JPH06194001A - Refrigerant evaporator - Google Patents

Refrigerant evaporator

Info

Publication number
JPH06194001A
JPH06194001A JP34299392A JP34299392A JPH06194001A JP H06194001 A JPH06194001 A JP H06194001A JP 34299392 A JP34299392 A JP 34299392A JP 34299392 A JP34299392 A JP 34299392A JP H06194001 A JPH06194001 A JP H06194001A
Authority
JP
Japan
Prior art keywords
refrigerant
flow
tank
pipe
pipes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34299392A
Other languages
Japanese (ja)
Inventor
Tatsuya Toyama
竜也 遠山
Toshiya Nagasawa
聡也 長沢
Shigenobu Fukumi
重信 福見
康種 ▲ひじ▼方
Yasutane Hijikata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP34299392A priority Critical patent/JPH06194001A/en
Publication of JPH06194001A publication Critical patent/JPH06194001A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/08Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by varying the cross-section of the flow channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • F28D1/0308Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other
    • F28D1/0325Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another
    • F28D1/0333Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another the plates having integrated connecting members
    • F28D1/0341Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another the plates having integrated connecting members with U-flow or serpentine-flow inside the conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0085Evaporators

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To make it possible to make uniform the temperature distribution of air let out from a multilayer type refrigerant evaporator. CONSTITUTION:A multilayer type refrigerant evaporator 1 is so constructed that a refrigerant flowing from an inlet piping 3 into a flow channel pipe 2a provided adjacently thereto in approximately a central part is led to outermost flow channel pipes 2c and 2d on the opposite sides through a central tank 20, distributed equally to each of a plurality of refrigerant evaporating flow channels 10 from these outermost flow channel pipes 2c and 2d through an inlet tank 19 and then made to flow out to an outlet piping 4 through an outlet tank 21 from a flow channel pipe 2b provided adjacently thereto in about the central part. Thereby a course difference between refrigerant channels from the inlet piping 3 to the outlet piping 4 is eliminated, even when any of the refrigerant evaporating channels 10 is taken, and a difference in a loss of pressure of the refrigerant between the refrigerant channels is also eliminated. Accordingly, the cooling capacity of air passing outside the flow channel pipes 2a and 2b provided adjacently in the part being central virtually and that of the air passing outside the outermost flow channel pipes 2c and 2d become equal substantially.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、冷媒と空気とを熱交換
させて冷媒を蒸発させる偏平な流路管を複数積層してな
る冷媒蒸発器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerant evaporator formed by stacking a plurality of flat flow passage tubes for exchanging heat between a refrigerant and air.

【0002】[0002]

【従来の技術】従来より、特開昭63−267868号
公報においては、一端部に2つのタンク部、および他部
に冷媒蒸発流路が形成された偏平な流路管とコルゲート
フィンとを交互に複数積層してなり、ボックス型膨張弁
を使用することにより形状を標準化させるために、複数
の流路管の積層方向の略中央部に入口配管と出口配管と
を隣合うように配した積層型冷媒蒸発器が提案されてい
る。このような従来の積層型冷媒蒸発器においては、図
13に示したように、入口配管a→入口タンクb→複数
の入口側冷媒蒸発流路c→中間タンクd→複数の出口側
冷媒蒸発流路e→出口タンクf→出口配管gのように冷
媒が流れる(所謂前後左右ターン方式の冷媒蒸発器)。
2. Description of the Related Art Conventionally, in Japanese Laid-Open Patent Publication No. 63-267868, two tank portions at one end and a flat flow passage tube having a refrigerant evaporation flow passage formed at the other end and corrugated fins are alternated. In order to standardize the shape by using a box-type expansion valve, the inlet pipe and the outlet pipe are arranged next to each other in the approximate center of the stacking direction of the plurality of flow pipes. Type refrigerant evaporators have been proposed. In such a conventional laminated refrigerant evaporator, as shown in FIG. 13, an inlet pipe a → an inlet tank b → a plurality of inlet side refrigerant evaporation passages c → an intermediate tank d → a plurality of outlet side refrigerant evaporation flows. The refrigerant flows along the path e → the outlet tank f → the outlet pipe g (a so-called front / rear / left / right turn type refrigerant evaporator).

【0003】[0003]

【発明が解決しようとする課題】ところが、従来の積層
型冷媒蒸発器においては、図14に示したように、a→
b→c1 →d→e1 →f→gの冷媒流路と、a→b→c
2 →d→e2 →f→gの冷媒流路とで行路差が生じる。
これによって、冷媒流路の行路により冷媒の圧力損失に
差が生じるため、冷媒の流れがショートサーキット(a
→b→c2 →d→e2 →f→g)を起こす可能性があ
る。この結果、複数の流路管のうち最も外側に配置され
る最外側流路管外を通る冷媒が減少することによって、
最外側流路管外を通過する空気の冷却能力が低下するの
で、最外側流路管付近を通過する吹出空気温度が高くな
り、吹出空気温度分布が悪化するという課題があった。
However, in the conventional laminated refrigerant evaporator, as shown in FIG.
Refrigerant flow path of b → c1 → d → e1 → f → g and a → b → c
2 → d → e2 → f → g Refrigerant flow paths cause passage differences.
As a result, the pressure loss of the refrigerant varies depending on the path of the refrigerant flow path, so that the flow of the refrigerant is short circuit (a
→ b → c2 → d → e2 → f → g) may occur. As a result, by reducing the refrigerant passing through the outermost flow path tube arranged on the outermost side of the plurality of flow path tubes,
Since the cooling capacity of the air passing outside the outermost flow passage pipe is reduced, the temperature of the blown air passing near the outermost flow passage pipe becomes high, and there is a problem that the blown air temperature distribution deteriorates.

【0004】本発明は、入口配管より複数の冷媒蒸発流
路の各々を通って出口配管に至る冷媒流路の行路差をな
くして吹出空気温度分布の均一化を図ることが可能な冷
媒蒸発器の提供を目的とする。
According to the present invention, a refrigerant evaporator capable of making the temperature distribution of blown air uniform by eliminating the passage difference of the refrigerant flow path from the inlet pipe to each of the plurality of refrigerant evaporation flow paths to the outlet pipe. For the purpose of providing.

【0005】[0005]

【課題を解決するための手段】本発明は、幅方向に列設
され、内部を冷媒が流れる複数の流路管と、これらの流
路管の列設方向の略中央部で隣設する流路管同士に挟み
込まれた入口配管と、この入口配管に隣合って設けら
れ、前記略中央部で隣設する流路管同士に挟み込まれた
出口配管とを備えた冷媒蒸発器において、前記複数の流
路管には、冷媒を熱交換させて冷媒を蒸発させる冷媒蒸
発流路がそれぞれ形成され、且つこれらの冷媒蒸発流路
の一端部には、前記複数の流路管の列設方向に延びる3
つのタンクが設けられている。そして、前記3つのタン
クは、前記入口配管に前記略中央部で隣設する流路管に
て連通し、且つ前記略中央部で隣設する流路管より最も
外側に配置される最外側流路管へ冷媒を導く第1タンク
と、この第1タンクに前記最外側流路管にて連通し、且
つ前記最外側流路管より前記複数の冷媒蒸発流路の各々
に冷媒を分配する第2タンクと、前記出口配管に前記略
中央部で隣設する流路管にて連通し、且つ前記複数の冷
媒蒸発流路の各々より流入した冷媒を前記略中央部で隣
設する流路管へ導く第3タンクとからなる技術手段を採
用した。
SUMMARY OF THE INVENTION According to the present invention, a plurality of flow passage pipes are provided which are arranged in the width direction and through which a refrigerant flows, and flow passages which are adjacent to each other at a substantially central portion of the flow passage pipes in the arrangement direction. In the refrigerant evaporator, the inlet pipe sandwiched between the passage pipes and the outlet pipe sandwiched between the flow passage pipes provided adjacent to the inlet pipe and adjacent to each other at the substantially central portion are provided. Refrigerant evaporation passages for heat-exchanging the refrigerant to evaporate the refrigerant are respectively formed in the passage tubes of, and one end portion of these refrigerant evaporation passages is arranged in the direction in which the plurality of passage tubes are arranged. Extend 3
Two tanks are provided. The three tanks communicate with the inlet pipe through the flow passage pipes adjacent to each other at the substantially central portion, and the outermost flow disposed on the outermost side of the flow passage pipes adjacent to each other at the substantially central portion. A first tank for guiding the refrigerant to the passage pipe; and a first tank communicating with the first tank at the outermost flow passage pipe and distributing the refrigerant from the outermost flow passage pipe to each of the plurality of refrigerant evaporation flow passages. A flow passage pipe that communicates with two tanks by a flow passage pipe that is adjacent to the outlet pipe at the substantially central portion, and that refrigerant that has flowed in from each of the plurality of refrigerant evaporation flow passages is provided adjacent to the substantially central portion. The technical means consisting of a third tank leading to

【0006】[0006]

【作用】本発明は、複数の流路管の列設方向の中央部で
隣設する流路管を介して入口配管より第1タンク内に冷
媒が流入する。第1タンク内に流入した冷媒は、第1タ
ンク内を通って最外側流路管へ導かれ、その最外側流路
管を経て第2タンク内へ流入する。第2タンク内に流入
した冷媒は、第2タンク内を通過する際に複数の冷媒蒸
発流路の各々に振り分けられる。複数の冷媒蒸発流路内
に流入した冷媒は、複数の流路管外を通過する空気と熱
交換して蒸発気化し、第3タンク内に流入する。第3タ
ンク内に流入した冷媒は、複数の流路管の列設方向の中
央部で隣設する流路管を通って出口配管内へ流出する。
これによって、入口配管より複数の流路管内へ流入した
冷媒は、出口配管に至るまでどの流路管に振り分けられ
ても冷媒流路の行路差が小さくなるので、複数の流路管
の各々の間で冷媒の圧力損失差がなくなる。この結果、
複数の流路管を冷媒が流れる際にショートサーキットを
起こすことなく、複数の流路管の各々に均等に冷媒が分
配される。したがって、複数の流路管の列設方向の略中
央部で隣設する流路管の冷媒蒸発流路および最外側流路
管の冷媒蒸発流路に均一に冷媒を流すことができる。
In the present invention, the refrigerant flows from the inlet pipe into the first tank through the flow passage pipes adjacent to each other in the central portion of the plurality of flow passage pipes in the row direction. The refrigerant flowing into the first tank is guided to the outermost flow passage pipe through the first tank, and then flows into the second tank through the outermost flow passage pipe. The refrigerant flowing into the second tank is distributed to each of the plurality of refrigerant evaporation passages when passing through the second tank. The refrigerant flowing into the plurality of refrigerant evaporation passages exchanges heat with the air passing through the outside of the plurality of passage tubes to be evaporated and vaporized, and then flows into the third tank. The refrigerant flowing into the third tank flows out into the outlet pipe through the adjacent flow passage pipes at the central portion of the plurality of flow passage pipes in the row direction.
With this, the refrigerant flowing from the inlet pipe into the plurality of flow passage pipes has a small passage difference of the refrigerant flow passages regardless of which flow pipe is distributed to the outlet pipe. There is no difference in pressure loss between the refrigerants. As a result,
The refrigerant is evenly distributed to each of the plurality of flow path tubes without causing a short circuit when the refrigerant flows through the plurality of flow path tubes. Therefore, it is possible to evenly flow the refrigerant to the refrigerant evaporation flow path of the flow path tube and the refrigerant evaporation flow path of the outermost flow path tube that are adjacent to each other at the substantially central portion in the row direction of the plurality of flow path tubes.

【0007】[0007]

【実施例】つぎに、本発明の冷媒蒸発器を図1ないし図
12に示す複数の実施例に基づいて説明する。 〔第1実施例の構成〕図1ないし図11は本発明の第1
実施例を示す。図1および図2は積層型冷媒蒸発器の冷
媒の流れを示した図で、図3は積層型冷媒蒸発器を示し
た図である。積層型冷媒蒸発器1は、幅方向に積層され
た複数の流路管2a〜2dと、これらの流路管の積層方
向の略中央部で隣設する流路管2a、2b間に隣合わせ
て配された入口配管3および出口配管4とを備える。な
お、隣設する流路管2には、冷媒と空気との熱交換効率
を向上させるためのコルゲートフィン5がろう付け等の
手段により接合されている。そして、複数の流路管2の
うち最も外側に配置される最外側流路管2c、2dの外
側にはサイドプレート6がろう付け等の手段により接合
されている。
EXAMPLES Next, a refrigerant evaporator of the present invention will be described based on a plurality of examples shown in FIGS. [Structure of First Embodiment] FIGS. 1 to 11 show a first embodiment of the present invention.
An example is shown. 1 and 2 are diagrams showing the flow of the refrigerant in the laminated refrigerant evaporator, and FIG. 3 is a diagram showing the laminated refrigerant evaporator. The laminated refrigerant evaporator 1 includes a plurality of flow passage tubes 2a to 2d stacked in the width direction and a pair of flow passage tubes 2a and 2b adjacent to each other at a substantially central portion of the flow passage tubes in the stacking direction. An inlet pipe 3 and an outlet pipe 4 are provided. A corrugated fin 5 for improving the heat exchange efficiency between the refrigerant and the air is joined to the adjacent passage pipe 2 by means such as brazing. The side plate 6 is joined to the outside of the outermost flow passage pipes 2c and 2d arranged on the outermost side of the plurality of flow passage pipes 2 by means such as brazing.

【0008】流路管2、2a、2bは、一対の成形プレ
ート7を接合することによって形成されている。成形プ
レート7は、図4および図5に示したように、薄い板状
のアルミニウム合金をプレス加工することによって所定
の形状となるように形成されている。この成形プレート
7の外周縁には、対向する他方の成形プレート7の外周
縁にろう付け等の手段により接合される接合壁8が形成
されている。また、成形プレート7の中央部分には、対
向する他方の成形プレート7の中央部分にろう付け等の
手段により接合される区画壁9が形成されている。
The flow path tubes 2, 2a, 2b are formed by joining a pair of molding plates 7. As shown in FIGS. 4 and 5, the molding plate 7 is formed into a predetermined shape by pressing a thin plate-shaped aluminum alloy. On the outer peripheral edge of the forming plate 7, a joint wall 8 is formed which is joined to the outer peripheral edge of the other opposing forming plate 7 by means such as brazing. A partition wall 9 is formed at the center of the molding plate 7 so as to be joined to the center of the other molding plate 7 that faces the molding plate 7 by means such as brazing.

【0009】そして、接合壁8と区画壁9との間には、
冷媒と空気とを熱交換させて冷媒を蒸発気化させると共
に、熱交換性能を向上させるために空気の流れ方向に対
して対向流となるよう冷媒が流れる略U字状の冷媒蒸発
流路10が浅い皿状に形成されている。その冷媒蒸発流
路10には、冷媒が広く行き亘るようにするための多数
のリブ部11が対向する他方の成形プレート7のリブ部
11と交差するように形成されている。この実施例にお
いては、区画壁9を斜めに形成することによって、入口
より出口に向かって流路面積が増大するように冷媒蒸発
流路10が形成されている。
Between the joint wall 8 and the partition wall 9,
A substantially U-shaped refrigerant evaporation flow path 10 in which the refrigerant flows so that the refrigerant and the air are heat-exchanged to evaporate the refrigerant and the refrigerant flows in a counterflow with respect to the flow direction of the air in order to improve the heat exchange performance. It is shaped like a shallow dish. A large number of ribs 11 are formed in the refrigerant evaporation flow passage 10 so as to spread the refrigerant widely, and intersect with the ribs 11 of the other molding plate 7 facing each other. In this embodiment, the partition wall 9 is formed obliquely so that the refrigerant evaporation passage 10 is formed so that the passage area increases from the inlet toward the outlet.

【0010】また、冷媒蒸発流路10の上端部には、平
面方向に対して直交する方向に突出した3つの椀状突出
部12〜14が形成されている。両側の椀状突出部1
2、14は、冷媒蒸発流路10を介して連通している。
また、3つの椀状突出部12〜14には、隣設する流路
管2の一対の成形プレート7と連通させるための円形状
の連通孔15〜17がそれぞれ形成されている。なお、
図6および図7に示したように、最外側流路管2c、2
dを形成する成形プレート7aの椀状突出部12、13
のみは、最外側流路管2c、2dを形成する成形プレー
ト7bの上端部に形成された連通路18を介して直接連
通している。
Further, three bowl-shaped projections 12 to 14 projecting in a direction orthogonal to the plane direction are formed at the upper end of the refrigerant evaporation passage 10. Bowl-shaped protrusions 1 on both sides
The two and 14 communicate with each other through the refrigerant evaporation passage 10.
Further, circular bowl-shaped communication holes 15 to 17 for communicating with the pair of molding plates 7 of the flow path pipe 2 adjacent to each other are formed in the three bowl-shaped protrusions 12 to 14, respectively. In addition,
As shown in FIGS. 6 and 7, the outermost flow path pipes 2c, 2
bowl-shaped protrusions 12 and 13 of the molding plate 7a forming d
Only are directly communicated with each other via a communication passage 18 formed at the upper end of the molding plate 7b forming the outermost flow passage tubes 2c, 2d.

【0011】また、図3および図8に示したように、略
中央部で隣設する流路管2a、2bにおいては、入口配
管3、出口配管4に接触する側の成形プレート7の2つ
の椀状突出部13、14の突出量を、入口配管3、出口
配管4の後端部を挟み込み易くするために、椀状突出部
12より小さくしている。そして、流路管2、2a〜2
dを複数積層することによって、すなわち、3つの椀状
突出部12〜14を有する一対の成形プレート7が複数
重ね合わされることによって、図4に示したように、複
数の流路管2、2a〜2dの上端部に、入口タンク1
9、中央タンク20、出口タンク21が積層型冷媒蒸発
器1の幅方向に延びるように形成される。
Further, as shown in FIGS. 3 and 8, in the flow path pipes 2a and 2b adjacent to each other at the substantially central portion, two molding plates 7 on the side in contact with the inlet pipe 3 and the outlet pipe 4 are provided. The amount of protrusion of the bowl-shaped protrusions 13 and 14 is smaller than that of the bowl-shaped protrusion 12 so that the rear ends of the inlet pipe 3 and the outlet pipe 4 can be easily sandwiched. And the flow path pipes 2, 2a-2
By stacking a plurality of d, that is, by stacking a plurality of the pair of molding plates 7 having the three bowl-shaped protrusions 12 to 14, as shown in FIG. Inlet tank 1 at the top of ~ 2d
9, the central tank 20, and the outlet tank 21 are formed so as to extend in the width direction of the laminated refrigerant evaporator 1.

【0012】入口タンク19は、本発明の第2タンクで
あって、3つのタンクのうち空気の流れ方向の最も風下
側に設けられ、上流側が両側の最外側流路管2c、2d
で連通路18を介して中央タンク20に連通し、下流側
が複数の冷媒蒸発流路10の各々の入口に連通してい
る。この入口タンク19は、内部に流入して略中央部に
向かう冷媒を複数の冷媒蒸発流路10の各々に均一に分
配する流路である。
The inlet tank 19 is the second tank of the present invention and is provided on the most leeward side in the air flow direction among the three tanks, and the upstream side is the outermost flow path pipes 2c, 2d on both sides.
And communicates with the central tank 20 via the communication passage 18, and the downstream side communicates with the respective inlets of the plurality of refrigerant evaporation flow paths 10. The inlet tank 19 is a channel that evenly distributes the refrigerant flowing inward toward the substantially central portion to each of the plurality of refrigerant evaporation channels 10.

【0013】中央タンク20は、本発明の第1タンクで
あって、上流側が略中央部で隣設する流路管2a、2b
で連通孔16を介して入口配管3の冷媒入口流路30に
連通している。この中央タンク20は、入口配管3の冷
媒入口流路30から流入した冷媒を、複数の流路管2の
略中央部より両側(左右方向)に向かわせる。つまり、
中央タンク20は、略中央部で隣設する流路管2a、2
bより両側の最外側流路管2c、2dへ冷媒を導く流路
である。
The central tank 20 is the first tank of the present invention, and the flow path pipes 2a, 2b adjacent to each other on the upstream side are substantially central portions.
And communicates with the refrigerant inlet flow path 30 of the inlet pipe 3 via the communication hole 16. The central tank 20 directs the refrigerant flowing from the refrigerant inlet passage 30 of the inlet pipe 3 to both sides (left and right direction) from the substantially central portion of the plurality of passage pipes 2. That is,
The central tank 20 includes the flow path pipes 2a and
It is a flow path for guiding the refrigerant from b to the outermost flow path pipes 2c, 2d on both sides.

【0014】出口タンク21は、本発明の第3タンクで
あって、3つのタンクのうち空気の流れ方向の最も風上
側に設けられ、上流側が複数の冷媒蒸発流路10の各々
の出口に連通し、下流側が略中央部で隣設する流路管2
cで連通孔17を介して出口配管4の冷媒出口流路39
に連通している。この出口タンク21は、複数の冷媒蒸
発流路10の各々の出口より流入した冷媒を集めて、略
中央部で隣設する流路管2cに向かわせ出口配管4の冷
媒出口流路39に流出させる流路である。
The outlet tank 21 is the third tank of the present invention, is provided on the most windward side in the air flow direction of the three tanks, and the upstream side communicates with the outlets of the plurality of refrigerant evaporation flow paths 10. However, the flow path pipe 2 where the downstream side is adjacent to the substantially central part
The refrigerant outlet channel 39 of the outlet pipe 4 via the communication hole 17
Is in communication with. The outlet tank 21 collects the refrigerant that has flowed in from the outlets of the plurality of refrigerant evaporation passages 10 and directs it toward the adjacent passage pipe 2c at the substantially central portion and flows out to the refrigerant outlet passage 39 of the outlet pipe 4. This is a flow path.

【0015】入口配管3は、図8ないし図10に示した
ように、先端部が冷凍サイクルのボックス型膨張弁(図
示せず)を取り付けるためのブロック22に接続されて
いる。また、入口配管3は、一対の成形プレート23を
接合することによって断面形状が偏平な楕円形状となる
ように形成されている。成形プレート23は、図10に
示したように、薄い板状のアルミニウム合金をプレス加
工することによって所定の形状となるように形成されて
いる。その成形プレート23の後端部には、略中央部で
隣設する流路管2a、2bの成形プレート7の2つの椀
状突出部13、14間に挟み込まれる被挟持部24が形
成されている。この被挟持部24には、略中央部で隣設
する流路管2a、2bにそれぞれ接触するように2つの
椀状突出部25、26が形成されている。
As shown in FIGS. 8 to 10, the inlet pipe 3 is connected at its tip end to a block 22 for mounting a box type expansion valve (not shown) of the refrigeration cycle. Further, the inlet pipe 3 is formed by joining a pair of molding plates 23 so that the cross-sectional shape is a flat elliptical shape. As shown in FIG. 10, the molding plate 23 is formed into a predetermined shape by pressing a thin plate-shaped aluminum alloy. At the rear end of the molding plate 23, a sandwiched portion 24 is formed which is sandwiched between the two bowl-shaped protrusions 13 and 14 of the molding plate 7 of the flow path tubes 2a and 2b adjacent to each other at the substantially central portion. There is. The sandwiched portion 24 is provided with two bowl-shaped projecting portions 25 and 26 so as to come into contact with the adjacent flow path pipes 2a and 2b at the substantially central portion.

【0016】また、2つの椀状突出部25、26には、
複数の流路管2、2a〜2dの上端部に形成される中央
タンク20、出口タンク21と連通させるための円形状
の連通孔27、28がそれぞれ形成されている。また、
成形プレート23の外周縁には、対向する他方の成形プ
レート23の外周縁にろう付け等の手段により接合され
る接合壁29が形成されている。そして、接合壁29の
内部には、ボックス型膨張弁より流入した低温低圧の霧
状冷媒を椀状突出部26を迂回した後に椀状突出部25
に導くための略S字状の冷媒入口流路30が形成されて
いる。なお、冷媒入口流路30と椀状突出部26とは、
他方の成形プレート23の対応箇所にろう付け等の手段
により接合される区画壁31により区画されている。
Further, the two bowl-shaped protrusions 25 and 26 are
Circular communication holes 27, 28 for communicating with the central tank 20 and the outlet tank 21 are formed at the upper ends of the plurality of flow path pipes 2, 2a to 2d, respectively. Also,
On the outer peripheral edge of the forming plate 23, a joint wall 29 is formed which is joined to the outer peripheral edge of the other opposing forming plate 23 by means such as brazing. Then, inside the joint wall 29, the low-temperature low-pressure mist-like refrigerant flowing in from the box-type expansion valve bypasses the bowl-shaped protrusion 26 and then the bowl-shaped protrusion 25.
A substantially S-shaped coolant inlet flow path 30 is formed for leading to. In addition, the refrigerant inlet channel 30 and the bowl-shaped protruding portion 26 are
It is partitioned by a partition wall 31 that is joined to the corresponding portion of the other molding plate 23 by means such as brazing.

【0017】出口配管4は、図8、図9および図11に
示したように、先端部がブロック22に接続されてい
る。また、出口配管4は、一対の成形プレート32を接
合することによって断面形状が偏平な楕円形状となるよ
うに形成されている。成形プレート32は、図8および
図11に示したように、薄い板状のアルミニウム合金を
プレス加工することによって所定の形状となるように形
成されている。その成形プレート32の後端部には、略
中央部で隣設する流路管2bの成形プレート7の2つの
椀状突出部13、14間に挟み込まれる被挟持部33が
形成されている。この被挟持部33には、略中央部で隣
設する流路管2bにそれぞれ接触するように2つの椀状
突出部34、35が形成されている。
As shown in FIGS. 8, 9 and 11, the outlet pipe 4 is connected at its tip to the block 22. Further, the outlet pipe 4 is formed by joining a pair of molding plates 32 so as to have a flat elliptical cross section. As shown in FIGS. 8 and 11, the molding plate 32 is formed into a predetermined shape by pressing a thin plate-shaped aluminum alloy. At the rear end of the molding plate 32, a sandwiched portion 33 is formed which is sandwiched between the two bowl-shaped protrusions 13 and 14 of the molding plate 7 of the flow path tube 2b adjacent to each other at the substantially central portion. The sandwiched portion 33 is provided with two bowl-shaped projecting portions 34 and 35 so as to come into contact with the adjacent flow path pipes 2b at the substantially central portion.

【0018】また、2つの椀状突出部34、35には、
複数の流路管2、2a〜2dの上端部に形成される中央
タンク20、出口タンク21と連通させるための円形状
の連通孔36、37がそれぞれ形成されている。また、
成形プレート32の外周縁には、対向する他方の成形プ
レート32の外周縁にろう付け等の手段により接合され
る接合壁38が形成されている。そして、接合壁38の
内部には、複数の冷媒蒸発流路10より椀状突出部35
内に流入した気相冷媒をボックス型膨張弁に形成された
冷媒通路を通って冷媒圧縮機(図示せず)へ導くための
略C字状の冷媒出口流路39が形成されている。なお、
冷媒出口流路39と椀状突出部35とは、他方の成形プ
レート23の対応箇所にろう付け等の手段により接合さ
れる区画壁40により区画されている。
The two bowl-shaped protrusions 34 and 35 are
Circular communication holes 36 and 37 for communicating with the central tank 20 and the outlet tank 21 are formed at the upper ends of the plurality of flow path pipes 2, 2a to 2d, respectively. Also,
On the outer peripheral edge of the forming plate 32, a joint wall 38 is formed to be joined to the outer peripheral edge of the other opposing forming plate 32 by means such as brazing. Then, inside the joint wall 38, the bowl-shaped protrusions 35 are formed from the plurality of refrigerant evaporation flow paths 10.
A substantially C-shaped refrigerant outlet passage 39 is formed for guiding the gas-phase refrigerant flowing therein into a refrigerant compressor (not shown) through a refrigerant passage formed in the box-type expansion valve. In addition,
The coolant outlet channel 39 and the bowl-shaped protrusion 35 are partitioned by a partition wall 40 that is joined to the corresponding portion of the other molding plate 23 by means such as brazing.

【0019】〔第1実施例の作用〕つぎに、この積層型
冷媒蒸発器1の作用を図1ないし図11に基づいて簡単
に説明する。ボックス型膨張弁を通過する際に断熱膨張
された低温低圧の霧状冷媒は、入口配管3の冷媒入口流
路30を通る。このとき、霧状冷媒は、複数の流路管
2、2a〜2dの上端部に形成された出口タンク21の
下方を迂回して連通孔28、15を介して中央タンク2
0内に導かれる。
[Operation of First Embodiment] Next, the operation of the laminated refrigerant evaporator 1 will be briefly described with reference to FIGS. 1 to 11. The low-temperature low-pressure atomized refrigerant that has been adiabatically expanded when passing through the box-type expansion valve passes through the refrigerant inlet passage 30 of the inlet pipe 3. At this time, the atomized refrigerant bypasses the lower portion of the outlet tank 21 formed at the upper ends of the plurality of flow path pipes 2, 2a to 2d, and passes through the communication holes 28 and 15 to the central tank 2.
Guided within 0.

【0020】そして、中央タンク20内に導かれた霧状
冷媒は、略中央部で隣設する流路管2a、2bより両側
の最外側流路管2c、2dに向かって積層型冷媒蒸発器
1の左右方向に向かい、最外側流路管2c、2dの連通
路18を介して入口タンク19内に流入する。入口タン
ク19内に流入した霧状冷媒は、両側の最外側流路管2
c、2dより略中央部で隣設する流路管2a、2bへ向
かう際に複数の冷媒蒸発流路10の各々に均等に分配さ
れる。そして、複数の冷媒蒸発流路10の各々に均等に
分配された霧状冷媒は、複数の流路管2、2a〜2d外
を通過する車室内へ向かう空気と熱交換してその空気を
冷却する。
The mist-like refrigerant introduced into the central tank 20 is directed toward the outermost flow passage pipes 2c and 2d on both sides of the flow passage pipes 2a and 2b adjacent to each other in the substantially central portion of the laminated refrigerant evaporator. 1 in the left-right direction, and flows into the inlet tank 19 through the communication passage 18 of the outermost flow passage pipes 2c and 2d. The atomized refrigerant flowing into the inlet tank 19 is the outermost flow path pipe 2 on both sides.
The refrigerant vaporization flow passages 10 are evenly distributed from the c and 2d toward the flow passage pipes 2a and 2b adjacent to each other at the substantially central portion. Then, the atomized refrigerant evenly distributed to each of the plurality of refrigerant evaporation passages 10 exchanges heat with the air passing through the outside of the plurality of passage tubes 2, 2a to 2d toward the vehicle interior to cool the air. To do.

【0021】また、霧状冷媒は、空気の流れと対向する
ように複数の冷媒蒸発流路10をU字を描くように流れ
ながら、空気と熱交換することによって蒸発気化し複数
の冷媒蒸発流路10の出口付近で気相冷媒になり、出口
タンク21内に流入する。出口タンク21内に流入した
気相冷媒は、略中央部で隣設する流路管2cに向かい、
連通孔17、37を介して出口配管4内に流入する。出
口配管4内に流入した気相冷媒は、ボックス型膨張弁に
形成された冷媒通路を通って冷媒圧縮機へ吸引される。
The mist-like refrigerant evaporates and vaporizes by exchanging heat with the air while flowing in a U-shape in the plurality of refrigerant evaporating flow paths 10 so as to face the air flow, and the plurality of refrigerant evaporating streams are formed. It becomes a vapor-phase refrigerant near the outlet of the passage 10 and flows into the outlet tank 21. The gas-phase refrigerant that has flowed into the outlet tank 21 is directed to the adjacent flow passage pipe 2c at the substantially central portion,
It flows into the outlet pipe 4 through the communication holes 17 and 37. The vapor-phase refrigerant flowing into the outlet pipe 4 is sucked into the refrigerant compressor through the refrigerant passage formed in the box type expansion valve.

【0022】〔第1実施例の効果〕以上のように、積層
型冷媒蒸発器1は、入口配管3より複数の流路管2、2
a〜2dの冷媒蒸発流路10の各々に流入した霧状冷媒
が、入口配管3より出口配管4に至るまでどの流路管
2、2a〜2dの冷媒蒸発流路10に分配されても冷媒
流路の行路長さが均等になるので、複数の流路管2、2
a〜2dの冷媒蒸発流路10の各々の間で冷媒の圧力損
失差がなくなる。これによって、複数の流路管2、2a
〜2dの冷媒蒸発流路10の各々を冷媒が流れる際に冷
媒の流れのショートサーキットが起こらない。このた
め、複数の流路管2、2a〜2dの冷媒蒸発流路10の
各々に均等に冷媒を分配することができる。
[Effects of First Embodiment] As described above, the laminated refrigerant evaporator 1 has the plurality of flow path pipes 2 and 2 from the inlet pipe 3.
The atomized refrigerant that has flowed into each of the refrigerant evaporation passages 10 a to 2 d is distributed to any of the passage tubes 2 and 2 a to 2 d of the refrigerant evaporation passage 10 from the inlet pipe 3 to the outlet pipe 4. Since the passage lengths of the flow passages are uniform, the plurality of flow passage pipes 2, 2
There is no difference in refrigerant pressure loss between each of the a to 2d refrigerant evaporation passages 10. Thereby, the plurality of flow path pipes 2, 2a
A short circuit of the flow of the refrigerant does not occur when the refrigerant flows through each of the refrigerant evaporation passages 10 of 2d. Therefore, the refrigerant can be evenly distributed to each of the refrigerant evaporation flow paths 10 of the plurality of flow path tubes 2, 2a to 2d.

【0023】したがって、略中央部で隣設する流路管2
a、2b外を通過する空気の冷却能力と最外側流路管2
c、2d外を通過する空気の冷却能力とをほぼ均等にす
ることができるので、最外側流路管2c、2d付近を通
過する吹出空気温度と略中央部で隣設する流路管2a、
2b付近を通過する吹出空気温度とをほぼ同一の温度に
することができる。このため、複数の流路管2、2a〜
2dに亘って吹出空気温度分布をほぼ均一化することが
できる。
Therefore, the flow passage tube 2 adjacently provided in the substantially central portion
a, 2b Cooling capacity of air passing outside and outermost flow passage tube 2
Since the cooling capacity of the air passing outside c and 2d can be made substantially equal, the temperature of the blown air passing near the outermost flow passage pipes 2c and 2d and the flow passage pipe 2a that is adjacent in the substantially central portion,
The temperature of the blown air passing near 2b can be made substantially the same. Therefore, the plurality of flow path pipes 2, 2a-
The blown air temperature distribution can be made substantially uniform over 2d.

【0024】〔第2実施例〕図12は本発明の第2実施
例を示し、積層型冷媒蒸発器1の入口配管と出口配管付
近を示した図である。この実施例の入口配管3の一対の
成形プレート23の椀状突出部25間に一対に整流プレ
ート41を配している。これらの整流プレート41は、
冷媒入口流路30より中央タンク20を介して両側の最
外側流路管2c、2dへ均等に冷媒が向かうように働
く。
[Second Embodiment] FIG. 12 shows a second embodiment of the present invention and is a view showing the vicinity of the inlet pipe and the outlet pipe of the laminated refrigerant evaporator 1. A pair of straightening plates 41 are arranged between the bowl-shaped protruding portions 25 of the pair of molding plates 23 of the inlet pipe 3 of this embodiment. These straightening plates 41 are
From the refrigerant inlet flow passage 30, the refrigerant flows uniformly through the central tank 20 to the outermost flow passage pipes 2c and 2d on both sides.

【0025】〔変形例〕本実施例では、冷媒蒸発流路1
0内において空気の流れ方向に対して対向流となるよう
に冷媒を流したが、冷媒蒸発流路内において空気の流れ
方向に対して並行流となるように冷媒を流しても良い。
本実施例では、3つのタンクを空気の流れ方向に沿って
出口タンク(第3タンク)21、中央タンク20(第1
タンク)、入口タンク19(第2タンク)の順に形成し
たが、3つのタンクを空気の流れ方向に沿って第1タン
ク、第2タンク、第3タンクの順に形成する等自由に設
計変更しても良い。本実施例では、本発明を積層型冷媒
蒸発器1に用いたが、本発明をプレートフィンチューブ
式の冷媒蒸発器、コルゲートフィンチューブ式の冷媒蒸
発器等に用いても良い。
[Modification] In this embodiment, the refrigerant evaporation passage 1
Although the refrigerant is allowed to flow counter to the air flow direction in 0, the refrigerant may be allowed to flow parallel to the air flow direction in the refrigerant evaporation passage.
In this embodiment, three tanks are provided along the air flow direction, an outlet tank (third tank) 21, a central tank 20 (first tank).
Tank) and the inlet tank 19 (second tank) are formed in this order, but the three tanks may be formed in the order of the first tank, the second tank, and the third tank in the air flow direction, and the design may be freely changed. Is also good. In the present embodiment, the present invention is used for the laminated refrigerant evaporator 1, but the present invention may be used for a plate fin tube refrigerant evaporator, a corrugated fin tube refrigerant evaporator, and the like.

【0026】[0026]

【発明の効果】本発明は、略中央部で隣設する流路管外
を通過する空気の冷却能力と最外側流路管外を通過する
空気の冷却能力とがほぼ均等になる。この結果、最外側
流路管付近を通過する吹出空気温度が略中央部で隣設す
る流路管付近を通過する吹出空気温度に近くなるので、
複数の流路管に亘って吹出空気温度分布をほぼ均一化す
ることができる。
As described above, according to the present invention, the cooling capacity of the air passing through the outside of the flow passage pipe adjacent to it in the substantially central portion and the cooling capacity of the air passing through the outside of the outermost flow passage pipe are substantially equal. As a result, the temperature of the blown air passing near the outermost flow passage pipe becomes close to the temperature of the blown air passing near the adjacent flow passage pipe at the substantially central portion.
The blown air temperature distribution can be made substantially uniform over the plurality of flow path pipes.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例にかかる積層型冷媒蒸発器
の冷媒流れを示した斜視図である。
FIG. 1 is a perspective view showing a refrigerant flow of a laminated refrigerant evaporator according to a first embodiment of the present invention.

【図2】図1の積層型冷媒蒸発器の冷媒流れを示した平
面図である。
2 is a plan view showing a refrigerant flow in the laminated refrigerant evaporator of FIG. 1. FIG.

【図3】本発明の第1実施例にかかる積層型冷媒蒸発器
を示した正面図である。
FIG. 3 is a front view showing the laminated refrigerant evaporator according to the first embodiment of the present invention.

【図4】図3の積層型冷媒蒸発器の主要部を示した断面
図である。
FIG. 4 is a sectional view showing a main part of the laminated refrigerant evaporator of FIG.

【図5】流路管の成形プレートを示した正面図である。FIG. 5 is a front view showing a molded plate of a flow channel tube.

【図6】図3の積層型冷媒蒸発器の最外側流路管付近を
示した断面図である。
6 is a cross-sectional view showing the vicinity of the outermost flow path pipe of the laminated refrigerant evaporator of FIG.

【図7】最外側流路管の成形プレートを示した正面図で
ある。
FIG. 7 is a front view showing a molded plate of the outermost flow channel tube.

【図8】図3の積層型冷媒蒸発器の入口配管と出口配管
付近を示した断面図である。
8 is a cross-sectional view showing the vicinity of an inlet pipe and an outlet pipe of the laminated refrigerant evaporator of FIG.

【図9】図3の積層型冷媒蒸発器の入口配管と出口配管
付近を示した斜視図である。
9 is a perspective view showing the vicinity of an inlet pipe and an outlet pipe of the laminated refrigerant evaporator of FIG.

【図10】略中央部で隣設する流路管と入口配管の成形
プレートを示した側面図である。
FIG. 10 is a side view showing a molded plate of a flow path pipe and an inlet pipe adjacent to each other at a substantially central portion.

【図11】図3の積層型冷媒蒸発器の出口配管付近を示
した斜視図である。
11 is a perspective view showing the vicinity of the outlet pipe of the laminated refrigerant evaporator of FIG.

【図12】本発明の第2実施例にかかる積層型冷媒蒸発
器の入口配管と出口配管付近を示した断面図である。
FIG. 12 is a cross-sectional view showing the vicinity of an inlet pipe and an outlet pipe of a laminated refrigerant evaporator according to a second embodiment of the present invention.

【図13】従来の積層型冷媒蒸発器の冷媒流れを示した
斜視図である。
FIG. 13 is a perspective view showing a refrigerant flow in a conventional laminated refrigerant evaporator.

【図14】従来の積層型冷媒蒸発器の冷媒流れを示した
平面図である。
FIG. 14 is a plan view showing a refrigerant flow in a conventional laminated refrigerant evaporator.

【符号の説明】[Explanation of symbols]

1 積層型冷媒蒸発器 2 流路管 2a 略中央部で隣設する流路管 2b 略中央部で隣設する流路管 2c 最外側流路管 2d 最外側流路管 3 入口配管 4 出口配管 10 冷媒蒸発流路 19 入口タンク(第2タンク) 20 中央タンク(第1タンク) 21 出口タンク(第3タンク) 1 Laminated Refrigerator Evaporator 2 Flow Pipe 2a Flow Pipe 2a Adjacent to the Central Part 2b Flow Pipe 2a Adjacent to the Central Region 2c Outermost Flow Pipe 2d Outermost Flow Pipe 3 Inlet Pipe 4 Outlet Pipe 10 Refrigerant Evaporation Flow Path 19 Inlet Tank (Second Tank) 20 Central Tank (First Tank) 21 Outlet Tank (Third Tank)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 ▲ひじ▼方 康種 愛知県刈谷市昭和町1丁目1番地 日本電 装株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor ▲ Elbow ▼ Kasutan 1-1-1, Showa-cho, Kariya city, Aichi Prefecture Nihondenso Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 幅方向に列設され、内部を冷媒が流れる
複数の流路管と、これらの流路管の列設方向の略中央部
で隣設する流路管同士に挟み込まれた入口配管と、この
入口配管に隣合って設けられ、前記略中央部で隣設する
流路管同士に挟み込まれた出口配管とを備えた冷媒蒸発
器において、 前記複数の流路管には、冷媒を熱交換させて冷媒を蒸発
させる冷媒蒸発流路がそれぞれ形成され、且つこれらの
冷媒蒸発流路の一端部には、前記複数の流路管の列設方
向に延びる3つのタンクが設けられ、 前記3つのタンクは、前記入口配管に前記略中央部で隣
設する流路管にて連通し、且つ前記略中央部で隣設する
流路管より最も外側に配置される最外側流路管へ冷媒を
導く第1タンクと、この第1タンクに前記最外側流路管
にて連通し、且つ前記最外側流路管より前記複数の冷媒
蒸発流路の各々に冷媒を分配する第2タンクと、前記出
口配管に前記略中央部で隣設する流路管にて連通し、且
つ前記複数の冷媒蒸発流路の各々より流入した冷媒を前
記略中央部で隣設する流路管へ導く第3タンクとからな
ることを特徴とする冷媒蒸発器。
1. A plurality of flow passage pipes which are arranged in the width direction and through which a refrigerant flows, and an inlet which is sandwiched between adjacent flow passage pipes at substantially central portions of the flow passage pipes in the arrangement direction. In a refrigerant evaporator comprising a pipe and an outlet pipe provided adjacent to the inlet pipe and sandwiched between adjacent flow pipes in the substantially central portion, the plurality of flow pipes include a refrigerant. Are formed to form a refrigerant evaporation flow path for evaporating the refrigerant by heat exchange with, and at one end of each of the refrigerant evaporation flow paths, three tanks extending in the direction in which the plurality of flow path tubes are arranged are provided. The three tanks are connected to the inlet pipe by flow passage pipes adjacent to each other in the substantially central portion, and are outermost flow passage pipes arranged on the outermost side of the flow passage pipes adjacent to each other in the substantially central portion. A first tank for guiding the refrigerant to the first tank, and the first tank communicates with the outermost flow path pipe, and A second tank that distributes a refrigerant from the outer flow path pipe to each of the plurality of refrigerant evaporation flow paths communicates with the outlet pipe through a flow path tube that is adjacent to the outlet pipe at the substantially central portion, and the plurality of refrigerant evaporation A refrigerant evaporator, comprising: a third tank for guiding the refrigerant flowing in from each of the flow paths to the flow path pipe adjacent in the substantially central portion.
JP34299392A 1992-12-24 1992-12-24 Refrigerant evaporator Pending JPH06194001A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34299392A JPH06194001A (en) 1992-12-24 1992-12-24 Refrigerant evaporator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34299392A JPH06194001A (en) 1992-12-24 1992-12-24 Refrigerant evaporator

Publications (1)

Publication Number Publication Date
JPH06194001A true JPH06194001A (en) 1994-07-15

Family

ID=18358113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34299392A Pending JPH06194001A (en) 1992-12-24 1992-12-24 Refrigerant evaporator

Country Status (1)

Country Link
JP (1) JPH06194001A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5609203A (en) * 1994-08-25 1997-03-11 Zexel Corporation Laminated heat exchanger
US5667007A (en) * 1995-03-30 1997-09-16 Zexel Corporation Laminated heat exchanger
US5778974A (en) * 1995-08-29 1998-07-14 Nippondenso Co., Ltd. Laminated type heat exchanger having small flow resistance
US6216773B1 (en) * 2000-01-11 2001-04-17 Delphi Technologies, Inc. Plate type heat exchange
JP2003075024A (en) * 2001-06-18 2003-03-12 Showa Denko Kk Evaporator, its manufacturing method, header member for the vaporizer and refrigerating system
US6786277B2 (en) * 2000-01-08 2004-09-07 Halla Climate Control Corp. Heat exchanger having a manifold plate structure
FR2914407A1 (en) * 2007-03-30 2008-10-03 Valeo Systemes Thermiques Evaporator for cooling circuit of motor vehicle, has heat exchange row including tubes with fluid flow section larger than that of tubes of another row such that channel of former row have volume higher than that of channel of latter row
US20140373570A1 (en) * 2011-09-16 2014-12-25 Sylvain Moreau Multi-Layer Evaporator For Motor Vehicle Air-Conditioning Circuit

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5609203A (en) * 1994-08-25 1997-03-11 Zexel Corporation Laminated heat exchanger
US5617915A (en) * 1994-08-25 1997-04-08 Zexel Corporation Laminated heat exchanger
US5617914A (en) * 1994-08-25 1997-04-08 Zexel Corporation Laminated heat exchanger
EP0843143A3 (en) * 1994-08-25 1999-08-11 Zexel Corporation Laminated heat exchanger
US5667007A (en) * 1995-03-30 1997-09-16 Zexel Corporation Laminated heat exchanger
US5778974A (en) * 1995-08-29 1998-07-14 Nippondenso Co., Ltd. Laminated type heat exchanger having small flow resistance
US6786277B2 (en) * 2000-01-08 2004-09-07 Halla Climate Control Corp. Heat exchanger having a manifold plate structure
US6216773B1 (en) * 2000-01-11 2001-04-17 Delphi Technologies, Inc. Plate type heat exchange
JP2003075024A (en) * 2001-06-18 2003-03-12 Showa Denko Kk Evaporator, its manufacturing method, header member for the vaporizer and refrigerating system
FR2914407A1 (en) * 2007-03-30 2008-10-03 Valeo Systemes Thermiques Evaporator for cooling circuit of motor vehicle, has heat exchange row including tubes with fluid flow section larger than that of tubes of another row such that channel of former row have volume higher than that of channel of latter row
US20140373570A1 (en) * 2011-09-16 2014-12-25 Sylvain Moreau Multi-Layer Evaporator For Motor Vehicle Air-Conditioning Circuit
US9683764B2 (en) * 2011-09-16 2017-06-20 Valeo Systemes Thermiques Multi-layer evaporator for motor vehicle air-conditioning circuit

Similar Documents

Publication Publication Date Title
AU703687B2 (en) Refrigerant evaporator, improved for uniform temperature of air blown out therefrom
KR100216052B1 (en) Evaporator
US5099913A (en) Tubular plate pass for heat exchanger with high volume gas expansion side
KR100349399B1 (en) Refrigerant evaporator
US20060054310A1 (en) Evaporator using micro-channel tubes
EP0947792A2 (en) Refrigerant evaporator and manufacturing method for the same
US20060054312A1 (en) Evaporator using micro-channel tubes
EP3059542B1 (en) Laminated header, heat exchanger, and air-conditioner
US6431264B2 (en) Heat exchanger with fluid-phase change
KR100497847B1 (en) Evaporator
JPH0886591A (en) Heat exchanger and refrigerant evaporator
JP2002213840A (en) Evaporator
JPH06194001A (en) Refrigerant evaporator
JP2001221535A (en) Refrigerant evaporator
JP3632248B2 (en) Refrigerant evaporator
JP3735983B2 (en) Stacked evaporator
JP2737286B2 (en) Stacked heat exchanger
JPH02106697A (en) Lamination type heat exchanger
JP2000055573A (en) Refrigerant evaporator
JP2903745B2 (en) Stacked refrigerant evaporator
JPH05157402A (en) Heat exchanger
US20240200838A1 (en) Evaporative condenser
JPH05157401A (en) Heat exchanger
JP3596267B2 (en) Refrigerant evaporator
JPH06307737A (en) Refrigerant vaporizer