JPH02106697A - Lamination type heat exchanger - Google Patents

Lamination type heat exchanger

Info

Publication number
JPH02106697A
JPH02106697A JP25948588A JP25948588A JPH02106697A JP H02106697 A JPH02106697 A JP H02106697A JP 25948588 A JP25948588 A JP 25948588A JP 25948588 A JP25948588 A JP 25948588A JP H02106697 A JPH02106697 A JP H02106697A
Authority
JP
Japan
Prior art keywords
refrigerant
air
heat exchanger
heat transfer
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25948588A
Other languages
Japanese (ja)
Inventor
Mitsuo Kudo
工藤 光夫
Toshihiko Fukushima
敏彦 福島
Kazuya Matsuo
松尾 一也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP25948588A priority Critical patent/JPH02106697A/en
Publication of JPH02106697A publication Critical patent/JPH02106697A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • F28D1/0308Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other
    • F28D1/0325Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another
    • F28D1/0333Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another the plates having integrated connecting members
    • F28D1/0341Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another the plates having integrated connecting members with U-flow or serpentine-flow inside the conduits

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To enable execution of high-efficient heat exchange between a refrigerant and air by a method wherein a slit part extending at right angles with the direction of the flow of air to be cooled is formed in the middle part of the U-shaped recessed part of each heat transfer tube plate with which a flat heat transfer tube is formed. CONSTITUTION:A heat transfer tube plate 4a with which a flat heat tube 4 is formed has structure in which an U-shaped recessed part 9 adapted to form a refrigerant passage is extruded in a state that a joint rib part 11 with which a closed passage is formed in a plate being a raw material is left as it is and an inlet tank part and an outlet tank part 3 for a refrigerant are extruded deeper than the recessed part 9 and a slit part 10 is blanked in the middle part of the U-shaped recessed part 9. Namely, the tube wall extending in the direction of the flow of air of the heat transfer tube 4 is divided by the slit part 10. Thus, since transmission of heat from the air upper stream side to the downstream side through the tube wall is blocked, cooling capacity can be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、空調機等に用いられる積層形熱交換器に係り
、特にカーエアコン用蒸発器に好適な積層形熱交換器に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a laminated heat exchanger used in air conditioners and the like, and particularly to a laminated heat exchanger suitable for an evaporator for a car air conditioner.

〔従来の技術〕[Conventional technology]

蒸発器として用いられている従来の積層形熱交換器は、
実公昭56−45035号公報に記載のように、U字形
のくぼみ部を有する伝熱管板を2枚組み合わせてU字形
の冷媒通路を形成した扁平状の伝熱板と、被冷却空気側
伝熱フィンとを交互に多数積層した構造となっており、
U字形のくぼみ部の中間部分に突出するように形成され
た通路仕切り部が設けられている。U字形の冷媒通路の
両端部には、隣接する伝熱管と連通ずる入口、出口タン
ク部が設けられ、それぞれ冷媒の入口バイブと出口バイ
ブが接続されている。
The conventional stacked heat exchanger used as an evaporator is
As described in Japanese Utility Model Publication No. 56-45035, a flat heat exchanger plate in which a U-shaped refrigerant passage is formed by combining two heat exchanger tube plates each having a U-shaped recess, and a heat exchanger on the air side to be cooled. It has a structure in which many fins are laminated alternately.
A passage partition portion is provided to protrude from the middle portion of the U-shaped recess. At both ends of the U-shaped refrigerant passage, there are provided an inlet and an outlet tank section that communicate with adjacent heat transfer tubes, and a refrigerant inlet vibrator and outlet vibrator are connected to the inlet and outlet tank sections, respectively.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前記従来の積層形熱交換器では、入口バイブより流入し
た冷媒は空気下流側に位置する入口タンク部を介して扁
平の伝熱管内に分配され、まず通路仕切部に対して空気
下流側に位置する伝熱管内を流れ、空気と熱交換し、次
にU字形の冷媒通路に沿ってUターンし、空気上流伝熱
管内に至る。
In the conventional laminated heat exchanger, the refrigerant that flows in from the inlet vibrator is distributed into the flat heat transfer tubes via the inlet tank located on the downstream side of the air, and first the refrigerant is distributed into the flat heat transfer tubes located on the downstream side of the air with respect to the passage partition. The refrigerant flows through the heat exchanger tube, exchanging heat with the air, then makes a U-turn along the U-shaped refrigerant path, and reaches the air upstream heat exchanger tube.

空気上流側では、冷媒の蒸発温度と空気との温度差が大
きいため、熱交換量が多く、液冷媒は完全に蒸発し、温
度の高いガス冷媒となって出口タンク部を介して出口バ
イブより流出する。このため。
On the air upstream side, there is a large temperature difference between the evaporation temperature of the refrigerant and the air, so there is a large amount of heat exchange, and the liquid refrigerant completely evaporates, becoming a high-temperature gas refrigerant and flowing from the outlet vibrator through the outlet tank. leak. For this reason.

U字形の冷媒通路の通路仕切り部を挾んで温度の高い冷
媒ガスと、温度の低い気液二相冷媒とが隣合わせになり
、伝熱管を介して空気上流側冷媒と下流側冷媒とが熱交
換してしまい、熱交換器の性能が低下するという問題が
あった。
High-temperature refrigerant gas and low-temperature gas-liquid two-phase refrigerant are placed next to each other across the passage partition of the U-shaped refrigerant passage, and the air upstream refrigerant and downstream refrigerant exchange heat through the heat transfer tubes. There was a problem in that the performance of the heat exchanger deteriorated.

本発明の目的は、空気上流側の高温冷媒と下流側の温度
の低い冷媒との冷媒間の熱交換を防ぐことによって、冷
媒と空気との熱交換作用を効率良く行ない得る積層産熱
交換器を提供することにある。
An object of the present invention is to provide a laminated heat exchanger capable of efficiently exchanging heat between a refrigerant and air by preventing heat exchange between a high-temperature refrigerant on the upstream side of the air and a low-temperature refrigerant on the downstream side. Our goal is to provide the following.

〔課題を解決するための手段〕[Means to solve the problem]

前記目的を達成するため、本発明は扁平の伝熱管を構成
している各伝熱管板におけるU字形のくぼみ部の中間部
分に、被冷却空気の流れ方向と直交する方向にスリット
部を設けたものである。
In order to achieve the above object, the present invention provides a slit section in a direction perpendicular to the flow direction of the air to be cooled, in the middle part of the U-shaped recess in each heat exchanger tube plate that constitutes a flat heat exchanger tube. It is something.

〔作用〕[Effect]

本発明では、空気下流側に位置する入口タンク部より流
入した冷媒は、U字形の冷媒通路の中間部分に設けられ
たスリット部の空気下流側伝熱管内を流れ、冷媒の持つ
気化熱によって空気を冷却し、ガス冷媒の割合を増しな
がら冷媒通路に沿って流れ、Uターンして空気上流側伝
熱管に至る。
In the present invention, the refrigerant flowing from the inlet tank located on the downstream side of the air flows through the air downstream heat transfer tube of the slit provided in the middle part of the U-shaped refrigerant passage, and the heat of vaporization of the refrigerant causes the refrigerant to flow into the air. It flows along the refrigerant passage while increasing the proportion of gas refrigerant, makes a U-turn, and reaches the air upstream heat exchanger tube.

空気上流側は空気温度が下流側に比べて高いため、冷媒
との温度差が大きく、熱交換量も多いので、液冷媒の蒸
発が促進され、液冷媒が少なくなるに従ってガス冷媒の
温度が上昇し、冷媒の圧力に基づく蒸発温度に比べて、
ガス冷媒の温度は5〜10℃上昇して伝熱管の出口に至
る。ここで、U字形の冷媒通路の中間部分に設けられた
スリット部によって扁平の伝熱管はスリット部を挾んで
空気上流側と下流側とに熱的に分断されているため、従
来の積層産熱交換器のような伝熱管の管壁を介して行な
われる空気上流側高温ガス冷媒と、空気下流側の気液二
相低温冷媒との熱交換による熱交換損失を阻止すること
ができる。
The air temperature on the upstream side is higher than that on the downstream side, so there is a large temperature difference with the refrigerant, and there is a large amount of heat exchange, so evaporation of the liquid refrigerant is promoted, and as the liquid refrigerant decreases, the temperature of the gas refrigerant increases. However, compared to the evaporation temperature based on the refrigerant pressure,
The temperature of the gas refrigerant increases by 5 to 10°C and reaches the outlet of the heat exchanger tube. Here, the flat heat exchanger tube is thermally divided into the air upstream side and the downstream side by the slit part provided in the middle part of the U-shaped refrigerant passage. It is possible to prevent heat exchange loss due to heat exchange between the high-temperature gas refrigerant on the upstream side of the air and the gas-liquid two-phase low-temperature refrigerant on the downstream side of the air through the tube wall of a heat transfer tube such as an exchanger.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図〜第3図により説明す
る。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 3.

第1図は本発明に係る積層産熱交換器の扁平状の伝熱管
を構成している伝熱管板の正面図、第2図は第1図のn
 −II線線断断側面図第3図は本発明に係る積層産熱
交換器の全体構成を示す斜視図である。
FIG. 1 is a front view of a heat exchanger tube plate constituting a flat heat exchanger tube of a laminated heat exchanger according to the present invention, and FIG.
FIG. 3 is a perspective view showing the overall structure of the laminated heat exchanger according to the present invention.

扁平状の伝熱管4を構成するための伝熱管板4aは、素
材となる平板に密閉された通路を形成するための接合リ
ブ部11を残して、冷媒通路を形成するためのU字形の
くぼみ部9を押し出し、さらにこのくぼみ部9よりも深
く冷媒の入口タンク部2と出口タンク部3とを押し出し
て形成し、U字形のくぼみ部9の中間部分にスリット部
1゜を打ち抜いた構造となっている。
The heat exchanger tube plate 4a for configuring the flat heat exchanger tube 4 has a U-shaped recess for forming a refrigerant passage, leaving a joining rib portion 11 for forming a sealed passage in the flat plate serving as the material. The refrigerant inlet tank part 2 and the outlet tank part 3 are formed by extruding the refrigerant inlet tank part 2 and the outlet tank part 3 deeper than the recess part 9, and a slit part of 1 degree is punched in the middle part of the U-shaped recess part 9. It has become.

前記冷媒の入口タンク部2と出口タンク部3の底部には
、それぞれ冷媒の入口6aと出口6bとが打ち抜かれて
いる。また、冷媒の入口、出口タンク部2,3の反対側
には、第2図に示すように、直角に折り曲げた折り返し
部12が形成されいる。
A refrigerant inlet 6a and an outlet 6b are punched out at the bottoms of the refrigerant inlet tank part 2 and outlet tank part 3, respectively. Further, on the opposite side of the refrigerant inlet and outlet tank parts 2 and 3, a folded part 12 bent at a right angle is formed as shown in FIG.

前記伝熱管4は、第3図から分かるように、2枚の伝熱
管板4aを、互いに冷媒の入口6aと出ロアaとを連通
させ、かつ互いに接合リブ部11を接合させ、組み合わ
せて扁平状に構成されている。また、前記伝熱管・1の
内部には、2枚の伝熱管板4aのU字形のくぼみ部9を
組み合わせた、U字形の冷媒通路が形成されている。前
記冷媒通路における被冷却空気の下流側冷媒通路9bの
端部には冷媒入口タンク部2が連通し、上流側冷媒通路
9aには冷媒出口タンク部3が連通し、前記冷媒の入口
タンク部2と出口タンク部3には冷媒の入口6aと出ロ
アaが開口しており、前記冷媒の入口6aと出ロアaに
は冷媒の入口バイブ6と出口バイブ7が接続されている
As can be seen from FIG. 3, the heat exchanger tube 4 is made of two heat exchanger tube plates 4a, which are assembled into a flat shape by connecting the refrigerant inlet 6a and the outlet lower a to each other, and joining the joint rib portions 11 to each other. It is structured like this. Further, inside the heat exchanger tube 1, a U-shaped refrigerant passage is formed by combining the U-shaped recesses 9 of the two heat exchanger tube plates 4a. A refrigerant inlet tank portion 2 communicates with the end of the downstream refrigerant passage 9b for the air to be cooled in the refrigerant passage, a refrigerant outlet tank portion 3 communicates with the upstream refrigerant passage 9a, and the refrigerant inlet tank portion 2 A refrigerant inlet 6a and an outlet lower a are open in the outlet tank portion 3, and a refrigerant inlet vibrator 6 and an outlet vibrator 7 are connected to the refrigerant inlet 6a and outlet lower a.

そして、積層産熱交換器1は第3図に示すように、前記
扁平状の伝熱管4と、伝熱フィン5とを交互に複数個ず
つ積層して構成されている。
As shown in FIG. 3, the laminated heat exchanger 1 is constructed by alternately stacking a plurality of the flat heat transfer tubes 4 and heat transfer fins 5.

前記実施例の積層産熱交換器1において、被冷却空気の
下流側冷媒通路9bの端部に設けられた入口バイブ6よ
り流入した冷媒は、入口タンク部2に設けられた入口6
aを介して伝熱管4内に分配される。蒸発温度が約0℃
の冷媒によって被冷却空気の下流側冷媒通路9bでは外
側に設けられている伝熱フィン5を介して空気は約5℃
まで冷却され、流下する。空気との熱交換によって液冷
媒りが蒸発し、ガス冷媒の割合を増しながら入口タンク
部2の反対側の端部に至り、ここでUターンして被冷却
空気の上流側冷媒通路9a内を第1図の上方から下方に
向って流下する。
In the laminated heat exchanger 1 of the embodiment, the refrigerant flowing from the inlet vibrator 6 provided at the end of the downstream refrigerant passage 9b for the air to be cooled flows through the inlet 6 provided in the inlet tank portion 2.
a into the heat exchanger tubes 4. Evaporation temperature is approximately 0℃
In the downstream refrigerant passage 9b of the air to be cooled, the air is heated to about 5°C via the heat transfer fins 5 provided on the outside.
It cools down to a certain point and flows down. The liquid refrigerant evaporates due to heat exchange with the air, and reaches the opposite end of the inlet tank part 2 while increasing the proportion of gas refrigerant, where it makes a U-turn and flows into the upstream refrigerant passage 9a of the cooled air. It flows downward from the top of Figure 1.

第1図に示す空気流Aの入口温度は、通常25℃であり
、下流側に比べて冷媒蒸発温度との差が大きいので、冷
媒は急激に蒸発して温度の高いガス冷媒Gとなり出ロア
aで合流して出口バイブ7より流出する。
The inlet temperature of the air flow A shown in Fig. 1 is normally 25°C, and the difference from the refrigerant evaporation temperature is larger than that on the downstream side, so the refrigerant rapidly evaporates and becomes a high-temperature gas refrigerant G. It joins at a and flows out from the exit vibe 7.

第1図において、空気下流側では伝熱管4内の冷媒は気
液二相流となっており、熱伝達率が高く。
In FIG. 1, on the downstream side of the air, the refrigerant in the heat transfer tubes 4 is in a gas-liquid two-phase flow, and has a high heat transfer coefficient.

空気温度が低いために伝熱管板4aの壁温は冷媒蒸発温
度に近い2〜3℃である。一方、空気上流側では伝熱管
4内の冷媒はガス冷媒であって単相流であり、空気下流
側の二相冷媒に比べて熱伝達率は約1/10以下に低下
するので、管壁温度が空気温度に近い値となり、伝熱管
板4aの壁温は10〜15℃に上昇し、下流側管壁温度
と約10℃の温度差を生じることになる。
Since the air temperature is low, the wall temperature of the heat exchanger tube plate 4a is 2 to 3°C, which is close to the refrigerant evaporation temperature. On the other hand, on the air upstream side, the refrigerant in the heat transfer tubes 4 is a gas refrigerant and a single-phase flow, and the heat transfer coefficient is reduced to about 1/10 or less compared to the two-phase refrigerant on the air downstream side. The temperature becomes close to the air temperature, and the wall temperature of the heat exchanger tube plate 4a rises to 10 to 15°C, creating a temperature difference of about 10°C from the downstream side tube wall temperature.

このため、従来の積層形熱交換器の場合には、この管壁
温度差に起因する伝熱管板の温度勾配により、上流側の
高温ガス冷媒から下流側の温度の低い冷媒への熱移動を
生じて空気冷却に必要な液冷媒を無駄に蒸発させてしま
い、冷房能力が低下するという問題があった。
Therefore, in the case of conventional stacked heat exchangers, the temperature gradient in the heat transfer tube sheets caused by this tube wall temperature difference prevents heat transfer from the high temperature gas refrigerant on the upstream side to the lower temperature refrigerant on the downstream side. This causes a problem in that the liquid refrigerant necessary for air cooling is wasted and evaporated, resulting in a reduction in cooling capacity.

これに対して、本発明のこの実施例では、U字形の冷媒
通路を形成するために設けられた各伝熱管板4aのU字
形のくぼみ部9の中間部分に、被冷却空気の流れ方向と
直交する方向にスリン1〜部10を打ち抜いて設けてい
るので、伝熱管4の空気流方向の管壁はスリット部10
により分断される。したがって、管壁を介して伝達され
る空気上流側から下流側への熱伝導が阻止されるので、
従来の積層形熱交換器のごとき問題を生じることがなく
、冷房能力を向上させることができる。
On the other hand, in this embodiment of the present invention, in the middle part of the U-shaped recess 9 of each heat exchanger tube plate 4a provided to form a U-shaped refrigerant passage, Since the slit parts 1 to 10 are punched out in the orthogonal direction, the tube wall of the heat transfer tube 4 in the air flow direction is formed by punching out the slit parts 10.
divided by Therefore, heat conduction from the upstream side of the air to the downstream side through the pipe wall is blocked.
Cooling capacity can be improved without causing the problems encountered with conventional stacked heat exchangers.

なお、本発明において伝熱フィン5をスリット部10を
境に上流側と下流側に2分割することによって、前述の
効果がさらに向上する。
In addition, in the present invention, the above-mentioned effect is further improved by dividing the heat transfer fins 5 into two parts on the upstream side and the downstream side with the slit portion 10 as a boundary.

〔発明の効果〕〔Effect of the invention〕

以上説明した本発明によれば、扁平状の伝熱管を構成し
ている各伝熱管板におけるU字形のくぼみ部の中間部分
に、被冷却空気の流れ方向と直交する方向にスリット部
を設けており、伝熱管の空気流方向の管壁が前記スリッ
ト部により空気上流側と下流側とに熱的に分断されてい
るため、伝熱管の管壁を介して行なわれる空気上流側高
温ガス冷媒と、空気下流側の気液二相低温冷媒との熱交
換による熱交換損失を阻止することができ、したがって
冷媒と空気との熱交換作用を効率良く行ない得る効果が
あり、ひいては冷房能力を向上させ得る効果がある。
According to the present invention described above, a slit portion is provided in the middle portion of the U-shaped recess in each heat exchanger tube plate constituting the flat heat exchanger tube in a direction perpendicular to the flow direction of the air to be cooled. In addition, since the tube wall of the heat transfer tube in the air flow direction is thermally divided into the air upstream side and the downstream side by the slit section, the air upstream side high temperature gas refrigerant and the air flow through the tube wall of the heat transfer tube. , it is possible to prevent heat exchange loss due to heat exchange with the gas-liquid two-phase low-temperature refrigerant on the downstream side of the air, and therefore, it has the effect of efficiently performing the heat exchange action between the refrigerant and the air, which in turn improves the cooling capacity. There are benefits to be gained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る′!!を層形熱交換器の扁平状の
伝熱管を構成している伝熱管板の正面図、第2図は第1
図の■−■線縦線側断側面図3図は本発明に係る積層形
熱交換器の全体構成を示す斜視図である。 1・・積層形熱交換器、4a ・伝熱管板、4・・・扁
平状の伝熱管、5・・伝熱フィン、9・・・U字形のく
ぼみ部、9a・・・被冷却空気の上流側冷媒通路、9b
・・・同じく下流側冷媒通路、1−0・・・スリット部
、A・・・空気流、G・・・ガス冷媒、L・・液冷媒。 代理人 弁理士 小川勝馬1.− ′) r 回 1=−、、。 冨 図 第 図
Figure 1 shows '!' according to the present invention. ! Figure 2 is a front view of the heat exchanger tube plate that constitutes the flat heat exchanger tubes of the layered heat exchanger.
FIG. 3 is a side cross-sectional side view taken along the line ■-■ in the figure. FIG. 3 is a perspective view showing the overall structure of the laminated heat exchanger according to the present invention. 1... Laminated heat exchanger, 4a - Heat exchanger tube plate, 4... Flat heat exchanger tube, 5... Heat transfer fin, 9... U-shaped depression, 9a... Air to be cooled Upstream refrigerant passage, 9b
... Similarly, downstream refrigerant passage, 1-0... Slit portion, A... Air flow, G... Gas refrigerant, L... Liquid refrigerant. Agent Patent Attorney Katsuma Ogawa 1. −′) r times 1=−,,. Tomizu Diagram

Claims (1)

【特許請求の範囲】[Claims] 1. 冷媒通路を形成するためのU字形のくぼみ部と、
このU字形のくぼみ部の両端部に設けられた冷媒の入口
と出口とを有する2枚の伝熱管板を、互いに冷媒の入口
と出口とを連通させ、かつU字形のくぼみ部を有する面
側を接合して組み合わせ、内部にU字形の冷媒通路を有
する扁平状の伝熱管を構成し、この扁平状の伝熱管と伝
熱フインとを交互に複数個ずつ積層して構成した積層形
熱交換器において、前記各伝熱管板におけるU字形のく
ぼみ部の中間部分に、被冷却空気の流れ方向と直交する
方向にスリツト部を設けたことを特徴とする積層形熱交
換器。
1. a U-shaped recess for forming a refrigerant passage;
Two heat exchanger tube plates having a refrigerant inlet and an outlet provided at both ends of the U-shaped recess are connected to each other so that the refrigerant inlet and outlet are communicated with each other, and the surface side having the U-shaped recess is are joined and combined to form a flat heat transfer tube with a U-shaped refrigerant passage inside, and a laminated heat exchanger is constructed by alternately stacking a plurality of these flat heat transfer tubes and heat transfer fins. 1. A laminated heat exchanger, characterized in that a slit portion is provided in the middle portion of the U-shaped depression in each of the heat exchanger tube plates in a direction perpendicular to the flow direction of the air to be cooled.
JP25948588A 1988-10-17 1988-10-17 Lamination type heat exchanger Pending JPH02106697A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25948588A JPH02106697A (en) 1988-10-17 1988-10-17 Lamination type heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25948588A JPH02106697A (en) 1988-10-17 1988-10-17 Lamination type heat exchanger

Publications (1)

Publication Number Publication Date
JPH02106697A true JPH02106697A (en) 1990-04-18

Family

ID=17334739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25948588A Pending JPH02106697A (en) 1988-10-17 1988-10-17 Lamination type heat exchanger

Country Status (1)

Country Link
JP (1) JPH02106697A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5620046A (en) * 1994-01-13 1997-04-15 Behr Gmbh & Co. Heat exchanger, particularly a refrigerant evaporator
US5718285A (en) * 1995-02-07 1998-02-17 Sanden Corporation Heat exchanger and method for manufacturing heat exchangers
JP2013543575A (en) * 2010-10-06 2013-12-05 ベール ゲーエムベーハー ウント コー カーゲー Heat exchanger
FR2999695A1 (en) * 2012-12-18 2014-06-20 Valeo Systemes Thermiques FLAT TUBE FOR EXHAUST AIR HEAT EXCHANGER AND HEAT EXCHANGER OF CORRESPONDING SUPERVISION AIR HEAT.
JP2016205770A (en) * 2015-04-28 2016-12-08 パナソニックIpマネジメント株式会社 Heat exchanger, manufacturing method of heat exchanger and fuel cell system
US10295282B2 (en) 2014-07-21 2019-05-21 Dana Canada Corporation Heat exchanger with flow obstructions to reduce fluid dead zones
US10767937B2 (en) 2011-10-19 2020-09-08 Carrier Corporation Flattened tube finned heat exchanger and fabrication method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5620046A (en) * 1994-01-13 1997-04-15 Behr Gmbh & Co. Heat exchanger, particularly a refrigerant evaporator
US5718285A (en) * 1995-02-07 1998-02-17 Sanden Corporation Heat exchanger and method for manufacturing heat exchangers
US5930894A (en) * 1995-02-07 1999-08-03 Sanden Corporation Method for manufacturing heat exchangers
JP2013543575A (en) * 2010-10-06 2013-12-05 ベール ゲーエムベーハー ウント コー カーゲー Heat exchanger
US10767937B2 (en) 2011-10-19 2020-09-08 Carrier Corporation Flattened tube finned heat exchanger and fabrication method
US11815318B2 (en) 2011-10-19 2023-11-14 Carrier Corporation Flattened tube finned heat exchanger and fabrication method
FR2999695A1 (en) * 2012-12-18 2014-06-20 Valeo Systemes Thermiques FLAT TUBE FOR EXHAUST AIR HEAT EXCHANGER AND HEAT EXCHANGER OF CORRESPONDING SUPERVISION AIR HEAT.
WO2014096103A1 (en) * 2012-12-18 2014-06-26 Valeo Systemes Thermiques Flat tube for a charge air heat exchanger and corresponding charge air heat exchanger
US10295282B2 (en) 2014-07-21 2019-05-21 Dana Canada Corporation Heat exchanger with flow obstructions to reduce fluid dead zones
JP2016205770A (en) * 2015-04-28 2016-12-08 パナソニックIpマネジメント株式会社 Heat exchanger, manufacturing method of heat exchanger and fuel cell system

Similar Documents

Publication Publication Date Title
US20100084120A1 (en) Heat exchanger and method of operating the same
JP3814917B2 (en) Stacked evaporator
JP2004144460A (en) Heat exchanger
JPH11287580A (en) Heat exchanger
US20140060789A1 (en) Heat exchanger and method of operating the same
JP4254015B2 (en) Heat exchanger
WO2019111849A1 (en) Heat exchanger
JPH02106697A (en) Lamination type heat exchanger
JP3911604B2 (en) Heat exchanger and refrigeration cycle
JPS6214751B2 (en)
JP2001221535A (en) Refrigerant evaporator
JP2004108644A (en) Heat exchanger
JPH03140795A (en) Lamination type heat exchanger
EP0935115B1 (en) Heat exchanger constructed by plural heat conductive plates
JP2737286B2 (en) Stacked heat exchanger
JPH06194001A (en) Refrigerant evaporator
JPH05215482A (en) Heat exchanger
JP7247717B2 (en) Heat exchanger
JPS62131195A (en) Heat exchanger
JPH10170098A (en) Laminated evaporator
JPH0894274A (en) Accumulated type heat exchanger
JP2000055573A (en) Refrigerant evaporator
JPH02171591A (en) Laminated type heat exchanger
JP2004069258A (en) Flat tube, and method of manufacturing heat exchanger using flat tube
JPH03129270A (en) Lamination type evaporator