィン10の風の流れ方向の強度を増している。さらに、波型の接線26と風の流れとが成す鋭角の角度θが45度以上に設定されている。そのため、熱交換器を蒸発器として使用した場合にとくに伝熱フィン10の風上側前縁10a近傍に多量に付着した凝縮水は、伝熱フィン10に滞留することなく速やかに滴下し、排水され、通風抵抗が異常に増大することはない。これは、除霜運転時の排水についても同様である。 In addition, since the shape of the first wave-shaped rib 20 or the second wave-shaped rib 27 is a wave shape, the strength of the heat transfer fin 10 in the wind flow direction is increased. Furthermore, the acute angle θ formed by the corrugated tangent line 26 and the wind flow is set to 45 degrees or more. Therefore, particularly when the heat exchanger is used as an evaporator, the condensed water adhering in a large amount in the vicinity of the windward front edge 10a of the heat transfer fin 10 is quickly dropped and drained without staying in the heat transfer fin 10. Ventilation resistance does not increase abnormally. The same applies to the drainage during the defrosting operation.
 (実施の形態2)
 本発明の第2の実施の形態について、図4に従い説明する。図4は第2の実施の形態における伝熱フィンの正面図である。
(Embodiment 2)
A second embodiment of the present invention will be described with reference to FIG. FIG. 4 is a front view of the heat transfer fin in the second embodiment.
 本実施形態の構成において、第1の実施形態と異なる点を説明する。伝熱フィン10の風上側前縁10aと風上側山部15aとの間に、直線部のない滑らかな曲線で構成された波型(例えばサインカーブ)リブである第3の波型リブ30を設けている。第3の波型リブ30の最も風上側の部分である第3リブ風上側凸部30aと風上側山部風上側頂点15a1とを結んだ直線32、34、第3の波型リブ30の最も風下側の部分である第3リブ風下側凸部30b1と2段目山部風上側頂点15b1を結んだ直線33、第3リブ風下側凸部30b1に隣接する第3リブ風下側凸部30b2と風下側山部風上側頂点15c1を結んだ直線31、35が、風の流れ方向と略平行となっている。さらに、伝熱フィン10の風下側前縁10bと風下側山部15cとの間にも、第3の波型リブ30と同様の第4の波型リブ37を設けている。 In the configuration of the present embodiment, differences from the first embodiment will be described. Between the windward front edge 10a of the heat transfer fin 10 and the windward mountain portion 15a, a third wave-shaped rib 30 that is a wave-shaped (for example, sine curve) rib having a smooth curve without a straight portion is provided. Provided. Straight lines 32, 34 connecting the third rib windward convex portion 30 a that is the most windward portion of the third corrugated rib 30 and the windward mountain top windward vertex 15 a 1, the most of the third corrugated rib 30. A straight line 33 connecting the third rib leeward convex portion 30b1 which is the leeward side portion and the second-step mountain portion upwind vertex 15b1, a third rib leeward convex portion 30b2 adjacent to the third rib leeward convex portion 30b1 Straight lines 31 and 35 connecting the leeward mountain top windward vertex 15c1 are substantially parallel to the wind flow direction. Further, a fourth corrugated rib 37 similar to the third corrugated rib 30 is also provided between the leeward front edge 10 b of the heat transfer fin 10 and the leeward mountain peak portion 15 c.
 以上のように構成された熱交換器について、以下その動作、作用を説明する。 The operation and action of the heat exchanger configured as described above will be described below.
 第3の波型リブ30あるいは第4の波型リブ37の波型に直線部を用いず、滑らかな曲線(例えばサインカーブ)としている。これにより、熱交換器を蒸発器として使用した場合にとくに伝熱フィン10の風上側前縁10a近傍に多量に付着した凝縮水は、第3の波型リブ30に沿って流れ、波型の角度が急変する部分で滞留することなく速やかに滴下し、排水され、通風抵抗が異常に増大することはない。また、除霜運転時の排水についても、第3の波型リブ30あるいは第4の波型リブ37に沿って流れ、波型の角度が急変する部分で滞留することなく速やかに滴下し、排水され、通風抵抗が異常に増大することはない。 The straight wave portion is not used for the wave shape of the third wave-shaped rib 30 or the fourth wave-shaped rib 37, and a smooth curve (for example, a sine curve) is used. As a result, when the heat exchanger is used as an evaporator, the condensed water adhering in a large amount in the vicinity of the windward front edge 10a of the heat transfer fin 10 flows along the third corrugated rib 30 and is corrugated. It does not stay at the part where the angle changes suddenly, it drops quickly and drains, and the ventilation resistance does not increase abnormally. The drainage during the defrosting operation also flows along the third corrugated rib 30 or the fourth corrugated rib 37 and drops quickly without staying at the portion where the corrugated angle changes suddenly. The ventilation resistance does not increase abnormally.
 なお、直線部のない滑らかな曲線で構成された波型リブであること以外の動作、作用は実施の形態1と同様であるので、説明を割愛する。 In addition, since the operation and action other than being a wave-shaped rib composed of a smooth curve without a straight line portion are the same as those in the first embodiment, description thereof will be omitted.
 (実施の形態3)
 本発明の第3の実施の形態について、図5に従い説明する。図5は第3の実施の形態における伝熱フィンの正面図である。
(Embodiment 3)
A third embodiment of the present invention will be described with reference to FIG. FIG. 5 is a front view of the heat transfer fin in the third embodiment.
 本実施形態の構成において、第1の実施形態と異なる点を説明する。第1の波型リブ20の代わりに、風の流れと角度を成す複数の「くの字型(dog-leg shaped)」リブ40、41を設けたものである。さらに、第2の波型リブ27の代わりに、同様に複数の「くの字型」リブ47、48を設けている。伝熱フィン10の長手方向に隣り合う「くの字型」リブ40と41は、それぞれのリブの最も風上側の部分40aと41aとを結ぶ接線の中心を通り、風の流れ方向と略平行となる直線44に対して対称に配置されている。そして、隣り合うくの字型リブ40と41との間には、伝熱フィン10を隆起させていない、リブなし部分50、51が設けられている。 In the configuration of the present embodiment, differences from the first embodiment will be described. Instead of the first corrugated ribs 20, a plurality of “dog-shaped” ribs 40, 41 that form an angle with the wind flow are provided. Furthermore, instead of the second corrugated ribs 27, a plurality of “shaped” ribs 47 and 48 are provided in the same manner. The “shaped” ribs 40 and 41 adjacent to each other in the longitudinal direction of the heat transfer fin 10 pass through the center of the tangent line connecting the furthest windward portions 40a and 41a of the ribs and are substantially parallel to the wind flow direction. Are arranged symmetrically with respect to the straight line 44. And between the adjacent rib-shaped ribs 40 and 41, the ribless parts 50 and 51 which are not raising the heat-transfer fin 10 are provided.
 くの字型リブ40の最も風上側の部分40aと風上側山部風上側頂点15a1とを結んだ直線43が風の流れ方向と略平行になっており、直線44上に2段目山部風上側頂点15b1が設置されている。また、リブなし部分51と風下側山部風上側頂点15c1を結んだ直線42、46が、風の流れ方向と略平行となっている。 A straight line 43 connecting the furthest windward portion 40a of the dog-shaped rib 40 and the windward mountain top windward vertex 15a1 is substantially parallel to the wind flow direction. An upwind vertex 15b1 is installed. Moreover, the straight lines 42 and 46 which connected the ribless part 51 and the leeward side mountain part upwind vertex 15c1 are substantially parallel to the flow direction of a wind.
 以上のように構成された熱交換器について、以下その動作、作用を説明する。 The operation and action of the heat exchanger configured as described above will be described below.
 リブなし部分50、51が設けられ、リブなし部分50、51は、「くの字型」リブ40、41の最も風下側の部分の近傍である。そして、そのリブなし部分50の風下側に2段目山部15bが設置されているので、「くの字型」リブ40、41の最も風上側の部分40a、41aにて風の流れに向かって左右に分けられた気体が、リブなし部分50をスムーズに通り抜け、滑らかに2段目山部15bの斜面を沿い流れることができる。したがって、2段目山部15bの風下側の開口部14を通過するとき縦渦が効果的に発生し、そこから風下側の伝熱フィン10の表面の温度境界層を乱して熱伝達率を向上させることにより、圧力損失の増加を最小限に抑えつつ、優れた伝熱性能を得ることができる。 Rib- free portions 50 and 51 are provided, and the rib- free portions 50 and 51 are in the vicinity of the most leeward side portions of the “shaped” ribs 40 and 41. Further, since the second ridge portion 15b is installed on the leeward side of the ribless portion 50, the most leeward portions 40a and 41a of the "<"-shaped " ribs 40 and 41 face the wind flow. Thus, the gas divided into right and left can smoothly pass through the ribless portion 50 and smoothly flow along the slope of the second hill portion 15b. Therefore, when passing through the opening 14 on the leeward side of the second peak portion 15b, a vertical vortex is effectively generated, from which the temperature boundary layer on the surface of the heat transfer fin 10 on the leeward side is disturbed and the heat transfer coefficient is increased. By improving the above, it is possible to obtain an excellent heat transfer performance while minimizing an increase in pressure loss.
 あるいは、リブなし部分51の風下側に風下側山部15cが設置されているので、くの字型リブ40、41の最も風上側の部分40a、41aにて風の流れに向かって左右に分けられた気体が、リブなし部分51をスムーズに通り抜け、滑らかに風下側山部15cの斜面を沿い流れることができる。したがって、風下側山部15cの風下側の開口部14を通過するとき縦渦が効果的に発生し、そこから風下側の伝熱フィン10の表面の温度境界層を乱して熱伝達率を向上させることにより、圧力損失の増加を最小限に抑えつつ、優れた伝熱性能を得ることができる。 Alternatively, since the leeward side mountain portion 15c is installed on the leeward side of the rib-free portion 51, the furthest portions 40a and 41a of the dog-shaped ribs 40 and 41 are divided into left and right toward the wind flow. The generated gas can smoothly pass through the ribless portion 51 and smoothly flow along the slope of the leeward mountain portion 15c. Therefore, when passing through the leeward opening 14 of the leeward mountain portion 15c, a vertical vortex is effectively generated, from which the temperature boundary layer on the surface of the leeward heat transfer fin 10 is disturbed and the heat transfer coefficient is increased. By improving, it is possible to obtain excellent heat transfer performance while minimizing an increase in pressure loss.
 なお、「くの字型」リブを採用していること以外の動作、作用は実施の形態1と同様であるので、説明を割愛する。 In addition, since operation | movement and an effect | action except having employ | adopted a "<"-shaped "rib are the same as that of Embodiment 1, description is omitted.
 (実施の形態4)
 本発明の実施の形態4について、図6、図7に従い説明する。図6は実施の形態4における伝熱フィン10の正面図で、図7は同底面図である。
(Embodiment 4)
A fourth embodiment of the present invention will be described with reference to FIGS. 6 is a front view of the heat transfer fin 10 according to the fourth embodiment, and FIG. 7 is a bottom view thereof.
 図6において、第1の実施の形態と同様に、風下側に開口部64aを有する山部65a、風下側に開口部64bを有する山部65b、風下側に開口部64cを有する山部65cが、段方向に隣接するフィンカラー11の間の伝熱フィン10面にそれぞれ複数形成されている。これらは、風上側から山部65a、65b、65cの順にならんでいる。 In FIG. 6, similarly to the first embodiment, there is a peak 65a having an opening 64a on the leeward side, a peak 65b having an opening 64b on the leeward side, and a peak 65c having an opening 64c on the leeward side. A plurality of heat transfer fins 10 are formed between the fin collars 11 adjacent to each other in the step direction. These are arranged in the order of the mountain parts 65a, 65b, 65c from the windward side.
 さらに、伝熱フィン10の風上側前縁10aと山部65aとの間には第5の波型リブ70が設けられている。第5の波型リブ70は、最も風上側の部分である第5リブ風上側凸部と、第5の波型リブ70の最も風下側の部分である第5リブ風下側凸部70bとをそれぞれ複数有している。第5リブ風下側凸部70bと、隣り合う2つの第5リブ風上側凸部70aの中点とを結んだ直線75は、風の流れ方向と略平行となっている。山部65cは、山部65cと伝熱フィン10との接点のうち最も風上側の頂点である風上側頂点65c1と、開口部64cと伝熱フィン10との接点である風下側頂点65c2を有している。 Further, a fifth corrugated rib 70 is provided between the windward front edge 10a of the heat transfer fin 10 and the peak portion 65a. The fifth corrugated rib 70 includes a fifth rib upwind convex portion that is the most windward portion and a fifth rib leeward convex portion 70b that is the most leeward portion of the fifth corrugated rib 70. Each has a plurality. A straight line 75 connecting the fifth rib leeward convex portion 70b and the midpoint of two adjacent fifth rib leeward convex portions 70a is substantially parallel to the wind flow direction. The mountain portion 65c has a windward vertex 65c1 that is the most windward vertex of the contact points between the mountain portion 65c and the heat transfer fin 10, and a leeward vertex 65c2 that is a contact point between the opening 64c and the heat transfer fin 10. is doing.
 さらに、伝熱フィン10の風下側前縁10bと山部65cとの間にも第6の波型リブ71を設けている。山部65cの風上側頂点65c1と風下側頂点65c2を結んだ直線66が、第6の波型リブ71の最も風上側の部分である第6リブ風上側凸部71aと最も風下側の部分である第6リブ風下側凸部71bとの間を通る構成となっている。 Furthermore, a sixth corrugated rib 71 is also provided between the leeward front edge 10b of the heat transfer fin 10 and the peak portion 65c. A straight line 66 connecting the leeward apex 65c1 and the leeward apex 65c2 of the mountain portion 65c is the sixth rib upwind convex portion 71a which is the furthest windward part of the sixth corrugated rib 71 and the most leeward part. It is configured to pass between a certain sixth rib leeward convex portion 71b.
 また、第5リブ風下側凸部70b、第6リブ風下側凸部71bは、伝熱管12の中心を通り風の流れ方向と平行な直線上に配置されている。また、第5リブ風上側凸部70aと隣り合う第5リブ風下側凸部70bとの間隔は、伝熱管12の風上側では、山部65aの風上側より広くなっている。同様に、第6リブ風上側凸部71aと隣り合う第6リブ風下側凸部71bとの間隔は、伝熱管12の風下側では、山部65cの風下側より広くなっている。 Further, the fifth rib leeward convex portion 70b and the sixth rib leeward convex portion 71b are arranged on a straight line passing through the center of the heat transfer tube 12 and parallel to the wind flow direction. Moreover, the space | interval of the 5th rib leeward convex part 70b adjacent to the 5th rib leeward convex part 70b is wider on the windward side of the heat exchanger tube 12 than the windward side of the peak part 65a. Similarly, the distance between the sixth rib leeward convex portion 71a and the adjacent sixth rib leeward convex portion 71b is wider on the leeward side of the heat transfer tube 12 than on the leeward side of the peak portion 65c.
 以上のように構成された熱交換器について、以下その動作、作用を説明する。なお、実施の形態1と同様の構成による動作、作用は、実施の形態1と同様なので、説明を割愛する。 The operation and action of the heat exchanger configured as described above will be described below. In addition, since the operation | movement and an effect | action by the structure similar to Embodiment 1 are the same as Embodiment 1, description is omitted.
 第5の波型リブ70の最も風上側の部分である第5リブ風上側凸部70aにぶつかった風の流れは、風の方向に向かって左右に分けられる。その為、第5の波型リブ70の最も風下側の部分である第5リブ風下側凸部70bには多くの風が流れ込むこととなる。第5リブ風下側凸部70bは、隣り合う2つの第5リブ風上側凸部70aの中間から風下方向にあるので、多くの風は、最も風上側にある山部65aの間を通り抜けることができる。この為、圧力損失の増大を抑えながら、フィン強度を向上させることができる。 The flow of the wind that hits the fifth rib windward convex portion 70a, which is the most windward part of the fifth corrugated rib 70, is divided into right and left in the wind direction. Therefore, a large amount of wind flows into the fifth rib leeward convex portion 70b, which is the most leeward portion of the fifth corrugated rib 70. Since the fifth rib leeward convex portion 70b is in the leeward direction from the middle of the two adjacent fifth rib leeward convex portions 70a, many winds may pass between the mountain portions 65a located on the most leeward side. it can. For this reason, it is possible to improve the fin strength while suppressing an increase in pressure loss.
 また、山形65cの風上側頂点65c1と風下側頂点65c2とを結んだ直線66が、第6の波型リブ71の第6リブ風上側凸部71aと第6リブ風下側凸部71bとの間を通る構成となっている。そのため、最も風下側の山部65cを通り抜けた気体は、開口部64cを通り抜ける際に縦渦を発生することで、風下の伝熱フィン10の表面の温度境界層を乱して熱伝達率を向上させつつ、さらに風下側の波型フィンに滑らかに沿い流れることができるので、圧力損失の増大を抑えながらも優れた伝熱特性を発揮できる。 Further, a straight line 66 connecting the windward vertex 65c1 and the leeward vertex 65c2 of the mountain 65c is between the sixth rib windward convex portion 71a and the sixth rib leeward convex portion 71b of the sixth corrugated rib 71. It is configured to pass. Therefore, the gas that has passed through the mountain part 65c on the most leeward side generates a vertical vortex when passing through the opening 64c, thereby disturbing the temperature boundary layer on the surface of the heat transfer fin 10 on the leeward side and increasing the heat transfer coefficient. While improving, since it can flow smoothly along the wave fin on the leeward side, excellent heat transfer characteristics can be exhibited while suppressing an increase in pressure loss.
 また、第5の波型リブの波形の接線と風の流れ方向とが成す角度は、山部65aの風上側に位置する部分では、伝熱管12の風上側に位置する部分より緩やかなために、圧力損失の増大を抑えながらも優れた伝熱特性を発揮できる。あるいは、第6の波型リブの波形の接線と風の流れ方向とが成す角度は、山部65cの風下側に位置する部分では、伝熱管12の風下側に位置する部分より緩やかなために、圧力損失の増大を抑えながらも優れた伝熱特性を発揮できる。 In addition, the angle formed by the tangent line of the corrugation of the fifth corrugated rib and the wind flow direction is gentler in the portion located on the windward side of the mountain portion 65a than in the portion located on the windward side of the heat transfer tube 12. Excellent heat transfer characteristics can be achieved while suppressing an increase in pressure loss. Alternatively, the angle formed by the corrugated tangent of the sixth corrugated rib and the wind flow direction is gentler in the portion located on the leeward side of the peak portion 65c than in the portion located on the leeward side of the heat transfer tube 12. Excellent heat transfer characteristics can be achieved while suppressing an increase in pressure loss.
 なお、以上の実施の形態において、風上側山部15aと風下側山部15cの間には、2段目山部15bを設けるものとしているが、さらに3段目山部、4段目山部と複数の山部群を設けても良い。 In the above-described embodiment, the second step mountain portion 15b is provided between the windward mountain portion 15a and the leeward mountain portion 15c. A plurality of mountain groups may be provided.
 なお、上記様々な実施形態のうちの任意の実施形態を適宜組み合わせることにより、それぞれの有する効果を奏するようにすることができる。 It should be noted that, by appropriately combining arbitrary embodiments of the above-described various embodiments, the effects possessed by them can be produced.
 本発明は、添付図面を参照しながら好ましい実施の形態に関連して充分に記載されているが、この技術の熟練した人々にとっては種々の変形や修正は明白である。そのような変形や修正は、添付した請求の範囲による本発明の範囲から外れない限りにおいて、その中に含まれると理解されるべきである。 Although the present invention has been fully described in connection with preferred embodiments with reference to the accompanying drawings, various changes and modifications will be apparent to those skilled in the art. Such changes and modifications are to be understood as being included therein, so long as they do not depart from the scope of the present invention according to the appended claims.
 本発明にかかるフィンチューブ型熱交換器は、風下側に開口部を有する山部を形成して熱交換効率を向上させつつ、該山部の形状に適合した形状の波型リブを設けることで、圧力損失の増大を抑えつつ、フィンのあらゆる方向の強度を増し、製造上の問題を解決することができるので、空気調和機、ヒートポンプ式給湯機、冷蔵庫、冷凍庫等に用いられる熱交換器として有用である。 The finned tube heat exchanger according to the present invention provides a corrugated rib having a shape suitable for the shape of the peak portion while forming a peak portion having an opening on the leeward side to improve heat exchange efficiency. As a heat exchanger used in air conditioners, heat pump water heaters, refrigerators, freezers, etc., it can increase the strength of the fins in all directions while suppressing an increase in pressure loss, and solve manufacturing problems. Useful.
 2011年1月27日に出願された日本国特許出願No.2011-014954号の明細書、図面、及び特許請求の範囲の開示内容は、全体として参照されて本明細書の中に取り入れられるものである。 Japanese patent application No. filed on January 27, 2011. The disclosures of the specification, drawings, and claims of 2011-01495 are hereby incorporated by reference in their entirety.
 10  伝熱フィン
 10a 風上側前縁
 10b 風下側前縁
 11  フィンカラー
 11a 貫通孔
 12  伝熱管
 13  切り込み
 14、64a~64c 開口部
 15、65a~65c 山部
 15a 風上側山部
 15b 2段目山部
 15c 風下側山部
 15a1 風上側山部風上側頂点
 15b1 2段目山部風上側頂点
 15c1 風下側山部風上側頂点
 15c2 風下側山部風下側頂点
 18 段方向に隣接するフィンカラー11または伝熱管12の中心を結ぶ直線
 20 第1の波型リブ
 20a、30a 第1リブ風上側凸部
 20b1、20b2 第1リブ風下側凸部
 21、25 第1リブ風下側凸部20b1に隣接する第1リブ風下側凸部20b2と風下側山部風上側頂点15c1を結んだ直線
 22、24 第1リブ風上側凸部20aと風上側山部風上側頂点15a1とを結んだ直線
 23 第1リブ風下側凸部20b1と2段目山部風上側頂点15b1を結んだ直線
 26 波型の接線
 27 第2の波型リブ
 30 第3の波型リブ
 30b1、30b2 第3リブ風下側凸部
 31、35 第3リブ風下側凸部30b1に隣接する第3リブ風下側凸部30b2と風下側山部風上側頂点15c1を結んだ直線
 32、34 第3リブ風上側凸部30aと風上側山部風上側頂点15a1とを結んだ直線
 33 第3リブ風下側凸部30b1と2段目山部風上側頂点15b1を結んだ直線
 37 第4の波型リブ
 40、41、47、48 くの字型リブ
 40a、41a 最も風上側の部分
 50、51 リブなし部分
 65c1 風上側頂点
 65c2 風下側頂点
 70 第5の波型リブ
 70a 第5リブ風上側凸部
 70b 第5リブ風下側凸部
 71 第6の波型リブ
 71a 第6リブ風上側凸部
 71b 第6リブ風下側凸部
 H1 積層間隔
 H2 波型リブの高さ
DESCRIPTION OF SYMBOLS 10 Heat transfer fin 10a Upwind front edge 10b Downwind front edge 11 Fin collar 11a Through-hole 12 Heat transfer tube 13 Notch 14, 64a-64c Opening part 15, 65a-65c Mountain part 15a Upwind mountain part 15b Second step mountain part 15c leeward hillside 15a1 leeward hillside windward vertex 15b1 second hillside windward vertex 15c1 leeward mountainside windward vertex 15c2 leeward mountainside leeward vertex 18 fin collar 11 or heat transfer tube adjacent in the step direction 20 straight lines connecting the centers of the first 20 ribs 20a, 30a first rib upwind convex portions 20b1, 20b2 first rib leeward convex portions 21, 25 first rib adjacent to the first rib leeward convex portion 20b1 Straight lines 22 and 24 connecting the leeward convex portion 20b2 and the leeward mountain top windward vertex 15c1 The first rib windward convex portion 20a and the windward mountain top windward vertex 15 A straight line connecting 1 and 23 A first rib leeward convex part 20b1 and a straight line connecting a second-step mountain part upwind apex 15b1 26 Wave-shaped tangent line 27 Second wave-shaped rib 30 Third wave-shaped rib 30b1, 30b2 Third rib leeward convex portion 31, 35 A straight line connecting the third rib leeward convex portion 30b2 adjacent to the third rib leeward convex portion 30b1 and the leeward mountain top windward vertex 15c1 32, 34 Third rib wind A straight line connecting the upper convex portion 30a and the windward mountain top windward apex 15a1 33 A straight line connecting the third rib leeward convex portion 30b1 and the second step mountain top windward vertex 15b1 37 Fourth wave-shaped rib 40, 41, 47, 48 U-shaped ribs 40a, 41a Most windward part 50, 51 No rib part 65c1 Windward vertex 65c2 Windward vertex 70 Fifth corrugated rib 70a 5th rib windward convex part 70b 5th Rib leeward convex 71 Sixth corrugated ribs 71a height of the sixth rib windward protrusion 71b sixth rib leeward side protruding portions H1 laminated distance H2 corrugated ribs

Claims (6)

  1.  所定の間隔をおいて略平行に積層された複数の伝熱フィンと、前記伝熱フィンの平面方向と略直交する方向に伝熱フィンを貫通する複数の伝熱管とを備え、前記伝熱管が貫通する前記伝熱フィンの貫通孔の周囲には、前記伝熱フィンの平面方向に対し略直交する方向に伸びる略円筒状のフィンカラーが形成され、前記伝熱管は前記フィンカラーに密着した状態で前記貫通孔に挿入され、前記伝熱フィンの平面方向に流れる気体と前記伝熱管の内部を流れる熱冷媒との間で熱交換を行うようにしたフィンチューブ型熱交換器であって、
     前記伝熱フィンに切り込みを設け、前記切り込みの前記気体の風上側の前記伝熱フィンを隆起させて、風下側に前記切り込みにより形成される開口部を有する山部と、
     複数設けられた前記山部のさらに風上側に設けられた第1の波型リブとを備え、
     前記複数の山部のうち最も風上にある山部の風上側頂点と、前記第1の波型リブの最も風上側となる部分とを結ぶ直線が、前記気体の流れ方向と略平行となるように配置されている、フィンチューブ型熱交換器。
    A plurality of heat transfer fins stacked substantially in parallel at a predetermined interval; and a plurality of heat transfer tubes penetrating the heat transfer fins in a direction substantially orthogonal to the planar direction of the heat transfer fins, A substantially cylindrical fin collar extending in a direction substantially orthogonal to the planar direction of the heat transfer fin is formed around the through hole of the heat transfer fin passing therethrough, and the heat transfer tube is in close contact with the fin collar The fin tube type heat exchanger is configured to perform heat exchange between the gas flowing in the planar direction of the heat transfer fin and the thermal refrigerant flowing inside the heat transfer tube.
    The heat transfer fin is provided with a notch, the heat transfer fin on the windward side of the notch is raised, and a ridge having an opening formed by the cut on the leeward side;
    A plurality of first corrugated ribs provided further on the windward side of the mountain portion provided;
    A straight line connecting the windward apex of the peak portion that is most upwind among the plurality of peak portions and the portion that is the windward side of the first corrugated rib is substantially parallel to the gas flow direction. The finned tube heat exchanger is arranged as follows.
  2.  前記最も風上にある山部よりも風下側にある山部の風上側頂点と、前記第1の波型リブの最も下流側となる部分とを結ぶ直線が、前記気体の流れ方向と略平行となるように配置されている、請求項1に記載のフィンチューブ型熱交換器。 A straight line connecting the windward apex of the mountain portion on the leeward side with respect to the most windward mountain portion and the portion on the most downstream side of the first corrugated rib is substantially parallel to the gas flow direction. The finned tube heat exchanger according to claim 1, which is arranged to be
  3.  前記第1の波型リブの最も風下側となる部分と、互いに隣り合う最も風上にある山部のそれぞれの風上側頂点を結ぶ線分の中点とを結ぶ直線が、前記気体の流れ方向に略平行となるように配置されている、請求項1に記載のフィンチューブ型熱交換器。 A straight line connecting a portion of the first corrugated rib that is on the most leeward side and a midpoint of a line segment that connects each of the leeward apexes of the ridges that are adjacent to each other on the most windward side is the gas flow direction. The finned tube heat exchanger according to claim 1, wherein the finned tube heat exchanger is disposed so as to be substantially parallel to the heat exchanger.
  4.  最も風下にある山部のさらに風下側に、第2の波型リブを設け、前記最も風下にある山部の風上側頂点からその山部の前記開口部の端部を結ぶ直線が、前記第2の波型リブの最も風上側となる部分と、前記最も風上側となる部分と隣り合う最も風下側となる部分との間を通るように配置されている、請求項1~3のいずれか1項に記載のフィンチューブ型熱交換器。 A second corrugated rib is provided further on the leeward side of the peak part that is most leeward, and a straight line that connects the end of the opening part of the peak part to the windward apex of the peak part that is most leeward is the first ridge. 4. The method according to claim 1, wherein the second corrugated rib is disposed so as to pass between a portion on the most leeward side of the corrugated rib and a portion on the most leeward side adjacent to the portion on the most leeward side. The finned tube heat exchanger according to item 1.
  5.  前記第1の波型リブまたは前記第2の波型リブの高さが、伝熱フィンの積層間隔の3分の1以上、3分の2以下である、請求項1~4のいずれか1項に記載のフィンチューブ型熱交換器。 The height of the first corrugated rib or the second corrugated rib is not less than one third and not more than two thirds of the stacking interval of the heat transfer fins. The finned tube heat exchanger according to the item.
  6.  前記第1の波型リブまたは前記第2の波型リブの波型の接線と前記気体の流れ方向とが成す角度が45度以上である、請求項1~5のいずれか1項に記載のフィンチューブ型熱交換器。 The angle formed by the corrugated tangent of the first corrugated rib or the second corrugated rib and the gas flow direction is 45 degrees or more, according to any one of claims 1 to 5. Fin tube heat exchanger.
PCT/JP2012/000521 2011-01-27 2012-01-27 Finned-tube heat exchanger WO2012102053A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012554699A JPWO2012102053A1 (en) 2011-01-27 2012-01-27 Finned tube heat exchanger

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-014954 2011-01-27
JP2011014954 2011-01-27

Publications (1)

Publication Number Publication Date
WO2012102053A1 true WO2012102053A1 (en) 2012-08-02

Family

ID=46580627

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/000521 WO2012102053A1 (en) 2011-01-27 2012-01-27 Finned-tube heat exchanger

Country Status (2)

Country Link
JP (1) JPWO2012102053A1 (en)
WO (1) WO2012102053A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014016107A (en) * 2012-07-09 2014-01-30 Mitsubishi Electric Corp Fin and tube type heat exchanger and air conditioner including the same
EP2784426A1 (en) * 2013-03-27 2014-10-01 GEA Batignolles Technologies Thermiques Tube heat exchanger with optimized thermo-hydraulic characteristics
CN105806125A (en) * 2016-05-26 2016-07-27 珠海格力电器股份有限公司 Fin and air-conditioner heat exchanger
WO2021020592A1 (en) * 2019-07-26 2021-02-04 株式会社アタゴ製作所 Heat exchange promotion member and heat exchanger
CN113834129A (en) * 2020-06-08 2021-12-24 青岛海信日立空调系统有限公司 Air conditioner
WO2023190378A1 (en) * 2022-03-31 2023-10-05 ダイキン工業株式会社 Heat exchanger and indoor unit

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0448192A (en) * 1990-06-18 1992-02-18 Toshiba Corp Configuration of fin for heat exchanger
JPH0534470U (en) * 1991-10-07 1993-05-07 東洋ラジエーター株式会社 Plate fins for air conditioning heat exchangers
JPH08170890A (en) * 1994-12-16 1996-07-02 Daikin Ind Ltd Cross fin heat exchanger
JP2006138503A (en) * 2004-11-10 2006-06-01 Denso Corp Heat exchanger
JP2008215737A (en) * 2007-03-06 2008-09-18 Mitsubishi Electric Corp Fin tube type heat exchanger and refrigerating cycle
JP2010008034A (en) * 2008-05-26 2010-01-14 Panasonic Corp Fin tube type heat exchanger
JP2010210188A (en) * 2009-03-11 2010-09-24 Panasonic Corp Fin tube heat exchanger

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0448192A (en) * 1990-06-18 1992-02-18 Toshiba Corp Configuration of fin for heat exchanger
JPH0534470U (en) * 1991-10-07 1993-05-07 東洋ラジエーター株式会社 Plate fins for air conditioning heat exchangers
JPH08170890A (en) * 1994-12-16 1996-07-02 Daikin Ind Ltd Cross fin heat exchanger
JP2006138503A (en) * 2004-11-10 2006-06-01 Denso Corp Heat exchanger
JP2008215737A (en) * 2007-03-06 2008-09-18 Mitsubishi Electric Corp Fin tube type heat exchanger and refrigerating cycle
JP2010008034A (en) * 2008-05-26 2010-01-14 Panasonic Corp Fin tube type heat exchanger
JP2010210188A (en) * 2009-03-11 2010-09-24 Panasonic Corp Fin tube heat exchanger

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014016107A (en) * 2012-07-09 2014-01-30 Mitsubishi Electric Corp Fin and tube type heat exchanger and air conditioner including the same
EP2784426A1 (en) * 2013-03-27 2014-10-01 GEA Batignolles Technologies Thermiques Tube heat exchanger with optimized thermo-hydraulic characteristics
WO2014154398A1 (en) * 2013-03-27 2014-10-02 Gea Batignolles Technologies Thermiques Tube heat exchanger with optimized thermo-hydraulic characteristics
CN105806125A (en) * 2016-05-26 2016-07-27 珠海格力电器股份有限公司 Fin and air-conditioner heat exchanger
WO2021020592A1 (en) * 2019-07-26 2021-02-04 株式会社アタゴ製作所 Heat exchange promotion member and heat exchanger
CN114556041A (en) * 2019-07-26 2022-05-27 株式会社爱拓制作所 Heat exchange promotion member and heat exchanger
CN113834129A (en) * 2020-06-08 2021-12-24 青岛海信日立空调系统有限公司 Air conditioner
CN113834129B (en) * 2020-06-08 2022-11-29 青岛海信日立空调系统有限公司 Air conditioner
WO2023190378A1 (en) * 2022-03-31 2023-10-05 ダイキン工業株式会社 Heat exchanger and indoor unit
JP7401802B2 (en) 2022-03-31 2023-12-20 ダイキン工業株式会社 Heat exchanger and indoor unit

Also Published As

Publication number Publication date
JPWO2012102053A1 (en) 2014-06-30

Similar Documents

Publication Publication Date Title
CN104285119B (en) Heat exchanger and air conditioner
US9671177B2 (en) Heat exchanger, method for fabricating heat exchanger, and air-conditioning apparatus
WO2012102053A1 (en) Finned-tube heat exchanger
EP2236972B1 (en) Fin for heat exchanger and heat exchanger using the fin
WO2009153985A1 (en) Heat exchanger
US20110036550A1 (en) Fin and heat exchanger having the same
US20090308585A1 (en) Method for Manufacturing Tube and Fin Heat Exchanger with Reduced Tube Diameter and Optimized Fin Produced Thereby
JP5523495B2 (en) Finned tube heat exchanger and refrigeration cycle apparatus
JP4775429B2 (en) Finned tube heat exchanger
WO2013001744A1 (en) Fin tube heat exchanger
EP2699867B1 (en) Heat exchanger
JP5608478B2 (en) Heat exchanger and air conditioner using the same
EP1832832A1 (en) Heat Exchanger
JPH08247678A (en) Heat-exchanger made of aluminum
JP5020886B2 (en) Heat exchanger
JP5138408B2 (en) Fin and tube heat exchanger
CN107990598B (en) Micro-channel heat exchanger
JP2008215670A (en) Heat transfer fin, fin tube-type heat exchanger and refrigerating cycle device
JP5084304B2 (en) Finned tube heat exchanger and refrigeration cycle
JP2009121708A (en) Heat exchanger
JP5958917B2 (en) Finned tube heat exchanger
JP2015014397A (en) Heat exchanger
JP2009204278A (en) Heat exchanger
JP5815128B2 (en) Heat exchanger and air conditioner
KR102572098B1 (en) Heat exchanger and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12739493

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012554699

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12739493

Country of ref document: EP

Kind code of ref document: A1