JP5775971B2 - Air heat exchanger - Google Patents

Air heat exchanger Download PDF

Info

Publication number
JP5775971B2
JP5775971B2 JP2014534102A JP2014534102A JP5775971B2 JP 5775971 B2 JP5775971 B2 JP 5775971B2 JP 2014534102 A JP2014534102 A JP 2014534102A JP 2014534102 A JP2014534102 A JP 2014534102A JP 5775971 B2 JP5775971 B2 JP 5775971B2
Authority
JP
Japan
Prior art keywords
refrigerant flow
downstream
refrigerant
flow path
upstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014534102A
Other languages
Japanese (ja)
Other versions
JPWO2014038038A1 (en
Inventor
航 佐藤
航 佐藤
佐々木 重幸
重幸 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Application granted granted Critical
Publication of JP5775971B2 publication Critical patent/JP5775971B2/en
Publication of JPWO2014038038A1 publication Critical patent/JPWO2014038038A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/12Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/04Tubular elements of cross-section which is non-circular polygonal, e.g. rectangular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/04Assemblies of fins having different features, e.g. with different fin densities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/025Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements
    • F28F3/027Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements with openings, e.g. louvered corrugated fins; Assemblies of corrugated strips

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は冷媒が流れる扁平管と空気と熱交換する伝熱フィンからなる空気熱交換器に係り、特に扁平管の内部にインナーフィンを備えた空気熱交換器に関するものである。   The present invention relates to an air heat exchanger comprising a flat tube through which a refrigerant flows and heat transfer fins for exchanging heat with air, and more particularly to an air heat exchanger having an inner fin inside the flat tube.

空気熱交換器は種々の産業機器に使用されており、代表的には空調機器の熱交換器や温水器用ヒートポンプの熱交換器として広く使用されている。ただし、以下に説明する本発明はこれらの空気熱交換器に限られるものではない。   Air heat exchangers are used in various industrial equipment, and are typically widely used as heat exchangers for air conditioners and heat pumps for water heaters. However, the present invention described below is not limited to these air heat exchangers.

このような空気熱交換器は、冷媒が流れる2つの管状のヘッダと、2つのヘッダを結ぶように配置される複数の扁平管と、これらの複数の扁平管の夫々の間に設けられた複数の伝熱フィンとから構成されている。扁平管の夫々はヘッダに直交して流体的に接続され、扁平管を介して一方のヘッダから他方のヘッダに冷媒を流すように構成されている。また、伝熱フィンは扁平管に直交するように熱的に接続されており、扁平管からの熱(温度が高い)、或いは冷熱(温度が低い)を伝熱フィンによって空気と熱交換するように構成されている。   Such an air heat exchanger includes two tubular headers through which refrigerant flows, a plurality of flat tubes arranged to connect the two headers, and a plurality of flat tubes provided between each of the plurality of flat tubes. Heat transfer fins. Each of the flat tubes is fluidly connected orthogonally to the header, and is configured to flow a refrigerant from one header to the other header via the flat tube. The heat transfer fins are thermally connected so as to be orthogonal to the flat tubes, so that heat (high temperature) or cold heat (low temperatures) from the flat tubes is exchanged with air by the heat transfer fins. It is configured.

一つの扁平管の内部にはヘッダに連通している複数の細い冷媒流路が設けられており、この細かい冷媒流路は波状の形状を持つインナーフィンによって形成されている。冷媒は、この冷媒流路を通って一方のヘッダから扁平管へ流れ、更に他方のヘッダに流れるようになっている。ヘッダ、扁平管、伝熱フィン、及びインナーフィンは、熱伝導率の高い金属材料、例えばアルミニウムで形成される。これらの部材は、蝋材や接着剤によって互いに接合されている。そして、このような構造の空気熱交換器の伝熱フィンや扁平管に送風ファンから空気を送風して熱交換を行なうものである。   A plurality of thin refrigerant channels communicating with the header are provided inside one flat tube, and the fine refrigerant channels are formed by inner fins having a wavy shape. The refrigerant flows through the refrigerant flow path from one header to the flat tube and further flows to the other header. The header, the flat tube, the heat transfer fin, and the inner fin are formed of a metal material having high thermal conductivity, such as aluminum. These members are joined to each other by a wax material or an adhesive. And heat exchange is performed by blowing air from the blower fan to the heat transfer fins and the flat tubes of the air heat exchanger having such a structure.

空気熱交換器では冷媒と空気との熱交換を行い、冷媒は一方のヘッダに導入された後に扁平管へ分配される。扁平管内に導入された冷媒の熱または冷熱は、扁平管から伝熱面積を拡大する伝熱フィンへ伝わり、伝熱フィン間を流れる空気と熱交換を行うようになっている。   The air heat exchanger performs heat exchange between the refrigerant and air, and the refrigerant is introduced into one header and then distributed to the flat tube. The heat or cold of the refrigerant introduced into the flat tube is transferred from the flat tube to the heat transfer fins that expand the heat transfer area, and exchanges heat with the air flowing between the heat transfer fins.

扁平管の内部は、上述したように冷媒と扁平管の接触面積を増大させるため複数の冷媒流路を形成している。この冷媒流路は冷媒の進行方向に沿った波型形状(以下、コルゲート形状という)のインナーフィンを扁平管に内装することで形成されている。   As described above, a plurality of refrigerant flow paths are formed inside the flat tube in order to increase the contact area between the refrigerant and the flat tube. This refrigerant flow path is formed by incorporating a corrugated inner fin (hereinafter referred to as a corrugated shape) along the direction of the refrigerant in a flat tube.

今まで提案されていた従来の扁平管に形成した複数の冷媒流路は、インナーフィンによって一方のヘッダから他方のヘッダまで独立した流路に形成されており、一方のヘッダから扁平管内の冷媒流路に入った冷媒は、扁平管の出口まで他の冷媒流路の冷媒と混合することなく流れていた。そのため、冷媒流路の入口で各冷媒通路への冷媒の分配比率が不均一となった場合、冷媒流路の出口まで分配比率の不均一さは改善されないまま流れていくことになる。したがって、冷媒流路毎に冷媒の分配比率が不均一となった場合、例えば冷媒が過剰に流れる冷媒流路と冷媒の流れが不足する冷媒流路が扁平管内で生じるため、熱交換効率が低下する恐れがある
最近では熱交換器の大型化の要請が強くなってきており、この要請に応えるためには扁平管を冷媒の流れ方向に長くする必要がある。このため、扁平管を長くすると扁平管の冷媒流路の分配比率が不均一となった影響が更に大きくなり、熱交換器の交換熱量を増大させることができないという課題があった。
The plurality of refrigerant flow paths formed in the conventional flat tube that has been proposed so far are formed as independent flow paths from one header to the other header by the inner fins, and the refrigerant flow in the flat pipe from one header The refrigerant that entered the channel flowed to the outlet of the flat tube without being mixed with the refrigerant in the other refrigerant channels. Therefore, when the distribution ratio of the refrigerant to each refrigerant passage becomes nonuniform at the inlet of the refrigerant flow path, the nonuniform distribution ratio flows to the outlet of the refrigerant flow path without being improved. Therefore, when the distribution ratio of the refrigerant becomes uneven for each refrigerant flow path, for example, a refrigerant flow path in which the refrigerant flows excessively and a refrigerant flow path in which the refrigerant flow is insufficient are generated in the flat tube. Recently, there has been a strong demand for larger heat exchangers. To meet this demand, it is necessary to lengthen the flat tube in the direction of refrigerant flow. For this reason, when the flat tube is lengthened, the influence of the non-uniform distribution ratio of the refrigerant flow path of the flat tube is further increased, and there is a problem that the amount of exchange heat of the heat exchanger cannot be increased.

また、空調機器の室外機が冷房運転している時を考えると、扁平管に流れる冷媒は温度が高くなっている。このため扁平管の熱交換を考えると、扁平管の表面において風上側は空気の温度が低いため風下側に比べて熱伝達効率が高い傾向にある。このため、扁平管内の冷媒流路においても、風上側と風下側での熱交換効率が不均一になる現象がある。   Considering the time when the outdoor unit of the air conditioner is in cooling operation, the temperature of the refrigerant flowing through the flat tube is high. For this reason, when heat exchange of the flat tube is considered, since the air temperature is lower on the windward side on the surface of the flat tube, the heat transfer efficiency tends to be higher than that on the leeward side. For this reason, even in the refrigerant flow path in the flat tube, there is a phenomenon that the heat exchange efficiency between the windward side and the leeward side becomes non-uniform.

そして、伝熱面積を拡大するために、扁平管を送風方向に長くした場合では風下側は熱交換効率が低くなる。例えば、冷媒が不足した冷媒流路が扁平管の風上側に存在し、風下側の冷媒流路に過剰な冷媒が流れている場合、効果的な熱交換が行えず熱交換器全体としての交換熱量を増大できないという課題があった。   And in order to expand a heat transfer area, when a flat tube is lengthened in the ventilation direction, the heat exchange efficiency becomes low on the leeward side. For example, if there is a refrigerant channel with insufficient refrigerant on the windward side of the flat tube and excess refrigerant flows through the refrigerant channel on the leeward side, effective heat exchange cannot be performed and the entire heat exchanger is replaced. There was a problem that the amount of heat could not be increased.

このような課題を解決するために、扁平管への冷媒の分配比率を均一にするような構造が検討されてきた。例えば、特開2004−61065号公報(特許文献1)では、扁平管内に冷媒流路を形成するために配置されたコルゲート形状のインナーフィンに複数の冷媒流路が途中で合流するような連通領域を形成することで、扁平管内の冷媒の分配比率の偏りを防ぐ構造が開示されている。   In order to solve such a problem, a structure that makes the distribution ratio of the refrigerant to the flat tube uniform has been studied. For example, in Japanese Patent Application Laid-Open No. 2004-61065 (Patent Document 1), a communication region in which a plurality of refrigerant flow paths merge with a corrugated inner fin arranged to form a refrigerant flow path in a flat tube. The structure which prevents the bias | inclination of the distribution ratio of the refrigerant | coolant in a flat pipe by forming is disclosed.

特開2004−61065号公報JP 2004-61065 A

しかしながら、特許文献1に開示されている扁平管は連通領域の上下流のインナーフィンのコルゲート形状の幅(ピッチ)が均一で、しかも連通領域を挟んで対向する上流側の冷媒流路の出口と下流側の冷媒通路の入口が同一形状で相互に向かい合って対称に開口し、更にこれらの出口と入口を結ぶ仮想線が直線状になるように構成されている。   However, the flat tube disclosed in Patent Document 1 has a uniform corrugated width (pitch) of the inner fins on the upstream and downstream sides of the communication region, and the outlet of the upstream coolant channel facing the communication region. The inlets of the downstream refrigerant passages have the same shape and are opened symmetrically facing each other, and the imaginary line connecting these outlets and inlets is linear.

このため、冷媒の流速が大きい場合では冷媒は慣性力によって連通領域を直進してそのまま進行するようになり、相互に対向した冷媒流路に沿って流れる割合が高くなる。このため、連通領域で冷媒の分配比率の偏りがさほど改善されないという課題があった。   For this reason, when the flow rate of the refrigerant is high, the refrigerant travels straight through the communication region due to inertial force and proceeds as it is, and the ratio of flowing along the mutually opposing refrigerant flow paths increases. For this reason, there has been a problem that the deviation of the distribution ratio of the refrigerant in the communication region is not improved so much.

尚、分配比率を改善するために連通領域の長さを長くすることが考えられるが、連通領域の長さを長くするとこの領域内ではインナーフィンが存在しないため、扁平管の管壁と冷媒の間の熱伝達が悪くなって熱交換効率が低下するという不具合を生じるようになるのでこの方法は得策ではない。   In order to improve the distribution ratio, it is conceivable to increase the length of the communication area, but if the length of the communication area is increased, there is no inner fin in this area. This method is not a good idea because the heat transfer between the two becomes worse and the heat exchange efficiency decreases.

更に、扁平管は風上側で熱交換効率が高いので、風上側の冷媒流路に気相と液相の混じった冷媒が流れる場合は特に熱交換効率が問題となる。特許文献1にあるような、連通領域の上下流のインナーフィンのコルゲート形状の幅(ピッチ)が均一で、しかも連通領域を挟んで対向する上流側の冷媒流路の出口と下流側の冷媒通路の入口が同一形状で相互に向かい合って対称に開口した構成においては、風上側の冷媒流路に気相と液相の混じった冷媒が流れると、この状態のままの冷媒が扁平管の出口まで流れていく恐れがあり、結果として気相を多く含む冷媒が風上側を流れて熱交換効率を向上できないという課題があった。   Further, since the flat tube has a high heat exchange efficiency on the windward side, the heat exchange efficiency becomes a problem particularly when a refrigerant mixed with a gas phase and a liquid phase flows in the refrigerant channel on the windward side. As disclosed in Patent Document 1, the corrugated width (pitch) of the upstream and downstream inner fins of the communication region is uniform, and the outlet of the upstream coolant channel and the downstream coolant channel facing each other across the communication region In the configuration in which the inlets of the two are of the same shape and are opened symmetrically facing each other, when a refrigerant mixed with a gas phase and a liquid phase flows in the refrigerant channel on the windward side, the refrigerant in this state reaches the outlet of the flat tube. As a result, there is a problem that the refrigerant containing a large amount of the gas phase flows on the windward side and cannot improve the heat exchange efficiency.

本発明の目的は、扁平管内に連通領域を介して形成された複数の冷媒流路間の分配比率の偏りを改善することで熱交換効率を向上した空気熱交換器を提供することにある。   The objective of this invention is providing the air heat exchanger which improved the heat exchange efficiency by improving the bias | inclination of the distribution ratio between the some refrigerant | coolant flow paths formed in the flat tube via the communicating area | region.

更に本発明の他の目的は、扁平管内に連通領域を介して形成された複数の冷媒流路の内、連通領域の下流でしかも風上側の冷媒流路の熱交換効率を向上した空気熱交換器を提供することにある   Still another object of the present invention is to provide air heat exchange with improved heat exchange efficiency in a refrigerant channel downstream of the communication region and in the upstream side of the plurality of refrigerant channels formed in the flat tube via the communication region. Is to provide a vessel

本発明の特徴は、扁平管内に冷媒の流れに沿って複数の上流側冷媒流路、連通領域、及び複数の下流側冷媒流路を形成し、少なくとも一つの上流側冷媒通路の出口と下流側冷媒通路の入口をずらして配置したところにある。   A feature of the present invention is that a plurality of upstream refrigerant flow paths, a communication region, and a plurality of downstream refrigerant flow paths are formed in the flat tube along the flow of the refrigerant, and an outlet and a downstream side of at least one upstream refrigerant path It is in the place where the entrance of the refrigerant passage is shifted.

本発明の他の特徴は、扁平管内に冷媒の流れに沿って複数の上流側冷媒流路、連通領域、及び複数の下流側冷媒流路を形成し、扁平管の風上側の少なくとも一つの下流側冷媒通路の入口の幅を上流側冷媒流路の出口の幅より狭くしたところにある。   Another feature of the present invention is that a plurality of upstream refrigerant flow paths, a communication region, and a plurality of downstream refrigerant flow paths are formed in the flat tube along the flow of the refrigerant, and at least one downstream side on the windward side of the flat tube The width of the inlet of the side refrigerant passage is narrower than the width of the outlet of the upstream refrigerant flow path.

本発明によれば、連通領域において上流側冷媒通路の出口と下流側冷媒通路の入口をずらして配置したので、冷媒流路を通過してきた流速の早い冷媒であっても下流側冷媒流路の入口の壁端面における衝突作用によって冷媒の流れが乱されることで分配比率が改善できるようになるものである。   According to the present invention, since the outlet of the upstream refrigerant passage and the inlet of the downstream refrigerant passage are shifted in the communication region, even if the refrigerant has a high flow velocity and has passed through the refrigerant passage, The distribution ratio can be improved by disturbing the flow of the refrigerant by the collision action on the wall end face of the inlet.

また、本発明によれば、連通領域において下流側冷媒通路の入口の幅が上流側冷媒通路の出口の幅より狭いため、流れてきた冷媒に含まれる気相は幅が狭い下流側冷媒通路の入口に入りづらく、結果的に幅が狭い下流側冷媒通路の入口には液相が多い冷媒が流入するようになって風上側の冷媒流路の熱交換効率を向上することができるものである。   Further, according to the present invention, since the width of the inlet of the downstream refrigerant passage is narrower than the width of the outlet of the upstream refrigerant passage in the communication region, the gas phase contained in the flowing refrigerant has a narrow width in the downstream refrigerant passage. It is difficult to enter the inlet, and as a result, the refrigerant having a large liquid phase flows into the inlet of the narrow downstream side refrigerant passage, so that the heat exchange efficiency of the refrigerant channel on the windward side can be improved. .

本発明が適用される空気熱交換器の全体構成を示す外観斜視図である。It is an external appearance perspective view which shows the whole structure of the air heat exchanger with which this invention is applied. 本発明の第1の実施形態(実施例1)になる空気熱交換器の扁平管の断面を示す断面図である。It is sectional drawing which shows the cross section of the flat tube of the air heat exchanger which becomes the 1st Embodiment (Example 1) of this invention. 図2のz方向の扁平管の断面を示す断面図である。It is sectional drawing which shows the cross section of the flat tube of the z direction of FIG. 図3に示す連通領域での冷媒の挙動を説明する説明図である。It is explanatory drawing explaining the behavior of the refrigerant | coolant in the communication area | region shown in FIG. 本発明の第2の実施形態(実施例2)になる空気熱交換器の扁平管の断面を示す断面図である。It is sectional drawing which shows the cross section of the flat tube of the air heat exchanger which becomes the 2nd Embodiment (Example 2) of this invention. 図5のz方向の扁平管の断面を示す断面図である。It is sectional drawing which shows the cross section of the flat tube of the z direction of FIG. 図6に示す連通領域での冷媒の挙動を説明する説明図である。It is explanatory drawing explaining the behavior of the refrigerant | coolant in the communication area | region shown in FIG. 本発明の第3の実施形態(実施例3)になる空気熱交換器の扁平管の断面を示す断面図である。It is sectional drawing which shows the cross section of the flat tube of the air heat exchanger which becomes the 3rd Embodiment (Example 3) of this invention. 図8のz方向の扁平管の断面を示す断面図である。It is sectional drawing which shows the cross section of the flat tube of the z direction of FIG. 本発明の第4の実施形態(実施例4)になる空気熱交換器の扁平管の断面を示す断面図である。It is sectional drawing which shows the cross section of the flat tube of the air heat exchanger which becomes the 4th Embodiment (Example 4) of this invention. 図10のz方向の扁平管の断面を示す断面図である。It is sectional drawing which shows the cross section of the flat tube of the z direction of FIG. 本発明の第5の実施形態(実施例5)になる空気熱交換器の扁平管の断面を示す断面図である。It is sectional drawing which shows the cross section of the flat tube of the air heat exchanger which becomes the 5th Embodiment (Example 5) of this invention. 図12のz方向の扁平管の断面を示す断面図である。It is sectional drawing which shows the cross section of the flat tube of the z direction of FIG.

以下、本発明の実施形態について図を用いて説明するが、本発明は以下の実施形態に限定されることなく、本発明の技術的な概念の中で種々の変形例や応用例をもその範囲に含むものである。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the present invention is not limited to the following embodiments, and various modifications and application examples may be included in the technical concept of the present invention. It is included in the range.

まず、本発明を説明する前に図1を参照しながら本発明が適用される空気熱交換器の基本的な構成について説明する。   First, before describing the present invention, a basic configuration of an air heat exchanger to which the present invention is applied will be described with reference to FIG.

図1にあるように空気熱交換器1は図面上において上下にヘッダ3を備え、両ヘッダ3の間を扁平状の扁平管2によって接続されている。扁平管2は両ヘッダ3との間に直交するように複数本、ここでは8本設けられており、ヘッダ3と扁平管2とは内部で冷媒が流通するように夫々冷媒が流れる通路によって連通されている。各扁平管2はこれらに直交するように複数枚、ここでは15枚の伝熱フィン5が取り付けられており、ヘッダ3と伝熱フィン5とはほぼ平行な状態で配置されている。したがって、扁平管2からの熱、或いは冷熱は伝熱フィン5に伝わり、伝熱フィン5から空気に対して熱交換される。   As shown in FIG. 1, the air heat exchanger 1 is provided with headers 3 at the top and bottom in the drawing, and the headers 3 are connected by a flat flat tube 2. A plurality of flat tubes 2 are provided so as to be orthogonal to each other between the headers 3, and here, eight are provided. The header 3 and the flat tubes 2 communicate with each other through passages through which refrigerant flows so that the refrigerant flows inside. Has been. Each flat tube 2 is provided with a plurality of heat transfer fins 5, in this case, 15 heat transfer fins 5 so as to be orthogonal to these, and the header 3 and the heat transfer fins 5 are arranged in a substantially parallel state. Therefore, heat from the flat tube 2 or cold heat is transmitted to the heat transfer fin 5, and heat is exchanged from the heat transfer fin 5 to the air.

このような空気熱交換器1において、本実施例では下側のヘッダ3から冷媒が扁平管2に供給され、冷媒は扁平管2を上昇しながら上側のヘッダ3に排出される。このような状態において、空気熱交換器1の手前、或いは後方に配置した送風ファンから熱交換器1に空気が送られると、空気は伝熱フィン5や扁平管2との間で冷媒に熱を供給したり、或いは冷媒から熱を吸収したりして熱交換をおこなうものである。   In such an air heat exchanger 1, in this embodiment, the refrigerant is supplied from the lower header 3 to the flat tube 2, and the refrigerant is discharged to the upper header 3 while ascending the flat tube 2. In such a state, when air is sent to the heat exchanger 1 from the blower fan disposed in front of or behind the air heat exchanger 1, the air is heated to the refrigerant between the heat transfer fins 5 and the flat tubes 2. The heat exchange is performed by supplying heat or absorbing heat from the refrigerant.

このような空気熱交換器において、次に本発明の具体的な実施形態について詳細に説明する。尚、本発明では複数の実施例を提案している。したがって、参照番号が同一のものは同一の構成要素、或いは同様の機能を有する構成要素を表しているものである。   Next, specific embodiments of the present invention in such an air heat exchanger will be described in detail. In the present invention, a plurality of embodiments are proposed. Accordingly, components having the same reference numbers represent the same components or components having similar functions.

本発明の第1の実施形態を図2乃至図4に基づき詳細に説明する。本実施例は、扁平管2の冷媒の進行方向から見て途中に形成した連通領域の下流側に形成した下流側冷媒流路の入口の少なくとも1か所の幅を、連通領域の上流側に形成した上流側冷媒流路の出口と異なる幅とし、しかも下流側冷媒流路の入口を上流側冷媒流路の出口に対してずらして配置した場合を示している。更に、本実施例においては風上側と風下側の下流側冷媒流路の入口の幅を上流側冷媒流路の出口の幅より短くしている構成を示している。   A first embodiment of the present invention will be described in detail with reference to FIGS. In this embodiment, the width of at least one of the inlets of the downstream refrigerant flow path formed on the downstream side of the communication area formed in the middle as viewed from the direction of the refrigerant in the flat tube 2 is set upstream of the communication area. It shows a case where the width is different from the outlet of the formed upstream refrigerant flow path and the inlet of the downstream refrigerant flow path is shifted from the outlet of the upstream refrigerant flow path. Furthermore, in the present embodiment, a configuration is shown in which the width of the inlet of the downstream refrigerant flow path on the windward side and the leeward side is shorter than the width of the outlet of the upstream refrigerant flow path.

図2及び図3は空気熱交換器1の扁平管2及び扁平管2に内装されたコルゲート形状のインナーフィン21、22を示している。図2は一つの扁平管2を冷媒の流れ方向に直交する面で断面したものを示し、図3は扁平管2を冷媒流れ方向に沿った面で断面した、つまり図2のz方向の扁平管の断面を示している。尚、図中の矢印10は送風ファンによって送られる空気の流れを表している。   2 and 3 show the flat tube 2 of the air heat exchanger 1 and the corrugated inner fins 21 and 22 installed in the flat tube 2. 2 shows a cross section of one flat tube 2 in a plane perpendicular to the refrigerant flow direction, and FIG. 3 shows a cross section of the flat tube 2 in a plane along the refrigerant flow direction, that is, a flat shape in the z direction of FIG. A cross section of the tube is shown. In addition, the arrow 10 in a figure represents the flow of the air sent with a ventilation fan.

ここで、図2乃至図4においてx軸方向は空気熱交換器1の幅方向を示し、同様に伝熱フィン5及びヘッダ3の幅方向を示している。また、y軸方向は重力方向を示し、z軸方向は送風ファンによる空気の送風方向を示している。   2 to 4, the x-axis direction indicates the width direction of the air heat exchanger 1, and similarly indicates the width direction of the heat transfer fins 5 and the header 3. In addition, the y-axis direction indicates the direction of gravity, and the z-axis direction indicates the air blowing direction by the blower fan.

また、以下で用いる「上流」及び「下流」の表現は、冷媒の流れ方向11に関するもので、下側のヘッダ3から上側のヘッダ3に向かって流れる冷媒の状態位置を示している。したがって、或る地点位置において冷媒の流れが始まる側を「上流」と表現し、冷媒が流れていく側を「下流」と表現している。   In addition, the expressions “upstream” and “downstream” used below relate to the refrigerant flow direction 11 and indicate the state positions of the refrigerant flowing from the lower header 3 toward the upper header 3. Accordingly, the side where the refrigerant flow begins at a certain position is expressed as “upstream”, and the side where the refrigerant flows is expressed as “downstream”.

同様に、空気の流れにおいても「風上」及び「風下」の表現は、空気の送風方向10に関するもので、空気の流れが始まる側を「風上」と表現し、空気が流れていく側を「風下」と表現している。   Similarly, also in the flow of air, the expressions “upwind” and “downwind” relate to the air blowing direction 10, and the side on which the air flow starts is expressed as “windward” and the side on which the air flows. Is expressed as “leeward”.

図2及び図3においては一つの扁平管2、及びこの扁平管2の内部に設けた上流側インナーフィン21と下流側インナーフィン22を示している。扁平管2は断面が中空矩形状に形成された筒状直方体であり、その内部に複数の上流側冷媒流路6と、複数の下流側冷媒流路7、8とが形成されている。   2 and 3 show one flat tube 2 and an upstream inner fin 21 and a downstream inner fin 22 provided inside the flat tube 2. The flat tube 2 is a cylindrical cuboid whose section is formed in a hollow rectangular shape, and a plurality of upstream refrigerant channels 6 and a plurality of downstream refrigerant channels 7 and 8 are formed therein.

これらの冷媒流路6、7、8は上流側インナーフィン21と下流側インナーフィン22の2つのコルゲート形状のインナーフィンを扁平管2の内部に介装することで形成されるもので、扁平管2の送風方向の長さに対してコルゲート形状の幅(ピッチ)によってその流路の数が決められる。   These refrigerant flow paths 6, 7 and 8 are formed by interposing two corrugated inner fins of the upstream inner fin 21 and the downstream inner fin 22 inside the flat tube 2. The number of flow paths is determined by the width (pitch) of the corrugated shape with respect to the length of 2 in the blowing direction.

ここで、コルゲート形状とは冷媒の流動方向に沿って複数の仕切壁を形成するものであり、冷媒の流動方向に直交する断面が曲線状の波打った複数の仕切壁を形成する形状、三角形が繰り返される複数の仕切壁を形成する形状、矩形が繰り返される複数の仕切壁を形成する形状等を備えるもので、要はこのインナーフィンによって複数の細かい冷媒流路6、7、8が形成されれば良いものである。   Here, the corrugated shape is to form a plurality of partition walls along the flow direction of the refrigerant, and to form a plurality of partition walls having a curved cross section perpendicular to the flow direction of the refrigerant, a triangle Is formed with a shape that forms a plurality of partition walls that are repeated, a shape that forms a plurality of partition walls that are repeated with a rectangle, etc. In short, a plurality of fine refrigerant flow paths 6, 7, and 8 are formed by the inner fins. It is good.

そして、図3にあるように扁平管2の上流側には上流側インナーフィン21が設けられ、上流側インナーフィン21の下流側に連通領域23が設けられ、更に連通領域23の下流側に下流側インナーフィン22が設けられている。この連通領域23は扁平管2を冷媒の流動方向に対して直交して横切るように形成されており、この連通領域23には細かい冷媒流路6、7、8は存在しない構成とされている。つまり、インナーフィンの仕切壁が存在しない構成となっている。   As shown in FIG. 3, an upstream inner fin 21 is provided on the upstream side of the flat tube 2, a communication region 23 is provided on the downstream side of the upstream inner fin 21, and further downstream on the downstream side of the communication region 23. Side inner fins 22 are provided. The communication region 23 is formed so as to cross the flat tube 2 perpendicular to the flow direction of the refrigerant, and the communication region 23 is configured such that the fine refrigerant flow paths 6, 7, and 8 do not exist. . That is, the inner fin partition wall is not present.

したがって、上流側インナーフィン21によって形成された冷媒流路6の入口6Aから流入した冷媒は冷媒流路6を通って上流側インナーフィン21によって形成された冷媒流路6の出口6Bから連通領域23に流出して合流する。連通領域23に流れ出た冷媒は、下流側インナーフィン22によって形成された冷媒流路7、8の入口7A、8Aから冷媒通路7、8を通って下流側インナーフィン22によって形成された冷媒流路7、8の出口7B、8Bから上側のヘッダ3に流出する。尚、上流側インナーフィン21と下流側インナーフィン22は扁平管2の内部に蝋付けによって接合されている。   Therefore, the refrigerant flowing from the inlet 6A of the refrigerant flow path 6 formed by the upstream inner fin 21 passes through the refrigerant flow path 6 and communicates with the communication region 23 from the outlet 6B of the refrigerant flow path 6 formed by the upstream inner fin 21. It flows out and joins. The refrigerant that has flowed out to the communication region 23 passes through the refrigerant passages 7 and 8 from the inlets 7A and 8A of the refrigerant flow passages 7 and 8 formed by the downstream inner fins 22 and is formed by the downstream inner fins 22. 7 and 8 from the outlets 7B and 8B to the header 3 on the upper side. The upstream inner fin 21 and the downstream inner fin 22 are joined to the inside of the flat tube 2 by brazing.

ここで、コルゲート形状の上流側インナーフィン22によって形成される複数の冷媒流路6の幅(ピッチ)Wは略均一とされている。一方、本実施例においては、下流側インナーフィン22の幅(ピッチ)は、上流側インナーフィン21のコルゲート形状と同じ幅(ピッチ)であるが、半分の幅だけずらして配置する構成としている。したがって、送風方向から見て扁平管2に形成された両側の冷媒流路7はその間の冷媒流路8の幅より半分の幅となって冷媒の流通面積が狭くなっている。   Here, the width (pitch) W of the plurality of refrigerant channels 6 formed by the corrugated upstream inner fins 22 is substantially uniform. On the other hand, in the present embodiment, the width (pitch) of the downstream inner fins 22 is the same width (pitch) as the corrugated shape of the upstream inner fins 21, but is arranged so as to be shifted by a half width. Accordingly, the refrigerant flow paths 7 on both sides formed in the flat tube 2 when viewed from the air blowing direction are half the width of the refrigerant flow path 8 therebetween, and the refrigerant flow area is narrowed.

このように、下流側インナーフィン22を半分の幅だけずらした配置することによって、下流側インナーフィン22によって形成される複数の冷媒流路7、8の内で、両側の冷媒流路7をその間の冷媒通路8の幅よりも狭くすることができ、しかも上流側インナーフィン21で形成された冷媒流路6の出口6Bと下流側インナーフィン22で形成された冷媒流路7、8の入口7A、8Aが対称的に対向することがなく、冷媒の流れ方向から見てずれて位置するようになる。   Thus, by disposing the downstream inner fins 22 by a half width, among the plurality of refrigerant channels 7, 8 formed by the downstream inner fins 22, the refrigerant channels 7 on both sides are interposed between them. And the inlet 7A of the refrigerant channels 7 and 8 formed by the outlet 6B of the refrigerant channel 6 and the downstream inner fin 22 formed by the upstream inner fins 21. , 8A do not face each other symmetrically, and are shifted from the flow direction of the refrigerant.

つまり、上流側インナーフィン21によって形成された冷媒流路6の出口6Bを延長した仮想線上に、下流側インナーフィン22によって形成される冷媒流路7,8の入口7A、8Aが冷媒の流れ方向から見て重ならないようにずらされている。   That is, the inlets 7A and 8A of the refrigerant flow paths 7 and 8 formed by the downstream inner fins 22 are on the imaginary line obtained by extending the outlet 6B of the refrigerant flow path 6 formed by the upstream inner fins 21. It has been shifted so as not to overlap.

ここで、下流側インナーフィン22によって形成される冷媒流路の両側の幅の狭い冷媒流路7の幅をrとし、この間の冷媒流路8の幅をrとすると、これらの関係はr<rとなる。更に、下流側の冷媒流路8と上流側の冷媒流路6の幅は等しくr=Wである。Here, if the width of the narrow refrigerant flow path 7 on both sides of the refrigerant flow path formed by the downstream inner fins 22 is r 1, and the width of the refrigerant flow path 8 therebetween is r 2 , these relationships are r 1 <r 2 . Further, the widths of the downstream refrigerant flow path 8 and the upstream refrigerant flow path 6 are equal to each other, r 2 = W.

図4は扁平管2を流れる冷媒の挙動を説明する図であり、扁平管2の冷媒11の流れ方向に沿ったyz面の断面における連通領域23付近を拡大したものである。まず、扁平管2にヘッダ3から冷媒11が流入するが、このとき、複数の冷媒流路6に流入する冷媒の分配比率は冷媒11が流入するときの環境に依存するため不均一になりやすい。   FIG. 4 is a diagram for explaining the behavior of the refrigerant flowing through the flat tube 2, in which the vicinity of the communication region 23 in the cross section of the yz plane along the flow direction of the refrigerant 11 in the flat tube 2 is enlarged. First, the refrigerant 11 flows into the flat tube 2 from the header 3. At this time, the distribution ratio of the refrigerant flowing into the plurality of refrigerant flow paths 6 depends on the environment when the refrigerant 11 flows in, and thus tends to be uneven. .

しかしながら、冷媒11が上流側の冷媒流路6を通過したのち、下流側インナーフィン22と上流側インナーフィン21の間に形成した連通領域23に到達すると、この連通領域23には下流側インナーフィン22と上流側インナーフィン21がないため、冷媒の流動方向に対して直交する方向、すなわちZ軸方向にも移動することができる環境となっている。   However, when the refrigerant 11 reaches the communication area 23 formed between the downstream inner fin 22 and the upstream inner fin 21 after passing through the upstream refrigerant flow path 6, the downstream inner fin is formed in the communication area 23. Since 22 and the upstream inner fin 21 are not provided, the environment can move in the direction orthogonal to the refrigerant flow direction, that is, in the Z-axis direction.

そして、上流側冷媒流路6の出口6Bと下流側冷媒流路7、8の出口7A、8Aとは開口部分が冷媒の流れ方向から見て重ならないようにずれているため、上流側冷媒流路6の出口6Bから流れ出た冷媒12(液相及び気相を含む)は下流側冷媒流路7、8の入口7A、8Aの壁端面と衝突する。この入口7A、8Aの壁端面の衝突部分において冷媒は入口7A、8Aの壁端面の存在によってその進行方向を変えられる。   Since the outlet 6B of the upstream refrigerant flow path 6 and the outlets 7A and 8A of the downstream refrigerant flow paths 7 and 8 are shifted so that the opening portions do not overlap when viewed from the flow direction of the refrigerant, the upstream refrigerant flow The refrigerant 12 (including the liquid phase and the gas phase) flowing out from the outlet 6B of the path 6 collides with the wall end surfaces of the inlets 7A and 8A of the downstream refrigerant flow paths 7 and 8. In the collision portion of the wall end surfaces of the inlets 7A and 8A, the traveling direction of the refrigerant is changed by the presence of the wall end surfaces of the inlets 7A and 8A.

方向を変えられた冷媒は渦を生じたりして乱流となり、この乱流はさらに隣接する冷媒の流れに影響を与えるので、連通領域23内で冷媒の流れは特許文献1の構造に比べて大きく乱れることになる。このため、連通領域23内においては上流側冷媒流路6の出口6Bから流れ出た冷媒の流速や圧力のばらつきが緩和され、下流側冷媒流路7、8の入口7A、8Aに流れ込む冷媒の分配比率の不均一を改善することができる。   The refrigerant whose direction has been changed becomes a turbulent flow by generating a vortex, and this turbulent flow further affects the flow of the adjacent refrigerant. Therefore, the flow of the refrigerant in the communication region 23 is compared with the structure of Patent Document 1. It will be greatly disturbed. For this reason, in the communication region 23, the variation in the flow velocity and pressure of the refrigerant flowing out from the outlet 6B of the upstream refrigerant flow path 6 is alleviated, and the distribution of the refrigerant flowing into the inlets 7A and 8A of the downstream refrigerant flow paths 7 and 8 is reduced. The non-uniformity of the ratio can be improved.

また、連通領域23で形成された乱流を含む冷媒の流れは下流側冷媒流路7、8の入口7A、8Aに流れ込むが、乱流を含んでいるので下流側インナーフィン22との間で熱交換効率が向上する効果も期待できる。   Further, the flow of the refrigerant including the turbulent flow formed in the communication region 23 flows into the inlets 7A and 8A of the downstream refrigerant flow paths 7 and 8, but since it includes the turbulent flow, between the downstream inner fins 22 The effect of improving the heat exchange efficiency can also be expected.

更に、気相を多く含む冷媒11は液相に比べて流速が早い傾向があるため、幅が広い冷媒流路8に流入しやすい。そのため、上流側冷媒流路6において空気と熱交換の完了した冷媒の気相は幅が広い冷媒流路8に流入しやすい。一方で、幅の狭い冷媒流路7には液相を多く含む冷媒が毛管力によって流入しやすい。これらの相乗的な作用によって幅の狭い下流側冷媒流路7に液相を多く含む冷媒が多く流れるようになる。   Furthermore, since the refrigerant 11 containing a large amount of gas phase tends to have a higher flow velocity than the liquid phase, the refrigerant 11 tends to flow into the wide refrigerant flow path 8. Therefore, the vapor phase of the refrigerant that has exchanged heat with air in the upstream refrigerant flow path 6 tends to flow into the wide refrigerant flow path 8. On the other hand, a refrigerant containing a large amount of liquid phase tends to flow into the narrow refrigerant flow path 7 by capillary force. By these synergistic actions, a large amount of refrigerant containing a large amount of liquid phase flows in the narrow downstream side refrigerant flow path 7.

したがって、上流側冷媒流路6の出口6Bと、連通領域23と、幅の狭い下流側冷媒流路7の入口7Aと、幅の広い下流側冷媒流路8の入口8Aは液相と気相を分離して液相を多く含む冷媒を幅の狭い下流側冷媒流路7に送る気相分離機能を備えていることになる。   Therefore, the outlet 6B of the upstream refrigerant flow path 6, the communication region 23, the inlet 7A of the narrow downstream refrigerant flow path 7, and the inlet 8A of the wide downstream refrigerant flow path 8 are in a liquid phase and a gas phase. And a gas phase separation function for sending a refrigerant containing a large amount of liquid phase to the narrow downstream refrigerant flow path 7.

本実施例においては、扁平管2の風上側と風下側に幅の狭い下流側冷媒流路7が形成されているが、少なくとも風上側に幅の狭い下流側冷媒流路7が形成されるので風上側で液相を多く含む冷媒が多く流れるようになる。これによって、熱交換効率の高い風上側の冷媒流路7に液相を多く含む冷媒が流れることで、熱交換器1全体としての空気と冷媒11の熱交換が効率的に行われる。   In the present embodiment, the narrow downstream side refrigerant flow path 7 is formed on the windward side and the leeward side of the flat tube 2, but the narrow downstream side refrigerant flow path 7 is formed at least on the windward side. A large amount of refrigerant containing a large amount of liquid phase flows on the windward side. As a result, a refrigerant containing a large amount of liquid phase flows through the refrigerant channel 7 on the windward side with high heat exchange efficiency, so that heat exchange between the air and the refrigerant 11 as a whole of the heat exchanger 1 is performed efficiently.

ここで、冷媒の流れ方向から見て、扁平管2に内装するインナーフィンの数および連通領域23の数は扁平管2の長さに応じて任意に定めることができる。また、下流側インナーフィン22のコルゲート形状の幅(ピッチ)は上流側インナーフィン21の幅(ピッチ)に比べて狭めても広げてもよいが、実際には狭める方がより望ましい。   Here, when viewed from the flow direction of the refrigerant, the number of inner fins and the number of communication regions 23 housed in the flat tube 2 can be arbitrarily determined according to the length of the flat tube 2. Further, the corrugated width (pitch) of the downstream inner fins 22 may be narrower or wider than the width (pitch) of the upstream inner fins 21, but in practice it is more desirable to narrow.

一方で、上流側のインナーフィン21と下流側のインナーフィン22の間に形成する連通領域23を大きく広げると、インナーフィン21,22を含む扁平管2と冷媒11の接触面積が低減するため熱交換効率が低下する。そのため、扁平管2の内部に形成する連通領域23の長さは冷媒流路6の幅w及び冷媒流路8の幅rとほぼ同じ長さか、それ以上に設定されている。本実施例では例えば5mmから10mm程度とされている。また、上流側インナーフィン21と下流側インナーフィン22の冷媒流れ方向(Y軸方向)の長さは等しくなくともよく、上流側インナーフィン21を下流側インナーフィン22より長くしてもよい。この場合、下側のヘッダ3から冷媒が流れてくるので上流側インナーフィン21を長くした方が全体の熱交換効率は向上するものである。On the other hand, if the communication region 23 formed between the upstream inner fin 21 and the downstream inner fin 22 is greatly expanded, the contact area between the flat tube 2 including the inner fins 21 and 22 and the refrigerant 11 is reduced. Exchange efficiency decreases. Therefore, the length of the communication region 23 formed inside the flat tube 2 is set to be substantially the same as or longer than the width w of the refrigerant flow path 6 and the width r 2 of the refrigerant flow path 8. In the present embodiment, for example, it is about 5 mm to 10 mm. Further, the length of the upstream inner fin 21 and the downstream inner fin 22 in the refrigerant flow direction (Y-axis direction) may not be equal, and the upstream inner fin 21 may be longer than the downstream inner fin 22. In this case, since the refrigerant flows from the lower header 3, the overall heat exchange efficiency is improved by making the upstream inner fin 21 longer.

尚、本実施例によれば上流側インナーフィン21と下流側インナーフィン22は同一の幅(ピッチ)を有した同一のインナーフィンを用い、一方のインナーフィンを他方のインナーフィンに対して幅の半分だけずらして配置するだけなので製造コストの面からも有利である。   According to this embodiment, the upstream inner fin 21 and the downstream inner fin 22 use the same inner fin having the same width (pitch), and one inner fin is wider than the other inner fin. This is advantageous from the viewpoint of manufacturing cost because it is only shifted by half.

次に本発明の第2の実施形態になる空気熱交換器を詳細に説明する。本実施例は下流側インナーフィン22の風上側の幅を風下側の幅より狭めたインナーフィンを使用している点で実施例1と異なっている。   Next, an air heat exchanger according to a second embodiment of the present invention will be described in detail. This embodiment is different from the first embodiment in that an inner fin is used in which the width on the windward side of the downstream inner fin 22 is narrower than the width on the leeward side.

図5、図6は第2の実施形態になる空気熱交換器1の扁平管2および扁平管2に内装された上流側インナーフィン21および下流側インナーフィン22を示している。図5は冷媒の流れ方向に直交するxz面の断面を示し、図6は冷媒の流れ方向に沿ったyz面の断面を示している。   5 and 6 show the flat tube 2 of the air heat exchanger 1 according to the second embodiment and the upstream inner fin 21 and the downstream inner fin 22 that are housed in the flat tube 2. 5 shows a cross section of the xz plane perpendicular to the refrigerant flow direction, and FIG. 6 shows a cross section of the yz plane along the refrigerant flow direction.

実施例1と同様に、扁平管2には上流側インナーフィン21と下流側インナーフィン22の2つのコルゲート形状のインナーフィンが内装されて、複数の上流側冷媒流路6と、複数の下流側冷媒流路7、8とが形成されている。   As in the first embodiment, the flat tube 2 is provided with two corrugated inner fins, that is, an upstream inner fin 21 and a downstream inner fin 22, and includes a plurality of upstream refrigerant channels 6 and a plurality of downstream sides. Refrigerant channels 7 and 8 are formed.

ここで、扁平管内2に各冷媒流路6、7、8を形成するため、冷媒11の流れ方向から見て上流側に均一な幅のコルゲート形状の上流側インナーフィン21を内装し、下流側に上流側インナーフィン21と少なくとも1か所は幅の異なるコルゲート形状を有する下流側インナーフィン22を内装している。そして、この上流側インナーフィン21と下流側インナーフィン22の間に実施例1と同様に連通領域23を設けるようにしている。   Here, in order to form the respective refrigerant flow paths 6, 7, 8 in the flat tube 2, a corrugated upstream inner fin 21 having a uniform width is provided on the upstream side when viewed from the flow direction of the refrigerant 11, and the downstream side In addition, at least one location with the upstream inner fin 21 is provided with a downstream inner fin 22 having a corrugated shape having a different width. A communication region 23 is provided between the upstream inner fin 21 and the downstream inner fin 22 as in the first embodiment.

上流側インナーフィン21はコルゲート形状の幅(ピッチ)を略均一としているため、上流側インナーフィン21によって形成される冷媒流路6の幅Wは均一となる。一方で、下流側インナーフィン22は、コルゲート形状の風上側の幅(ピッチ)を風下側の幅(ピッチ)に比べて冷媒の流通面積を狭くしている。これにより、下流側の冷媒流路7、8では風上側には幅の狭い冷媒流路7が形成され、風下側は上流側冷媒流路6と同じ幅rの冷媒流路8が形成される。よって、実施例1と同様にr<r2、=Wの関係を有している。Since the upstream inner fin 21 has a substantially uniform corrugated width (pitch), the width W of the coolant channel 6 formed by the upstream inner fin 21 is uniform. On the other hand, the downstream inner fins 22 have a corrugated-shaped windward side width (pitch) narrower than the leeward side width (pitch) in the refrigerant circulation area. Thus, the narrow coolant flow path 7 width is formed on the downstream side windward side in the refrigerant passage 7 and 8, the leeward side refrigerant flow path 8 of the same width r 2 and the upstream side refrigerant passage 6 is formed The Therefore, similar to the first embodiment, r 1 <r 2 and r 2 = W are satisfied.

また、実施例1と同様に上流側インナーフィン21によって形成された冷媒流路6の出口6Bを延長した仮想線上に、下流側インナーフィン22によって形成される冷媒流路7,8の入口7A、8Aが冷媒の流れ方向から見て重ならないようにずらされている。   Similarly to the first embodiment, on the imaginary line extending the outlet 6B of the refrigerant flow path 6 formed by the upstream inner fins 21, the inlets 7A of the refrigerant flow paths 7, 8 formed by the downstream inner fins 22, 8A is shifted so as not to overlap when viewed from the flow direction of the refrigerant.

ここで、幅(ピッチ)の狭いインナーフィンと幅(ピッチ)の広いインナーフィンを連続して一体的に形成して扁平管2に内装することも可能であるが、幅(ピッチ)の狭いインナーフィンと幅(ピッチ)の広いインナーフィンを個別に形成し、両者を組み合わせて扁平管2に内装することも可能である。したがって、製造装置、製造コスト等を考慮して適切な方法を採用すればよい。   Here, it is possible to continuously and integrally form a narrow width (pitch) inner fin and a wide width (pitch) inner fin in the flat tube 2; It is also possible to individually form fins and wide inner fins having a wide width (pitch), and to combine them in the flat tube 2. Therefore, an appropriate method may be adopted in consideration of the manufacturing apparatus, manufacturing cost, and the like.

以上のような構成において、冷媒11が上流側の冷媒流路6を通過したのち、下流側インナーフィン22と上流側インナーフィン21の間に形成した連通領域23に到達すると、この連通領域23には下流側インナーフィン22と上流側インナーフィン21がないため、冷媒の流動方向に対して直交する方向、すなわちZ軸方向にも移動することができる環境となっている。   In the configuration as described above, when the refrigerant 11 reaches the communication area 23 formed between the downstream inner fin 22 and the upstream inner fin 21 after passing through the upstream refrigerant flow path 6, the communication area 23 enters the communication area 23. Since there are no downstream inner fins 22 and upstream inner fins 21, it is an environment that can also move in the direction perpendicular to the refrigerant flow direction, that is, in the Z-axis direction.

そして、上流側冷媒流路6の出口6Bと下流側冷媒流路7、8の出口7A、8Aとは開口部分が冷媒の流れ方向から見て重ならないようにずれているため、上流側冷媒流路6の出口6Bから流れ出た冷媒(液相及び気相を含む)は下流側冷媒流路7、8の入口7A、8Aの壁端面と衝突する。この入口7A、8Aの端面の衝突部分において冷媒は入口7A、8Aの壁端面の存在によってその進行方向を変えられる。   Since the outlet 6B of the upstream refrigerant flow path 6 and the outlets 7A and 8A of the downstream refrigerant flow paths 7 and 8 are shifted so that the opening portions do not overlap when viewed from the flow direction of the refrigerant, the upstream refrigerant flow The refrigerant (including the liquid phase and the gas phase) flowing out from the outlet 6B of the path 6 collides with the wall end surfaces of the inlets 7A and 8A of the downstream refrigerant flow paths 7 and 8. In the collision portion of the end surfaces of the inlets 7A and 8A, the traveling direction of the refrigerant is changed by the presence of the wall end surfaces of the inlets 7A and 8A.

方向を変えられた冷媒は渦を生じたりして乱流となり、この乱流はさらに隣接する冷媒の流れに影響を与えるので、連通領域23内で冷媒の流れは特許文献1の構造に比べて大きく乱れることになる。このため、連通領域23内においては上流側冷媒流路6の出口6Bから流れ出た冷媒の流速や圧力のばらつきが緩和され、下流側冷媒流路7、8の入口7A、8Aに流れ込む冷媒の分配比率の不均一を改善することができる。   The refrigerant whose direction has been changed becomes a turbulent flow by generating a vortex and this turbulent flow further affects the flow of the adjacent refrigerant. Therefore, the flow of the refrigerant in the communication region 23 is compared with the structure of Patent Document 1. It will be greatly disturbed. For this reason, in the communication region 23, the variation in the flow velocity and pressure of the refrigerant flowing out from the outlet 6B of the upstream refrigerant flow path 6 is alleviated, and the distribution of the refrigerant flowing into the inlets 7A and 8A of the downstream refrigerant flow paths 7 and 8 is reduced. The non-uniformity of the ratio can be improved.

更に、本実施例の構造においては、以下に説明するように熱交換効率の高い扁平管2の風上側に液相の冷媒が流れるため、熱交換器全体の熱交換効率を高めることができる。図6は扁平管2を流れる冷媒の挙動を説明する図であり、扁平管2の冷媒11の流れ方向に沿ったyz面の断面における連通領域23付近を拡大したものである。   Furthermore, in the structure of the present embodiment, the liquid-phase refrigerant flows to the windward side of the flat tube 2 having high heat exchange efficiency as described below, so that the heat exchange efficiency of the entire heat exchanger can be increased. FIG. 6 is a diagram for explaining the behavior of the refrigerant flowing through the flat tube 2, in which the vicinity of the communication region 23 in the cross section of the yz plane along the flow direction of the refrigerant 11 in the flat tube 2 is enlarged.

扁平管2の表面の熱伝達率は風下側より風上側の方が高いため、風下側に比べて風上側の方が交換熱量は多くなる。このため、扁平管2の上流側冷媒流路6に均一な分配比率の冷媒が導入されたとしても、冷媒流路6を流れるときに風上側の冷媒11との熱交換が進みやすいため、風上側では冷媒11と空気との熱交換が効率的に進められる。   Since the heat transfer coefficient on the surface of the flat tube 2 is higher on the leeward side than on the leeward side, the amount of exchange heat is higher on the leeward side than on the leeward side. For this reason, even if a refrigerant having a uniform distribution ratio is introduced into the upstream refrigerant flow path 6 of the flat tube 2, heat exchange with the windward refrigerant 11 easily proceeds when flowing through the refrigerant flow path 6. On the upper side, heat exchange between the refrigerant 11 and the air is efficiently advanced.

例えば、熱交換器1を蒸発器として使用する場合、風上側の上流側冷媒流路6を冷媒が通過するとき、液相14の冷媒11が気相15に相変化し、気相15が多い状態で連通領域23に到達する。一方で、風下側の上流側冷媒流路6を通過している冷媒11は熱交換効率が高くないため、液相14が多いまま連通領域23に到達する。   For example, when the heat exchanger 1 is used as an evaporator, when the refrigerant passes through the upstream-side refrigerant flow path 6 on the windward side, the refrigerant 11 in the liquid phase 14 changes to the gas phase 15 and the gas phase 15 is large. The communication area 23 is reached in a state. On the other hand, the refrigerant 11 passing through the upstream-side refrigerant flow path 6 on the leeward side does not have high heat exchange efficiency, and therefore reaches the communication region 23 with a large amount of the liquid phase 14.

連通領域23に到達した冷媒11は、冷媒流路6に対して直交する方向、すなわちz軸方向にも移動することができる。更に、下流側インナーフィン22によって形成される下流側冷媒流路7、8において、風上側は幅が狭い、つまり冷媒の流通面積を狭くした冷媒流路7となっている。ここで、気相15となった冷媒11は液相14に比べて流速が早いため、幅が狭い冷媒流路7ではなく、風下側の幅の広い冷媒流路8に流入しやすい傾向にある。   The refrigerant 11 that has reached the communication region 23 can also move in a direction orthogonal to the refrigerant flow path 6, that is, in the z-axis direction. Further, in the downstream refrigerant flow paths 7 and 8 formed by the downstream inner fins 22, the windward side is a refrigerant flow path 7 having a narrow width, that is, a refrigerant flow area narrowed. Here, since the refrigerant 11 that has become the gas phase 15 has a higher flow velocity than the liquid phase 14, it tends to easily flow into the wide refrigerant flow path 8 on the leeward side rather than the narrow refrigerant flow path 7. .

このため、空気と熱交換の完了した気相15は熱伝達率の低い風下側の下流側冷媒流路8に流入し易くなる。一方で、幅の狭い下流側冷媒流路7には液相14が毛管力によって流入しやすくなる。これらの相乗的な作用によって幅の狭い下流側冷媒流路7に液相を多く含む冷媒が多く流れるようになる。したがって、熱交換効率の高い風上側の下流側冷媒流路7に液相14が多く流れることで、熱交換器1全体としての空気と冷媒11の熱交換が効率的に行われるようになる。   For this reason, the gas phase 15 in which heat exchange with the air has been completed easily flows into the leeward downstream refrigerant passage 8 having a low heat transfer coefficient. On the other hand, the liquid phase 14 easily flows into the narrow downstream side refrigerant flow path 7 by capillary force. By these synergistic actions, a large amount of refrigerant containing a large amount of liquid phase flows in the narrow downstream side refrigerant flow path 7. Accordingly, a large amount of the liquid phase 14 flows through the upstream-side downstream refrigerant passage 7 having high heat exchange efficiency, so that heat exchange between the air and the refrigerant 11 as a whole is efficiently performed.

尚、風上側の幅の狭い下流側冷媒流路7は1か所でなくとも良く任意の数とすることができるが、本実施例では送風方向から見て扁平管2の1/3程度の長さに亘って設けている。発明者等の知見によれば、扁平管2の送風方向から見て風下側は熱交換効率がさほど高くなく、扁平管2の半分程度までが熱交換効率が高いものである。よって、幅の狭い下流側冷媒流路7は風上側から風下側に向かって扁平管2の半分程度の間に設けることが望ましい。   The downstream side refrigerant flow path 7 having a narrow width on the windward side is not limited to one, but can be an arbitrary number, but in this embodiment, it is about 1/3 of the flat tube 2 when viewed from the blowing direction. It is provided over the length. According to the knowledge of the inventors, the heat exchange efficiency is not so high on the leeward side when viewed from the blowing direction of the flat tube 2, and up to about half of the flat tube 2 has high heat exchange efficiency. Therefore, it is desirable to provide the narrow downstream side refrigerant flow path 7 between about a half of the flat tube 2 from the windward side toward the leeward side.

したがって、扁平管2には送風方向において、少なくとも幅の狭い(冷媒の流通面積が狭い)下流側冷媒流路7と幅の広い(冷媒の流通面積が広い)下流側冷媒流路8とが形成されることになる。   Accordingly, the flat pipe 2 is formed with at least a narrow downstream refrigerant passage 7 (in which the refrigerant circulation area is narrow) and a wide downstream refrigerant passage 8 in the air blowing direction. Will be.

次に本発明の第3の実施形態になる空気熱交換器を詳細に説明する。本実施例は下流側インナーフィン22の幅を風上側から風下側に向かって段階的に広めた点で実施例2と異なっている。   Next, an air heat exchanger according to a third embodiment of the present invention will be described in detail. This embodiment is different from the second embodiment in that the width of the downstream inner fin 22 is gradually increased from the windward side toward the leeward side.

図8、図9は第3の実施形態になる空気熱交換器1の扁平管2および扁平管2に内装された上流側インナーフィン21および下流側インナーフィン22を示している。図7は冷媒の流れ方向に直交するxz面の断面を示し、図8は冷媒の流れ方向に沿ったyz面の断面を示している。   8 and 9 show a flat tube 2 and an upstream inner fin 21 and a downstream inner fin 22 housed in the flat tube 2 of the air heat exchanger 1 according to the third embodiment. 7 shows a cross section of the xz plane perpendicular to the refrigerant flow direction, and FIG. 8 shows a cross section of the yz plane along the refrigerant flow direction.

実施例2と同様に、上流側インナーフィン21はコルゲート形状の幅(ピッチ)が略一定であるので上流側冷媒流路6の幅は一定となる。一方で、下流側インナーフィン22はコルゲート形状の幅が風下側に比べて風上側は狭くなり、更に風下側に向かって徐々に幅が広がる形状となっている。つまり、下流側冷媒流路7、8の幅を風上側から幅x、幅x、幅xとした場合、x<x<xの関係を備えるように構成されている。また、上流側インナーフィン1の幅Wとの関係は、x1<x2=W<x3となっている。Similarly to the second embodiment, since the upstream inner fin 21 has a corrugated width (pitch) that is substantially constant, the width of the upstream refrigerant flow path 6 is constant. On the other hand, the downstream inner fin 22 has a corrugated width that is narrower on the leeward side than the leeward side, and further widens gradually toward the leeward side. That is, when the widths of the downstream refrigerant flow paths 7 and 8 are set to the width x 1 , the width x 2 , and the width x 3 from the windward side, they are configured to have a relationship of x 1 <x 2 <x 3 . The relationship with the width W of the upstream inner fin 1 is x1 <x2 = W <x3.

ここで、幅x1、幅x2、幅xのように幅(ピッチ)の異なるインナーフィン22を連続して一体的に形成して扁平管2に内装することも可能であるが、幅(ピッチ)の異なるインナーフィンを個別に形成し、これらを組み合わせて扁平管2に内装することも可能である。したがって、製造装置、製造コスト等を考慮して適切な方法を採用すればよい。   Here, inner fins 22 having different widths (pitch) such as width x1, width x2, and width x can be continuously and integrally formed in the flat tube 2, but the width (pitch) It is also possible to individually form different inner fins and combine them in the flat tube 2. Therefore, an appropriate method may be adopted in consideration of the manufacturing apparatus, manufacturing cost, and the like.

冷媒の挙動は実施例2にあるような構造の空気熱交換器1と同様の挙動を示し、その効果も実質的に同様である。   The behavior of the refrigerant shows the same behavior as that of the air heat exchanger 1 having the structure as in the second embodiment, and the effect thereof is substantially the same.

すなわち、上流側冷媒流路6の出口6Bと下流側冷媒流路7、8の入口7A、8Aとは開口部分が冷媒の流れ方向から見て重ならないようにずれているため、上流側冷媒流路6の出口6Bから流れ出た冷媒(液相及び気相を含む)は下流側冷媒流路7、8の入口7A、8A、8Cの壁端面と衝突する。この入口7A、8A、8Cの壁端面の衝突部分において冷媒は入口7A、8A、8Cの壁端面の存在によってその進行方向を変えられる。   That is, the outlet 6B of the upstream refrigerant flow path 6 and the inlets 7A and 8A of the downstream refrigerant flow paths 7 and 8 are shifted so that the opening portions do not overlap when viewed from the flow direction of the refrigerant. The refrigerant (including the liquid phase and the gas phase) flowing out from the outlet 6B of the path 6 collides with the wall end surfaces of the inlets 7A, 8A, and 8C of the downstream refrigerant flow paths 7 and 8. In the collision portion of the wall end surfaces of the inlets 7A, 8A, and 8C, the traveling direction of the refrigerant is changed by the presence of the wall end surfaces of the inlets 7A, 8A, and 8C.

方向を変えられた冷媒は渦を生じたりして乱流となり、この乱流はさらに隣接する冷媒の流れに影響を与えるので、連通領域23内で冷媒の流れは大きく乱れることになる。このため、連通領域23内においては上流側冷媒流路6の出口6Bから流れ出た冷媒の流速や圧力のばらつきが緩和され、下流側冷媒流路7、8の入口7A、8A、8Cに流れ込む冷媒の分配比率の不均一を改善することができる。   The refrigerant whose direction has been changed becomes a turbulent flow by generating a vortex, and this turbulent flow further affects the flow of the adjacent refrigerant, so that the flow of the refrigerant is greatly disturbed in the communication region 23. For this reason, in the communication area 23, the flow velocity and pressure variations of the refrigerant flowing out from the outlet 6B of the upstream refrigerant flow path 6 are alleviated, and the refrigerant flows into the inlets 7A, 8A, 8C of the downstream refrigerant flow paths 7, 8 This can improve the non-uniform distribution ratio.

更に、本実施例の構造においては、実施例2で説明したように熱交換効率の高い扁平管2の風上側に液相の冷媒が流れるため、熱交換器全体の熱交換効率を高めることができる。下流側インナーフィン22によって形成される下流側冷媒流路7、8において、風上側は幅が狭い冷媒流路7となっている。ここで、冷媒11の気相は液相に比べて流速が早いため、幅が狭い冷媒流路7ではなく、風下側の幅の広い冷媒流路8の入口8A、8Cに流入しやすい傾向にある。   Furthermore, in the structure of the present embodiment, as described in the second embodiment, since the liquid-phase refrigerant flows on the windward side of the flat tube 2 having a high heat exchange efficiency, the heat exchange efficiency of the entire heat exchanger can be increased. it can. In the downstream refrigerant flow paths 7 and 8 formed by the downstream inner fins 22, the refrigerant flow path 7 is narrow on the windward side. Here, since the gas phase of the refrigerant 11 has a higher flow velocity than the liquid phase, it tends to easily flow into the inlets 8A and 8C of the wide refrigerant flow path 8 on the leeward side rather than the narrow refrigerant flow path 7. is there.

このため、空気と熱交換の完了した気相は熱伝達率の低い風下側の下流側冷媒流路8の入口8A、8Cに流入し易くなる。一方で、幅の狭い下流側冷媒流路7には液相が毛管力によって流入しやすくなる。これらの相乗的な作用によって幅の狭い下流側冷媒流路7に液相を多く含む冷媒が多く流れるようになる。したがって、熱交換効率の高い風上側の下流側冷媒流路7に液相が多く流れることで、熱交換器1全体としての空気と冷媒11の熱交換が効率的に行われるようになる。   For this reason, the gas phase in which heat exchange with the air has been completed easily flows into the inlets 8A and 8C of the downstream refrigerant flow path 8 on the leeward side having a low heat transfer coefficient. On the other hand, the liquid phase easily flows into the narrow downstream side refrigerant flow path 7 by capillary force. By these synergistic actions, a large amount of refrigerant containing a large amount of liquid phase flows in the narrow downstream side refrigerant flow path 7. Therefore, a large amount of liquid phase flows through the upstream-side downstream refrigerant flow path 7 with high heat exchange efficiency, so that heat exchange between the air and the refrigerant 11 as a whole is efficiently performed.

本実施例においては、最も幅の広い入口8Cを有する下流側冷媒流路8を扁平管2の最風下側に配置したのは、冷媒中の気相が開口面積の大きい通路に流れることを利用して熱交換にさほど貢献しない最風下側に気相をより集めることを期待したものである。これによって、冷媒の全体からみると風上側の幅の狭い下流側冷媒流路7側に液相が多く含まれた冷媒を流すことができるようになる。したがって、熱交換器1全体としての空気と冷媒11の熱交換が効率的に行われるようになる。   In the present embodiment, the downstream refrigerant flow path 8 having the widest inlet 8C is arranged on the most leeward side of the flat tube 2 because the gas phase in the refrigerant flows through a passage having a large opening area. It was hoped that the gas phase would be gathered more on the leeward side that does not contribute much to heat exchange. As a result, it is possible to flow a refrigerant containing a large amount of liquid phase toward the downstream refrigerant flow path 7 having a narrow width on the windward side when viewed from the whole refrigerant. Therefore, heat exchange between the air and the refrigerant 11 as the entire heat exchanger 1 is efficiently performed.

次に本発明の第4の実施形態になる空気熱交換器を詳細に説明する。本実施例は連通領域23Aを風上側から風下側に向かって所定の角度だけ傾けた点で実施例2と異なっている。尚、本実施例では上流側冷媒流路6とこれと同じ幅を有する下流側冷媒通路8はその出口6Bと入口8Aを重なるように対向させている。   Next, an air heat exchanger according to a fourth embodiment of the present invention will be described in detail. The present embodiment is different from the second embodiment in that the communication area 23A is inclined by a predetermined angle from the windward side toward the leeward side. In the present embodiment, the upstream side refrigerant flow path 6 and the downstream side refrigerant path 8 having the same width are opposed to each other so that the outlet 6B and the inlet 8A overlap each other.

図10、図11は第4の実施形態になる空気熱交換器1の扁平管2および扁平管2に内装された上流側インナーフィン21および下流側インナーフィン22を示している。図10は冷媒の流れ方向に直交するxz面の断面を示し、図11は冷媒の流れ方向に沿ったyz面の断面を示している。   10 and 11 show a flat tube 2 and an upstream inner fin 21 and a downstream inner fin 22 housed in the flat tube 2 of the air heat exchanger 1 according to the fourth embodiment. 10 shows a cross section of the xz plane orthogonal to the refrigerant flow direction, and FIG. 11 shows a cross section of the yz plane along the refrigerant flow direction.

実施例2と同様に、上流側インナーフィン21はコルゲート形状の幅(ピッチ)が略一定であるので上流側冷媒流路6の幅は一定となる。一方で、下流側インナーフィン22はコルゲート形状の幅が風下側に比べて風上側は狭くなっている。したがって、少なくとも幅が狭い入口7Aを有する下流側冷媒流路7において冷媒は実施例2と同様の挙動を振る舞うようになる。   Similarly to the second embodiment, since the upstream inner fin 21 has a corrugated width (pitch) that is substantially constant, the width of the upstream refrigerant flow path 6 is constant. On the other hand, the downstream inner fin 22 has a corrugated width that is narrower on the leeward side than on the leeward side. Therefore, the refrigerant behaves in the same manner as in the second embodiment in the downstream side refrigerant flow path 7 having at least the narrow inlet 7A.

すなわち、上流側冷媒流路6の出口6Bと下流側冷媒流路7の入口7Aとは開口部分が冷媒の流れ方向から見て重ならないようにずれているため、上流側冷媒流路6の出口6Bから流れ出た冷媒(液相及び気相を含む)は下流側冷媒流路7の入口7Aの壁端面と衝突する。この入口7Aの壁端面の衝突部分において冷媒は入口7Aの壁端面の存在によってその進行方向を変えられる。   That is, the outlet 6B of the upstream refrigerant flow path 6 and the inlet 7A of the downstream refrigerant flow path 7 are offset so that the opening portions do not overlap when viewed from the refrigerant flow direction. The refrigerant (including the liquid phase and the gas phase) flowing out from 6B collides with the wall end surface of the inlet 7A of the downstream refrigerant flow path 7. In the collision portion of the wall end surface of the inlet 7A, the traveling direction of the refrigerant is changed by the presence of the wall end surface of the inlet 7A.

方向を変えられた冷媒は渦を生じたりして乱流となり、この乱流はさらに隣接する冷媒の流れに影響を与えるので、連通領域23A内で冷媒の流れは大きく乱れることになる。このため、連通領域23A内においては上流側冷媒流路6の出口6Bから流れ出た冷媒の流速や圧力のばらつきが緩和され、下流側冷媒流路7の入口7Aに流れ込む冷媒の分配比率の不均一を改善することができる。   The refrigerant whose direction has been changed becomes a turbulent flow by generating a vortex, and this turbulent flow further affects the flow of the adjacent refrigerant, so that the flow of the refrigerant is greatly disturbed in the communication region 23A. For this reason, in the communication area 23A, variations in the flow velocity and pressure of the refrigerant flowing out from the outlet 6B of the upstream refrigerant flow path 6 are alleviated, and the distribution ratio of the refrigerant flowing into the inlet 7A of the downstream refrigerant flow path 7 is uneven. Can be improved.

更に、本実施例の構造においては、実施例2で説明したように熱交換効率の高い扁平管2の風上側に液相の冷媒が流れるため、熱交換器全体の熱交換効率を高めることができる。下流側インナーフィン22によって形成される下流側冷媒流路7において、風上側は幅が狭い冷媒流路7となっている。ここで、冷媒11の気相は液相に比べて流速が早いため、幅が狭い冷媒流路7ではなく、風下側の幅の広い冷媒流路8の入口8Aに流入しやすい傾向にある。   Furthermore, in the structure of the present embodiment, as described in the second embodiment, since the liquid-phase refrigerant flows on the windward side of the flat tube 2 having a high heat exchange efficiency, the heat exchange efficiency of the entire heat exchanger can be increased. it can. In the downstream refrigerant flow path 7 formed by the downstream inner fins 22, the windward side is a narrow refrigerant flow path 7. Here, since the gas phase of the refrigerant 11 has a higher flow velocity than the liquid phase, the refrigerant 11 tends to easily flow into the inlet 8A of the refrigerant passage 8 having a wide width on the leeward side instead of the narrow refrigerant passage 7.

このため、空気と熱交換の完了した気相は熱伝達率の低い風下側の下流側冷媒流路8の入口8Aに流入し易くなる。一方で、幅の狭い下流側冷媒流路7には液相が毛管力によって流入しやすくなる。これらの相乗的な作用によって幅の狭い下流側冷媒流路7に液相を多く含む冷媒が多く流れるようになる。したがって、熱交換効率の高い風上側の下流側冷媒流路7に液相が多く流れることで、熱交換器1全体としての空気と冷媒11の熱交換が効率的に行われるようになる。   For this reason, the gas phase in which the heat exchange with the air has been completed easily flows into the inlet 8A of the downstream-side refrigerant flow path 8 on the leeward side having a low heat transfer coefficient. On the other hand, the liquid phase easily flows into the narrow downstream side refrigerant flow path 7 by capillary force. By these synergistic actions, a large amount of refrigerant containing a large amount of liquid phase flows in the narrow downstream side refrigerant flow path 7. Therefore, a large amount of liquid phase flows through the upstream-side downstream refrigerant flow path 7 with high heat exchange efficiency, so that heat exchange between the air and the refrigerant 11 as a whole is efficiently performed.

尚、上流側冷媒流路6とこれと同じ幅を有する下流側冷媒通路8はその出口6Bと入口8Aを冷媒の流れ方向から見て重なるように対向させているので、冷媒は速度を落とさないでそのまま進行していく割合が多くなるが、風下側は上述したようにさほど熱交換効率が高くないので大きな問題とならない。その代りこの部分は冷媒の流速が速いので、幅が狭い入口7Aで分離された冷媒11の気相を取り込む効果が期待でき、幅が狭い入口7Aを備えた下流側冷媒通路7に液相を多く含む冷媒を送ることができるようになる。   Since the upstream refrigerant flow path 6 and the downstream refrigerant passage 8 having the same width are opposed to each other so that the outlet 6B and the inlet 8A overlap each other when viewed from the flow direction of the refrigerant, the refrigerant does not slow down. However, since the heat exchange efficiency is not so high on the leeward side as described above, it does not become a big problem. Instead, since the flow velocity of the refrigerant is high in this portion, the effect of taking in the gas phase of the refrigerant 11 separated at the narrow inlet 7A can be expected, and the liquid phase is put into the downstream refrigerant passage 7 having the narrow inlet 7A. A refrigerant containing a large amount can be sent.

また、本実施例において連通領域23Aは風上側から風下側に冷媒の進行方向に向かって所定の角度を備えて傾斜して形成されている。このため、送風ファンによって流れる最風上側の連通領域23Aを流れる空気はその進行方向において、徐々に連通領域23Aがずれていくことになるので扁平管2の局所的な熱交換効率の低下を防ぐことができる。つまり、連通領域23Aは冷媒11と扁平管2との接触面積が小さいため熱交換効率が高くない。このため実施例2のように連通領域23Aと空気10の流れが平行であると、局所的に空気10と扁平管2の熱交換効率が低下する。しかし、本実施例のように連通流路23Aが空気10の流れ方向に対して傾いていることで扁平管2の局所的な熱交換効率の低下を防ぐことができる。   In the present embodiment, the communication region 23A is formed to be inclined at a predetermined angle from the windward side to the leeward side in the direction of the refrigerant. For this reason, since the communication area 23A is gradually displaced in the traveling direction of the air flowing through the uppermost communication area 23A flowing by the blower fan, the local heat exchange efficiency of the flat tube 2 is prevented from being lowered. be able to. That is, since the contact area between the refrigerant 11 and the flat tube 2 is small in the communication region 23A, the heat exchange efficiency is not high. For this reason, when the flow of the communication region 23A and the air 10 is parallel as in the second embodiment, the heat exchange efficiency between the air 10 and the flat tube 2 is locally reduced. However, since the communication flow path 23A is inclined with respect to the flow direction of the air 10 as in the present embodiment, it is possible to prevent the local heat exchange efficiency of the flat tube 2 from being lowered.

尚、図11にある幅の広い下流側冷媒流路8は第2実施例にあるように、上流側インナーフィン21によって形成された冷媒流路6の出口6Bを延長した仮想線上に、下流側インナーフィン22によって形成される幅の広い冷媒流路8の入口8Aが冷媒の流れ方向から見て重ならないようにずらされるように構成しても良い。   The wide downstream side refrigerant flow path 8 shown in FIG. 11 is on the downstream side on the imaginary line extending the outlet 6B of the refrigerant flow path 6 formed by the upstream inner fins 21 as in the second embodiment. You may comprise so that the inlet 8A of the wide refrigerant | coolant flow path 8 formed by the inner fin 22 may be shifted so that it may not overlap, seeing from the flow direction of a refrigerant | coolant.

次に本発明の第5の実施形態になる空気熱交換器を詳細に説明する。本実施例は幅の狭い下流側冷媒流路7、幅が上流側冷媒流路6の出口6Bと同じ下流側冷媒流路8、及び上流側冷媒流路と下流側冷媒通路を連続して形成した連続冷媒流路9を設けた点で実施例2と異なっている。   Next, an air heat exchanger according to a fifth embodiment of the present invention will be described in detail. In this embodiment, a narrow downstream refrigerant passage 7, a downstream refrigerant passage 8 having the same width as the outlet 6B of the upstream refrigerant passage 6, and an upstream refrigerant passage and a downstream refrigerant passage are formed continuously. The second embodiment is different from the second embodiment in that the continuous refrigerant flow path 9 is provided.

図12、図13は第5の実施形態になる空気熱交換器1の扁平管2および扁平管2に内装された上流側インナーフィン21および下流側インナーフィン22を示している。図12は冷媒の流れ方向に直交するxz面の断面を示し、図13は冷媒の流れ方向に沿ったyz面の断面を示している。
ここで、上流側の冷媒流路6と下流側の冷媒流路7は2つのインナーフィンを用いて別々に形成していなくともよく、一体のインナーフィン20に風上側から風下側に向かって所定の範囲にわたって連続する連通領域23を形成されている。このとき、連通領域23はインナーフィン20の風上側に形成し、上流側の冷媒流路6と下流側の冷媒流路7を形成する。風下側は、扁平管2の下端から上端まで連通し、互いに独立する冷媒流路9を形成する。また、下流側冷媒流路7は風上側で幅が狭く、これより風下側で広い幅を有する冷媒流路8として構成されている。尚、本実施例では上流側冷媒流路6とこれと同じ幅を有する下流側冷媒通路8はその出口6Bと入口8Aを重なるように対向させている。
12 and 13 show a flat tube 2 and an upstream inner fin 21 and a downstream inner fin 22 housed in the flat tube 2 of the air heat exchanger 1 according to the fifth embodiment. 12 shows a cross section of the xz plane perpendicular to the refrigerant flow direction, and FIG. 13 shows a cross section of the yz plane along the refrigerant flow direction.
Here, the upstream side refrigerant flow path 6 and the downstream side refrigerant flow path 7 do not have to be formed separately using two inner fins, and the inner fin 20 has a predetermined shape from the windward side toward the leeward side. A continuous communication region 23 is formed over the range. At this time, the communication region 23 is formed on the windward side of the inner fin 20 to form the upstream refrigerant flow path 6 and the downstream refrigerant flow path 7. The leeward side communicates from the lower end to the upper end of the flat tube 2 and forms independent coolant channels 9. The downstream refrigerant flow path 7 is configured as a refrigerant flow path 8 having a narrow width on the windward side and a wider width on the leeward side. In the present embodiment, the upstream side refrigerant flow path 6 and the downstream side refrigerant path 8 having the same width are opposed to each other so that the outlet 6B and the inlet 8A overlap each other.

そして、本実施例において上流側インナーフィン21はコルゲート形状の幅(ピッチ)が略一定であるので上流側冷媒流路6の幅は一定となる。一方で、インナーフィン20のコルゲート形状の幅が風下側に比べて風上側は狭くなっている。したがって、少なくとも幅が狭い入口7Aを有する下流側冷媒流路7において冷媒は実施例2と同様の挙動を振る舞うようになる。   In this embodiment, the upstream inner fin 21 has a corrugated width (pitch) that is substantially constant, so the upstream refrigerant flow path 6 has a constant width. On the other hand, the corrugated width of the inner fin 20 is narrower on the leeward side than on the leeward side. Therefore, the refrigerant behaves in the same manner as in the second embodiment in the downstream side refrigerant flow path 7 having at least the narrow inlet 7A.

すなわち、上流側冷媒流路6の出口6Bと下流側冷媒流路7の入口7Aとは開口部分が冷媒の流れ方向から見て重ならないようにずれているため、上流側冷媒流路6の出口6Bから流れ出た冷媒(液相及び気相を含む)は下流側冷媒流路7の入口7Aの壁端面と衝突する。この入口7Aの壁端面の衝突部分において冷媒は入口7Aの壁端面の存在によってその進行方向を変えられる。   That is, the outlet 6B of the upstream refrigerant flow path 6 and the inlet 7A of the downstream refrigerant flow path 7 are offset so that the opening portions do not overlap when viewed from the refrigerant flow direction. The refrigerant (including the liquid phase and the gas phase) flowing out from 6B collides with the wall end surface of the inlet 7A of the downstream refrigerant flow path 7. In the collision portion of the wall end surface of the inlet 7A, the traveling direction of the refrigerant is changed by the presence of the wall end surface of the inlet 7A.

方向を変えられた冷媒は渦を生じたりして乱流となり、この乱流はさらに隣接する冷媒の流れに影響を与えるので、連通領域23内で冷媒の流れは大きく乱れることになる。このため、連通領域23内においては上流側冷媒流路6の出口6Bから流れ出た冷媒の流速や圧力のばらつきが緩和され、下流側冷媒流路7の入口7Aに流れ込む冷媒の分配比率の不均一を改善することができる。   The refrigerant whose direction has been changed becomes a turbulent flow by generating a vortex, and this turbulent flow further affects the flow of the adjacent refrigerant, so that the flow of the refrigerant is greatly disturbed in the communication region 23. For this reason, in the communication region 23, the variation in the flow velocity and pressure of the refrigerant flowing out from the outlet 6B of the upstream refrigerant flow path 6 is alleviated, and the distribution ratio of the refrigerant flowing into the inlet 7A of the downstream refrigerant flow path 7 is uneven. Can be improved.

更に、本実施例の構造においては、実施例2で説明したように熱交換効率の高い扁平管2の風上側に液相の冷媒が流れるため、熱交換器全体の熱交換効率を高めることができるインナーフィン20によって形成される下流側冷媒流路7において、風上側は幅が狭い冷媒流路7となっている。ここで、冷媒11の気相は液相に比べて流速が早いため、幅が狭い冷媒流路7ではなく、風下側の幅の広い冷媒流路8の入口8Aに流入しやすい傾向にある。   Furthermore, in the structure of the present embodiment, as described in the second embodiment, since the liquid-phase refrigerant flows on the windward side of the flat tube 2 having a high heat exchange efficiency, the heat exchange efficiency of the entire heat exchanger can be increased. In the downstream refrigerant flow path 7 formed by the inner fins 20 that can be formed, the windward side is a refrigerant flow path 7 having a narrow width. Here, since the gas phase of the refrigerant 11 has a higher flow velocity than the liquid phase, the refrigerant 11 tends to easily flow into the inlet 8A of the refrigerant passage 8 having a wide width on the leeward side instead of the narrow refrigerant passage 7.

このため、空気と熱交換の完了した気相は熱伝達率の低い風下側の下流側冷媒流路8の入口8Aに流入し易くなる。一方で、幅の狭い下流側冷媒流路7には液相が毛管力によって流入しやすくなる。これらの相乗的な作用によって幅の狭い下流側冷媒流路7に液相を多く含む冷媒が多く流れるようになる。したがって、熱交換効率の高い風上側の下流側冷媒流路7に液相が多く流れることで、熱交換器1全体としての空気と冷媒11の熱交換が効率的に行われるようになる。   For this reason, the gas phase in which the heat exchange with the air has been completed easily flows into the inlet 8A of the downstream-side refrigerant flow path 8 on the leeward side having a low heat transfer coefficient. On the other hand, the liquid phase easily flows into the narrow downstream side refrigerant flow path 7 by capillary force. By these synergistic actions, a large amount of refrigerant containing a large amount of liquid phase flows in the narrow downstream side refrigerant flow path 7. Therefore, a large amount of liquid phase flows through the upstream-side downstream refrigerant flow path 7 with high heat exchange efficiency, so that heat exchange between the air and the refrigerant 11 as a whole is efficiently performed.

上流側冷媒流路6とこれと同じ幅を有する下流側冷媒通路8はその出口6Bと入口8Aを冷媒の流れ方向から見て重なるように対向させているので、冷媒は速度を落とさないでそのまま進行していく割合が多くなるが、風下側は上述したようにさほど熱交換効率が高くないので大きな問題とならない。その代り、この部分は冷媒の流速が速いので、幅が狭い入口7Aで分離された冷媒11の気相を取り込む効果が期待でき、幅が狭い入口7Aを備えた下流側冷媒通路7に液相を多く含む冷媒を送ることができるようになる。
尚、扁平管2の風下側は熱伝達効率が低いため、風上側の冷媒流路7を流れる冷媒11に対して分配比率が不均一であっても熱交換器1全体に対する熱交換効率への影響は小さいのでさほど問題とならない。
Since the upstream refrigerant flow path 6 and the downstream refrigerant passage 8 having the same width are opposed to each other so that the outlet 6B and the inlet 8A overlap each other when viewed from the flow direction of the refrigerant, the refrigerant remains as it is without reducing the speed. Although the rate of progress increases, the leeward side does not have a large problem because the heat exchange efficiency is not so high as described above. Instead, since the flow rate of the refrigerant is high in this portion, the effect of taking in the gas phase of the refrigerant 11 separated at the narrow inlet 7A can be expected, and the liquid phase is introduced into the downstream refrigerant passage 7 having the narrow inlet 7A. It becomes possible to send a refrigerant containing a large amount.
In addition, since the heat transfer efficiency is low on the leeward side of the flat tube 2, even if the distribution ratio is not uniform with respect to the refrigerant 11 flowing through the refrigerant channel 7 on the windward side, the heat exchange efficiency for the entire heat exchanger 1 can be improved. The impact is small so it doesn't matter much.

本実施例においては、扁平管2に内装するインナーフィン20を一体で形成しているため、インナーフィン20を扁平管2にロー付けする際の取り扱いが容易になり、上流側冷媒流路6と下流側冷媒流路7の間に形成する連通う領域23の幅を均一に保つことができ、熱交換器1に配置する複数の扁平管2の品質を均一に保つことができる。このとき、扁平管2の内部を連通する冷媒流路9の数は1か所以上で任意に定めることができる。   In the present embodiment, since the inner fins 20 provided in the flat tube 2 are integrally formed, handling when the inner fins 20 are brazed to the flat tubes 2 is facilitated, and the upstream side refrigerant flow path 6 and The width of the communicating region 23 formed between the downstream refrigerant flow paths 7 can be kept uniform, and the quality of the plurality of flat tubes 2 arranged in the heat exchanger 1 can be kept uniform. At this time, the number of the refrigerant flow paths 9 communicating with the inside of the flat tube 2 can be arbitrarily determined at one or more places.

最後に、本発明においては複数の実施例を提案したが、夫々の実施例を単独で実施しても良いし、更に2つ以上の実施例を適宜組み合わせてより適切な実施例とすることも可能である。   Finally, although a plurality of embodiments have been proposed in the present invention, each embodiment may be implemented alone, or two or more embodiments may be appropriately combined to form a more suitable embodiment. Is possible.

1…空気熱交換器、2…扁平管、3…ヘッダ、5…伝熱フィン、6…上流側冷媒流路、6A…入口、6B…出口、7…幅の狭い下流側冷媒流路、8…幅の広い下流側冷媒流路、7A、8A…入口、7B、8B…入口、9…独立連通冷媒流路、10…送風方向、11、12…冷媒、14…液相冷媒、15…気相冷媒、20…連続インナーフィン、21…上流側インナーフィン、22…下流側インナーフィン、23…連通領域。   DESCRIPTION OF SYMBOLS 1 ... Air heat exchanger, 2 ... Flat tube, 3 ... Header, 5 ... Heat transfer fin, 6 ... Upstream refrigerant flow path, 6A ... Inlet, 6B ... Outlet, 7 ... Narrow downstream refrigerant flow path, 8 ... Wide downstream refrigerant flow path, 7A, 8A ... Inlet, 7B, 8B ... Inlet, 9 ... Independent communication refrigerant flow path, 10 ... Air blowing direction, 11, 12 ... Refrigerant, 14 ... Liquid phase refrigerant, 15 ... Gas Phase refrigerant, 20 ... continuous inner fin, 21 ... upstream inner fin, 22 ... downstream inner fin, 23 ... communication region.

Claims (13)

扁平管内に設けられ、冷媒の流れ方向に沿って配置された複数の仕切壁によって複数の上流側冷媒流路を形成する上流側インナーフィンと、
前記扁平管内に設けられ、前記夫々の上流側冷媒流路の下流において前記夫々の上流側冷媒流路の出口を繋ぐと共に前記仕切壁が存在しない連通領域と、
前記扁平管内に設けられ、前記連通領域の下流において冷媒の流れ方向に沿って配置された複数の仕切壁によって複数の下流側冷媒流路を形成する下流側インナーフィンとよりなり、
前記下流側冷媒流路の少なくとも一つの前記下流側冷媒流路の入口と前記上流側冷媒流路の出口とは冷媒の流れから見てずれて重ならない位置に配置されていると共に
前記扁平管の風上側の前記下流側冷媒流路は風下側の前記下流側冷媒流路より狭く構成されていることを特徴とする空気熱交換器
An upstream inner fin which is provided in the flat tube and forms a plurality of upstream refrigerant flow paths by a plurality of partition walls arranged along the flow direction of the refrigerant;
A communication region that is provided in the flat tube and connects an outlet of each upstream refrigerant flow path downstream of each upstream refrigerant flow path and does not have the partition wall;
It is provided in the flat tube, and comprises downstream inner fins that form a plurality of downstream refrigerant flow paths by a plurality of partition walls arranged along the refrigerant flow direction downstream of the communication region,
The inlet of at least one of the downstream refrigerant flow paths and the outlet of the upstream refrigerant flow path of the downstream refrigerant flow path are arranged at positions that do not overlap with each other when viewed from the flow of the refrigerant,
The air heat exchanger, wherein the downstream refrigerant flow path on the windward side of the flat tube is configured to be narrower than the downstream refrigerant flow path on the leeward side .
請求項1に記載の空気熱交換器において
前記上流側インナーフィンと前記下流側インナーフィンの仕切壁の幅(ピッチ)は略同一であって、前記上流側インナーフィンに対して前記下流側インナーフィンは冷媒の流れから見てずれて配置されていることを特徴とする空気熱交換器
The air heat exchanger according to claim 1 ,
The width (pitch) of the partition walls of the upstream inner fin and the downstream inner fin is substantially the same, and the downstream inner fin is arranged so as to be displaced from the refrigerant flow with respect to the upstream inner fin. An air heat exchanger characterized by that .
請求項1或いは請求項2に記載の空気熱交換器において
前記上流側インナーフィンと前記下流側インナーフィンは、冷媒の流動方向に直交する断面が曲線状の波打った複数の仕切壁を形成する形状、三角形が繰り返される複数の仕切壁を形成する形状、矩形が繰り返される複数の仕切壁を形成する形状の少なくとも一つであることを特徴とする空気熱交換器
In the air heat exchanger according to claim 1 or 2 ,
The upstream inner fin and the downstream inner fin have a shape that forms a plurality of wavy partition walls having a curved cross section perpendicular to the refrigerant flow direction, a shape that forms a plurality of partition walls in which triangles are repeated, An air heat exchanger, wherein the air heat exchanger is at least one of shapes forming a plurality of partition walls in which a rectangle is repeated .
請求項2に記載の空気熱交換器において、
前記上流側インナーフィンに対して前記下流側インナーフィンは冷媒の流れから見て前記下流側インナーフィンの幅の半分の幅だけずれて配置されていることを特徴とする空気熱交換器
The air heat exchanger according to claim 2,
The air heat exchanger according to claim 1, wherein the downstream inner fin is disposed so as to be shifted from the upstream inner fin by half the width of the downstream inner fin as viewed from the flow of the refrigerant .
扁平管内に設けられ、冷媒の流れ方向に沿って配置された複数の仕切壁によって複数の上流側冷媒流路を形成する上流側インナーフィンと、
前記扁平管内に設けられ、前記夫々の上流側冷媒流路の下流において前記夫々の上流側冷媒流路の出口を繋ぐと共に前記仕切壁が存在しない連通領域と
前記扁平管内に設けられ、前記連通領域の下流において冷媒の流れ方向に沿って配置された複数の仕切壁によって複数の下流側冷媒流路を形成する下流側インナーフィンとよりなり
前記扁平管の風上側の前記下流側冷媒流路は風下側の前記下流側冷媒流路、及び前記上流側冷媒流路より狭く構成されていることを特徴とする空気熱交換器
An upstream inner fin which is provided in the flat tube and forms a plurality of upstream refrigerant flow paths by a plurality of partition walls arranged along the flow direction of the refrigerant ;
A communication region that is provided in the flat tube and connects an outlet of each upstream refrigerant flow path downstream of each upstream refrigerant flow path and does not have the partition wall ;
It is provided in the flat tube, and comprises downstream inner fins that form a plurality of downstream refrigerant flow paths by a plurality of partition walls arranged along the refrigerant flow direction downstream of the communication region ,
The air heat exchanger characterized in that the downstream refrigerant flow path on the windward side of the flat tube is configured to be narrower than the downstream refrigerant flow path on the leeward side and the upstream refrigerant flow path .
請求項5に記載の空気熱交換器において
前記上流側インナーフィンと前記下流側インナーフィンは、冷媒の流動方向に直交する断面が曲線状の波打った複数の仕切壁を形成する形状、三角形が繰り返される複数の仕切壁を形成する形状、矩形が繰り返される複数の仕切壁を形成する形状の少なくとも一つであることを特徴とする空気熱交換器
The air heat exchanger according to claim 5 ,
The upstream inner fin and the downstream inner fin have a shape that forms a plurality of wavy partition walls having a curved cross section perpendicular to the refrigerant flow direction, a shape that forms a plurality of partition walls in which triangles are repeated, An air heat exchanger, wherein the air heat exchanger is at least one of shapes forming a plurality of partition walls in which a rectangle is repeated .
請求項6に記載の空気熱交換器において
前記扁平管の風上側から見て前記扁平管の1/3〜1/2の範囲にある前記下流側冷媒流路は風下側の前記下流側冷媒流路、及び前記上流側冷媒流路より狭く構成されていることを特徴とする空気熱交換器
The air heat exchanger according to claim 6 ,
The downstream refrigerant flow path in the range of 1/3 to 1/2 of the flat pipe as viewed from the windward side of the flat pipe is narrower than the downstream refrigerant flow path and the upstream refrigerant flow path on the leeward side. An air heat exchanger characterized by comprising .
請求項5に記載の空気熱交換器において
前記風下側の前記下流側冷媒流路と前記上流側冷媒流路はほぼ同じ大きさでることを特徴とする空気熱交換器
The air heat exchanger according to claim 5 ,
The air heat exchanger according to claim 1, wherein the downstream-side refrigerant passage and the upstream-side refrigerant passage on the leeward side have substantially the same size .
扁平管内に設けられ、冷媒の流れ方向に沿って配置された複数の仕切壁によって複数の上流側冷媒流路を形成する上流側インナーフィンと
前記扁平管内に設けられ、前記夫々の上流側冷媒流路の下流において前記夫々の上流側冷媒流路の出口を繋ぐと共に前記仕切壁が存在しない連通領域と
前記扁平管内に設けられ、前記連通領域の下流において冷媒の流れ方向に沿って配置された複数の仕切壁によって複数の下流側冷媒流路を形成する下流側インナーフィンとよりなり
前記下流側冷媒流路は冷媒の流通路面積が狭い第1の下流側冷媒流路と冷媒の流通路面積が広い第2下流側冷媒流路とから構成され、前記第1の下流側冷媒流路は前記扁平管の風上側に配置されると共に
前記第1の下流側冷媒流路と前記第2下流側冷媒流路の入口と前記上流側冷媒流路の前記出口とは冷媒の流れから見てずれて重ならない位置に配置されていることを特徴とする空気熱交換器
An upstream inner fin which is provided in the flat tube and forms a plurality of upstream refrigerant flow paths by a plurality of partition walls arranged along the flow direction of the refrigerant ;
A communication region that is provided in the flat tube and connects an outlet of each upstream refrigerant flow path downstream of each upstream refrigerant flow path and does not have the partition wall ;
It is provided in the flat tube, and comprises downstream inner fins that form a plurality of downstream refrigerant flow paths by a plurality of partition walls arranged along the refrigerant flow direction downstream of the communication region ,
The downstream refrigerant flow path is composed of a first downstream refrigerant flow path with a narrow refrigerant flow passage area and a second downstream refrigerant flow path with a large refrigerant flow passage area, and the first downstream refrigerant flow. The path is arranged on the windward side of the flat tube ,
The inlets of the first downstream refrigerant flow path, the second downstream refrigerant flow path, and the outlet of the upstream refrigerant flow path are disposed at positions that do not overlap with each other when viewed from the flow of the refrigerant. Features an air heat exchanger .
扁平管内に設けられ、冷媒の流れ方向に沿って配置された複数の仕切壁によって複数の上流側冷媒流路を形成する上流側インナーフィンと
前記扁平管内に設けられ、前記夫々の上流側冷媒流路の下流において前記夫々の上流側冷媒流路の出口を繋ぐと共に前記仕切壁が存在しない連通領域と
記扁平管内に設けられ、前記連通領域の下流において冷媒の流れ方向に沿って配置された複数の仕切壁によって複数の下流側冷媒流路を形成する下流側インナーフィンとよりなり
前記下流側冷媒流路は冷媒の流通路面積が狭い第1の下流側冷媒流路と冷媒の流通路面積が広い第2下流側冷媒流路とから構成され、前記第1の下流側冷媒流路は前記扁平管の風上側に配置されると共に
前記第2の下流側冷媒流路と前記上流側冷媒流路はほぼ同じ大きさで、かつ前記第2の下流側冷媒流路の入口と前記上流側冷媒流路の前記出口とは冷媒の流れから見て重なる位置に配置されていることを特徴とする空気熱交換器
An upstream inner fin which is provided in the flat tube and forms a plurality of upstream refrigerant flow paths by a plurality of partition walls arranged along the flow direction of the refrigerant ;
A communication region that is provided in the flat tube and connects an outlet of each upstream refrigerant flow path downstream of each upstream refrigerant flow path and does not have the partition wall ;
Provided in front Symbol flat tube becomes more downstream side inner fin which forms a plurality of downstream side refrigerant channel by a plurality of partition walls which are arranged along the flow direction of the refrigerant downstream of the communication area,
The downstream refrigerant flow path is composed of a first downstream refrigerant flow path with a narrow refrigerant flow passage area and a second downstream refrigerant flow path with a large refrigerant flow passage area, and the first downstream refrigerant flow. The path is arranged on the windward side of the flat tube ,
The second downstream refrigerant flow path and the upstream refrigerant flow path are substantially the same size, and the inlet of the second downstream refrigerant flow path and the outlet of the upstream refrigerant flow path are refrigerant flows. An air heat exchanger, which is arranged at a position overlapping when viewed from above .
請求項9或いは請求項10に記載の空気熱交換器において
前記連通領域は前記扁平管の風上側から風下側に向けて冷媒の流動方向に所定の角度で傾けて形成されていることを特徴とする空気熱交換器
The air heat exchanger according to claim 9 or 10 ,
The air heat exchanger is characterized in that the communication region is formed to be inclined at a predetermined angle in the flow direction of the refrigerant from the windward side to the leeward side of the flat tube .
扁平管内に設けられ、冷媒の流れ方向に沿って配置された複数の仕切壁によって複数の上流側冷媒流路を形成する上流側インナーフィンと
前記扁平管内に設けられ、前記夫々の上流側冷媒流路の下流において前記夫々の上流側冷媒流路の出口を繋ぐと共に前記仕切壁が存在しない連通領域と
前記扁平管内に設けられ、前記連通領域の下流において冷媒の流れ方向に沿って配置された複数の仕切壁によって複数の下流側冷媒流路を形成する下流側インナーフィンとよりなり
前記下流側冷媒流路は冷媒の流通路面積が狭い第1の下流側冷媒流路、冷媒の流通路面積が広い第2下流側冷媒流路、及び前記上流側冷媒流と連続して形成された連続冷媒流路とから構成され、前記扁平管の風上側から見て前記第1の下流側冷媒流路、前記第2の下流側冷媒流路、前記連続冷媒流路の順で配置されると共に
前記第2の下流側冷媒流路、前記連続流路及び前記上流側冷媒流路はほぼ同じ大きさで、かつ前記第2の下流側冷媒流路の入口と前記上流側冷媒流路の前記出口とは冷媒の流れから見て重なる位置に配置されていることを特徴とする空気熱交換器
An upstream inner fin which is provided in the flat tube and forms a plurality of upstream refrigerant flow paths by a plurality of partition walls arranged along the flow direction of the refrigerant ;
A communication region that is provided in the flat tube and connects an outlet of each upstream refrigerant flow path downstream of each upstream refrigerant flow path and does not have the partition wall ;
It is provided in the flat tube, and comprises downstream inner fins that form a plurality of downstream refrigerant flow paths by a plurality of partition walls arranged along the refrigerant flow direction downstream of the communication region ,
The downstream refrigerant flow path is formed continuously with a first downstream refrigerant flow path with a narrow refrigerant flow passage area, a second downstream refrigerant flow path with a large refrigerant flow passage area, and the upstream refrigerant flow. The continuous refrigerant flow path is arranged in the order of the first downstream refrigerant flow path, the second downstream refrigerant flow path, and the continuous refrigerant flow path as viewed from the windward side of the flat tube. With
The second downstream refrigerant flow path, the continuous flow path, and the upstream refrigerant flow path are substantially the same size, and the inlet of the second downstream refrigerant flow path and the outlet of the upstream refrigerant flow path Is an air heat exchanger characterized in that it is arranged in an overlapping position as seen from the refrigerant flow .
請求項9、請求項10、及び請求項12のいずれかに記載の空気熱交換器において
前記上流側インナーフィンと前記下流側インナーフィンは、冷媒の流動方向に直交する断面が曲線状の波打った複数の仕切壁を形成する形状、三角形が繰り返される複数の仕切壁を形成する形状、矩形が繰り返される複数の仕切壁を形成する形状の少なくとも一つであることを特徴とする空気熱交換器
The air heat exchanger according to any one of claims 9, 10, and 12 ,
The upstream inner fin and the downstream inner fin have a shape that forms a plurality of wavy partition walls having a curved cross section perpendicular to the refrigerant flow direction, a shape that forms a plurality of partition walls in which triangles are repeated, An air heat exchanger, wherein the air heat exchanger is at least one of shapes forming a plurality of partition walls in which a rectangle is repeated .
JP2014534102A 2012-09-06 2012-09-06 Air heat exchanger Active JP5775971B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/072742 WO2014038038A1 (en) 2012-09-06 2012-09-06 Air heat exchanger

Publications (2)

Publication Number Publication Date
JP5775971B2 true JP5775971B2 (en) 2015-09-09
JPWO2014038038A1 JPWO2014038038A1 (en) 2016-08-08

Family

ID=50236688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014534102A Active JP5775971B2 (en) 2012-09-06 2012-09-06 Air heat exchanger

Country Status (2)

Country Link
JP (1) JP5775971B2 (en)
WO (1) WO2014038038A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107667061A (en) * 2015-04-22 2018-02-06 Tgw机械有限公司 For the method and warehouse system being stored in part goods in shelf

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6531357B2 (en) * 2014-07-16 2019-06-19 いすゞ自動車株式会社 Corrugated fin type heat exchanger
CN108627034A (en) * 2017-03-25 2018-10-09 董广计 A kind of heat exchanger of multi-path parallel split-flow
JP6787301B2 (en) * 2017-11-28 2020-11-18 株式会社デンソー Heat exchanger tube and heat exchanger
JP2019168171A (en) * 2018-03-23 2019-10-03 サンデンホールディングス株式会社 Heat exchanger
JP6822525B2 (en) * 2019-06-28 2021-01-27 ダイキン工業株式会社 Heat exchanger and heat pump equipment
WO2024039669A1 (en) * 2022-08-19 2024-02-22 Canazon John X-ray tube with corrugated wall

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5336861Y2 (en) * 1974-12-05 1978-09-07
JPH04332393A (en) * 1991-01-29 1992-11-19 Nippondenso Co Ltd Heat exchanging device
JPH1047883A (en) * 1996-07-30 1998-02-20 Mitsubishi Materials Corp Heat exchanger
JPH11223398A (en) * 1998-02-09 1999-08-17 Sanyo Electric Co Ltd Heat exchanger for heat engine
JP2002107082A (en) * 2000-09-28 2002-04-10 Calsonic Kansei Corp Inner fin for heat exchanger
JP2003042677A (en) * 2001-07-27 2003-02-13 Calsonic Kansei Corp Inner fins for heat exchanger
JP2004061065A (en) * 2002-07-31 2004-02-26 Calsonic Kansei Corp Core for heat exchanger

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107667061A (en) * 2015-04-22 2018-02-06 Tgw机械有限公司 For the method and warehouse system being stored in part goods in shelf
US10710803B2 (en) 2015-04-22 2020-07-14 Tgw Mechanics Gmbh Method for transferring part-load consignments to a storage rack for storage, and storage system
CN107667061B (en) * 2015-04-22 2020-07-24 Tgw机械有限公司 Method and storage system for storing piece goods in a rack

Also Published As

Publication number Publication date
WO2014038038A1 (en) 2014-03-13
JPWO2014038038A1 (en) 2016-08-08

Similar Documents

Publication Publication Date Title
JP5775971B2 (en) Air heat exchanger
JP5071597B2 (en) Heat exchanger and air conditioner
JP6664558B1 (en) Heat exchanger, air conditioner with heat exchanger, and refrigerant circuit with heat exchanger
US20060237178A1 (en) Heat exchanger
US20120103583A1 (en) Heat exchanger and fin for the same
JP5585543B2 (en) Vehicle cooling system
US6431264B2 (en) Heat exchanger with fluid-phase change
JP4760542B2 (en) Heat exchanger
JP2005083715A (en) Heat exchanger
JP2018100803A (en) Heat exchanger, indoor machine of air conditioner, and outdoor machine of air conditioner
JPH03140795A (en) Lamination type heat exchanger
WO2019031155A1 (en) Heat exchanger
JP2010107130A (en) Heat exchanger unit and indoor unit of air conditioner using the same
JP2001304719A (en) Module type multi-channel flat pipe evaporator
JP2008082672A (en) Heat exchanger
JP6897635B2 (en) Water heat exchanger
JP5508818B2 (en) Evaporator
JP2007187435A (en) Heat exchanger
JP2008064457A (en) Heat exchanger
JPH0460387A (en) Laminated heat exchanger
JP2005308311A (en) Fin tube
JP7006626B2 (en) Heat exchanger
JP7137832B2 (en) heat transfer device
JP2011158130A (en) Heat exchanger
JP2011163621A (en) Heat exchanger

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150706

R150 Certificate of patent or registration of utility model

Ref document number: 5775971

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250