JP3735983B2 - Stacked evaporator - Google Patents

Stacked evaporator Download PDF

Info

Publication number
JP3735983B2
JP3735983B2 JP32714296A JP32714296A JP3735983B2 JP 3735983 B2 JP3735983 B2 JP 3735983B2 JP 32714296 A JP32714296 A JP 32714296A JP 32714296 A JP32714296 A JP 32714296A JP 3735983 B2 JP3735983 B2 JP 3735983B2
Authority
JP
Japan
Prior art keywords
refrigerant
tank
right direction
heat exchange
flow paths
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32714296A
Other languages
Japanese (ja)
Other versions
JPH10170098A (en
Inventor
定行 神谷
健一 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP32714296A priority Critical patent/JP3735983B2/en
Publication of JPH10170098A publication Critical patent/JPH10170098A/en
Application granted granted Critical
Publication of JP3735983B2 publication Critical patent/JP3735983B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • F28D1/0308Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other
    • F28D1/0325Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another
    • F28D1/0333Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another the plates having integrated connecting members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0085Evaporators

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Air-Conditioning For Vehicles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、複数の冷媒流路を左右方向に積層配置し、この複数の冷媒流路の上方および下方に上方タンクおよび下方タンクを備えた熱交換部を、被冷却流体の流れ方向に前後に2つ重ねて配置した積層型蒸発器に関するものである。
【0002】
【従来の技術】
近年、例えば実開平7−12778号公報では、図9に示すように、複数の冷媒流路31、21と、上タンク34、24と、下タンク35、25とを備えた第1熱交換部3および第2熱交換部2を、空気の流れ方向に前後に重なり合うように配置した積層型蒸発器1において、この蒸発器1の冷媒入口部8aおよび冷媒出口部8bを、蒸発器1の左側側面の上端部に設けている。これにより、蒸発器1と共に冷凍サイクルを構成する他の冷凍サイクル機器と接続するための配管の取り回しが容易で、かつ、設置面積も少なくて済む。
【0003】
そして、上タンク34、24の略中央部分に仕切り部36、27を設けて、上タンク34、24を、2つの上タンク34a、34b、24a、24bに分割している。これにより、冷媒流路31、21も2つの冷媒流路群31a、31b、21a、21bに分割され、下タンク35、25も2つの下タンク35a、35b、25a、25bに分割されている。また、上タンク34の右端部と上タンク24の右端部とを連通部10で連通してある。
【0004】
そして、冷媒入口部8aに流入した冷媒が、左側の上タンク34a→左側の冷媒流路群31a→左側の下タンク35a→右側の下タンク35b→右側の冷媒流路群31b→右側の上タンク34b→連通部10→右側の上タンク24b→右側の冷媒流路群21b→右側の下タンク25b→左側の下タンク25a→左側の冷媒流路群21a→左側の上タンク24a→冷媒出口部8bの順に流れるようになっている。
【0005】
【発明が解決しようとする課題】
ところが、従来技術の蒸発器1において、図10に示すように、上タンク34aの左端部から流入する液冷媒は、この液冷媒にかかる重力のため、より左端側に配置される冷媒流路群31aに流れ込みやすく、下タンク35bの左端部から流入する液冷媒は、この液冷媒にかかる慣性力のため、下タンク35bの右端側まで移動するので、より右端側に配置される冷媒流路群31bに流れ込みやすい。
【0006】
また、上タンク24bの右端部から流入する液冷媒は、重力のため、より右端側に配置される冷媒流路群21bに流れ込みやすく、下タンク25aの右端部から流入する液冷媒は、慣性力のため、下タンク25aの左端側まで移動するので、より左端側に配置される冷媒流路群21aに流れ込みやすい。
このため、それぞれの冷媒流路群31a、31b、21a、21bには、図10中ハッチングで示すように、液冷媒が流れる。そして、液冷媒の流れる部位を通過する空気は、この液冷媒の蒸発により良好に冷却されるが、液冷媒の流れない部位(つまり、冷媒蒸気の流れる部位、図10中白抜きで示す)を通過する空気は、冷却されない。
【0007】
このため、上記従来技術の蒸発器1においては、左側の冷媒流路群31a、21aのうち、左側部位では空気が良好に冷却され、右側部位では空気が良好に冷却されない。また、右側の冷媒流路群31b、21bのうち、右側部位では空気が良好に冷却され、左側部位では空気が良好に冷却されない。この結果、蒸発器1を通過した空気の温度に偏りが生じる、といった問題があった。
【0008】
本発明は上記問題に鑑みてなされたもので、積層型蒸発器を通過した空気の温度を均一化することを目的とする。
【0009】
【課題を解決するための手段】
上記目的を達成するために、請求項1に記載の発明では、第1熱交換部(3a、3b、3c、3)の冷媒入口部を第1上タンク(34a、34b、34c、34)の左右方向一端部に形成し、前記第1熱交換部の冷媒出口部を第1下タンク(35a、35b、35c、35)の左右方向他端部に形成し、第2熱交換部(2a、2b、2c、2)の冷媒入口部を第2下タンク(25a、25b、25c、25)の左右方向他端部に形成し、前記第2熱交換部の冷媒出口部を第2上タンク(24a、24b、24c、24)の左右方向一端部に形成した積層型蒸発器(1)であって、前記第1上タンクの内部に設けた筒部材(9)の左右方向一端部が、前記第1熱交換部の冷媒入口部に連通し、この冷媒入口部から流入する冷媒を、前記筒部材を通して、前記第1上タンク内部の左右方向他端部近傍に流出させることを特徴としている。
【0010】
なお、前記第1、第2熱交換部とは、上下方向に気液二相状態の冷媒が流れる複数の第1、第2冷媒流路(31a、31b、31c、31)、(21a、21b、21c、21)を左右方向に積層配置し、これら第1、第2冷媒流路の上方、下方に設けた、前記第1、第2上タンク、前記第1、第2下タンクにより、前記複数の第1、第2冷媒流路を連通したものである。また、上記左右方向一端部とは、左端部および右端部の一方のことで、上記左右方向他端部とは、左端部および右端部の他方のことである
このような構成によれば、第1熱交換部の左右方向一端部に設けた冷媒入口部から流入する液冷媒は、筒部材を通って、第1上タンク内部の左右方向他端部近傍に流出されるので、あたかも、第1上タンクの左右方向他端部近傍から液冷媒が供給されたかのように流れ、この液冷媒にかかる重力のために、より左右方向他端部近傍に配置される第1冷媒流路に液冷媒が流れ込みやすい。
【0011】
また、第2下タンクの左右方向他端部に設けた冷媒入口部から流入する液冷媒は、この液冷媒にかかる慣性力のために、第2下タンクの左右方向一端部内部まで移動するので、より左右方向一端部側に配置される第2冷媒流路に液冷媒が流れ込みやすい。
この結果、第1熱交換部では、主に左右方向他端部側で被冷却流体が良好に冷却され、左右方向一端部側では被冷却流体が良好に冷却されない。また、第2熱交換部では、主に左右方向一端部側で被冷却流体が良好に冷却され、左右方向他端部側では被冷却流体が良好に冷却されない。このように、被冷却流体が良好に冷却される部位と、良好に冷却されない部位とを、被冷却流体の流れ方向に前後に重ねているため、この積層型蒸発器(1)を通過した被冷却流体の温度を均一化できる。
【0012】
また、第1熱交換部の冷媒入口部、および、第2熱交換部の冷媒出口部が、両方とも、蒸発器(1)の左右方向一端部で、かつ、上端部に配置されている。よって、この冷媒入口部および冷媒出口部を、蒸発器(1)の冷媒入口部および冷媒出口部とするとき、1つの配管ジョイント(8)で外部冷媒回路と接続できるので、その取りまわしが容易となる。
【0013】
また、請求項2に記載の発明では、第1上タンクおよび第1下タンクのうち、一方の第1タンクの左右方向一端部に、第1熱交換部の冷媒入口部を形成し、第2上タンクおよび第2下タンクのうち、前記一方の第1タンクに対応する、一方の第2タンクの左右方向一端部に、第2熱交換部の冷媒出口部を形成し、他方の第1タンクの左右方向一端部近傍と、他方の第2タンクの左右方向一端部近傍とを連通する連通部(10)を設けたことを特徴としている。
【0014】
このような構成によれば、例えば、一方の第1タンクを第1上タンク(34a、34b、34c、34)とした場合、この第1上タンクの左右方向一端部側から液冷媒が流れ込むため、より左右方向一端側に配置される第1冷媒流路に液冷媒が流れ込みやすい。また、連通部(10)を経て、第2下タンク(25a、25b、25c、25)の左右方向一端部側から液冷媒が流れ込むため、より左右方向他端部に配置される第2冷媒流路に液冷媒が流れ込みやすい。
【0015】
この結果、上記請求項1と同様に、被冷却流体が良好に冷却される部位と、良好に冷却されない部位とを、被冷却流体の流れ方向に前後に重ねることができ、この積層型蒸発器を通過した被冷却流体の温度を均一化できる。
なお、一方の第1タンクを第1下タンク(35a、35b、35c、35)とした場合でも、同様の効果が得られる。
【0016】
また、他方の第1タンクの左右方向一端部近傍と、他方の第2タンクの左右方向一端部近傍とは近接しているため、上記連通部(10)の配置構造が単純である。
また、第1熱交換部の冷媒入口部、および、第2熱交換部の冷媒出口部が、両方とも、積層型蒸発器の左右方向一端部で、かつ、上端部または下端部に配置されている。よって、この冷媒入口部および冷媒出口部を、積層型蒸発器の冷媒入口部および冷媒出口部とするとき、1つの配管ジョイント(8)で外部冷媒回路と接続でき、その取りまわしが容易となる。
【0017】
【発明の実施の形態】
以下、本発明を図に示す実施形態について説明する。
(第1の実施形態)
図1ないし5に示す本実施形態の積層型蒸発器1は、例えば車両用空調装置の冷凍サイクルのエバポレータを構成し、内部を流れる冷媒と外側を通過する空気(被冷却流体)とを熱交換させて冷媒を蒸発気化させ、空気を冷却するものである。そして、車両の車室内前方に設置された空調ダクト内に空気の流れ方向に対して直交するように配置されている。なお、この蒸発器1の冷媒入口部としての連通穴321a(図3参照)、および、冷媒出口部としての連通穴221a(図3参照)の両方を、蒸発器1の左端部で、かつ、上端部に配置することにより、1つの配管ジョイント8(図1参照)により、外部冷媒回路との接続を行なうようにしてある。
【0018】
この蒸発器1は、図1に示すように、空気の流れ方向の風下側(下流側、後側)に配置される風下側熱交換部2、および、この風下側熱交換部2よりも空気の流れ方向の風上側(上流側、前側)に隣接して配置される風上側熱交換部3を備えている。
具体的に、風下側熱交換部2および風上側熱交換部3は、空気の流れ方向(前後方向)に対して直交する左右方向(幅方向、水平方向)に複数積層された一対の成形プレート4と、隣接する成形プレート4間に配され、冷媒と空気との熱交換効率を高める複数のコルゲートフィン5とから主に構成され、成形プレート4の積層方向端部に配されたエンドプレート6により、補強されている。
【0019】
上記成形プレート4は、熱伝導性に優れた材料(例えばアルミニウム合金)からなる薄板部材を図2に示す所定形状に成形したものであり、対となる成形プレート4に接合される略長方形状の接合部11、および、この接合部11内を2つの長尺状凹部12、13に区画する区画部14等が形成されている。そして、一対の成形プレート4は、空気の流れ方向の風下側に風下側チューブ20を形成し、風上側に風上側チューブ30を形成している。風下側チューブ20の内部には、風下側の長尺状凹部12同志の空間にて構成される風下側冷媒流路21が形成され、風上側チューブ30の内部には、風上側の長尺状凹部13同志の空間にて構成される風上側冷媒流路31が形成されている。
【0020】
風上側冷媒流路31では、乾き度の小さい(液相成分の多い)気液二相状態の冷媒と空気とを主に熱交換させて、冷媒を蒸発気化させている。風下側冷媒流路21では、乾き度の大きい(気相成分の多い)気液二相状態の冷媒と空気とを主に熱交換させて、冷媒を蒸発気化させている。なお、図4に示すように、冷媒流路21、31には、それぞれのチューブ20、30に接するようにインナーフィン210、310が挿入されている。このインナーフィン210、310は、凹凸形状が一体成形されており、この形状に沿って、冷媒を蛇行させながら流すことにより、冷媒とチューブ20、30との伝熱面積を向上している。
【0021】
また、図2に示すように、風下側チューブ20の上端部、つまり、風下側冷媒流路21の上方には、風下側上タンク部22が形成され、風下側チューブ20の下端部、つまり、風下側冷媒流路21の下方には、風下側下タンク部23が形成されている。風上側チューブ30の上端部、つまり、風上側冷媒流路31の上方には、風上側上タンク部32が形成され、風上側チューブ30の下端部、つまり、風上側冷媒流路31の下方には、風上側下タンク部33が形成されている。
【0022】
風下側上タンク部22および風下側下タンク部23には、隣接する風下側上タンク部22および風下側下タンク部23と連通させるための楕円状の連通穴221、231がそれぞれ形成されている。風上側上タンク部32および風上側下タンク部33にも、隣接する風上側上タンク部32および風上側下タンク部33と連通させるための楕円状の連通穴321、331がそれぞれ形成されている。
【0023】
そして、図1に示すように、風下側上タンク部22を左右方向に複数積層することにより、複数の風下側熱交換部2の上端部に風下側上タンク24が形成され、風下側下タンク部23を左右方向に複数積層することにより、風下側熱交換部2の下端部に風下側下タンク25が形成される。
また、風上側上タンク部32を左右方向に複数積層することにより、風上側熱交換部3の上端部に風上側上タンク34が形成され、図1には図示されないが、風上側下タンク部33を左右方向に複数積層することにより、風上側熱交換部3の下端部に風上側下タンク35(図3参照)が形成される。
【0024】
なお、図3に示すように、風下側上タンク24の左右方向の略中央部には、この風下側上タンク24内部を第1風下側上タンク24aと第2風下側上タンク24bとに仕切る仕切り板27が設けられている。また、風上側上タンク34の左右方向の略中央部にも、この風下側上タンク34内部を第1風上側上タンク34aと第2風上側上タンク34bとに仕切る仕切り板36が設けられている。
【0025】
そして、図4に示すように、仕切り板27は、略中央部に隣接して配される2つの風下側チューブ20の風下側上タンク部22の側壁に連通穴221を形成しないことにより形成され、仕切り板27は、略中央部に隣接して配される2つの風上側チューブ30の風上側上タンク部32の側壁に連通穴321を形成しないことにより形成されている。
【0026】
また、図3に示すように、仕切り板27は、複数の風下側冷媒流路21を、第1風下側冷媒流路群21aと第2風下側冷媒流路群21bとに仕切る役割、および、風下側下タンク25を、第1風上側下タンク25aと第2風上側下タンク25bとに仕切る役割を果たしている。また、仕切り板36は、図3に示すように、複数の風上側冷媒流路31を、第1風上側冷媒流路群31aと第2風上側冷媒流路群31bとに仕切る役割、および、風上側下タンク35を、第1風上側下タンク35aと第2風上側下タンク35bとに仕切る役割を果たしている。
【0027】
このようにして、風上側熱交換部3が、第1風上側熱交換部3aと第2風上側熱交換部3bとに分離され、風下側熱交換部2が、第1風下側熱交換部2aと第2風下側熱交換部2bとに分離されている。
そして、第1風上側上タンク34aの左端部(エンドプレート6の上端部)に形成した連通穴321a(図4も参照)により、蒸発器1の冷媒入口部を構成している。この連通穴321aに、接続用配管ジョイント8の冷媒入口パイプ(冷媒入口部)8aの一端が内嵌合した状態で接合されている。また、第1風下側上タンク24aの左端部(エンドプレート6の上端部)に形成した連通穴221a(図4参照)により、蒸発器1の冷媒出口部を構成している。この連通穴221aに、接続用配管ジョイント8の冷媒出口パイプ(冷媒出口部)8bの一端が内嵌合した状態で接合されている。
【0028】
そして、冷媒入口パイプ8aの他端には、図示しない膨張弁の出口側冷媒配管が接合され、冷媒出口パイプ8bの他端には、蒸発器で蒸発したガス冷媒を圧縮機(図示せず)側へ吸入させる圧縮機吸入配管が接合される。
さらに、第1風上側上タンク34aの内部には、タンク部32の連通穴321を貫通するように、左右方向に延びる円筒部材(筒部材)9が設けられている。この円筒部材9の左端部は、上記配管ジョイント8の冷媒入口パイプ8aの一端に外嵌合した状態で、このパイプ8aに接合されている。これにより、円筒部材9の左端部とパイプ8aの一端(連結穴321a)とが連通される。また、円筒部材9の右端部は、第1風上側上タンク34aの右端部内部まで延びている。なお、円筒部材9の断面積は、連通穴321の断面積よりも小さく構成されている。
【0029】
また、第2風上側上タンク34bの左端部に位置するタンク部32と、第2風下側上タンク24bの左端部に位置するタンク部22とは、連通部10にて連通されている。この連通部10は、図2に示す一対の成形プレート4において、区画部14のうち、タンク部32とタンク部22との間の部位を、他の部位よりも凹ませることにより形成されている。
【0030】
なお、第1風上側上タンク34aの左端部の連通穴321a(図4参照)により、第1風上側熱交換部3aの冷媒入口部を構成し、第1風上側下タンク35aの右端部に位置するタンク部33の連通穴331により、第1風上側熱交換部3aの冷媒出口部を構成している。また、第2風上側下タンク35bの左端部に位置するタンク部33の連通穴331により、第2風上側熱交換部3bの冷媒入口部を構成し、第2風上側上タンク34bの左端部に位置するタンク部32のうち、上記連通部10に連通する部位により、第2風上側熱交換部3bの冷媒出口部を構成している。
【0031】
また、第2風下側上タンク24bの左端部に位置するタンク部22のうち、上記連通部10に連通する部位により、第2風下側熱交換部2bの冷媒入口部を構成し、第2風下側下タンク25bの左端部に位置するタンク部23の連通穴231により、第2風下側熱交換部2bの冷媒出口部を構成している。また、第1風下側下タンク25aの右端部に位置するタンク部23の連通穴231により、第1風下側熱交換部2aの冷媒入口部を構成し、第1風下側上タンク24aの左端部(エンドプレート6の上端部)に形成した連通穴221a(図4参照)により、第1風下側熱交換部2aの冷媒出口部を構成している。
【0032】
次に、上記構成において本実施形態の作動を説明する。
上記減圧装置を通過する際に断熱膨張された低温低圧な気液二相状態の冷媒は、図3に示すように、配管ジョイント8の冷媒入口パイプ8aから、円筒部材9の左端部へ供給され、この左端部から右端部へかけて流れる。そして、この右端部から第1風上側上タンク34aの右端部内部に流出した冷媒は、ここでUターンして、第1風上側上タンク34aの左端部側へ流れつつ、第1風上側冷媒流路群31aへ流れる。
【0033】
このとき、図5に示すように、気液二相状態の冷媒のうち液冷媒は、この液冷媒にかかる重力のために、より右側に配置される第1風上側冷媒流路群31aに流れ込みやすく、より左側に配置される第1風上側冷媒流路群31aには、液冷媒が流れ込みにくく、ガス冷媒が流れやすい。そして、第1風上側冷媒流路群31aにおいて、液冷媒は、空気と熱交換することにより蒸発気化する。
【0034】
従って、第1風上側冷媒流路群31a内を冷媒が流れる際は、この冷媒流路群31aの右端部側において、空気との熱交換がより良好に行なわれる。このため、右端部側を通過する空気は良好に冷却されるが、左端部側を通過する空気は、右端部側に比べて冷却されにくく、空気温度が高い。なお、図5において、冷媒流路群21a、21b、31a、31bに液冷媒の流れる様子を細線ハッチングにて模式的に示してある。
【0035】
そして、冷媒は、第1風上側冷媒流路群31aから第1風上側下タンク35aへ流れ、この第1風上側下タンク35aの右端部から、第2風上側下タンク35bの左端部へ流入する。このとき液冷媒は、この液冷媒にかかる慣性力のために、第2風上側下タンク35bの右側まで移動するので、より右側に配置される第2風上側冷媒流路群31bに流れ込みやすく、より左側に配置される第2風上側冷媒流路群31bには、液冷媒が流れ込みにくく、ガス冷媒が流れやすい。そして、第2風上側冷媒流路群31bにおいて、液冷媒は、空気と熱交換することにより蒸発気化する。
【0036】
従って、第2風上側冷媒流路群31b内を冷媒が流れる際は、この冷媒流路群31bの右端部側において、空気との熱交換がより良好に行なわれる。このため、右端部側を通過する空気は良好に冷却されるが、左端部側を通過する空気は、右端部側に比べて冷却されにくく、右端部側よりも空気温度が高い。
そして、冷媒は、第2風上側冷媒流路群31bから第2風上側上タンク34bへ流れ、この第2風上側上タンク34bの左端部から、連通部10を通って、第2風下側上タンク24bの左端部へ流入する。このとき液冷媒は、この液冷媒にかかる重力のために、より左側に配置される第2風下側冷媒流路群21bに流れ込みやすく、より右側に配置される第2風下側冷媒流路群21bには、液冷媒が流れ込みにくく、ガス冷媒が流れやすい。そして、第2風下側冷媒流路群21bにおいて、液冷媒は、空気と熱交換することにより蒸発気化する。
【0037】
従って、第2風下側冷媒流路群21b内を冷媒が流れる際は、この冷媒流路群21bの左端部側において、空気との熱交換がより良好に行なわれる。このため、左端部側を通過する空気は良好に冷却されるが、右端部側を通過する空気は、左端部側に比べて冷却されにくく、左端部側よりも空気温度が高い。
そして、冷媒は、第2風下側冷媒流路群21bから第2風下側下タンク25bへ流れ、この第2風下側下タンク25bの左端部から、第1風下側下タンク25aの右端部へ流入する。このとき液冷媒は、この液冷媒にかかる慣性力のために、第1風下側下タンク25aの左側まで移動するので、より左側に配置される第1風下側冷媒流路群21aに流れ込みやすく、より右側に配置される第1風下側冷媒流路群21aには、液冷媒が流れ込みにくく、ガス冷媒が流れやすい。そして、第1風下側冷媒流路群21aにおいて、液冷媒は、空気と熱交換することにより蒸発気化する。
【0038】
従って、第1風下側冷媒流路群21a内を冷媒が流れる際は、この冷媒流路群21aの左端部側において、空気との熱交換がより良好に行なわれる。このため、左端部側を通過する空気は良好に冷却されるが、右端部側を通過する空気は、左端部側に比べて冷却されにくく、左端部側よりも空気温度が高い。
なお、配管ジョイント8の冷媒入口パイプ8aから流入した気液二相状態の冷媒のうち液体冷媒は、第1風上側冷媒流路群31a、第2風上側冷媒流路群31b、第2風下側冷媒流路群21b、第1風下側冷媒流路群21aを通過することにより徐々に蒸発気化し、第1風下側冷媒流路群21aから第1風下側上タンク24aへ流れる冷媒は過熱蒸気となっている。そして、この過熱蒸気は、第1風下側上タンク24aの左端部から、配管ジョイント8の冷媒出口パイプ8b内を経て、図示しない冷媒圧縮機の吸入口へ流入する。
【0039】
以下に、本実施形態の奏する効果を説明する。
まず、図5に示すように、第1風上側冷媒流路群31aのうち、空気が良好に冷却される部位(ハッチング部位)と、第1風下側冷媒流路群21aのうち、空気が良好に冷却される部位(ハッチング部位)とが、対称位置となる。また、第1風上側冷媒流路群31aのうち、空気が良好に冷却されない部位(ハッチング部位)と、第1風下側冷媒流路群21aのうち、空気が良好に冷却されない部位(ハッチング部位)とが、対称位置となる。
【0040】
従って、空気の流れ方向の前後に重ねて配置した第1風上側熱交換部3aと第1風下側熱交換部2aとで、空気が良好に冷却されない部位同志が前後に重なり合わず、空気が良好に冷却されない部位と空気が良好に冷却される部位とを重なり合わせることができる。よって、この熱交換部3a、2aを通過した後の空気の温度に偏りが生じることを抑制でき、空気の温度を均一化できる。
【0041】
同様に、空気の流れ方向の前後に重ねて配置した第2風上側熱交換部3bと第2風下側熱交換部2bとで、空気が良好に冷却されない部位同志が前後に重なり合わず、空気が良好に冷却されない部位と空気が良好に冷却される部位とを重なり合わせることができる。よって、この熱交換部3b、2bを通過した後の空気の温度に偏りが生じることを抑制でき、空気の温度を均一化できる。
【0042】
このようにして、積層型蒸発器1を通過した後の空気の温度に偏りが生じることを抑制でき、空気の温度を均一化できる。
(第2の実施形態)
本実施形態は、風下側上タンク24、風上側上タンク34、風下側下タンク25、風上側下タンク35内部のうち、図6に示す位置に設けた仕切り板27、36、28、37により、▲1▼風下側上タンク24内部を、第1風下側上タンク24a、第2風下側上タンク24b、および、第3風下側上タンク24cに仕切り、▲2▼複数の風下側冷媒流路21を、第1風下側冷媒流路群21a、第2風下側冷媒流路群21b、および、第3風下側冷媒流路群21cに仕切り、▲3▼風下側下タンク25を、第1風下側下タンク25a、第2風下側下タンク25b、および、第3風下側下タンク25cに仕切り、▲4▼風上側上タンク34内部を、第1風上側上タンク34a、第2風上側上タンク34b、および、第3風上側上タンク34cに仕切り、▲5▼複数の風上側冷媒流路31を、第1風上側冷媒流路群31a、第2風上側冷媒流路群31b、および、第3風上側冷媒流路群31cに仕切り、▲6▼風上側下タンク35を、第1風上側下タンク35a、第2風上側下タンク35b、および、第3風上側下タンク35cに仕切ってある。
【0043】
これにより、風下側熱交換部2を、第1風下側熱交換部2a、第2風下側熱交換部2b、および、第3風下側熱交換部2cに分割し、風上側熱交換部3を、第1風上側熱交換部3a、第2風上側熱交換部3b、および、第3風上側熱交換部3cに分割している。
なお、第1〜第3風下側熱交換部2a〜2c、および、第1〜第3風上側熱交換部3a〜3cの、それぞれの冷媒入口部および冷媒出口部の場所は、図6により明らかであるので、説明を省略する。
【0044】
そして、第1風上側上タンク34aに、上記第1の実施形態と同様にして円筒部材9を設け、さらに、第3風上側下タンク35cの左端部と、第3風上側下タンク25cの左端部とを、上記第1の実施形態と同様にして連通部10にて連通させてある。
この結果、それぞれのタンク34a〜34c、24a〜24c、35a〜35c、25a〜25cや、冷媒流路群31a〜31c、21a〜21cを流れる冷媒は、図6中矢印で示すように流れ、かつ、気液二相状態の冷媒のうち液冷媒は、図7中細線ハッチングで示すように、冷媒流路群31a〜31c、21a〜21cを流れる。
【0045】
従って、冷媒流路群31aと冷媒流路群21a、および、冷媒流路群31cと冷媒流路群21cとに関して、空気が良好に冷却される部位(図7中ハッチング部位)と、空気が良好に冷却されない部位(図7中白抜き部位)とが、対称位置となる。よって、それぞれの熱交換部3a、2a、および、熱交換部3c、2cを通過した後の空気の温度に偏りが生じることを抑制でき、空気の温度を均一化できる。
【0046】
このようにして、蒸発器1を通過した後の空気の温度に偏りが生じることを抑制でき、空気の温度を均一化できる。
(第3の実施形態)
図8に示す本実施形態は、上記第1および第2の実施形態における仕切り板27、28、36、37を廃止したものである。
【0047】
具体的に、円筒部材9の左端部は、風上側上タンク34の左端部の連通穴321aに連通し、円筒部材9の右端部は、風上側上タンク34の右端部内部まで延びている。そして、風上側下タンク35の右端部(風上側熱交換部3の冷媒出口部)と、風下側下タンク25の右端部(風下側熱交換部2の冷媒入口部)とを連通部100にて連通してある。つまり、請求項1に記載の構造を有している。
【0048】
これによれば、風上側冷媒流路群31の右端部に液冷媒が流れやすく、風下側冷媒流路群21の左端部側に液冷媒が流れやすいので、冷媒流路群31冷媒流路群21とに関して、空気が良好に冷却される部位と、空気が良好に冷却されない部位とを、対称位置にできる。よって、蒸発器1を通過した後の空気の温度に偏りが生じることを抑制でき、空気の温度を均一化できる。
【0049】
(他の実施形態)
上記第3の実施形態において、円筒部材9および連通部100を廃止して、風上側下タンク35の左端部(風上側熱交換部3の冷媒出口部)と、風下側下タンク25の左端部(風下側熱交換部2の冷媒入口部)とを連通させてもよい。つまり、請求項2に記載の構造を持たせてもよい。このようにしても、冷媒流路群31冷媒流路群21とに関して、空気が良好に冷却される部位と、空気が良好に冷却されない部位とを、対称位置にできる。
【0050】
また、上記第1および第2の実施形態において、円筒部材9および連通部10のいずれか一方のみを採用してもよい。
また、上記第1の実施形態において、タンク34bの左端部に位置するタンク部32と、タンク24bの左端部に位置するタンク部22とを連通部10にて連通していたが、タンク34bの左端部側(つまり、タンク34bの左端部よりも多少右側)に位置するタンク部32と、タンク24bの左端部側(つまり、タンク24bの左端部よりも多少右側)に位置するタンク部22とを連通部10にて連通してもよい。
【0051】
また、上記第1の実施形態において、円筒部材9の右端部が、タンク34aの右端部内部まで延びていたが、タンク34aの右端部側(つまり、タンク34aの右端部よりも多少左側)内部まで延びるようにしてもよい。
また、上記第1ないし第3の実施形態では、蒸発器1の上端部で、かつ、左端部に、蒸発器1の冷媒入口部および冷媒出口部を形成していたが、この上下、左右は限定されることはなく、自由に変更してもよい。なお、この変更により、それぞれの熱交換部2(2a、2b、2c)、3(3a、3b、3c)の冷媒入口部および冷媒出口部の場所や、請求項でいう筒部材(円筒部材9)や連通部10の配置場所も変更されるのは勿論である。
【0052】
例えば、上記第1の実施形態(図3参照)、第2の実施形態(図6参照)、および、第3の実施形態(図8参照)において、熱交換部2(2a、2b、2c)と、熱交換部3(3a、3b、3c)との前後を逆に配置してもよいし、蒸発器1の冷媒入口部および冷媒出口部を、蒸発器1の右端部、かつ、上端部に配置してもよい。
【図面の簡単な説明】
【図1】本発明の第1の実施形態に係わる蒸発器の斜視図である。
【図2】第1の実施形態に係わる一対の成形プレートの分解斜視図である。
【図3】第1の実施形態に係わる蒸発器内の冷媒の流れ方向を示す蒸発器の概略的な斜視図である。
【図4】図1におけるA−A断面の部分図である。
【図5】第1の実施形態に係わる熱交換部の冷媒流路内の冷媒の状態を示す説明図である。
【図6】第2の実施形態に係わる蒸発器内の冷媒の流れ方向を示す蒸発器の概略的な斜視図である。
【図7】第2の実施形態に係わる熱交換部の冷媒流路内の冷媒の状態を示す説明図である。
【図8】第3の実施形態に係わる蒸発器内の冷媒の流れ方向を示す蒸発器の概略的な斜視図である。
【図9】従来技術に係わる蒸発器内の冷媒の流れ方向を示す蒸発器の概略的な斜視図である。
【図10】従来技術に係わる熱交換部の冷媒流路内の冷媒の状態を示す説明図である。
【符号の説明】
3a、3b…第1、第2風上側熱交換部(第1熱交換部)、
31a、31b…第1、第2風上側冷媒流路群(複数の第1冷媒流路)、
34a、34b…第1、第2風上側上タンク(第1上タンク)、
35a、35b…第1、第2風上側下タンク(第1下タンク)、
2a、2b…第1、第2風下側熱交換部(第2熱交換部)、
21a、21b…第1、第2風下側冷媒流路群(複数の第2冷媒流路)、
24a、24b…第1、第2風下側上タンク(第2上タンク)、
25a、25b…第1、第2風下側下タンク(第2下タンク)、
321a…連通穴(蒸発器の冷媒入口部)、
221a…連通穴(蒸発器の冷媒出口部)、
9…円筒部材(筒部材)、10…連通部。
[0001]
BACKGROUND OF THE INVENTION
In the present invention, a plurality of refrigerant flow paths are stacked in the left-right direction, and a heat exchanging unit including an upper tank and a lower tank above and below the plurality of refrigerant flow paths is arranged in the front-rear direction of the flow direction of the fluid to be cooled The present invention relates to a stacked evaporator arranged in two.
[0002]
[Prior art]
In recent years, for example, in Japanese Utility Model Laid-Open No. 7-12778, as shown in FIG. 9, as shown in FIG. 9, a first heat exchange unit including a plurality of refrigerant flow paths 31, 21, upper tanks 34, 24, and lower tanks 35, 25. 3 and the second heat exchanging unit 2 are arranged so as to overlap each other in the air flow direction, and the refrigerant inlet 8a and the refrigerant outlet 8b of the evaporator 1 are connected to the left side of the evaporator 1. It is provided at the upper end of the side surface. Thereby, the piping for connecting with the other refrigeration cycle apparatus which comprises a refrigeration cycle with the evaporator 1 is easy, and an installation area can also be reduced.
[0003]
And the partition parts 36 and 27 are provided in the approximate center part of the upper tanks 34 and 24, and the upper tanks 34 and 24 are divided | segmented into the two upper tanks 34a, 34b, 24a, and 24b. Thereby, the refrigerant flow paths 31 and 21 are also divided into two refrigerant flow path groups 31a, 31b, 21a and 21b, and the lower tanks 35 and 25 are also divided into two lower tanks 35a, 35b, 25a and 25b. Further, the right end portion of the upper tank 34 and the right end portion of the upper tank 24 are communicated with each other by the communication portion 10.
[0004]
Then, the refrigerant flowing into the refrigerant inlet 8a flows into the left upper tank 34a → the left refrigerant channel group 31a → the left lower tank 35a → the right lower tank 35b → the right refrigerant channel group 31b → the right upper tank. 34b → communication portion 10 → right upper tank 24b → right refrigerant channel group 21b → right lower tank 25b → left lower tank 25a → left refrigerant channel group 21a → left upper tank 24a → refrigerant outlet 8b It is designed to flow in this order.
[0005]
[Problems to be solved by the invention]
However, in the prior art evaporator 1, as shown in FIG. 10, the liquid refrigerant flowing from the left end of the upper tank 34a is a refrigerant flow path group arranged on the left end side due to gravity applied to the liquid refrigerant. The liquid refrigerant that easily flows into 31a and flows in from the left end portion of the lower tank 35b moves to the right end side of the lower tank 35b due to the inertial force applied to the liquid refrigerant. It is easy to flow into 31b.
[0006]
Further, the liquid refrigerant flowing from the right end portion of the upper tank 24b easily flows into the refrigerant flow path group 21b disposed on the right end side due to gravity, and the liquid refrigerant flowing from the right end portion of the lower tank 25a has an inertial force. Therefore, since it moves to the left end side of the lower tank 25a, it is easier to flow into the refrigerant flow path group 21a arranged on the left end side.
For this reason, as shown by hatching in FIG. 10, the liquid refrigerant flows through the respective refrigerant flow path groups 31a, 31b, 21a, and 21b. Then, the air passing through the portion where the liquid refrigerant flows is well cooled by the evaporation of the liquid refrigerant, but the portion where the liquid refrigerant does not flow (that is, the portion where the refrigerant vapor flows, indicated by white in FIG. 10). The passing air is not cooled.
[0007]
For this reason, in the evaporator 1 of the prior art described above, of the left refrigerant flow path groups 31a and 21a, air is cooled well in the left part, and air is not cooled well in the right part. Further, in the right refrigerant flow path groups 31b and 21b, the air is favorably cooled at the right portion, and the air is not favorably cooled at the left portion. As a result, there is a problem that the temperature of the air that has passed through the evaporator 1 is biased.
[0008]
The present invention has been made in view of the above problems, and an object thereof is to uniformize the temperature of air that has passed through a stacked evaporator.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, in the first aspect of the present invention, the refrigerant inlet portion of the first heat exchange portion (3a, 3b, 3c, 3) is connected to the first upper tank (34a, 34b, 34c, 34). Formed at one end in the left-right direction, and formed a refrigerant outlet part of the first heat exchange part at the other end in the left-right direction of the first lower tank (35a, 35b, 35c, 35), and the second heat exchange part (2a, 2b, 2c, 2) is formed at the other end in the left-right direction of the second lower tank (25a, 25b, 25c, 25), and the refrigerant outlet of the second heat exchange unit is formed in the second upper tank ( 24a, 24b, 24c, 24) is a stacked evaporator (1) formed at one end in the left-right direction, and one end in the left-right direction of the cylindrical member (9) provided inside the first upper tank is The cylinder member is connected to the refrigerant inlet portion of the first heat exchange portion, and the refrigerant flowing from the refrigerant inlet portion is And it is characterized by causing to flow in the lateral direction end portion vicinity of the inside of the first upper tank.
[0010]
The first and second heat exchanging units are a plurality of first and second refrigerant flow paths (31a, 31b, 31c, 31), (21a, 21b) through which a gas-liquid two-phase refrigerant flows in the vertical direction. 21c, 21) are stacked in the left-right direction, and the first and second upper tanks, the first and second lower tanks are provided above and below the first and second refrigerant flow paths, respectively. A plurality of first and second refrigerant flow paths are communicated with each other. The one end in the left-right direction is one of the left end and the right end, and the other end in the left-right direction is the other of the left end and the right end.
According to such a configuration, the liquid refrigerant flowing from the refrigerant inlet provided at the one end in the left-right direction of the first heat exchange section passes through the cylindrical member and near the other end in the left-right direction inside the first upper tank. Since it flows out, it flows as if the liquid refrigerant was supplied from the vicinity of the other end in the left-right direction of the first upper tank, and is arranged closer to the other end in the left-right direction due to the gravity applied to this liquid refrigerant. Liquid refrigerant tends to flow into the first refrigerant flow path.
[0011]
Further, the liquid refrigerant flowing from the refrigerant inlet provided at the other end in the left-right direction of the second lower tank moves to the inside of one end in the left-right direction of the second lower tank due to the inertial force applied to the liquid refrigerant. Thus, the liquid refrigerant is likely to flow into the second refrigerant flow path disposed on the one end side in the left-right direction.
As a result, in the first heat exchange unit, the fluid to be cooled is cooled favorably mainly at the other end portion in the left-right direction, and the fluid to be cooled is not satisfactorily cooled at one end portion in the left-right direction. Further, in the second heat exchange part, the fluid to be cooled is cooled favorably mainly at the one end portion in the left-right direction, and the fluid to be cooled is not favorably cooled at the other end portion in the left-right direction. As described above, the portion where the fluid to be cooled is cooled well and the portion where the fluid to be cooled is not cooled are overlapped in the flow direction of the fluid to be cooled. The temperature of the cooling fluid can be made uniform.
[0012]
Moreover, the refrigerant | coolant inlet part of a 1st heat exchange part and the refrigerant | coolant outlet part of a 2nd heat exchange part are both arrange | positioned at the left-right direction one end part of an evaporator (1), and an upper end part. Therefore, when this refrigerant inlet part and refrigerant outlet part are used as the refrigerant inlet part and the refrigerant outlet part of the evaporator (1), since it can be connected to the external refrigerant circuit by one pipe joint (8), the handling thereof is easy. Become.
[0013]
In the second aspect of the present invention, the refrigerant inlet portion of the first heat exchanging portion is formed at one end portion in the left-right direction of one of the first upper tank and the first lower tank, and the second tank Of the upper tank and the second lower tank, a refrigerant outlet portion of the second heat exchange portion is formed at one end portion in the left-right direction of the one second tank corresponding to the one first tank, and the other first tank. The communication part (10) which connects the left-right direction one end vicinity of the other 2nd tank and the left-right direction one end vicinity of the other 2nd tank is provided.
[0014]
According to such a configuration, for example, when one of the first tanks is the first upper tank (34a, 34b, 34c, 34), the liquid refrigerant flows from one end side in the left-right direction of the first upper tank. The liquid refrigerant is likely to flow into the first refrigerant flow path disposed on the one end side in the left-right direction. In addition, since the liquid refrigerant flows from one end side in the left-right direction of the second lower tank (25a, 25b, 25c, 25) through the communication portion (10), the second refrigerant flow disposed at the other end in the left-right direction. Liquid refrigerant easily flows into the road.
[0015]
As a result, as in the first aspect, the portion where the fluid to be cooled is cooled well and the portion where the fluid to be cooled is not cooled can be overlapped in the flow direction of the fluid to be cooled. The temperature of the fluid to be cooled that has passed through can be made uniform.
Even when one of the first tanks is the first lower tank (35a, 35b, 35c, 35), the same effect can be obtained.
[0016]
Further, since the vicinity of one end portion in the left-right direction of the other first tank and the vicinity of one end portion in the left-right direction of the other second tank are close to each other, the arrangement structure of the communication portion (10) is simple.
Moreover, the refrigerant | coolant inlet part of a 1st heat exchange part and the refrigerant | coolant outlet part of a 2nd heat exchange part are both arrange | positioned at the left-right direction one end part of a laminated evaporator, and an upper end part or a lower end part. Yes. Therefore, when the refrigerant inlet portion and the refrigerant outlet portion are used as the refrigerant inlet portion and the refrigerant outlet portion of the stacked evaporator, it can be connected to the external refrigerant circuit with one pipe joint (8), and the handling thereof becomes easy.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments shown in the drawings will be described below.
(First embodiment)
The laminated evaporator 1 of the present embodiment shown in FIGS. 1 to 5 constitutes an evaporator of a refrigeration cycle of a vehicle air conditioner, for example, and exchanges heat between refrigerant flowing inside and air (cooled fluid) passing outside. Thus, the refrigerant is evaporated and the air is cooled. And it arrange | positions so that it may orthogonally cross with respect to the air flow direction in the air-conditioning duct installed in the vehicle interior front of the vehicle. It should be noted that both the communication hole 321a (see FIG. 3) as the refrigerant inlet of the evaporator 1 and the communication hole 221a (see FIG. 3) as the refrigerant outlet are at the left end of the evaporator 1, and By disposing at the upper end, connection to an external refrigerant circuit is made by one pipe joint 8 (see FIG. 1).
[0018]
As shown in FIG. 1, the evaporator 1 includes a leeward heat exchange unit 2 arranged on the leeward side (downstream side and rear side) in the air flow direction, and air more than the leeward side heat exchange unit 2. The upwind heat exchange unit 3 is provided adjacent to the upwind side (upstream side, front side) in the flow direction.
Specifically, the leeward side heat exchanging unit 2 and the leeward side heat exchanging unit 3 are a pair of molded plates stacked in a plurality in the left-right direction (width direction, horizontal direction) orthogonal to the air flow direction (front-rear direction). 4 and a plurality of corrugated fins 5 arranged between adjacent molding plates 4 and increasing the heat exchange efficiency between the refrigerant and the air, and an end plate 6 arranged at the end of the molding plate 4 in the stacking direction. It is reinforced by.
[0019]
The molding plate 4 is formed by molding a thin plate member made of a material having excellent thermal conductivity (for example, an aluminum alloy) into a predetermined shape shown in FIG. 2, and has a substantially rectangular shape joined to the paired molding plate 4. A joining portion 11 and a partitioning portion 14 that divides the inside of the joining portion 11 into two long concave portions 12 and 13 are formed. And a pair of shaping | molding plate 4 forms the leeward side tube 20 in the leeward side of the air flow direction, and forms the windward side tube 30 in the windward side. A leeward side refrigerant flow path 21 is formed in the leeward side tube 20 in a space between the long leeward concave portions 12, and the leeward side tube 30 has a long side on the leeward side. An upwind refrigerant flow path 31 is formed that is formed by a space between the recesses 13.
[0020]
In the windward side refrigerant flow path 31, the refrigerant in the gas-liquid two-phase state with a low degree of dryness (a lot of liquid phase components) and air are mainly heat-exchanged to evaporate the refrigerant. In the leeward side refrigerant flow path 21, the refrigerant in the gas-liquid two-phase state having a high degree of dryness (a large amount of gas phase components) and air are mainly subjected to heat exchange to evaporate the refrigerant. As shown in FIG. 4, inner fins 210 and 310 are inserted into the refrigerant flow paths 21 and 31 so as to be in contact with the tubes 20 and 30. The inner fins 210 and 310 are integrally formed with a concavo-convex shape, and the heat transfer area between the refrigerant and the tubes 20 and 30 is improved by flowing the refrigerant while meandering along the shape.
[0021]
Further, as shown in FIG. 2, an upper tank portion 22 is formed on the upper end portion of the leeward tube 20, that is, above the leeward refrigerant passage 21, and the lower end portion of the leeward tube 20, that is, A leeward lower tank portion 23 is formed below the leeward refrigerant passage 21. A windward upper tank 32 is formed above the upper end of the windward tube 30, that is, above the windward refrigerant flow path 31, and below the lower end of the windward tube 30, that is, below the windward refrigerant flow path 31. The windward lower tank portion 33 is formed.
[0022]
The leeward side upper tank part 22 and the leeward side lower tank part 23 are respectively formed with elliptical communication holes 221 and 231 for communicating with the adjacent leeward side upper tank part 22 and the leeward side lower tank part 23. . The upwind tank unit 32 and the downwind tank unit 33 are also formed with elliptical communication holes 321 and 331 for communicating with the adjacent upwind tank unit 32 and the upwind tank unit 33, respectively. .
[0023]
Then, as shown in FIG. 1, by stacking a plurality of leeward side upper tank portions 22 in the left-right direction, a leeward side upper tank 24 is formed at the upper end of the plurality of leeward side heat exchange portions 2, and the leeward side lower tank By stacking a plurality of portions 23 in the left-right direction, a leeward side lower tank 25 is formed at the lower end of the leeward side heat exchange unit 2.
Further, by stacking a plurality of windward upper tank portions 32 in the left-right direction, an windward upper tank 34 is formed at the upper end portion of the windward heat exchange unit 3, and although not shown in FIG. By stacking a plurality of 33 in the left-right direction, a windward lower tank 35 (see FIG. 3) is formed at the lower end of the windward heat exchange unit 3.
[0024]
As shown in FIG. 3, the leeward upper tank 24 is divided into a first leeward upper tank 24a and a second leeward upper tank 24b at a substantially central portion in the left-right direction of the leeward upper tank 24. A partition plate 27 is provided. In addition, a partition plate 36 that partitions the inside of the leeward upper tank 34 into a first windward upper tank 34a and a second windward upper tank 34b is also provided at a substantially central portion in the left-right direction of the windward upper tank 34. Yes.
[0025]
And as shown in FIG. 4, the partition plate 27 is formed by not forming the communication hole 221 in the side wall of the leeward side upper tank part 22 of the two leeward side tubes 20 distribute | arranged adjacent to a substantially center part. The partition plate 27 is formed by not forming the communication hole 321 in the side wall of the windward upper tank portion 32 of the two windward tubes 30 disposed adjacent to the substantially central portion.
[0026]
Further, as shown in FIG. 3, the partition plate 27 divides the plurality of leeward refrigerant passages 21 into a first leeward refrigerant passage group 21a and a second leeward refrigerant passage group 21b, and It plays the role which partitions the leeward side lower tank 25 into the 1st windward lower tank 25a and the 2nd windward lower tank 25b. Further, as shown in FIG. 3, the partition plate 36 divides the plurality of windward refrigerant channels 31 into a first windward refrigerant channel group 31 a and a second windward refrigerant channel group 31 b, and It plays the role which partitions the windward lower tank 35 into the 1st windward lower tank 35a and the 2nd windward lower tank 35b.
[0027]
Thus, the windward heat exchange unit 3 is separated into the first windward heat exchange unit 3a and the second windward heat exchange unit 3b, and the leeward heat exchange unit 2 is divided into the first leeward heat exchange unit 3b. 2a and the second leeward heat exchange section 2b.
And the refrigerant | coolant inlet part of the evaporator 1 is comprised by the communicating hole 321a (refer also FIG. 4) formed in the left end part (upper end part of the end plate 6) of the 1st windward upper tank 34a. One end of the refrigerant inlet pipe (refrigerant inlet portion) 8a of the connection pipe joint 8 is joined to the communication hole 321a in a state of being fitted inside. The communication outlet 221a (see FIG. 4) formed in the left end portion (upper end portion of the end plate 6) of the first leeward side upper tank 24a constitutes the refrigerant outlet portion of the evaporator 1. One end of a refrigerant outlet pipe (refrigerant outlet portion) 8b of the connecting pipe joint 8 is joined to the communication hole 221a in a state of being internally fitted.
[0028]
The other end of the refrigerant inlet pipe 8a is joined to an outlet side refrigerant pipe of an expansion valve (not shown), and the other end of the refrigerant outlet pipe 8b is a compressor (not shown) that is gas refrigerant evaporated by an evaporator. Compressor suction piping for suctioning to the side is joined.
Further, a cylindrical member (tubular member) 9 extending in the left-right direction is provided inside the first upwind tank 34 a so as to penetrate the communication hole 321 of the tank portion 32. The left end portion of the cylindrical member 9 is joined to the pipe 8a in a state of being fitted to one end of the refrigerant inlet pipe 8a of the piping joint 8. Thereby, the left end part of the cylindrical member 9 and the end (connection hole 321a) of the pipe 8a are connected. The right end portion of the cylindrical member 9 extends to the inside of the right end portion of the first upwind upper tank 34a. The cross-sectional area of the cylindrical member 9 is configured to be smaller than the cross-sectional area of the communication hole 321.
[0029]
The tank portion 32 located at the left end of the second leeward upper tank 34b and the tank portion 22 located at the left end of the second leeward upper tank 24b communicate with each other through the communication portion 10. This communication part 10 is formed by denting a part between the tank part 32 and the tank part 22 in the pair of molding plates 4 shown in FIG. .
[0030]
A communication hole 321a (see FIG. 4) at the left end portion of the first upwind upper tank 34a constitutes a refrigerant inlet portion of the first upwind heat exchange unit 3a, and is formed at the right end portion of the first upwind lower tank 35a. The communication hole 331 of the tank part 33 located constitutes the refrigerant outlet part of the first upwind heat exchange part 3a. Further, the communication hole 331 of the tank portion 33 located at the left end portion of the second upwind lower tank 35b constitutes the refrigerant inlet portion of the second upwind heat exchange portion 3b, and the left end portion of the second upwind upper tank 34b. Of the tank part 32 located in the position, the part communicating with the communication part 10 constitutes the refrigerant outlet part of the second upwind heat exchange part 3b.
[0031]
In addition, the portion of the tank portion 22 positioned at the left end of the second leeward upper tank 24b that communicates with the communication portion 10 constitutes the refrigerant inlet of the second leeward heat exchange portion 2b, and the second leeward A refrigerant outlet portion of the second leeward heat exchange unit 2b is configured by the communication hole 231 of the tank unit 23 located at the left end of the lower tank 25b. Further, the communication hole 231 of the tank portion 23 located at the right end portion of the first leeward lower tank 25a constitutes the refrigerant inlet portion of the first leeward heat exchange portion 2a, and the left end portion of the first leeward upper tank 24a. A communication outlet 221a (see FIG. 4) formed in (the upper end portion of the end plate 6) constitutes a refrigerant outlet portion of the first leeward heat exchange portion 2a.
[0032]
Next, the operation of this embodiment in the above configuration will be described.
The low-temperature and low-pressure gas-liquid two-phase refrigerant adiabatically expanded when passing through the pressure reducing device is supplied from the refrigerant inlet pipe 8a of the pipe joint 8 to the left end portion of the cylindrical member 9, as shown in FIG. This flows from the left end to the right end. Then, the refrigerant that has flowed out of the right end portion into the right end portion of the first upwind upper tank 34a makes a U-turn and flows to the left end portion side of the first upwind upper tank 34a, while flowing into the first upwind side refrigerant 34a. It flows to the channel group 31a.
[0033]
At this time, as shown in FIG. 5, the liquid refrigerant out of the gas-liquid two-phase refrigerant flows into the first windward refrigerant flow path group 31a arranged on the right side due to gravity applied to the liquid refrigerant. The liquid refrigerant is less likely to flow into the first windward refrigerant flow path group 31a arranged on the left side, and the gas refrigerant is likely to flow. Then, in the first upwind refrigerant flow path group 31a, the liquid refrigerant evaporates by exchanging heat with air.
[0034]
Therefore, when the refrigerant flows in the first windward refrigerant flow path group 31a, heat exchange with air is performed more favorably on the right end side of the refrigerant flow path group 31a. For this reason, the air passing through the right end side is cooled well, but the air passing through the left end side is less likely to be cooled than the right end side, and the air temperature is high. In addition, in FIG. 5, a mode that a liquid refrigerant flows into the refrigerant | coolant flow path groups 21a, 21b, 31a, and 31b is typically shown by the thin line hatching.
[0035]
Then, the refrigerant flows from the first windward side refrigerant flow path group 31a to the first windward lower tank 35a, and flows from the right end portion of the first windward lower tank 35a to the left end portion of the second windward lower tank 35b. To do. At this time, the liquid refrigerant moves to the right side of the second upwind lower tank 35b due to the inertial force applied to the liquid refrigerant, so that it can easily flow into the second upwind refrigerant flow path group 31b disposed on the right side. The liquid refrigerant is less likely to flow into the second windward refrigerant flow path group 31b disposed on the left side, and the gas refrigerant is likely to flow. In the second upwind refrigerant flow path group 31b, the liquid refrigerant evaporates by exchanging heat with air.
[0036]
Therefore, when the refrigerant flows in the second wind-up refrigerant flow path group 31b, heat exchange with air is more favorably performed on the right end side of the refrigerant flow path group 31b. For this reason, the air passing through the right end side is well cooled, but the air passing through the left end side is less likely to be cooled than the right end side, and the air temperature is higher than that of the right end side.
Then, the refrigerant flows from the second windward side refrigerant flow path group 31b to the second windward upper tank 34b, and from the left end portion of the second windward upper tank 34b through the communication unit 10, the second windward upper side It flows into the left end of the tank 24b. At this time, the liquid refrigerant easily flows into the second leeward refrigerant flow path group 21b arranged on the left side due to gravity applied to the liquid refrigerant, and the second leeward refrigerant flow path group 21b arranged on the right side. In this case, the liquid refrigerant hardly flows and the gas refrigerant easily flows. And in the 2nd leeward side refrigerant | coolant flow path group 21b, a liquid refrigerant evaporates by carrying out heat exchange with air.
[0037]
Therefore, when the refrigerant flows through the second leeward refrigerant flow path group 21b, heat exchange with air is performed more favorably on the left end side of the refrigerant flow path group 21b. For this reason, the air passing through the left end side is cooled well, but the air passing through the right end side is less likely to be cooled than the left end side, and the air temperature is higher than the left end side.
Then, the refrigerant flows from the second leeward refrigerant flow path group 21b to the second leeward lower tank 25b, and flows from the left end portion of the second leeward lower tank 25b to the right end portion of the first leeward lower tank 25a. To do. At this time, the liquid refrigerant moves to the left side of the first leeward side lower tank 25a due to the inertial force applied to the liquid refrigerant, so that it easily flows into the first leeward side refrigerant flow path group 21a arranged on the left side, The liquid refrigerant hardly flows into the first leeward refrigerant flow path group 21a arranged on the right side, and the gas refrigerant easily flows. And in the 1st leeward side refrigerant | coolant flow path group 21a, a liquid refrigerant evaporates by carrying out heat exchange with air.
[0038]
Therefore, when the refrigerant flows in the first leeward refrigerant channel group 21a, heat exchange with air is performed more favorably on the left end side of the refrigerant channel group 21a. For this reason, the air passing through the left end side is cooled well, but the air passing through the right end side is less likely to be cooled than the left end side, and the air temperature is higher than the left end side.
Of the refrigerant in the gas-liquid two-phase state that has flowed from the refrigerant inlet pipe 8a of the pipe joint 8, the liquid refrigerant is the first windward refrigerant channel group 31a, the second windward refrigerant channel group 31b, and the second leeward side. The refrigerant gradually evaporates by passing through the refrigerant flow path group 21b and the first leeward refrigerant flow path group 21a, and the refrigerant flowing from the first leeward refrigerant flow path group 21a to the first leeward upper tank 24a is superheated steam. It has become. The superheated steam flows from the left end portion of the first leeward side upper tank 24a through the refrigerant outlet pipe 8b of the pipe joint 8 to the suction port of a refrigerant compressor (not shown).
[0039]
Below, the effect which this embodiment has is explained.
First, as shown in FIG. 5, in the first windward refrigerant flow path group 31a, the air is satisfactorily cooled, and in the first leeward refrigerant flow path group 21a, the air is good. The part (hatched part) to be cooled is a symmetrical position. Moreover, the site | part (hatching site | part) where air is not cooled favorable among the 1st leeward side refrigerant | coolant flow path groups 31a, and the site | part (hatching site | part) where air is not cooled favorably among the 1st leeward side refrigerant flow path groups 21a. Are symmetrical positions.
[0040]
Therefore, in the first windward side heat exchanging part 3a and the first leeward side heat exchanging part 2a which are arranged in the front and back in the air flow direction, the parts where the air is not cooled well do not overlap each other, The part which is not cooled well and the part where air is cooled well can be overlapped. Therefore, it is possible to suppress the occurrence of bias in the temperature of the air after passing through the heat exchanging parts 3a and 2a, and the temperature of the air can be made uniform.
[0041]
Similarly, in the second windward side heat exchanging part 3b and the second leeward side heat exchanging part 2b that are arranged to be overlapped before and after in the air flow direction, the parts where the air is not cooled well do not overlap each other, and the air It is possible to overlap a portion where air is not cooled well and a portion where air is cooled well. Therefore, it is possible to suppress the occurrence of bias in the air temperature after passing through the heat exchange units 3b and 2b, and the air temperature can be made uniform.
[0042]
In this way, it is possible to suppress the occurrence of a bias in the temperature of the air after passing through the stacked evaporator 1, and the temperature of the air can be made uniform.
(Second Embodiment)
This embodiment is based on partition plates 27, 36, 28, and 37 provided at positions shown in FIG. 6 among the inside of the leeward upper tank 24, the windward upper tank 34, the leeward lower tank 25, and the windward lower tank 35. (1) The inside of the leeward upper tank 24 is partitioned into a first leeward upper tank 24a, a second leeward upper tank 24b, and a third leeward upper tank 24c, and (2) a plurality of leeward refrigerant flow paths. 21 is divided into a first leeward side refrigerant flow path group 21a, a second leeward side refrigerant flow path group 21b, and a third leeward side refrigerant flow path group 21c, and (3) the leeward side lower tank 25 is Partitioned into a lower tank 25a, a second leeward lower tank 25b, and a third leeward lower tank 25c. (4) Inside the windward upper tank 34, the first windward upper tank 34a and the second windward upper tank 34b and the third upwind tank 34c (5) partitioning the plurality of windward refrigerant channels 31 into a first windward refrigerant channel group 31a, a second windward refrigerant channel group 31b, and a third windward refrigerant channel group 31c; 6 The windward lower tank 35 is divided into a first windward lower tank 35a, a second windward lower tank 35b, and a third windward lower tank 35c.
[0043]
Thereby, the leeward side heat exchanging part 2 is divided into the first leeward side heat exchanging part 2a, the second leeward side heat exchanging part 2b, and the third leeward side heat exchanging part 2c, and the leeward side heat exchanging part 3 is divided. The first upwind heat exchange unit 3a, the second upwind heat exchange unit 3b, and the third upwind heat exchange unit 3c are divided.
Note that the locations of the respective refrigerant inlet portions and refrigerant outlet portions of the first to third leeward side heat exchange units 2a to 2c and the first to third leeward side heat exchange units 3a to 3c are apparent from FIG. Therefore, explanation is omitted.
[0044]
The cylindrical member 9 is provided in the first upwind tank 34a in the same manner as in the first embodiment, and the left end of the third upwind lower tank 35c and the left end of the third upwind lower tank 25c. The part is communicated with the communicating part 10 in the same manner as in the first embodiment.
As a result, the refrigerants flowing through the tanks 34a to 34c, 24a to 24c, 35a to 35c, 25a to 25c and the refrigerant flow path groups 31a to 31c and 21a to 21c flow as indicated by arrows in FIG. Among the refrigerants in the gas-liquid two-phase state, the liquid refrigerant flows through the refrigerant flow path groups 31a to 31c and 21a to 21c as shown by thin line hatching in FIG.
[0045]
Therefore, with respect to the refrigerant flow path group 31a and the refrigerant flow path group 21a, and the refrigerant flow path group 31c and the refrigerant flow path group 21c, the portion where the air is cooled well (hatched portion in FIG. 7) and the air are good. The portion that is not cooled down (the white portion in FIG. 7) is a symmetrical position. Therefore, it can suppress that the temperature of the air after passing each heat exchanging part 3a, 2a and the heat exchanging parts 3c, 2c arises, and can make temperature of air uniform.
[0046]
In this way, it is possible to suppress the occurrence of bias in the temperature of the air after passing through the evaporator 1, and the temperature of the air can be made uniform.
(Third embodiment)
In the present embodiment shown in FIG. 8, the partition plates 27, 28, 36, and 37 in the first and second embodiments are eliminated.
[0047]
Specifically, the left end portion of the cylindrical member 9 communicates with the communication hole 321 a at the left end portion of the upwind side tank 34, and the right end portion of the cylindrical member 9 extends to the inside of the right end portion of the upwind side tank 34. Then, the right end portion (the refrigerant outlet portion of the windward side heat exchange unit 3) of the leeward side lower tank 35 and the right end portion (the refrigerant inlet portion of the leeward side heat exchange unit 2) of the leeward side lower tank 25 are connected to the communication unit 100. Communicated. That is, the structure according to claim 1 is provided.
[0048]
According to this, since the liquid refrigerant easily flows to the right end portion of the windward refrigerant flow path group 31 and the liquid refrigerant easily flows to the left end portion side of the leeward refrigerant flow path group 21, the refrigerant flow path group 31 refrigerant flow path group 21, a portion where the air is cooled well and a portion where the air is not cooled well can be in a symmetrical position. Therefore, it can suppress that the temperature of the air after passing through the evaporator 1 is biased, and the temperature of the air can be made uniform.
[0049]
(Other embodiments)
In the third embodiment, the cylindrical member 9 and the communication portion 100 are abolished, and the left end portion of the windward lower tank 35 (the refrigerant outlet portion of the windward heat exchange portion 3) and the left end portion of the leeward lower tank 25 (The refrigerant inlet part of the leeward heat exchange part 2) may be communicated. That is, you may give the structure of Claim 2. Even in this case, with respect to the refrigerant flow path group 31 and the refrigerant flow path group 21, the part where the air is cooled well and the part where the air is not cooled well can be made symmetrical.
[0050]
In the first and second embodiments, only one of the cylindrical member 9 and the communication portion 10 may be employed.
Further, in the first embodiment, the tank portion 32 located at the left end portion of the tank 34b and the tank portion 22 located at the left end portion of the tank 24b are communicated by the communicating portion 10, but the tank 34b A tank portion 32 positioned on the left end side (that is, slightly to the right of the left end of the tank 34b), and a tank portion 22 positioned on the left end of the tank 24b (that is, slightly to the right of the left end of the tank 24b) May be communicated at the communication unit 10.
[0051]
In the first embodiment, the right end portion of the cylindrical member 9 extends to the inside of the right end portion of the tank 34a, but the inside of the right end portion of the tank 34a (that is, slightly to the left of the right end portion of the tank 34a). You may make it extend to.
In the first to third embodiments, the refrigerant inlet portion and the refrigerant outlet portion of the evaporator 1 are formed at the upper end portion and the left end portion of the evaporator 1. It is not limited and may be changed freely. In addition, by this change, the location of the refrigerant | coolant inlet part of each heat exchange part 2 (2a, 2b, 2c), 3 (3a, 3b, 3c) and a refrigerant | coolant outlet part, and the cylindrical member (cylindrical member 9) referred to in a claim Of course, the arrangement location of the communication part 10 is also changed.
[0052]
For example, in the first embodiment (see FIG. 3), the second embodiment (see FIG. 6), and the third embodiment (see FIG. 8), the heat exchange unit 2 (2a, 2b, 2c) And the heat exchange part 3 (3a, 3b, 3c) may be arranged in reverse, and the refrigerant inlet part and the refrigerant outlet part of the evaporator 1 are connected to the right end part and the upper end part of the evaporator 1. You may arrange in.
[Brief description of the drawings]
FIG. 1 is a perspective view of an evaporator according to a first embodiment of the present invention.
FIG. 2 is an exploded perspective view of a pair of molded plates according to the first embodiment.
FIG. 3 is a schematic perspective view of the evaporator showing the flow direction of the refrigerant in the evaporator according to the first embodiment.
4 is a partial view of the AA cross section in FIG. 1. FIG.
FIG. 5 is an explanatory diagram showing a state of the refrigerant in the refrigerant flow path of the heat exchange unit according to the first embodiment.
FIG. 6 is a schematic perspective view of an evaporator showing a flow direction of refrigerant in the evaporator according to the second embodiment.
FIG. 7 is an explanatory diagram illustrating a state of a refrigerant in a refrigerant flow path of a heat exchange unit according to the second embodiment.
FIG. 8 is a schematic perspective view of an evaporator showing a flow direction of a refrigerant in the evaporator according to a third embodiment.
FIG. 9 is a schematic perspective view of the evaporator showing the flow direction of the refrigerant in the evaporator according to the prior art.
FIG. 10 is an explanatory diagram showing the state of the refrigerant in the refrigerant flow path of the heat exchange unit according to the prior art.
[Explanation of symbols]
3a, 3b ... 1st, 2nd upwind heat exchange part (1st heat exchange part),
31a, 31b ... 1st, 2nd windward refrigerant flow path group (a plurality of 1st refrigerant flow paths),
34a, 34b ... first and second upwind tanks (first upper tank),
35a, 35b ... first and second upwind lower tanks (first lower tank),
2a, 2b ... 1st, 2nd leeward side heat exchange part (2nd heat exchange part),
21a, 21b ... first and second leeward refrigerant flow path groups (a plurality of second refrigerant flow paths),
24a, 24b ... 1st, 2nd leeward side upper tank (2nd upper tank),
25a, 25b ... 1st, 2nd leeward side lower tank (2nd lower tank),
321a ... Communication hole (refrigerant inlet of the evaporator),
221a ... Communication hole (refrigerant outlet of the evaporator),
9: Cylindrical member (cylinder member), 10 ... Communication part.

Claims (3)

上下方向に気液二相状態の冷媒が流れる複数の第1冷媒流路(31a、31b、31c、31)を左右方向に積層配置し、これら第1冷媒流路の上方、下方に設けた第1上タンク(34a、34b、34c、34)、第1下タンク(35a、35b、35c、34)により、前記複数の第1冷媒流路を連通するようにした第1熱交換部(3a、3b、3c、3)と、
上下方向に気液二相状態の冷媒が流れる複数の第2冷媒流路(21a、21b、21c、21)を左右方向に積層配置し、これら第2冷媒流路の上方、下方に設けた第2上タンク(24a、24b、24c、24)、第2下タンク(25a、25b、25c、25)により、前記複数の第2冷媒流路を連通するようにした第2熱交換部(2a、2b、2c、2)とを備え、
前記第1熱交換部と前記第2熱交換部とを、被冷却流体の流れ方向に前後に重ねて配置し、
前記第1熱交換部の冷媒入口部(321a)を前記第1上タンクの左右方向一端部に形成し、
前記第1熱交換部の冷媒出口部を前記第1下タンクの左右方向他端部に形成し、
前記第2熱交換部の冷媒入口部を前記第2下タンクの左右方向他端部に形成し、
前記第2熱交換部の冷媒出口部(221a)を前記第2上タンクの左右方向一端部に形成し、
前記第1上タンクの内部に、前記左右方向に延びる筒部材(9)を設け、
この筒部材の左右方向一端部を,前記第1熱交換部の前記冷媒入口部(321a)に連通させるとともに、この冷媒入口部からの冷媒を、前記筒部材を通して、前記第1上タンク内部の左右方向他端部近傍に流出させることを特徴とする積層型蒸発器。
A plurality of first refrigerant flow paths (31a, 31b, 31c, 31) through which a gas-liquid two-phase refrigerant flows in the vertical direction are stacked in the left-right direction, and are provided above and below the first refrigerant flow paths. A first heat exchange section (3a, 34a, 34b, 34c, 34) and a first lower tank (35a, 35b, 35c, 34) configured to communicate with the plurality of first refrigerant flow paths. 3b, 3c, 3) and
A plurality of second refrigerant flow paths (21a, 21b, 21c, 21) through which a gas-liquid two-phase refrigerant flows in the vertical direction are stacked in the left-right direction, and are provided above and below the second refrigerant flow paths. 2 The second heat exchange unit (2a, 24a, 24b, 24c, 24) and the second lower tank (25a, 25b, 25c, 25) are configured to communicate with the plurality of second refrigerant flow paths. 2b, 2c, 2)
The first heat exchanging part and the second heat exchanging part are arranged so as to overlap in the flow direction of the fluid to be cooled,
Forming a refrigerant inlet part (321a) of the first heat exchange part at one end in the left-right direction of the first upper tank;
Forming a refrigerant outlet part of the first heat exchange part at the other end in the left-right direction of the first lower tank;
Forming a refrigerant inlet part of the second heat exchange part at the other end in the left-right direction of the second lower tank;
Forming a refrigerant outlet part (221a) of the second heat exchange part at one end in the left-right direction of the second upper tank;
A cylindrical member (9) extending in the left-right direction is provided inside the first upper tank,
One end portion of the cylindrical member in the left-right direction is communicated with the refrigerant inlet portion (321a) of the first heat exchanging portion, and the refrigerant from the refrigerant inlet portion passes through the cylindrical member to be inside the first upper tank. A stacked evaporator, characterized in that it flows out in the vicinity of the other end in the left-right direction.
上下方向に気液二相状態の冷媒が流れる複数の第1冷媒流路(31a、31b、31c、31)を左右方向に積層配置し、これら第1冷媒流路の上方、下方に設けた第1上タンク(34a、34b、34c、34)、第1下タンク(35a、35b、35c、35)により、前記複数の第1冷媒流路を連通するようにした第1熱交換部(3a、3b、3c、3)と、
上下方向に気液二相状態の冷媒が流れる複数の第2冷媒流路(21a、21b、21c、21)を左右方向に積層配置し、これら第2冷媒流路の上方、下方に設けた第2上タンク(24a、24b、24c、24)、第2下タンク(25a、25b、25c、25)により、前記複数の第2冷媒流路を連通するようにした第2熱交換部(2a、2b、2c、2)とを備え、
前記第1熱交換部と前記第2熱交換部とを、被冷却流体の流れ方向に前後に重ねて配置し、
前記第1上タンクおよび前記第1下タンクのうち、一方の第1タンクの左右方向一端部に、前記第1熱交換部の冷媒入口部を形成し、
前記第2上タンクおよび前記第2下タンクのうち、前記一方の第1タンクに対応する、一方の第2タンクの左右方向一端部に、前記第2熱交換部の冷媒出口部を形成し、
他方の第1タンクの左右方向一端部近傍と、他方の第2タンクの左右方向一端部近傍とを連通する連通部(10)を設けることを特徴とする積層型蒸発器。
A plurality of first refrigerant flow paths (31a, 31b, 31c, 31) through which a gas-liquid two-phase refrigerant flows in the vertical direction are stacked in the left-right direction, and are provided above and below the first refrigerant flow paths. A first heat exchange section (3a, 34a, 34b, 34c, 34) and a first lower tank (35a, 35b, 35c, 35) configured to communicate with the plurality of first refrigerant flow paths; 3b, 3c, 3) and
A plurality of second refrigerant flow paths (21a, 21b, 21c, 21) through which a gas-liquid two-phase refrigerant flows in the vertical direction are stacked in the left-right direction, and are provided above and below the second refrigerant flow paths. 2 The second heat exchange unit (2a, 24a, 24b, 24c, 24) and the second lower tank (25a, 25b, 25c, 25) are configured to communicate with the plurality of second refrigerant flow paths. 2b, 2c, 2)
The first heat exchanging part and the second heat exchanging part are arranged so as to overlap in the flow direction of the fluid to be cooled,
Of the first upper tank and the first lower tank, a refrigerant inlet part of the first heat exchange part is formed at one end in the left-right direction of one first tank,
Of the second upper tank and the second lower tank, a refrigerant outlet part of the second heat exchange part is formed at one end in the left-right direction of one second tank corresponding to the one first tank,
A stacked evaporator, comprising a communication portion (10) for communicating between the vicinity of one end portion in the left-right direction of the other first tank and the vicinity of one end portion in the left-right direction of the other second tank.
上下方向に気液二相状態の冷媒が流れる複数の第1冷媒流路(31a、31b)を左右方向に積層配置し、これら第1冷媒流路の上方、下方に設けた第1上タンク(34a、34b)、第1下タンク(35a、35b)により、前記複数の第1冷媒流路を連通するようにした第1熱交換部(3a、3b)と、
上下方向に気液二相状態の冷媒が流れる複数の第2冷媒流路(21a、21b)を左右方向に積層配置し、これら第2冷媒流路の上方、下方に設けた第2上タンク(24a、24b)、第2下タンク(25a、25b)により、前記複数の第2冷媒流路を連通するようにした第2熱交換部(2a、2b)とを備え、
前記第1熱交換部と前記第2熱交換部とを、被冷却流体の流れ方向に前後に重ねて配置し、
前記第1上タンクおよび前記第2上タンクを、左右方向に2つの第1小タンク(34a)、(34b)、および、第2小タンク(24a)、(24b)に仕切る仕切り部材(27)、(36)を、前記第1上タンクおよび前記第2上タンクに設け、
左右方向一端側に位置する第1小タンク(34a)の左右方向一端部に、外部冷媒回路からの冷媒が流入する冷媒入口部(321a)を形成し、
左右方向一端側に位置する第2小タンク(24a)の左右方向一端部に、外部冷媒回路へ冷媒を流出する冷媒出口部(221a)を形成し、
前記左右方向一端側に位置する第1小タンク(34a)の内部に、前記左右方向に延びる筒部材(9)を設け、
この筒部材の左右方向一端部を、前記左右方向一端側に位置する第1小タンク(34a)の前記冷媒入口部に連通させるとともに、この冷媒入口部からの冷媒を、前記筒部材を通して、前記左右方向一端側に位置する第1小タンク(34a)内部の左右方向他端部近傍に流出させ、
左右方向他端側に位置する第1上タンク(34b)のうち、前記仕切り部材(27)近傍と、左右方向他端側に位置する第2上タンク(24b)のうち、前記仕切り部材(36)近傍とを連通する連通部(10)を設けることを特徴とする積層型蒸発器。
A plurality of first refrigerant flow paths (31a, 31b) through which a gas-liquid two-phase refrigerant flows in the vertical direction are stacked in the horizontal direction, and a first upper tank (above and below the first refrigerant flow paths) 34a, 34b), the first lower tanks (35a, 35b), the first heat exchange parts (3a, 3b) configured to communicate the plurality of first refrigerant flow paths,
A plurality of second refrigerant flow paths (21a, 21b) through which a gas-liquid two-phase refrigerant flows in the vertical direction are stacked in the horizontal direction, and a second upper tank (above and below these second refrigerant flow paths) 24a, 24b), the second lower tank (25a, 25b), and a second heat exchange part (2a, 2b) adapted to communicate the plurality of second refrigerant flow paths,
The first heat exchanging part and the second heat exchanging part are arranged so as to overlap in the flow direction of the fluid to be cooled,
A partition member (27) for partitioning the first upper tank and the second upper tank into two first small tanks (34a), (34b) and second small tanks (24a), (24b) in the left-right direction. , (36) are provided in the first upper tank and the second upper tank,
A refrigerant inlet portion (321a) into which refrigerant from the external refrigerant circuit flows is formed at one end portion in the left-right direction of the first small tank (34a) located on one end side in the left-right direction,
A refrigerant outlet portion (221a) for flowing out the refrigerant to the external refrigerant circuit is formed at one end portion in the left-right direction of the second small tank (24a) located on one end side in the left-right direction,
A cylindrical member (9) extending in the left-right direction is provided inside the first small tank (34a) located on one end side in the left-right direction,
One end portion in the left-right direction of the cylindrical member is communicated with the refrigerant inlet portion of the first small tank (34a) located on the one end side in the left-right direction, and the refrigerant from the refrigerant inlet portion passes through the cylindrical member, The first small tank (34a) located on one end side in the left-right direction is allowed to flow out in the vicinity of the other end in the left-right direction
Of the first upper tank (34b) located on the other side in the left-right direction, the partition member (36) is located near the partition member (27) and on the second upper tank (24b) located on the other side in the left-right direction. ) A laminated evaporator comprising a communication portion (10) communicating with the vicinity.
JP32714296A 1996-12-06 1996-12-06 Stacked evaporator Expired - Fee Related JP3735983B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32714296A JP3735983B2 (en) 1996-12-06 1996-12-06 Stacked evaporator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32714296A JP3735983B2 (en) 1996-12-06 1996-12-06 Stacked evaporator

Publications (2)

Publication Number Publication Date
JPH10170098A JPH10170098A (en) 1998-06-26
JP3735983B2 true JP3735983B2 (en) 2006-01-18

Family

ID=18195791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32714296A Expired - Fee Related JP3735983B2 (en) 1996-12-06 1996-12-06 Stacked evaporator

Country Status (1)

Country Link
JP (1) JP3735983B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002071283A (en) * 2000-08-30 2002-03-08 Zexel Valeo Climate Control Corp Heat exchanger
US6920916B2 (en) 2000-12-28 2005-07-26 Showa Denko K.K. Layered heat exchangers
JP4404548B2 (en) * 2000-12-28 2010-01-27 昭和電工株式会社 Laminate heat exchanger
JP4095818B2 (en) * 2002-03-27 2008-06-04 株式会社日本クライメイトシステムズ Heat exchanger
KR20050034273A (en) * 2003-10-09 2005-04-14 한라공조주식회사 Heat exchanger of layer type having the form of 4-tank type
JP4761790B2 (en) * 2005-02-28 2011-08-31 カルソニックカンセイ株式会社 Evaporator
JP4998445B2 (en) * 2008-12-03 2012-08-15 株式会社デンソー Evaporator and refrigeration cycle equipment

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5423351U (en) * 1977-07-19 1979-02-15
JP2570310Y2 (en) * 1990-06-22 1998-05-06 シャープ株式会社 Heat exchanger
JP2605035Y2 (en) * 1993-06-25 2000-06-19 昭和アルミニウム株式会社 Stacked heat exchanger

Also Published As

Publication number Publication date
JPH10170098A (en) 1998-06-26

Similar Documents

Publication Publication Date Title
AU703687B2 (en) Refrigerant evaporator, improved for uniform temperature of air blown out therefrom
US6272881B1 (en) Refrigerant evaporator and manufacturing method for the same
US20030188857A1 (en) Heat exchanger for exchanging heat between internal fluid and external fluid and manufacturing method thereof
US6431264B2 (en) Heat exchanger with fluid-phase change
US5099913A (en) Tubular plate pass for heat exchanger with high volume gas expansion side
CN105518392A (en) Heat exchanger and air conditioner
US20160097597A1 (en) Refrigerant evaporator
KR100497847B1 (en) Evaporator
US20160102893A1 (en) Refrigerant evaporator
JP2005114348A (en) Vehicular condenser and integrated radiator-condenser body including the condenser
JP3735983B2 (en) Stacked evaporator
JPH0886591A (en) Heat exchanger and refrigerant evaporator
JP2004353936A (en) Heat exchanger and liquid receiver-integrated condenser
JP2018109471A (en) Outdoor unit and refrigeration cycle device
JP3661275B2 (en) Stacked evaporator
JP2001221535A (en) Refrigerant evaporator
JP3632248B2 (en) Refrigerant evaporator
JPH06194001A (en) Refrigerant evaporator
JP2014118140A (en) Cooling module for vehicle
JP2004144395A (en) Refrigerant evaporator
JP2000055573A (en) Refrigerant evaporator
JPH02106697A (en) Lamination type heat exchanger
JPH05157401A (en) Heat exchanger
JPH0645150Y2 (en) Vehicle heat exchanger
KR20190022093A (en) Evaporator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051017

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101104

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111104

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111104

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121104

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131104

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees