JPH03140795A - Lamination type heat exchanger - Google Patents

Lamination type heat exchanger

Info

Publication number
JPH03140795A
JPH03140795A JP27587289A JP27587289A JPH03140795A JP H03140795 A JPH03140795 A JP H03140795A JP 27587289 A JP27587289 A JP 27587289A JP 27587289 A JP27587289 A JP 27587289A JP H03140795 A JPH03140795 A JP H03140795A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
passage
refrigerant passage
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27587289A
Other languages
Japanese (ja)
Inventor
Mitsuo Kudo
工藤 光夫
Toshihiko Fukushima
敏彦 福島
Tamio Innami
印南 民雄
Seigo Miyamoto
宮本 誠吾
Takatomo Sawahata
澤幡 敬智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP27587289A priority Critical patent/JPH03140795A/en
Publication of JPH03140795A publication Critical patent/JPH03140795A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • F28D1/0308Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other
    • F28D1/0325Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another
    • F28D1/0333Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another the plates having integrated connecting members
    • F28D1/0341Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another the plates having integrated connecting members with U-flow or serpentine-flow inside the conduits

Abstract

PURPOSE:To improve the imbalance of a thermal load in the section of a refrigerant passage and unify the distribution of refrigerant into respective flat tubes by a method wherein the width of passage orthogonal to a heat transfer plate in the flat heat transfer tube is formed so as to be equalized from an inlet tank section to an outlet tank section substantially. CONSTITUTION:The thickness of a passage orthogonal to a heat transfer tube plate 1a is formed so as to be constant substantially between an inlet port header and an outlet port header, heat transfer tubes, equipped with a continuous refrigerant passage, are connected and even amount of refrigerant flows stably. In this case, the outer peripheral end 7b of U-shape sumit of a meandering refrigerant passage, neighboring to a tank section, is formed proximate to the outermost peripheral connecting rib 7 of the heat transfer tube plate while the width (h1) of an inlet tank and the width (h2) of an outlet tank are designed so as to be substantially equal to the width W1 of a first refrigerant passage 8a and the width W4 of a fourth refrigerant passage 8d respectively.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、空調機等に用いられる積層形熱交換器に係り
、特にカーエアコン用蒸発器に好適な積層形熱交換器に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a laminated heat exchanger used in air conditioners and the like, and particularly to a laminated heat exchanger suitable for an evaporator for a car air conditioner.

〔従来の技術〕[Conventional technology]

蒸発器として用いられている従来の積層形熱交換器は、
例えば特開昭62−119373号公報に記載のように
中間部に流路仕切り部を残して冷媒流路となるべきU字
形の浅いくぼみを形成した2枚の伝熱板を組合わせてU
字形の冷媒通路を形成した偏平伝熱管と被冷却空気側コ
ルゲートフィンとを交互に多数積層し、U字形通路の両
端部には隣接する伝熱管を連通ずるように冷媒入口、出
口タンク部を設けた構造となっている。タンク部を介し
て空気下流側通路に流入した冷媒は空気と直交して流れ
、流路屈曲部でUターンして空気上流側に至り、出口タ
ンク部を介して蒸発器の外へ流出する。
The conventional stacked heat exchanger used as an evaporator is
For example, as described in Japanese Patent Application Laid-Open No. 119373/1983, two heat transfer plates are combined to form a shallow U-shaped recess to serve as a refrigerant flow path, leaving a flow path partition in the middle.
A large number of flat heat exchanger tubes forming a shaped refrigerant passage and corrugated fins on the air side to be cooled are stacked alternately, and a refrigerant inlet and an outlet tank are provided at both ends of the U-shaped passage so as to communicate with adjacent heat exchanger tubes. It has a similar structure. The refrigerant that has flowed into the air downstream passage through the tank portion flows perpendicularly to the air, makes a U-turn at the bend in the flow path, reaches the air upstream side, and flows out of the evaporator through the outlet tank portion.

管内の冷媒は、空気側コルゲートフィンを介して空気と
熱交換し、空気から熱を奪って液冷媒が蒸発しガス冷媒
の割合を増しながら出口に向って流れ、出口タンク部に
至るまでの間にほぼ完全にガス冷媒となって蒸交換器の
外に流出する。
The refrigerant in the pipe exchanges heat with the air via the air-side corrugated fins, removes heat from the air, and the liquid refrigerant evaporates, increasing the proportion of gas refrigerant as it flows toward the outlet, until it reaches the outlet tank. Almost completely becomes a gas refrigerant and flows out of the evaporator exchanger.

熱交換器に流入した空気は、まずU字形通路のうち空気
上流側通路を横切りながら冷媒との熱交換作用によって
冷却され、次に空気下流側冷媒通路を横切る間に所定の
温度まで冷却されて冷風となって熱交換器から流出する
ようになっていた。
The air flowing into the heat exchanger is first cooled by heat exchange with the refrigerant while crossing the upstream air passage of the U-shaped passage, and then cooled to a predetermined temperature while crossing the air downstream refrigerant passage. Cold air was flowing out of the heat exchanger.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記の構成を備えた従来の熱交換器は冷媒通路がU字状
に2分割されているだけであり、空気の流れ方向に沿っ
た伝熱管横断面内の熱負荷分布が空気流入側で非常に大
きく、下流側では小さいという顕著なアンバランス状態
になっている。
In conventional heat exchangers with the above configuration, the refrigerant passage is only divided into two parts in a U-shape, and the heat load distribution within the cross section of the heat transfer tube along the air flow direction is extremely large on the air inflow side. There is a significant imbalance in that the downstream side is large and the downstream side is small.

このため熱負荷の大きい空気流入側断面内では、液冷媒
が不足し伝熱管の大部分が熱伝達率の悪いガス冷媒域に
なってしまうとともに、熱負荷の小さい空気下流側断面
内では熱負荷が少ないので冷媒が蒸発できず、有効に熱
交換しないまま液冷媒の一部が出口タンク部に流出して
しまい、熱交換効率が低下するという問題があった。
For this reason, in the air inflow side cross section where the heat load is large, there is a shortage of liquid refrigerant and most of the heat transfer tube becomes a gas refrigerant region with poor heat transfer coefficient. Since the amount of liquid refrigerant is small, the refrigerant cannot evaporate, and a portion of the liquid refrigerant flows into the outlet tank portion without effectively exchanging heat, resulting in a problem that the heat exchange efficiency decreases.

これに対して、冷媒通路をW字状に形成することによっ
て空気の流れ方向に冷媒通路を4分割し、かつこの冷媒
通路によって形成された空気の流れ方向前方側の冷却部
と後方側の冷却部との間に切欠きを設ける方法が実開昭
63−109876に開示されている。この方法によれ
ば、冷媒通路を空気流方向に4分割しているので、前記
熱負荷のアンバランス量が軽減される。また空気が冷却
されるときに生じる結露水が流路中央部に設けた切り欠
き部より排水されるので排水性も良好となる。しかしな
がら、上記構成を備えた従来の熱交換器では、W字状に
形成された冷媒通路の両端部に設けた入口タンク部と出
口タンク部の中間に位置するUターン部がタンク状に形
成されており、かつ隣接する通路がこの中央タンク部を
介して互いに連通されている。したがって1組の偏平管
に形成されている冷媒通路に実質的に前記中央タンク部
によって分断されてしまい、上流側から流れてきた液冷
媒がタンク部で減速してここに滞留してしまう。
On the other hand, by forming the refrigerant passage in a W-shape, the refrigerant passage is divided into four parts in the air flow direction, and the cooling part on the front side and the cooling part on the rear side in the air flow direction are formed by this refrigerant passage. A method of providing a notch between the two parts is disclosed in Japanese Utility Model Application No. 63-109876. According to this method, since the refrigerant passage is divided into four in the air flow direction, the unbalanced amount of the heat load is reduced. Furthermore, since the condensed water generated when the air is cooled is drained from the notch provided in the center of the flow path, drainage performance is also improved. However, in the conventional heat exchanger having the above configuration, the U-turn portion located between the inlet tank portion and the outlet tank portion provided at both ends of the W-shaped refrigerant passage is formed in the shape of a tank. and adjacent passages communicate with each other via this central tank portion. Therefore, the refrigerant passage formed in one set of flat tubes is substantially divided by the central tank portion, and the liquid refrigerant flowing from the upstream side is decelerated in the tank portion and stagnates there.

タンク部に滞留した液冷媒中にはガス冷媒の気泡も混入
しており、このガス冷媒気泡が間欠的な発泡現象を引き
起すために液冷媒の流れも間欠的で不安定となり、冷却
能力が変動して出口空気温度が不快に変化するとともに
熱交換効率が低下するという問題があった。
Gas refrigerant bubbles are mixed into the liquid refrigerant that remains in the tank, and as these gas refrigerant bubbles cause intermittent bubbling, the flow of the liquid refrigerant becomes intermittent and unstable, reducing the cooling capacity. There was a problem in that the outlet air temperature fluctuated uncomfortably and the heat exchange efficiency decreased.

また、上記従来の熱交換器の構成によれば、W字形の冷
媒通路が前記中央タンク部によって、前段および後段の
2つのU字形流路に実質的に分断されているので、各タ
ンク部間の冷媒通路抵抗も略1/2を半減してしまう。
Further, according to the configuration of the conventional heat exchanger, the W-shaped refrigerant passage is substantially divided into two U-shaped flow passages at the front stage and the rear stage by the central tank part. The refrigerant passage resistance is also halved by approximately 1/2.

このため、入口タンク部から各伝熱管内へ冷媒が分配さ
れる時のタンク部に於ける通路抵抗の割合が増して冷媒
分配に不具合を生じる。即ち、冷媒が少なく流れる伝熱
管では、管内の大部分が熱伝達率の悪いガス冷媒域によ
って占められて熱交換効率が低下し、また冷媒が多く流
れる伝熱管では、空気と十分熱交換できずに蒸発しきれ
ない液冷媒が流出してしまい、吐気温にムラを生じると
いう問題があった。
For this reason, when the refrigerant is distributed from the inlet tank section into each heat transfer tube, the proportion of passage resistance in the tank section increases, causing problems in the refrigerant distribution. In other words, in heat exchanger tubes in which a small amount of refrigerant flows, most of the tube is occupied by the gas refrigerant region with poor heat transfer coefficient, resulting in a decrease in heat exchange efficiency, and in heat exchanger tubes in which a large amount of refrigerant flows, heat cannot be exchanged sufficiently with the air. There was a problem in that the liquid refrigerant that was not fully evaporated would flow out, causing uneven discharge temperature.

本発明の目的は、冷媒通路横断面内の熱負荷のアンバラ
ンスを改善するとともに各偏平管への冷媒の分配を均等
に行ない吐気温の変動やムラの少ない積層形熱交換器を
提供することを目的とする。
An object of the present invention is to provide a laminated heat exchanger that improves the unbalance of heat load in a cross section of a refrigerant passage, distributes refrigerant evenly to each flat tube, and reduces fluctuations and unevenness in discharge temperature. With the goal.

本発明の他の目的とするところは、熱交換効率を向上し
得る構造の積層形熱交換器を提供することにある。
Another object of the present invention is to provide a laminated heat exchanger having a structure capable of improving heat exchange efficiency.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的を達成するために本発明の積層形熱交換器は
、くぼみ部により冷媒通路が形成され、かつ該冷媒通路
が流れ方向を少なくとも2回以上蛇行するように形成さ
れた2枚の伝熱板を組合わせた時、一方の端部に入口タ
ンク部を、他方の端部に出口タンク部を有する偏平伝熱
管を隣接する該偏平管のタンク部がそれぞれ連通するよ
うに多数積層してなる積層形熱交換器において、前記偏
平伝熱管内の前記偏平伝熱管内の前記伝熱管板に垂直な
方向の通路幅を入口タンク部から出口タンク部までほぼ
等しくなるように形成したものである。
In order to achieve the above object, the laminated heat exchanger of the present invention has two transmission sheets, each of which has a refrigerant passage formed by a recessed part, and which is formed so that the refrigerant passage meanderes at least twice in the flow direction. When the hot plates are combined, a large number of flat heat exchanger tubes having an inlet tank section at one end and an outlet tank section at the other end are stacked so that the tank sections of adjacent flat tubes are in communication with each other. In the laminated heat exchanger, the passage width in the direction perpendicular to the heat exchanger tube plate in the flat heat exchanger tubes is formed to be approximately equal from the inlet tank part to the outlet tank part. .

また、上記目的を達成するために入口タンク部。In addition, inlet tank section to achieve the above purpose.

出口タンク部前記伝熱管板の中心線側まで形成させたも
のである。
The outlet tank portion is formed up to the center line side of the heat exchanger tube plate.

〔作用〕[Effect]

入口タンク部へ流入した冷媒は、タンク部に連通してい
る入口から出口まで通路厚さが一定な蛇行した冷媒通路
を持つ偏平伝熱管内に均等に流入し、各偏平管内を蛇行
しながら風上側に向って安定して流れるので伝熱管横断
面内での熱負荷のアンバランスが改善され、空気と冷媒
との熱交換が効率良く行なわれる。冷媒の比体積の増大
に合わせて、冷媒通路幅を冷媒入口から出口に向って除
徐に大きくしているので冷媒通路の圧力損失が低く抑え
られて熱交換効率が向上する。
The refrigerant that has flowed into the inlet tank flows evenly into the flat heat transfer tubes, which have a meandering refrigerant passage with a constant passage thickness from the inlet to the outlet that communicates with the tank, and winds as it meanderes through each flat tube. Since the refrigerant flows stably upward, the unbalance of heat load within the cross section of the heat transfer tube is improved, and heat exchange between the air and the refrigerant is performed efficiently. Since the refrigerant passage width is gradually increased from the refrigerant inlet to the outlet in accordance with the increase in the specific volume of the refrigerant, the pressure loss in the refrigerant passage is kept low and the heat exchange efficiency is improved.

〔実施例〕〔Example〕

以下本発明の一実施例を第1〜4図により説明する。 An embodiment of the present invention will be described below with reference to FIGS. 1 to 4.

本発明による積層形熱交換器の全体構成を第3゜第4図
に示す。第3図は正面図を、第4図は第2図を上から見
た図である。本発明による熱交換器は、偏平管1のムロ
タンク部2.出ロタンク部3を各々連通孔A、Bを介し
て連通ずるように積重ねて入口ヘッダ2a、出口ヘッダ
3aを形成し、これらのヘッダに連通する複数の蛇行し
た冷媒通路を備えている。隣接する偏平管の間に形成さ
れる空間部には、コルゲートフィン4が介挿固着されて
いる。
The overall structure of the laminated heat exchanger according to the present invention is shown in FIGS. 3 and 4. FIG. 3 is a front view, and FIG. 4 is a top view of FIG. The heat exchanger according to the present invention includes a flat tube 1 having a muro tank portion 2. An inlet header 2a and an outlet header 3a are formed by stacking the outlet tank parts 3 so as to communicate with each other through communication holes A and B, respectively, and a plurality of meandering refrigerant passages are provided which communicate with these headers. A corrugated fin 4 is inserted and fixed in the space formed between adjacent flat tubes.

被冷却空気(イ)の下流側には入口へラダ2aに連通ず
る入口パイプ5が、上流側には出口へラダ3aに連通ず
る出口パイプ6が接続されている。
An inlet pipe 5 communicating with the ladder 2a is connected to the downstream side of the cooled air (a), and an outlet pipe 6 communicating with the ladder 3a is connected to the upstream side.

偏平管1は、1対の伝熱管板1a、lbから構成されて
いる。伝熱管板1aは第1図に示すように、密封された
流路を形成するための接合リブ部7を素材平板の全周に
わたって残して、所定の方向に整列した突起リブa、b
を設けた冷媒通路となるべきジグザグに蛇行したくぼみ
部8を押し出し成形し、さらにこれより深く入口タンク
部2゜出口タンク部3を押し出して成形した構造となっ
ている。また接合リブ部7に交互に連接し、蛇行した冷
媒通路8を形成するための複数個の中間仕切り壁9を備
えている。ムロタンク部2.出ロタンク部3には連通孔
A、Bが打ち抜かれている。
The flat tube 1 is composed of a pair of heat exchanger tube plates 1a and lb. As shown in FIG. 1, the heat exchanger tube plate 1a has protruding ribs a and b aligned in a predetermined direction, leaving a joining rib portion 7 for forming a sealed flow path around the entire circumference of the flat material plate.
It has a structure in which a zigzag meandering recess 8, which is to serve as a refrigerant passage, is extruded, and the inlet tank part 2 and outlet tank part 3 are further extruded and molded deeper than this. Furthermore, a plurality of intermediate partition walls 9 are provided which are alternately connected to the joining rib portions 7 and form meandering refrigerant passages 8 . Muro tank part 2. Communication holes A and B are punched out in the outlet tank part 3.

伝熱管板1aの反タンク側端部には、組立て時に偏平伝
熱管1の間隔を保つための折り返し部10が備えられて
いる。
The opposite end of the heat exchanger tube plate 1a to the tank is provided with a folded portion 10 for maintaining the spacing between the flat heat exchanger tubes 1 during assembly.

伝熱管板1bは、1aと同じ構造になっておりこれらを
2枚組合わせた時に前記突起リブa、bがX字状に交差
するように対称形に成形されている。
The heat exchanger tube plate 1b has the same structure as the heat exchanger tube plate 1a, and is symmetrically formed so that the protruding ribs a and b intersect in an X-shape when the two plates are assembled.

前記熱交換器の両側端面にはサイドプレート11.12
が取付けられ、サイドプレート12には入口ヘッダ2a
、出口ヘッダ3aに連通ずる連通孔が打ち抜かれており
、この連通孔に当接して入口パイプ5.出ロパイプ6が
ろう付は接合されている。前記ヘッダの反パイプ側端は
、サイドプレート11により密封されている。
Side plates 11 and 12 are provided on both end surfaces of the heat exchanger.
is attached to the side plate 12, and an inlet header 2a is attached to the side plate 12.
A communication hole communicating with the outlet header 3a is punched out, and the inlet pipe 5. is in contact with this communication hole. The outlet pipe 6 is joined by brazing. The opposite end of the header to the pipe is sealed by a side plate 11.

上記構成に於いて入口パイプ2より流入した冷煤は、空
気下流側に位置する入口へツダ2a内をその長手方向に
流路端に向って流れながら、入口へラダ2aに連通して
いる偏平管1内の蛇行した冷媒通路8内へ略均等に分配
されて流入する。前記蛇行した冷媒通路内へ流入した冷
媒は、第2図矢印に示すように、上下に蛇行しながら空
気と直交対向流を成して空気上流側に向って流れ、出口
ヘッダに到達して合流し出口パイプ6より流出する。従
来のUターン形通路に対して本実施例では冷媒が複数回
蛇行して流れるため空気流れ方向の冷媒通路幅が略1/
2以下であり、冷媒通路横断面内での熱負荷のアンバラ
ンスが改善されて熱交換効率が向上する。また、前記従
来の熱交換器では、入口ヘッダ、出口ヘッダの中間位置
に、隣接する冷媒通路を連通ずる中間タンク部を備えて
おり、この中間タンク部が冷媒の液溜りになって、冷媒
の流れを不安定にし熱交換器から吐出される空気温度を
不快に変動させる原因になっていた。
In the above configuration, the cold soot flowing in from the inlet pipe 2 flows in the longitudinal direction of the ladder 2a toward the end of the flow path to the inlet located on the downstream side of the air, and then flows through the flattened soot connected to the inlet and the ladder 2a. The refrigerant flows into the meandering refrigerant passage 8 in the tube 1 in a substantially evenly distributed manner. The refrigerant that has flowed into the meandering refrigerant passage meanders up and down, forms a perpendicular counterflow to the air, flows toward the upstream side of the air, and reaches the outlet header where it merges, as shown by the arrow in Figure 2. and flows out from the outlet pipe 6. In contrast to the conventional U-turn type passage, in this embodiment, the refrigerant flows in a meandering manner multiple times, so the width of the refrigerant passage in the air flow direction is approximately 1/2.
2 or less, the imbalance of heat load within the cross section of the refrigerant passage is improved, and the heat exchange efficiency is improved. Furthermore, the conventional heat exchanger is provided with an intermediate tank section that communicates the adjacent refrigerant passages at an intermediate position between the inlet header and the outlet header. This made the flow unstable and caused the temperature of the air discharged from the heat exchanger to fluctuate uncomfortably.

一般に、入口ヘッダ及び出口ヘッダ間に連接された複数
の伝熱管への冷媒分配量は、基本的には、ヘッダ内を分
岐(合流)しながら長手方向に流れる時の通路抵抗に対
して、伝熱管内を流れる時の通路抵抗が大きい程均−に
分配される傾向にあることが周知である。
Generally, the amount of refrigerant distributed to the plurality of heat transfer tubes connected between the inlet header and the outlet header is basically determined based on the passage resistance when the refrigerant flows in the longitudinal direction while branching (merging) inside the header. It is well known that the greater the passage resistance when flowing through a heat pipe, the more evenly the heat tends to be distributed.

ところが、従来の熱交換器では、前記中間タンク部を備
えているため、中間タンク部がこれより上流側冷媒通路
及び下流側通路に対してそれぞれ出口ヘッダ及び入口ヘ
ッダの働きをするため、実質的な入口ヘッダ及び出口ヘ
ッダ間の冷媒通路長さが略1/2となって、両ヘッダ間
の冷媒通路抵抗も半減し冷媒分配が悪(なり熱交換効率
が低下するという問題があった。
However, since the conventional heat exchanger includes the intermediate tank section, the intermediate tank section functions as an outlet header and an inlet header for the upstream refrigerant passage and the downstream passage, respectively. The length of the refrigerant passage between the inlet header and the outlet header is approximately halved, and the resistance of the refrigerant passage between the two headers is also halved, resulting in poor refrigerant distribution (resulting in a decrease in heat exchange efficiency).

これに対して本発明による熱交換器では、入口ヘッダ及
び出口ヘッダ間に伝熱管板1aに垂直な方向の通路厚さ
が略一定に形成され、連続した冷媒通路を備えた伝熱管
が連接されており、各伝熱管に均等な量の冷媒が安定し
て流入する。
In contrast, in the heat exchanger according to the present invention, the passage thickness in the direction perpendicular to the heat exchanger tube plate 1a is formed between the inlet header and the outlet header to be approximately constant, and the heat exchanger tubes with continuous refrigerant passages are connected. This allows an equal amount of refrigerant to stably flow into each heat transfer tube.

本発明の第2の実施例を第5図により説明する。A second embodiment of the present invention will be described with reference to FIG.

第5図は第1図と同様、第3図に示す積層形態交換器の
伝熱管板1aの詳細を示す。第1実施例ではタンク部に
隣接している蛇行した冷媒通路のU字形頂部の外周端部
7bが伝熱管板の最外周接合リブ部7に近接して成形さ
れており、入ロタンク幅h1.出ロタンク幅h2はそれ
ぞれ第1冷媒通路8aの幅W1および第4冷媒通路8d
の幅W4に略等しく設定されていた。これに対して第2
の実施例ではU字形頂部の外周端部7dの位置がタンク
部2,3に対して伝熱管板の中心部寄りになっており、
また、入ロタンク幅h1.出ロタンク幅h2はそれぞれ
第1冷媒通路8aの幅W1および第4冷媒通路8dの幅
W4に比べて、h l> W L 。
Similar to FIG. 1, FIG. 5 shows details of the heat exchanger tube plate 1a of the stacked exchanger shown in FIG. In the first embodiment, the outer peripheral end 7b of the U-shaped top of the meandering refrigerant passage adjacent to the tank portion is formed close to the outermost peripheral joining rib portion 7 of the heat exchanger tube plate, and the input tank width h1. The output tank width h2 is the width W1 of the first refrigerant passage 8a and the fourth refrigerant passage 8d, respectively.
The width W4 was set to be approximately equal to the width W4. On the other hand, the second
In the embodiment, the position of the outer circumferential end 7d of the U-shaped top is closer to the center of the heat exchanger tube plate with respect to the tank parts 2 and 3,
In addition, the input tank width h1. The outlet tank width h2 is compared with the width W1 of the first refrigerant passage 8a and the width W4 of the fourth refrigerant passage 8d, respectively, so that h l>W L .

hz>W4となるように設定されている点が第1の実施
例と異っている。第2の実施例では、入口へラダ2a、
出口ヘツダ3aの通路断面積を冷媒通路幅より大きく設
定できるので、ヘッダ内を流れる冷媒の通路抵抗が軽減
され冷媒分配がさらに改善されるという効果がある。こ
の他の作動は第一の実施例と同じである。
The difference from the first embodiment is that hz>W4 is set. In the second embodiment, the ladder 2a to the entrance,
Since the passage cross-sectional area of the outlet header 3a can be set larger than the refrigerant passage width, there is an effect that the passage resistance of the refrigerant flowing inside the header is reduced and the refrigerant distribution is further improved. Other operations are the same as in the first embodiment.

次に本発明に係る第3の実施例を第6〜10図により説
明する。本実施例では、偏平伝熱管1内にインナーフィ
ン102を配置し管内伝熱面積の拡大による熱交換効率
の向上を図ると共に耐圧向上を図っている。以下第3実
施例の構成について説明する。
Next, a third embodiment of the present invention will be described with reference to FIGS. 6 to 10. In this embodiment, inner fins 102 are disposed within the flat heat exchanger tube 1 to increase the heat exchange efficiency by increasing the heat transfer area within the tube and to improve the pressure resistance. The configuration of the third embodiment will be explained below.

本実施例による熱交換器は、偏平管1の入ロタンク部2
.出ロタンク部3を各々連通孔A、Bを介して連通ずる
ように積重ねて入口ヘッダ2a。
The heat exchanger according to this embodiment has an input tank section 2 of a flat tube 1.
.. The inlet header 2a is formed by stacking the outlet tank parts 3 so as to communicate with each other through the communication holes A and B, respectively.

出口へラダ3aを形成し、これらのヘッダに連通ずる複
数の蛇行した冷媒通路を備えている。偏平管1の冷媒通
路内にはインナーフィン102が配置されている。その
他の構成は第1実施例と同じである。
A ladder 3a is formed to the outlet and a plurality of meandering refrigerant passages communicating with these headers are provided. Inner fins 102 are arranged within the refrigerant passage of the flat tube 1 . Other configurations are the same as in the first embodiment.

偏平管1は、1対の伝熱管板101 a 、101bで
インナーフィン102をサンドイッチ状に挾んだ構造と
なっている。伝熱管板101a、101bは対称な構造
となっているので以下101aについて説明する。伝熱
管板101aは第6図に示すように、密封された流路を
形成するための接合リブ部7を素材平板の全周にわたっ
て残して、冷媒通路となるべきジグザグに蛇行したくぼ
み部8を押し出し成形し、さらにこれより深く入口タン
ク部2.出ロタンク部3を押し出して成形した構造とな
っている。また、外周接合リブ部7に交互に連接し、蛇
行した冷媒通路8を形成するための複数個の中間仕切り
壁9を備えている。
The flat tube 1 has a structure in which an inner fin 102 is sandwiched between a pair of heat exchanger tube plates 101 a and 101 b. Since the heat exchanger tube plates 101a and 101b have a symmetrical structure, only the heat exchanger tube plate 101a will be explained below. As shown in FIG. 6, the heat exchanger tube plate 101a has a joint rib portion 7 for forming a sealed flow path left over the entire circumference of the material flat plate, and a zigzag meandering recess portion 8 for forming a refrigerant passage. Extrusion molding and deeper inlet tank part 2. It has a structure in which the output tank part 3 is extruded and molded. Further, a plurality of intermediate partition walls 9 are provided which are alternately connected to the outer circumferential joint rib portion 7 and form a meandering refrigerant passage 8 .

インナーフィン102は第7,8図に示すように、薄板
を波形に折り曲げ成形したフィン要素103を半ピツチ
ずつ位置をずらして流れ方向に多数並べた千鳥格子状の
構造となっている。偏平管内に配置したとき仕切り壁9
に当らないようにインナーフィン102には、長手方向
に交互に切り込まれたスリット104が設けられている
As shown in FIGS. 7 and 8, the inner fin 102 has a houndstooth check structure in which a large number of fin elements 103, which are formed by bending a thin plate into a corrugated shape, are arranged in the flow direction with their positions shifted by half a pitch. Partition wall 9 when placed in a flat tube
The inner fins 102 are provided with slits 104 alternately cut in the longitudinal direction so as not to hit the inner fins.

第9,10図は伝熱管板101aの流路部8内にインナ
ーフィン102を配置した様子を示している。スリット
104により流路仕切り壁9を逃げている。また、イン
ナーフィン102の端面102a、102bと冷媒通路
ベンド部の外周端部7a、7b、7cとの間には隙間S
が設けられている。
9 and 10 show how the inner fins 102 are arranged within the flow path section 8 of the heat exchanger tube plate 101a. It escapes from the channel partition wall 9 through the slit 104. Furthermore, there is a gap S between the end surfaces 102a, 102b of the inner fin 102 and the outer circumferential ends 7a, 7b, 7c of the refrigerant passage bend portions.
is provided.

上記構成による第3実施例の熱交換器の作動について以
下説明する。入口ヘッダ2aより流入した冷媒は、入口
タンク2に明けられた連通孔Aを介して冷媒通路8内へ
流入し、インナーフィン102と複雑に接触しながら冷
媒通路内を蛇行して流れ、出口タンク3に明けられた連
通孔Bから流出し、出口タンク3aに到り合流して熱交
換器の外へ流出する。インナーフィンによる管内伝熱面
積の拡大効果と乱流促進効果により管内の伝熱特性は大
幅に改善される。このため伝熱管板101aの管壁温度
が冷媒蒸発温度に接近して低下するので被冷却空気の吐
出温度も低下し、交換熱量が増える。また冷媒通路のベ
ンド部には、冷媒通路壁7a〜7cとフィン端面102
a〜102cとの間に隙間Sが設けられているのでベン
ト部での圧力損失の増大等の不具合を生じることがなく
冷媒のUターンが円滑になる。
The operation of the heat exchanger of the third embodiment having the above configuration will be explained below. The refrigerant flowing from the inlet header 2a flows into the refrigerant passage 8 through the communication hole A formed in the inlet tank 2, flows in a meandering manner in the refrigerant passage while contacting the inner fins 102 in a complicated manner, and then flows into the outlet tank. It flows out from the communication hole B opened in 3, reaches the outlet tank 3a, joins together, and flows out of the heat exchanger. The heat transfer characteristics within the tube are greatly improved due to the effect of expanding the heat transfer area within the tube and the effect of promoting turbulence due to the inner fins. Therefore, the tube wall temperature of the heat exchanger tube plate 101a decreases to approach the refrigerant evaporation temperature, so the discharge temperature of the air to be cooled also decreases, and the amount of exchanged heat increases. Further, at the bend portion of the refrigerant passage, there are refrigerant passage walls 7a to 7c and fin end surfaces 102.
Since the gap S is provided between a to 102c, the refrigerant can smoothly make a U-turn without causing problems such as an increase in pressure loss at the vent portion.

本発明による第4の実施例を第11図により説明する。A fourth embodiment of the present invention will be explained with reference to FIG.

第11図は、第1図と同様、第3図に示す積層形熱交換
器の偏平管1を構成する伝熱管板201aを詳細に示し
ている。前記第1.第2実施では、冷媒通路内の突起リ
ブa、bは、冷媒流れ方向に対する傾き角度が同じで、
所定の方向に整列して設けられているが、本実施例では
、冷媒流れ方向に対する突起リブの傾き角度が空気上流
側(冷媒入口側)の冷媒通路では小さく、下流側通路(
冷媒吐出側)で大きくなるように設けられている。第1
〜第4冷媒通路内に設けられた突起リブa、a、b、b
′の角度をそれぞれθ1゜θ2.θ3.θ番とすればθ
1〉θ2〉θ3〉0番となるように設定されており、風
上側に向って角度が小さくなっている。
Similar to FIG. 1, FIG. 11 shows in detail the heat exchanger tube plate 201a that constitutes the flat tube 1 of the laminated heat exchanger shown in FIG. Said 1st. In the second implementation, the protruding ribs a and b in the refrigerant passage have the same inclination angle with respect to the refrigerant flow direction,
However, in this embodiment, the inclination angle of the protruding ribs with respect to the refrigerant flow direction is small in the refrigerant passage on the air upstream side (refrigerant inlet side), and in the downstream passage (
refrigerant discharge side). 1st
~Protruding ribs a, a, b, b provided in the fourth refrigerant passage
' angles θ1°θ2. θ3. If it is number θ, then θ
1>θ2>θ3>0, and the angle becomes smaller toward the windward side.

次に上記構成による熱交換器の作動について説明する。Next, the operation of the heat exchanger with the above configuration will be explained.

入口タンク部2に設けられた連通孔Aより流入した冷媒
は、蛇行した冷媒通路内を第2図に示すように空気上流
側に向って流れる。この間に空気と熱交換し、空気を冷
却すると共に、自らは、空気から奪った熱量に見合って
液冷媒が蒸発する。したがって、空気上流側へ進むに従
ってガス冷媒の割合が増えて比容積が大きくなり冷媒の
流速も大きくなる。本実施例では、この冷媒流速の増大
傾向に合わせて、通路内の突起リブの角度01〜θ番を
空気上流側の冷媒流速の高い冷媒通路はど小さくなるよ
うに設定しである。したがって。
The refrigerant flowing in through the communication hole A provided in the inlet tank portion 2 flows in the meandering refrigerant passage toward the air upstream side as shown in FIG. During this time, the liquid refrigerant exchanges heat with the air and cools the air, and the liquid refrigerant evaporates in proportion to the amount of heat taken from the air. Therefore, as the air advances toward the upstream side, the proportion of the gas refrigerant increases, the specific volume increases, and the flow rate of the refrigerant also increases. In this embodiment, in accordance with this increasing tendency of the refrigerant flow velocity, the angles 01 to θ of the protruding ribs in the passage are set so that the refrigerant passage on the air upstream side where the refrigerant flow velocity is high is smaller. therefore.

冷媒流速の高い通路はどリブの形状抵抗が小さくなり流
速が増えたことによる圧力損失の増大を防ぐことができ
る。
In a passage with a high refrigerant flow rate, the shape resistance of the groove ribs is reduced, and an increase in pressure loss due to an increase in the flow rate can be prevented.

第12図は、本発明による第5の実施例を示す伝熱管板
301aの平面図である。前記第1〜4実施例の冷媒通
路幅は略一定となっているが、本実施例の場合には、冷
媒入口側通路(空気出口側)から冷媒出口側通路(空気
入口側)に向って、冷媒通路幅W1〜W4が、W4>W
 3>W2>Wlの関係に従って徐々に大きくなるよう
に流路仕切り部9が設けられている。なお、本実施例は
流路幅を除徐に変える点が重要であり、冷媒通路内に突
起リブまたは、インナーフィンのいずれを設けても発明
の主旨は変らないのでこれらは、第12図には示されて
いない。以下本実施例の作動について説明する。
FIG. 12 is a plan view of a heat exchanger tube plate 301a showing a fifth embodiment of the present invention. The width of the refrigerant passage in the first to fourth embodiments is approximately constant, but in the case of this example, the width increases from the refrigerant inlet side passage (air outlet side) to the refrigerant outlet side passage (air inlet side). , the refrigerant passage width W1 to W4 is W4>W
The flow path partition portion 9 is provided so as to gradually increase in size according to the relationship 3>W2>Wl. It is important to note that in this embodiment, it is important to gradually change the channel width, and the gist of the invention does not change even if protruding ribs or inner fins are provided in the refrigerant channel, so these are shown in FIG. is not shown. The operation of this embodiment will be explained below.

前記したように、空気との熱交換によって液冷媒が蒸発
し、空気上流側に進むに従って冷媒通路内のガス冷媒の
比体積が増える。この比体積の増加に合わせて、本実施
例では伝熱管板201aで区画された冷媒通路の幅W1
〜W4を徐々に大きくして冷媒通路断面積を大きくして
いるので冷媒流速の増加が抑えられ、圧力損失の増大に
よる熱交換効率の低下を防ぐことができる。
As described above, the liquid refrigerant evaporates due to heat exchange with the air, and the specific volume of the gas refrigerant in the refrigerant passage increases as it advances toward the upstream side of the air. In accordance with this increase in specific volume, in this embodiment, the width W1 of the refrigerant passage partitioned by the heat exchanger tube plate 201a is
Since the cross-sectional area of the refrigerant passage is increased by gradually increasing ~W4, an increase in the refrigerant flow rate can be suppressed, and a decrease in heat exchange efficiency due to an increase in pressure loss can be prevented.

第13図は第1冷媒通路の幅W1および第4冷媒通路の
幅W4の比W4/W1を変えた場合の冷媒通路圧力損失
を示す。同図の縦軸は冷媒通路圧力損失ΔPをW4/W
t=1.0 のときの圧力損失ΔPsで除して求めた圧
力損失比ΔP/ΔPSである。冷媒通路内にインナーフ
ィン102を配置したAQ製の供試熱交換器を使用した
。インナーフィンは、板厚が0.2mmでフィン高さh
=2.0I、フィンピッチP=1.6m+である。通常
のカーエアコン用冷凍サイクル(図示せず)の場合には
、サイクル構成機器の可動部の潤滑のために冷媒と共に
冷凍機油が循環している。この条件に合わせるために実
験では冷媒の中に含まれる冷凍機油の循環率を0〜6w
t%に変えた。実験は、純粋冷媒の場合及び冷媒の中に
油が混入した場合(油循環率1〜6wt%)について蒸
発温度0℃一定として冷媒通路圧力損失の測定を行った
ものである。
FIG. 13 shows the refrigerant passage pressure loss when the ratio W4/W1 of the width W1 of the first refrigerant passage and the width W4 of the fourth refrigerant passage is changed. The vertical axis of the figure is the refrigerant passage pressure loss ΔP W4/W
This is the pressure loss ratio ΔP/ΔPS obtained by dividing by the pressure loss ΔPs when t=1.0. A test heat exchanger manufactured by AQ in which inner fins 102 were arranged in the refrigerant passage was used. The inner fin has a plate thickness of 0.2 mm and a fin height h
= 2.0I, fin pitch P = 1.6m+. In the case of a typical refrigeration cycle for a car air conditioner (not shown), refrigeration oil is circulated together with a refrigerant to lubricate the movable parts of the cycle components. In order to meet this condition, in the experiment, the circulation rate of the refrigerating machine oil contained in the refrigerant was changed from 0 to 6W.
Changed to t%. In the experiment, the pressure loss in the refrigerant passage was measured with the evaporation temperature constant at 0° C. in the case of pure refrigerant and in the case of oil mixed in the refrigerant (oil circulation rate of 1 to 6 wt%).

第13図から通路幅比W4/Wt=1.5 程度のとこ
ろまでは圧力損失比ΔP/ΔPSが徐々に低下しそれ以
上になると逆に増加している。即ち、圧力損失の低減に
対して適正な通路幅比W 4 / W 1の値が存在す
ることを示している。この実験結果から、W4/W1=
1.0  のときより圧力損失が低くなる(ΔP/ΔP
s<1.0となる)適正な通路幅比W4/W1の範囲は W4/W1=1.0〜2.7 であると読みとることができる。なお、冷媒通路幅比W
4/W1が大きくなるに従って圧力損失が逆に増えてし
まう主因は、第1冷媒通路の幅Wlが小さくなり過ぎて
、ここでの冷媒流速が過大になり圧力損失が増えるため
である。また、本発明による作用効果は、相溶性の良い
冷媒と冷凍機油との組合せであれば、冷媒、油の種類に
よらず同様の結果が得られるのはもちろんである。
From FIG. 13, the pressure loss ratio ΔP/ΔPS gradually decreases until the passage width ratio W4/Wt=1.5, and increases beyond that point. That is, it is shown that there is an appropriate value of the passage width ratio W 4 /W 1 for reducing pressure loss. From this experimental result, W4/W1=
The pressure loss is lower than when it is 1.0 (ΔP/ΔP
The range of the appropriate passage width ratio W4/W1 (s<1.0) can be read as W4/W1=1.0 to 2.7. In addition, the refrigerant passage width ratio W
The main reason why the pressure loss increases as 4/W1 increases is that the width Wl of the first refrigerant passage becomes too small, and the refrigerant flow rate there becomes excessive, resulting in an increase in pressure loss. Furthermore, it goes without saying that the same effects can be obtained by the present invention, regardless of the type of refrigerant or oil, as long as the refrigerant and refrigerating machine oil are combined with good compatibility.

上記第1〜5実施例の熱交換器に於ける熱交換の全体構
成を示すと第14図のようになり、入口パイプ5を介し
て入口ヘッダ2a内に流入した冷媒はこれに連接されて
いる複数の冷媒通路8内に略均等に流入し、−様に冷媒
通路8a〜8b内を上下に蛇行しながら空気流(イ)に
対向して流れ出口へラダ3aで再び合流し出口パイプ6
より流出する冷媒の流れ方となっている。即ち、積層さ
れている全ての偏平管内を流れる冷媒が一様に空気流と
直交対向流を形成しているが、本発明による作用効果は
、偏平管を複数個の管群に区画し少なくとも出口パイプ
に連接している最下流の管群内を流れる冷媒が空気流と
直交対向流となるように構成することによって実現でき
る。
The overall structure of heat exchange in the heat exchangers of the first to fifth embodiments is shown in FIG. 14, and the refrigerant flowing into the inlet header 2a through the inlet pipe 5 is connected to this. The refrigerant flows approximately evenly into the plurality of refrigerant passages 8 , meandering up and down in the refrigerant passages 8 a to 8 b in a manner similar to that of the air flow (A), and flows toward the outlet again at the ladder 3 a to join the outlet pipe 6 .
This allows the refrigerant to flow more easily. That is, the refrigerant flowing in all the stacked flat tubes uniformly forms a flow perpendicular to the air flow, but the effect of the present invention is to divide the flat tubes into a plurality of tube groups and at least This can be achieved by configuring the refrigerant flowing in the most downstream group of tubes connected to the pipes to flow perpendicularly to the air flow.

第15図は、入口タンク2の連通孔Aがヘッダ間支切り
部材22で塞がれた偏平管1を熱交換器の中央部に1個
配置することによって偏平管を2つの管群に区画した実
施例を示している。
FIG. 15 shows a flat tube 1 whose communication hole A of an inlet tank 2 is blocked by an inter-header partition member 22, and which is divided into two tube groups by arranging one flat tube 1 in the center of the heat exchanger. An example is shown below.

偏平管1のタンク部2,3を積重ねて風上ヘッダ202
.風下ヘッダ203を形成し、風上ヘッダ202はヘッ
ダ間支切り部材22で入口ヘッダ202a、出口ヘッダ
202bに分けられている。
The tank parts 2 and 3 of the flat tube 1 are stacked to form the windward header 202.
.. A leeward header 203 is formed, and the windward header 202 is divided into an inlet header 202a and an outlet header 202b by an inter-header dividing member 22.

入口ヘッダ202aには入口パイプ20が、出口へラダ
202bには出口パイプ21がそれぞれ、連通孔23を
介して連接されている。入口パイプ20より流入した冷
媒は入口へラダ202aに連接している第1の偏平管群
204内を蛇行して流れ風下ヘッダ203に至り、風下
ヘッダを介して連接されている第2の偏平管群205内
に流入する。第2の偏平管群を構成している複数の偏平
管内に略均等に流入した冷媒は、−様に冷媒通路8a〜
8d内を上下に蛇行しながら空気流(イ)に対向して流
れ出口ヘッダ202bで再び合流し、連通孔23を通っ
て出口パイプ21より流出する。
An inlet pipe 20 is connected to the inlet header 202a, and an outlet pipe 21 is connected to the outlet ladder 202b through communication holes 23. The refrigerant flowing from the inlet pipe 20 meanders through the first flat tube group 204 connected to the ladder 202a to the inlet, reaches the leeward header 203, and then flows into the second flat tube group connected via the leeward header. Flows into group 205. The refrigerant that has almost evenly flowed into the plurality of flat tubes constituting the second flat tube group flows in the refrigerant passages 8a to 8a.
While meandering up and down within 8d, the air flows opposite to the air flow (a), joins again at the outlet header 202b, passes through the communication hole 23, and flows out from the outlet pipe 21.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、偏平管内を流れる冷媒が、流路途中で
液溜まり等が生じないで安定して空気流入方向に向って
複数回上下に蛇行しながら直交対向流となって流れるの
で冷媒通路横断面内の熱負荷分布のアンバランスを軽減
し均一化できるので、熱交換効率を向上できる効果があ
る。
According to the present invention, the refrigerant flowing inside the flat tube stably flows in orthogonal countercurrents while meandering up and down multiple times in the direction of air inflow without causing liquid accumulation in the middle of the flow path. Since the imbalance in the heat load distribution within the cross section can be reduced and made uniform, it has the effect of improving heat exchange efficiency.

また、冷媒通路の幅を変えることによって冷媒吐出方向
に向って通路断面積を徐々に大きくして冷媒流速を低く
保ち、圧力損失を低減できるので熱交換効率を向上でき
る効果がある。
Furthermore, by changing the width of the refrigerant passage, the cross-sectional area of the passage is gradually increased in the direction of refrigerant discharge, thereby keeping the refrigerant flow rate low and reducing pressure loss, which has the effect of improving heat exchange efficiency.

さらに、冷媒通路内にインナーフィンを配置することに
より、管内伝熱面積を拡大することができるので管内の
伝熱性が向上し熱交換効率を向上できる効果もある。
Furthermore, by arranging the inner fins within the refrigerant passage, the heat transfer area within the tubes can be expanded, which has the effect of improving heat conductivity within the tubes and improving heat exchange efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の伝熱管板の平面図。 第2図は冷媒の流路を示す模式図、第3図は本発明の一
実施例の熱交換器の正面図、第4図は第3第5の実施例
を示す伝熱管板の平面図、第13図実施例      
   の冷媒流れを示す模式%式% ・・・伝熱管板、2,3・・・入口、出口タンク部、2
a。 2b・・・入口、出口ヘッダ、4・・・空気側フィン、
7・・・接合リブ部、7a〜7c・・・冷媒流路外周端
部、8・・・流路くぼみ部、8a〜8d・・・第1〜第
4冷媒流路、9・・・流路仕切り部、11・・・サイド
プレート、102・・・インナーフィン。 本発明による第3の実施例を示す図であり、それぞれ伝
熱管板の平面図、インナーフィンの平面図。 インナーフィンの要部斜視図、伝熱管板とインナ半)図 第2区 Ba、〜3ct、−・枕は外謀i給 鉢〜8べ一卒1〜わ小博連語 享 3 国 羊 図 ハ 第 図 草 乙 ス 第 7 阜9図 \ 0 ハ 第 図 為11図 イ云、妹)七′板 θI〜 θ4−−−ン訃媒ニ汽jK方祐Lし丈中オラリ
プーイ41角月し拓 3 圀 絽 巳 Wlん W41 あ1〜竿滓シを床遁謁榊ゐ
FIG. 1 is a plan view of a heat exchanger tube plate according to an embodiment of the present invention. Fig. 2 is a schematic diagram showing a refrigerant flow path, Fig. 3 is a front view of a heat exchanger according to an embodiment of the present invention, and Fig. 4 is a plan view of a heat exchanger tube plate showing a third and fifth embodiment. , FIG. 13 Example
Schematic % formula showing the flow of refrigerant %... Heat exchanger tube plate, 2, 3... Inlet, outlet tank section, 2
a. 2b...Inlet, outlet header, 4...Air side fin,
7... Joining rib portion, 7a to 7c... Coolant flow path outer peripheral end portion, 8... Channel recessed portion, 8a to 8d... First to fourth coolant flow paths, 9... Flow road partition part, 11... side plate, 102... inner fin; It is a figure which shows the 3rd Example by this invention, and is a top view of a heat exchanger tube plate, and a top view of an inner fin, respectively. Perspective view of the main parts of the inner fin, heat exchanger tube plate and inner half) Figure 2nd section Ba, ~3ct, - Pillow is an explanatory i supply bowl ~8be 1st grade 1~wa Kobaku Rengo Kyou 3 National Sheep Figure Ha Figure 7, Figure 9, 0 Figure 11, Sister) 7' plate θI~ θ4--N, the deceased's mother, JK Hosuke L, and the middle Oraripui, 41 Kakuzuki Shitaku. 3 Kuni Karumi Wln W41 A1 ~ Sakaki is on the floor with the rod

Claims (1)

【特許請求の範囲】 1、くぼみ部により冷媒通路が形成され、かつ該冷媒通
路が冷媒の流れ方向を少なくとも2回以上蛇行するよう
に形成された2板の伝熱管板を組み合せた時、一方の端
部に入口タンク部を、他方の端部に出口タンク部を有す
る偏平伝熱管を、隣接する出口タンク部と入口タンク部
とが連通するように多数積層してなる積層形熱交換器に
おいて、前記偏平伝熱管内の前記伝熱管板に垂直な方向
の通路幅を入口タンク部から出口タンク部までほぼ等し
くなるように形成したことを特徴とする積層形熱交換器
。 2、前記入口タンク部、出口タンク部を前記伝熱管板の
中心線側まで形成させている請求項1に記載の積層形熱
交換器。 3、前記冷媒通路内に突起リブを設けた請求項1又は2
に記載の積層形熱交換器。 4、前記冷媒通路内にインナーフィン部材を設けた請求
項1又は2に記載の積層形熱交換器。 5、前記インナーフィン部材に、冷媒通路内に配置した
とき冷媒流路の仕切り部を逃げるためのスリット部を設
けた請求項4に記載の積層形熱交換器。 6、冷媒流れ方向に対する突起リブの傾き角度を冷媒吐
出方向に徐々に小さく設定した請求項3に記載の積層形
熱交換器。 7、前記冷媒通路の蛇行を除く冷媒通路幅を冷媒吐出側
に位置する冷媒通路ほどその幅が広くなるように構成し
た請求項1から6のいずれかに記載の積層形熱交換器。 8、空気下流側に位置する冷媒通路から冷媒を導入し、
空気下流側通路幅をW_1、最上流側通路幅をW_4と
して通路幅比W_4/W_1を、W_4/W_1=1.
0〜2.7の範囲に設定した請求項7に記載の積層形熱
交換器。 9、前記入口タンクおよび出口タンク部を連設して形成
されているヘッダ内に間仕切り板を設けて区画される複
数の管群のうち少なくとも出口パイプが連接された管群
内を冷媒が空気と直交対向流となるように構成した請求
項7又は8に記載の積層形熱交換器。
[Claims] 1. When two heat exchanger tube plates are combined, each of which has a refrigerant passage formed by a recessed part and is formed so that the refrigerant passage meanderes at least twice in the flow direction of the refrigerant, one In a laminated heat exchanger in which a large number of flat heat exchanger tubes having an inlet tank part at one end and an outlet tank part at the other end are stacked so that adjacent outlet tank parts and inlet tank parts communicate with each other, A laminated heat exchanger, characterized in that the passage width in the direction perpendicular to the heat exchanger tube plate in the flat heat exchanger tube is approximately equal from the inlet tank part to the outlet tank part. 2. The laminated heat exchanger according to claim 1, wherein the inlet tank portion and the outlet tank portion are formed up to the center line side of the heat exchanger tube plate. 3. Claim 1 or 2, wherein a protruding rib is provided in the refrigerant passage.
The laminated heat exchanger described in . 4. The laminated heat exchanger according to claim 1 or 2, wherein an inner fin member is provided in the refrigerant passage. 5. The laminated heat exchanger according to claim 4, wherein the inner fin member is provided with a slit portion for escaping the partition portion of the refrigerant flow path when placed in the refrigerant path. 6. The laminated heat exchanger according to claim 3, wherein the inclination angle of the protruding ribs with respect to the refrigerant flow direction is set gradually smaller in the refrigerant discharge direction. 7. The laminated heat exchanger according to claim 1, wherein the width of the refrigerant passage excluding meandering of the refrigerant passage is such that the width becomes wider as the refrigerant passage is located on the refrigerant discharge side. 8. Introducing the refrigerant from the refrigerant passage located on the downstream side of the air,
Assuming that the air downstream passage width is W_1 and the most upstream passage width is W_4, the passage width ratio W_4/W_1 is W_4/W_1=1.
The laminated heat exchanger according to claim 7, wherein the heat exchanger is set in a range of 0 to 2.7. 9. A partition plate is provided in the header formed by connecting the inlet tank and the outlet tank portion, and the refrigerant flows through the tube group to which at least the outlet pipe is connected, out of the plurality of tube groups partitioned by providing a partition plate. The laminated heat exchanger according to claim 7 or 8, configured to provide orthogonal counterflow.
JP27587289A 1989-10-25 1989-10-25 Lamination type heat exchanger Pending JPH03140795A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27587289A JPH03140795A (en) 1989-10-25 1989-10-25 Lamination type heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27587289A JPH03140795A (en) 1989-10-25 1989-10-25 Lamination type heat exchanger

Publications (1)

Publication Number Publication Date
JPH03140795A true JPH03140795A (en) 1991-06-14

Family

ID=17561612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27587289A Pending JPH03140795A (en) 1989-10-25 1989-10-25 Lamination type heat exchanger

Country Status (1)

Country Link
JP (1) JPH03140795A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5735343A (en) * 1995-12-20 1998-04-07 Denso Corporation Refrigerant evaporator
US6220342B1 (en) 1995-02-16 2001-04-24 Zexel Corporation Laminated heat exchanger
CN102878726A (en) * 2012-10-19 2013-01-16 饶华明 Evaporating plate of evaporator
JP2013508657A (en) * 2009-10-23 2013-03-07 フォイト パテント ゲーエムベーハー Heat exchanger plate and evaporator having the same
EP2187157A3 (en) * 2008-11-18 2013-10-16 Behr GmbH & Co. KG Heat exchanger for heating a motor vehicle
JP2014016144A (en) * 2012-07-05 2014-01-30 Airec Ab Plate for heat exchanger, heat exchanger, and air cooler comprising heat exchanger
JP2018084194A (en) * 2016-11-24 2018-05-31 株式会社デンソー Cooling circuit
JP2019158180A (en) * 2018-03-08 2019-09-19 株式会社デンソー Heat exchanger for vehicle
US10935278B2 (en) 2016-03-28 2021-03-02 Kyungdong Navien Co., Ltd. Tubular heat exchanger

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6213998A (en) * 1985-07-10 1987-01-22 Sakae Sangyo Kk Heat exchanger of panel type

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6213998A (en) * 1985-07-10 1987-01-22 Sakae Sangyo Kk Heat exchanger of panel type

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6220342B1 (en) 1995-02-16 2001-04-24 Zexel Corporation Laminated heat exchanger
US6227290B1 (en) 1995-02-16 2001-05-08 Zexel Corporation Laminated heat exchanger
US5735343A (en) * 1995-12-20 1998-04-07 Denso Corporation Refrigerant evaporator
EP2187157A3 (en) * 2008-11-18 2013-10-16 Behr GmbH & Co. KG Heat exchanger for heating a motor vehicle
JP2013508657A (en) * 2009-10-23 2013-03-07 フォイト パテント ゲーエムベーハー Heat exchanger plate and evaporator having the same
JP2014016144A (en) * 2012-07-05 2014-01-30 Airec Ab Plate for heat exchanger, heat exchanger, and air cooler comprising heat exchanger
CN102878726A (en) * 2012-10-19 2013-01-16 饶华明 Evaporating plate of evaporator
US10935278B2 (en) 2016-03-28 2021-03-02 Kyungdong Navien Co., Ltd. Tubular heat exchanger
JP2018084194A (en) * 2016-11-24 2018-05-31 株式会社デンソー Cooling circuit
JP2019158180A (en) * 2018-03-08 2019-09-19 株式会社デンソー Heat exchanger for vehicle

Similar Documents

Publication Publication Date Title
JP5071597B2 (en) Heat exchanger and air conditioner
JP6664558B1 (en) Heat exchanger, air conditioner with heat exchanger, and refrigerant circuit with heat exchanger
EP3875878B1 (en) Heat exchanger and refrigeration cycle device
JP2014037899A (en) Heat exchanger
JP2001324244A (en) Heat exchanger
JPH03140795A (en) Lamination type heat exchanger
JP2014137177A (en) Heat exchanger and refrigerator
JP3661275B2 (en) Stacked evaporator
CN210165622U (en) Heat exchanger and air conditioning equipment
US20200049382A1 (en) Refrigerant evaporator and method for manufacturing same
JP5591285B2 (en) Heat exchanger and air conditioner
CN210051023U (en) Heat exchanger and air conditioner
CN210165621U (en) Heat exchanger and air conditioning equipment
CN112066601A (en) Heat exchanger and air conditioning system
JP2001133076A (en) Heat exchanger
JPH02106697A (en) Lamination type heat exchanger
JPH02171591A (en) Laminated type heat exchanger
JP2020190383A (en) Heat exchanger
CN112066600A (en) Heat exchanger and air conditioning equipment
CN216347958U (en) Heat exchanger and electrical equipment
JPH0345301B2 (en)
JP4328411B2 (en) Heat exchanger
JP7310655B2 (en) Heat exchanger
JP7327214B2 (en) Heat exchanger
CN220507311U (en) Microchannel heat exchanger and air conditioner