JP2012110984A - Drilling tool - Google Patents

Drilling tool Download PDF

Info

Publication number
JP2012110984A
JP2012110984A JP2010260090A JP2010260090A JP2012110984A JP 2012110984 A JP2012110984 A JP 2012110984A JP 2010260090 A JP2010260090 A JP 2010260090A JP 2010260090 A JP2010260090 A JP 2010260090A JP 2012110984 A JP2012110984 A JP 2012110984A
Authority
JP
Japan
Prior art keywords
groove
tool
sub
main groove
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010260090A
Other languages
Japanese (ja)
Other versions
JP5140142B2 (en
Inventor
Yusaku Kazama
悠作 風間
Koshiro Aono
甲子郎 青野
Toshio Yasuda
俊夫 安田
Yukiyoshi Hoshi
幸義 星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Union Tool Co
Original Assignee
Union Tool Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Union Tool Co filed Critical Union Tool Co
Priority to JP2010260090A priority Critical patent/JP5140142B2/en
Priority to TW100113554A priority patent/TWI455780B/en
Priority to CN201110142912.9A priority patent/CN102476209B/en
Priority to KR1020110076952A priority patent/KR101329881B1/en
Publication of JP2012110984A publication Critical patent/JP2012110984A/en
Application granted granted Critical
Publication of JP5140142B2 publication Critical patent/JP5140142B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0044Mechanical working of the substrate, e.g. drilling or punching
    • H05K3/0047Drilling of holes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26FPERFORATING; PUNCHING; CUTTING-OUT; STAMPING-OUT; SEVERING BY MEANS OTHER THAN CUTTING
    • B26F1/00Perforating; Punching; Cutting-out; Stamping-out; Apparatus therefor
    • B26F1/16Perforating by tool or tools of the drill type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2251/00Details of tools for drilling machines
    • B23B2251/24Overall form of drilling tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26FPERFORATING; PUNCHING; CUTTING-OUT; STAMPING-OUT; SEVERING BY MEANS OTHER THAN CUTTING
    • B26F2210/00Perforating, punching, cutting-out, stamping-out, severing by means other than cutting of specific products
    • B26F2210/08Perforating, punching, cutting-out, stamping-out, severing by means other than cutting of specific products of ceramic green sheets, printed circuit boards and the like

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Forests & Forestry (AREA)
  • Mechanical Engineering (AREA)
  • Drilling Tools (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a drilling tool of extremely excellent utility, capable of preventing the sticking of cut chips thereto, while, even if it is of a small-diameter drill, it has a long life up to breakage, with good hole locational accuracy, and capable of achieving realization of a stable hole drilling process.SOLUTION: The drilling tool has: one or a plurality of cutting blades provided at the tip end of a tool body 1 thereof; a plurality of cut chips discharging grooves 2, 3 in a spiral shape provided along the outer periphery of the tool body 1 that extend from the tip end of the tool to the base end side; the plurality of cut chips discharging grooves 2, 3 including one main groove and one or more of sub-grooves; the main groove 2 including the sub-groove 3 provided continuously in a midway of the main groove 2. Helix angles of the main groove 2 and the sub-groove 3 are set at approximately equal angles at a position to the base end side of the tool from a continuously-provided part 4 of both the main groove 2 and sub-groove 3, while the length of the sub-groove 3 is set at 50 to 95% of the length of the main groove 2, with the sub-groove 3 being placed in parallel with the main groove 2 extending from the continuously-provided part 4 to a predetermined position short of the terminal end of the main groove 2.

Description

本発明は、穴明け工具に関するものである。   The present invention relates to a drilling tool.

プリント配線板(PCB)の穴明け加工には、図1に図示したような刃部Cを有するボデー部Aとシャンク部Bとで構成されるドリルが使用される。サイズは用途によって様々であるが、一般に直径が0.7mm以下のドリルが多く使用されている。   For drilling a printed wiring board (PCB), a drill composed of a body part A having a blade part C and a shank part B as shown in FIG. 1 is used. The size varies depending on the application, but in general, a drill having a diameter of 0.7 mm or less is often used.

具体的には、刃部Cには、図2に図示したように本体20の外周にドリル先端から基端側に向かう螺旋状の切り屑排出溝22が形成され、この切り屑排出溝22のすくい面と先端に設けられた第一の逃げ面24との交差稜線部には切れ刃21が形成されている(例えば特許文献1,2参照)。尚、図中、符号25は第一の逃げ面24の工具回転方向後方側に連設される第二の逃げ面、d’は工具直径、l’は切り屑排出溝の溝長、α’はねじれ角である。   Specifically, as shown in FIG. 2, a spiral chip discharge groove 22 is formed on the outer periphery of the main body 20 on the blade portion C from the drill tip to the base end side. A cutting edge 21 is formed at the intersection ridge line portion between the rake face and the first flank 24 provided at the tip (see, for example, Patent Documents 1 and 2). In the figure, reference numeral 25 denotes a second flank that is connected to the rear side of the first flank 24 in the tool rotation direction, d ′ is the tool diameter, l ′ is the length of the chip discharge groove, and α ′. Is the twist angle.

また、アルミ合金、チタン、マグネシウム、銅などの非鉄系被削材向けの耐摩耗性と耐溶着性を有する皮膜として非晶質炭素皮膜が実用化され、ドリルやエンドミル、刃先交換型切削チップなどの切削工具に被覆されて用いられている(例えば特許文献3参照)。   In addition, amorphous carbon coatings have been put to practical use as wear-resistant and welding-resistant coatings for non-ferrous work materials such as aluminum alloys, titanium, magnesium, and copper, and drills, end mills, blade-tip-replaceable cutting tips, etc. (See, for example, Patent Document 3).

ところで、PCBは銅と絶縁層としてのガラスクロスに樹脂を含浸させたものとを張り合わせて構成されるものであり、近年のPCBは、更なる信頼性向上のため、耐熱性の向上、曲げ強度の強化及び低熱膨張化が求められており、PCBを構成するガラスクロスや樹脂の機械的強度を高めることで、高信頼を確保しているものが多くなっている。   By the way, PCB is constructed by bonding copper and glass cloth as an insulating layer impregnated with resin, and recent PCBs have improved heat resistance, bending strength for further reliability improvement. Strengthening and lowering the thermal expansion are demanded, and many have secured high reliability by increasing the mechanical strength of the glass cloth and resin constituting the PCB.

しかしながら、穴明け加工を行う被削材として考慮した場合、上記構成のPCBは機械的強度が高められた分だけドリルの摩耗を促進し易く、穴明け加工中のドリル折損や過度の摩耗に伴う穴位置精度等の穴品質の悪化を引き起こし易い。   However, when considered as a work material to be drilled, the PCB having the above-described configuration easily promotes wear of the drill by an increase in mechanical strength, and is accompanied by breakage of the drill during drilling or excessive wear. It is easy to cause deterioration of hole quality such as hole position accuracy.

一方、PCBの高密度化に伴い、要求される穴径(ドリルの直径)は年々径小化しており、直径が0.4mm以下の穴明け加工が多くなってきている。   On the other hand, with the increase in PCB density, the required hole diameter (drill diameter) is decreasing year by year, and drilling with a diameter of 0.4 mm or less is increasing.

また、穴明け加工工程においては、加工効率を考慮し、同仕様のPCBを複数枚重ねて穴明け加工をするのが一般的である。具体的には、複数枚重ねたPCBの上面にドリルの求心性を高める目的の当て板としてアルミ板または表面に樹脂が被覆された樹脂付きアルミ板を載置して穴明け加工をするのが一般的である。樹脂付きアルミ板はアルミ板よりも求心性を高める効果が高く、またドリルの折損の改善にも寄与するため、特に直径が0.4mm以下の小径ドリルの穴明け加工に用いられることが多い。   Further, in the drilling process, in consideration of processing efficiency, it is common to perform drilling by stacking a plurality of PCBs having the same specifications. Specifically, an aluminum plate or a resin-coated aluminum plate whose surface is coated with a resin is placed on the upper surface of a PCB on which a plurality of sheets are stacked to form a hole for drilling. It is common. The aluminum plate with resin is more effective than the aluminum plate in improving the centripetal property and contributes to the improvement of the breakage of the drill. Therefore, it is often used for drilling a small diameter drill having a diameter of 0.4 mm or less.

近年では、上記したような比較的加工性の悪いPCBの加工に用いるPCB用小径ドリルに対しても、加工コスト削減を目的としたPCBの重ね枚数の増加や、ドリルが折損せずに穴明け加工できる穴明け寿命の延長が要求されている。   In recent years, even for the small-diameter drills for PCBs used for machining PCBs with relatively poor workability as described above, an increase in the number of stacked PCBs for the purpose of reducing machining costs and drilling without breaking the drills. There is a demand for an extended drilling life.

しかしながら、当て板として樹脂付きアルミ板を用いて穴明け加工した場合は、アルミ板を用いて穴明け加工した場合よりも、ドリルの刃部Cの基端部近傍に切り屑の巻き付き残りが顕著に発生し、樹脂の粘性が高い程、また被覆された樹脂が厚い程、前述の切り屑の巻き付き残りが発生する傾向が高く、上記要求の実現は困難である。   However, when drilling is performed using an aluminum plate with a resin as a backing plate, the remaining residue of chips is more prominent near the base end portion of the drill blade C than when drilling is performed using an aluminum plate. The higher the viscosity of the resin and the thicker the coated resin, the higher the tendency for the above-mentioned chips to be wound around, making it difficult to achieve the above requirements.

これは、通常は穴明け加工時に発生する切り屑は穴明け機に付属される切り屑吸引機能によって吸引されて所定のダストボックスに搬出されるが、樹脂付きアルミ板を用いた場合、穴明け加工時の切削熱によって軟化した樹脂が切り屑と共に切り屑排出溝にガイドされて排出され、刃部Cの基端部近傍でドリルと切り屑を粘着するように作用するためと考えられ、引き続き穴明け加工を繰り返すことで切り屑の巻き付き残り量が増加するものと考えられる。   This is because the chips generated during drilling are usually sucked by the chip suction function attached to the drilling machine and carried out to the specified dust box. However, when using an aluminum plate with resin, drilling is performed. It is considered that the resin softened by the cutting heat at the time is guided to the chip discharge groove together with the chips and discharged, and acts to adhere the drill and the chips in the vicinity of the base end portion of the blade C. It is thought that the remaining amount of chips wound increases by repeating the dawning process.

切り屑の巻き付き残り量は、穴明け加工時のドリルの回転数や送り速度の加工条件やPCBの材質によっても変化するが、図3(a)に図示したように顕著な切り屑の巻き付き残りが発生し、この切り屑の巻き付き残りが続く穴明け加工中にその切り屑(切り屑塊)が何かしらの振動等をきっかけとしてドリルから離れ、前記吸引機能をもってしても吸引されずに当て板上に落下し、その後、穴明け加工しようとするドリルが落下した切り屑塊に干渉することで穴位置精度の悪化やドリルの折損が引き起こされると考えられる。尚、図3(b)に当て板上に落下した切り屑塊を例示する。   The remaining amount of chips wound varies depending on the processing conditions of the drill speed and feed rate during drilling and the material of the PCB, but as shown in FIG. During the drilling process in which this swarf remains, the swarf (shard lump) leaves the drill as a result of some vibration, etc. It is thought that the hole position accuracy deteriorates and the drill breaks when the drill to be drilled and then the drill to be drilled interferes with the dropped chip lump. FIG. 3B illustrates a chip lump that has fallen on the contact plate.

また、例えば、特許文献4には、2つの切れ刃と2つの切り屑排出溝を有するPCBドリルにおいて、各切り屑排出溝を先端から所定量後退した位置で合流させ、合流点よりも後方で1つの溝とすることで、剛性を向上させる技術が開示されているが、切り屑の巻き付きについては言及がなく、上記要求を満たすことはできない。   Further, for example, in Patent Document 4, in a PCB drill having two cutting edges and two chip discharge grooves, the chip discharge grooves are merged at a position retracted by a predetermined amount from the tip, and behind the merge point. Although a technique for improving rigidity by using a single groove is disclosed, there is no mention of wrapping of chips, and the above requirement cannot be satisfied.

特開昭56−39807号公報JP-A-56-39807 特開2006−55915号公報JP 2006-55915 A 特開2001−341021号公報JP 2001-341021 A 特開2007−307642号公報JP 2007-307642 A

本発明は、上述のような現状に鑑みなされたもので、切り屑の巻き付きを防止でき、直径が0.7mm以下、特に0.4mm以下の小径ドリルであっても、折損寿命が長く穴位置精度が良好で安定した穴明け加工が実現可能な極めて実用性に秀れる穴明け工具を提供するものである。   The present invention has been made in view of the current situation as described above, and can prevent wrapping of chips. Even a small-diameter drill having a diameter of 0.7 mm or less, particularly 0.4 mm or less, has a long breakage life and a hole position. It is an object of the present invention to provide a highly practical drilling tool capable of realizing stable drilling with good accuracy.

添付図面を参照して本発明の要旨を説明する。   The gist of the present invention will be described with reference to the accompanying drawings.

工具本体1の先端に1つ若しくは複数の切れ刃が設けられ、この工具本体1の外周に工具先端から基端側に向かう複数の螺旋状の切り屑排出溝2,3が設けられ、この複数の切り屑排出溝2,3は1つの主溝と1つ以上の副溝とを含み、前記主溝2の途中部に前記副溝3が連設される穴明け工具であって、前記主溝2及び前記副溝3のねじれ角は該主溝2と該副溝3との連設部4から工具基端側において略等しい角度に設定され、前記副溝3の溝長は前記主溝2の溝長の50〜95%に設定され、前記副溝3が前記連設部4から前記主溝2の終端より手前の所定位置まで前記主溝2と並走するように設けられていることを特徴とする穴明け工具に係るものである。   One or a plurality of cutting edges are provided at the tip of the tool body 1, and a plurality of spiral chip discharge grooves 2 and 3 from the tool tip to the base end side are provided on the outer periphery of the tool body 1, and the plurality of cutting edges are provided. The chip discharge grooves 2 and 3 include a main groove and one or more sub-grooves, and are drilling tools in which the sub-grooves 3 are provided in the middle of the main groove 2. The twist angles of the groove 2 and the sub-groove 3 are set to be substantially equal on the tool base end side from the connecting portion 4 of the main groove 2 and the sub-groove 3, and the groove length of the sub-groove 3 is the main groove 2 to 50% of the groove length, and the auxiliary groove 3 is provided so as to run in parallel with the main groove 2 from the connecting portion 4 to a predetermined position before the end of the main groove 2. The present invention relates to a drilling tool characterized by that.

また、工具本体1の先端に1つ若しくは複数の切れ刃が設けられ、この工具本体1の外周に工具先端から基端側に向かう複数の螺旋状の切り屑排出溝2,3が設けられ、この複数の切り屑排出溝2,3は1つの主溝と1つ以上の副溝とを含み、前記主溝2の途中部に前記副溝3が連設される穴明け工具であって、前記主溝2及び前記副溝3のねじれ角は該主溝2と該副溝3との連設部4から工具基端側において略等しい角度に設定され、前記副溝3の溝長は前記主溝2の溝長の70〜95%に設定され、前記副溝3が前記連設部4から前記主溝2の終端より手前の所定位置まで前記主溝2と並走するように設けられていることを特徴とする穴明け工具に係るものである。   Further, one or a plurality of cutting edges are provided at the tip of the tool body 1, and a plurality of spiral chip discharge grooves 2, 3 from the tool tip to the base end side are provided on the outer periphery of the tool body 1, The plurality of chip discharge grooves 2, 3 includes a main groove and one or more sub grooves, and is a drilling tool in which the sub grooves 3 are continuously provided in the middle of the main groove 2, The torsion angles of the main groove 2 and the sub groove 3 are set to be substantially equal on the tool base end side from the connecting portion 4 of the main groove 2 and the sub groove 3, and the groove length of the sub groove 3 is It is set to 70 to 95% of the groove length of the main groove 2, and the auxiliary groove 3 is provided so as to run in parallel with the main groove 2 from the connecting portion 4 to a predetermined position before the end of the main groove 2. The present invention relates to a drilling tool characterized by

また、請求項1,2いずれか1項に記載の穴明け工具において、前記連設部4における前記主溝2と前記副溝3との連設溝幅は、連設前の前記主溝2の溝幅の1.1〜1.9倍であることを特徴とする穴明け工具に係るものである。   Further, in the drilling tool according to any one of claims 1 and 2, the continuous groove width between the main groove 2 and the sub groove 3 in the continuous portion 4 is the main groove 2 before the continuous installation. The present invention relates to a drilling tool characterized by having a groove width of 1.1 to 1.9 times.

また、請求項1,2いずれか1項に記載の穴明け工具において、前記連設部4における前記主溝2と前記副溝3との連設溝幅は、連設前の前記主溝2の溝幅の1.3〜1.8倍であることを特徴とする穴明け工具に係るものである。   Further, in the drilling tool according to any one of claims 1 and 2, the continuous groove width between the main groove 2 and the sub groove 3 in the continuous portion 4 is the main groove 2 before the continuous installation. The present invention relates to a drilling tool characterized by being 1.3 to 1.8 times the groove width.

また、請求項1〜4いずれか1項に記載の穴明け工具において、前記連設部4の始端は工具先端から工具直径の2倍以上の位置で且つ前記主溝2の溝長の50%以下の位置に設けられていることを特徴とする穴明け工具に係るものである。   Further, in the drilling tool according to any one of claims 1 to 4, the start end of the connecting portion 4 is at a position more than twice the tool diameter from the tool tip and 50% of the groove length of the main groove 2. The present invention relates to a drilling tool characterized by being provided at the following positions.

また、請求項1〜5いずれか1項に記載の穴明け工具において、前記主溝2及び副溝3の終端の切れ上がり端点5,6を含む夫々の工具軸直角断面における、前記主溝2の切れ上がり端点5と工具の回転軸心Oとを結ぶ第一の線及び前記副溝3の切れ上がり端点6と工具の回転軸心Oとを結ぶ第二の線を、工具の軸方向視における同一の軸直角投影面に投影した際、この投影面において前記第一の線と前記第二の線とがなす狭角のうち、少なくとも1つの狭角γが90°より大きく180°以下であることを特徴とする穴明け工具に係るものである。   Further, in the drilling tool according to any one of claims 1 to 5, the main groove 2 in each tool axis perpendicular section including the end points 5 and 6 at the ends of the main groove 2 and the sub groove 3. A first line connecting the cut-up end point 5 and the rotation axis O of the tool and a second line connecting the cut-up end point 6 of the auxiliary groove 3 and the rotation axis O of the tool are viewed in the axial direction of the tool. When projecting onto the same plane perpendicular to the projection plane in FIG. 2, at least one narrow angle γ of the projection plane between the first line and the second line is greater than 90 ° and less than 180 °. The present invention relates to a drilling tool characterized by being.

また、請求項1〜6いずれか1項に記載の穴明け工具において、前記切り屑排出溝2,3として前記主溝2と前記副溝3とが1つずつ設けられていることを特徴とする穴明け工具に係るものである。   Moreover, in the drilling tool according to any one of claims 1 to 6, the main groove 2 and the sub-groove 3 are provided as the chip discharge grooves 2 and 3, respectively. This relates to the drilling tool to be used.

また、請求項1〜7いずれか1項に記載の穴明け工具において、潤滑性皮膜として非晶質炭素皮膜が被覆されていることを特徴とする穴明け工具に係るものである。   The drilling tool according to any one of claims 1 to 7, wherein an amorphous carbon film is coated as a lubricating film.

また、請求項1〜8いずれか1項に記載の穴明け工具において、工具直径が0.4mm以下であることを特徴とする穴明け工具に係るものである。   The drilling tool according to any one of claims 1 to 8, wherein the tool diameter is 0.4 mm or less.

本発明は上述のように構成したから、切り屑の巻き付きを防止でき、直径が0.7mm以下、特に0.4mm以下の小径ドリルであっても、折損寿命が長く穴位置精度が良好で安定した穴明け加工が実現可能な極めて実用性に秀れる穴明け工具となる。   Since the present invention is configured as described above, chips can be prevented from being wound, and even a small-diameter drill having a diameter of 0.7 mm or less, particularly 0.4 mm or less, has a long breakage life and good hole position accuracy and stability. This is a very practical drilling tool that can be used for drilling.

PCB用ドリルの概略説明側面図である。It is a schematic explanatory side view of the drill for PCB. 従来例の拡大概略説明図である。It is an expansion schematic explanatory drawing of a prior art example. (a)ドリルの刃部Cの基端部近傍における切り屑の巻き付き残りを例示する写真と、(b)当て板上に落下した切り屑塊を例示する写真である。(A) The photograph which illustrates the winding remainder of the chip | tip in the base end part vicinity of the blade part C of a drill, (b) The photograph which illustrates the chip lump which fell on the contact plate. 本実施例の刃部の概略説明図である。It is a schematic explanatory drawing of the blade part of a present Example. 本実施例の切れ上がり狭角の概略説明図である。It is a schematic explanatory drawing of the cut-off narrow angle of a present Example. 主溝と副溝のねじれ角の概要を示す概略展開図である。It is a general | schematic expanded view which shows the outline | summary of the twist angle of a main groove and a subgroove. 主溝と副溝のねじれ角の概要を示す概略展開図である。It is a general | schematic expanded view which shows the outline | summary of the twist angle of a main groove and a subgroove. 主溝と副溝のねじれ角の概要を示す概略展開図である。It is a general | schematic expanded view which shows the outline | summary of the twist angle of a main groove and a subgroove. 主溝と副溝のねじれ角の概要を示す概略展開図である。It is a general | schematic expanded view which shows the outline | summary of the twist angle of a main groove and a subgroove. 実験条件及び実験結果を示す表である。It is a table | surface which shows an experimental condition and an experimental result. 実験結果を示す写真である。It is a photograph which shows an experimental result.

好適と考える本発明の実施形態を、図面に基づいて本発明の作用を示して簡単に説明する。   An embodiment of the present invention which is considered to be suitable will be briefly described with reference to the drawings showing the operation of the present invention.

穴明け加工時に工具先端部で生じた切り屑が切り屑排出溝2,3に沿って排出される際、主溝2と副溝3との連設部4において切り屑同士が衝突することで、切り屑が(工具径方向に)強制的に飛散せしめられ、工具基端部まで到達し難くなるため、工具基端部における切り屑の巻き付きが防止される。   When chips generated at the tip of the tool at the time of drilling are discharged along the chip discharge grooves 2 and 3, chips collide with each other in the connecting portion 4 of the main groove 2 and the sub-groove 3. Since the chips are forcibly scattered (in the tool radial direction) and are difficult to reach the tool base end, the wrapping of chips at the tool base end is prevented.

また、連設部4以降、主溝2と副溝3とを並走させることで、複数の切り屑排出溝を連設させずに夫々独立して設けた場合に比し、溝容積を小さくして剛性を確保することが可能となり、それだけ穴位置精度を改善することができる。   In addition, since the main groove 2 and the sub-groove 3 are run side by side after the continuous portion 4, the groove volume is reduced as compared with the case where a plurality of chip discharge grooves are provided independently without being provided continuously. Thus, rigidity can be ensured, and the hole position accuracy can be improved accordingly.

更に、主溝2と副溝3の溝長を異ならせることで、複数の切り屑排出溝の溝長を同じ長さにした場合に比し、折損の起点となり易い工具基端側(根元部)で剛性を確保することが可能となり、耐折損性を改善することができる。   Further, by making the groove lengths of the main groove 2 and the sub-groove 3 different from each other, the tool base end side (the root portion) that is likely to be a starting point of breakage compared to the case where the groove lengths of the plurality of chip discharge grooves are made the same. ) Makes it possible to ensure rigidity and improve breakage resistance.

本発明の具体的な実施例について図4〜図11に基づいて説明する。   A specific embodiment of the present invention will be described with reference to FIGS.

本実施例は、工具本体1の先端に1つ若しくは複数の切れ刃が設けられ、この工具本体1の外周に工具先端から基端側に向かう複数の螺旋状の切り屑排出溝2,3が設けられ、この複数の切り屑排出溝2,3は1つの主溝と1つ以上の副溝とを含み、前記主溝2の途中部に前記副溝3が連設される穴明け工具であって、前記主溝2及び前記副溝3のねじれ角は該主溝2と該副溝3との連設部4から工具基端側において略等しい角度に設定され、前記副溝3の溝長は前記主溝2の溝長の50〜95%に設定され、前記副溝3が前記連設部4から前記主溝2の終端より手前の所定位置まで前記主溝2と並走するように設けられているものである。   In this embodiment, one or a plurality of cutting edges are provided at the tip of the tool body 1, and a plurality of spiral chip discharge grooves 2, 3 from the tool tip to the base end side are provided on the outer periphery of the tool body 1. The plurality of chip discharge grooves 2 and 3 are drilling tools including one main groove and one or more sub-grooves, and the sub-grooves 3 are provided in the middle of the main groove 2. The twist angles of the main groove 2 and the sub-groove 3 are set to be substantially equal at the tool base end side from the connecting portion 4 of the main groove 2 and the sub-groove 3, and the groove of the sub-groove 3 The length is set to 50 to 95% of the groove length of the main groove 2, and the sub-groove 3 runs parallel to the main groove 2 from the connecting portion 4 to a predetermined position before the end of the main groove 2. Is provided.

尚、本実施例においては、主溝2とは最長溝長となる溝をいい、副溝3とは主溝2より短い溝長を持つ溝をいう。   In this embodiment, the main groove 2 is a groove having the longest groove length, and the sub-groove 3 is a groove having a shorter groove length than the main groove 2.

具体的には、本実施例は、工具直径が0.1mmで、主溝2と該主溝2に連設する副溝3とが1条ずつ設けられ、この主溝2及び副溝3のすくい面と工具本体の先端逃げ面(第一の逃げ面)との交差稜線部には夫々工具本体1と一体に切れ刃が設けられたドリルであり、PCBの穴明け加工に使用されるものである。   Specifically, in this embodiment, the tool diameter is 0.1 mm, and the main groove 2 and the sub-groove 3 connected to the main groove 2 are provided one by one. Drills with cutting edges that are integrated with the tool body 1 at the intersecting ridge line between the rake face and the tip flank (first flank) of the tool body, and are used for drilling PCBs It is.

このPCBの穴明け加工は、例えば、後述する実験例のように、難削材である半導体パッケージ用のPCB(基板:厚さ0.15mm/表裏両面Cu層)を4枚重ねて、その上面に当て板として厚さ0.11mmの樹脂付きアルミ板を載置し、貫通穴加工ができるように前記PCBの下面には捨て板として一般に使用されている厚さ1.5mmの紙フェノール材を配置した状態で行われる。当て板の厚さは0.04〜1.0mmの範囲で適宜設定する。また、厚さ0.1mm程度のPCBのCu層の厚さは通常2〜80μm程度である。   This PCB drilling process is performed by, for example, stacking four PCBs for a semiconductor package (substrate: thickness 0.15 mm / both front and back Cu layers), which are difficult-to-cut materials, as shown in an experimental example to be described later. An aluminum plate with a resin of thickness 0.11 mm is placed as a backing plate, and a 1.5-mm thick paper phenolic material generally used as a discard plate is placed on the lower surface of the PCB so that through holes can be processed. It is done in the arranged state. The thickness of the backing plate is appropriately set in the range of 0.04 to 1.0 mm. Moreover, the thickness of the Cu layer of PCB having a thickness of about 0.1 mm is usually about 2 to 80 μm.

尚、本実施例においては2つの切れ刃と2つの切り屑排出溝(1つの主溝と1つの副溝)を有するドリル(2枚刃ドリル)について説明するが、主溝側にのみ切れ刃を設けた1枚刃ドリルや、3枚刃以上のドリル(例えば1つの主溝と2つの副溝を有するもの)の場合も同様である。この際、1枚刃ドリルとした場合にはより高い求心効果を得ることができ、3枚刃ドリルとした場合にはより良好な切削性を得ることができる。   In this embodiment, a drill (two-edged drill) having two cutting edges and two chip discharge grooves (one main groove and one sub-groove) will be described. The same applies to a single-blade drill provided with a drill or a drill having three or more blades (for example, one having one main groove and two sub-grooves). In this case, a higher centripetal effect can be obtained when a single-blade drill is used, and better machinability can be obtained when a three-blade drill is used.

具体的には、本実施例においては、主溝2及び副溝3のねじれ角が、主溝2と副溝3との連設部4から工具基端側において略等しい角度に設定され、且つ、副溝3の溝長l2が主溝の溝長l1の50〜95%に設定されている。50%未満の場合、基板外に切り屑を排出するために重要となる溝中間部から基端にかけての溝容積が小さくなるため、切り屑詰まりにより折損の可能性が高まり、95%より長い場合、主溝2の溝長l1との差が小さくなり、根元部において剛性が確保しにくくなる。尚、副溝3の溝長l2を主溝2の溝長l1の70%以上に設定した場合、より安定した切り屑排出が行われるためか、より長寿命で安定した穴加工を実現できることが、本発明者等により確認された。よって、副溝3の溝長l2は、主溝2の溝長l1の70〜95%に設定するのがより好ましい。   Specifically, in the present embodiment, the torsion angles of the main groove 2 and the sub groove 3 are set to substantially equal angles on the tool base end side from the connecting portion 4 of the main groove 2 and the sub groove 3, and The groove length l2 of the sub groove 3 is set to 50 to 95% of the groove length l1 of the main groove. If it is less than 50%, the groove volume from the groove middle part to the base end, which is important for discharging chips to the outside of the substrate, becomes smaller. The difference from the groove length l1 of the main groove 2 becomes small, and it becomes difficult to ensure rigidity at the root portion. In addition, when the groove length l2 of the sub-groove 3 is set to 70% or more of the groove length l1 of the main groove 2, it is possible to realize more stable and long-life drilling because of more stable chip discharge. This has been confirmed by the present inventors. Therefore, the groove length l2 of the sub-groove 3 is more preferably set to 70 to 95% of the groove length l1 of the main groove 2.

これにより、副溝3の終端(切れ上がり端点6)は主溝2の終端(切れ上がり端点5)より工具先端側となり、副溝3は主溝2と副溝3との連設部4(の終端)から主溝2の終端より手前の所定位置まで(図4の区間Qの間)主溝と並走することになる。   Thereby, the terminal end (cut-up end point 6) of the sub-groove 3 is located on the tool tip side from the terminal end (cut-up end point 5) of the main groove 2, and the sub-groove 3 is the connecting portion 4 ( From the end of the main groove 2 to a predetermined position before the end of the main groove 2 (during section Q in FIG. 4).

具体的には、連設部4において主溝2と副溝3とが連設して両者の一部が重なり、夫々の溝の最下点が所定距離離れた状態で、二つの溝が並走することになる。即ち、主溝2と副溝3とは連設部4以降で一部が重なりつつ連設前の溝形状の一部を残した状態で並走するように設けられる(図4参照。尚、図4(a)〜(d)は夫々異なる回転位相で側面から刃部を見たものである。)。   Specifically, the main groove 2 and the sub-groove 3 are continuously provided in the continuous portion 4 so that a part of both overlap, and the two grooves are aligned in a state where the lowest point of each groove is separated by a predetermined distance. Will run. That is, the main groove 2 and the sub-groove 3 are provided so as to run side by side in a state in which a part of the groove shape before the continuous connection is left while a part of the main groove 2 and the secondary groove 3 is overlapped after the connection part 4 (see FIG. 4 (a) to 4 (d) show the blade portion viewed from the side surface at different rotational phases.

本実施例においては、連設部4における主溝2と副溝3との連設溝幅W2(連設部終端における主溝2と副溝3とが一部重なった状態での合計溝幅W2)が、連設前の主溝2の溝幅W1の1.1〜1.9倍となるように連設される。1.1倍未満の場合、溝容積が小さ過ぎてスムーズな切り屑排出性を得にくくなり、1.9倍より大きい場合、溝容積が大きいためにドリルの剛性が確保しにくくなる。尚、連設溝幅W2は、切り屑排出性と剛性との相反する性質のバランスを考慮した場合、連設前の主溝2の溝幅W1の1.3〜1.8倍に設定するのがより好ましいということが、本発明者等が鋭意研究した結果、知見として得られた。また、本実施例においては副溝3の溝幅は主溝2の溝幅W1と同一に設定している。即ち、連設溝幅W2が連設前の主溝2(副溝3)の溝幅W1の2倍に近づくほど、両者の重なり度合いが小さいことになる。   In this embodiment, the continuous groove width W2 between the main groove 2 and the sub groove 3 in the continuous portion 4 (the total groove width in a state where the main groove 2 and the sub groove 3 at the end of the continuous portion partially overlap each other) W2) is continuously provided so as to be 1.1 to 1.9 times the groove width W1 of the main groove 2 before being continuously provided. If it is less than 1.1 times, the groove volume is too small and it is difficult to obtain a smooth chip discharging property. If it is more than 1.9 times, the groove volume is large and it is difficult to ensure the rigidity of the drill. Note that the continuous groove width W2 is set to 1.3 to 1.8 times the groove width W1 of the main groove 2 before continuous connection in consideration of the balance between the properties of chip discharge and rigidity. As a result of intensive studies by the present inventors, it has been obtained as knowledge. In this embodiment, the groove width of the sub-groove 3 is set to be the same as the groove width W1 of the main groove 2. That is, as the continuous groove width W2 approaches two times the groove width W1 of the main groove 2 (sub-groove 3) before continuous connection, the degree of overlap between both becomes smaller.

また、本実施例においては、主溝2と副溝3との連設部4における連設開始点は、工具先端から工具直径の2倍以上の位置で且つ主溝2の溝長l1の50%以下の位置に設けられている。本実施例においては、主溝2と副溝3との連設部4は、図4中の工具先端から距離P離れた連設開始点から工具先端から距離M2離れた副溝3の第二のねじれ角変化点(並走開始点)までの範囲を示している。連設開始点(連設部4の始端)を工具先端から工具直径の2倍未満の位置に設けると、再研磨時に連設部まで研磨される可能性が高く、適した刃形状を得にくくなり、工具先端から主溝の溝長の50%より基端側の位置に設けると、剛性が劣化し、穴位置精度が悪化する。   Further, in the present embodiment, the connection start point in the connection portion 4 between the main groove 2 and the sub-groove 3 is 50 times the groove length l1 of the main groove 2 at a position more than twice the tool diameter from the tool tip. % Or less. In the present embodiment, the connecting portion 4 between the main groove 2 and the sub-groove 3 is a second portion of the sub-groove 3 that is a distance M2 away from the tool tip from the continuous starting point that is a distance P away from the tool tip in FIG. The range up to the twist angle change point (parallel running start point) is shown. If the continuous start point (starting end of the continuous portion 4) is provided at a position less than twice the tool diameter from the tool tip, it is highly likely that the continuous portion will be polished during re-polishing, and it is difficult to obtain a suitable blade shape. Therefore, if it is provided at a position closer to the base end than 50% of the groove length of the main groove from the tip of the tool, the rigidity deteriorates and the hole position accuracy deteriorates.

また、本実施例において、副溝3を主溝2の途中部に連設する際には、副溝3若しくは主溝2のねじれ角を途中で変化させることで行う。例えば、主溝2は始端から終端まで一定のねじれ角として、副溝3のねじれ角を途中で変化させることで副溝3を主溝2の途中に連設しても良いし、双方のねじれ角を途中で変化させて連設しても良い。具体的には、例えば図6〜9に図示したような態様が考えられる。   In the present embodiment, when the sub-groove 3 is connected to the middle portion of the main groove 2, the twist angle of the sub-groove 3 or the main groove 2 is changed in the middle. For example, the main groove 2 may have a constant twist angle from the start to the end, and the sub groove 3 may be provided in the middle of the main groove 2 by changing the twist angle of the sub groove 3 in the middle. The corners may be changed in the middle and connected continuously. Specifically, for example, the modes illustrated in FIGS.

図6及び7は、主溝2のねじれ角αを一定として、副溝3のねじれ角を小(β1)→大(β2)→小(β3)と変化させることで両者を連設するものである。具体的には、副溝3の初期ねじれ角β1を、工具先端から距離M1離れた第一のねじれ角変化点でより大きいβ2に変化させることで主溝2に接近させ、副溝3が主溝2に連設した直後(図6)若しくは主溝2と交差した後(図7)、工具先端から距離M2離れた第二のねじれ角変化点で主溝2のねじれ角αと同角度のβ3に変化させて並走させるものである。この場合、主溝のねじれ角αが一定であるため、剛性を確保し易い利点がある。尚、図6,7においては、α、β1及びβ3は45°に設定し、β2は55°に設定している。また、本実施例においては図6の態様を採用している。   FIGS. 6 and 7 show that the twist angle α of the main groove 2 is constant and the twist angle of the sub-groove 3 is changed from small (β1) → large (β2) → small (β3). is there. Specifically, by changing the initial twist angle β1 of the minor groove 3 to a larger β2 at the first twist angle change point away from the tool tip by a distance M1, the minor groove 3 is brought closer to the major groove 2 so that the minor groove 3 becomes the main groove 3. Immediately after being continuously provided in the groove 2 (FIG. 6) or after intersecting the main groove 2 (FIG. 7), the second twist angle change point at a distance M2 from the tool tip is the same angle as the twist angle α of the main groove 2. Change to β3 and run in parallel. In this case, since the torsion angle α of the main groove is constant, there is an advantage that it is easy to ensure rigidity. 6 and 7, α, β1, and β3 are set to 45 °, and β2 is set to 55 °. Further, the embodiment shown in FIG. 6 is adopted in this embodiment.

図8及び9は、主溝2及び副溝3のねじれ角を夫々小(45°)→大(55°)と変化させるもので、両者のねじれ角の変化点の調整により両者を連設するものである。具体的には、副溝3のねじれ角を途中で大きくすることで、主溝2に接近させ、副溝3が主溝2に連設した直後(図8)若しくは主溝と交差した後(図9)、主溝2のねじれ角を副溝3のねじれ角と同角度に変化させるものである。この場合、両者のねじれ角を途中で変化させるため、それだけ切り屑が巻き付きにくくなり、また、工具基端側で大きいねじれ角となるため、それだけ良好なポンプ作用により工具先端で生じた切り屑をスムーズに排出できる利点がある。尚、図6〜9において、主溝2と副溝3が逆になっても良い。即ち、図6及び7においては、副溝3のねじれ角を一定として、主溝2のねじれ角を小→大→小と変化させることで両者を連設しても良いし、図8及び9においては、主溝2のねじれ角を途中で大きくすることで、副溝3に接近させ、主溝2が副溝3に連設した直後(図8)若しくは副溝と交差した後(図9)、副溝3のねじれ角を主溝2のねじれ角と同角度に変化させても良い。   FIGS. 8 and 9 change the torsion angles of the main groove 2 and the sub-groove 3 from small (45 °) to large (55 °), respectively, and both are connected by adjusting the change point of the torsion angles. Is. Specifically, by increasing the twist angle of the sub-groove 3 in the middle, the sub-groove 3 is brought close to the main groove 2 and immediately after the sub-groove 3 is connected to the main groove 2 (FIG. 8) or after crossing the main groove ( 9), the twist angle of the main groove 2 is changed to the same angle as the twist angle of the sub groove 3. In this case, since the torsion angle between the two is changed in the middle, the chip is less likely to be wound, and since the torsion angle is large on the tool base end side, the chip generated at the tip of the tool due to the good pumping action can be reduced. There is an advantage that it can be discharged smoothly. 6-9, the main groove 2 and the subgroove 3 may be reversed. That is, in FIGS. 6 and 7, the torsion angle of the sub-groove 3 may be constant, and the torsion angle of the main groove 2 may be changed from small → large → small. In FIG. 9, by increasing the twist angle of the main groove 2 on the way, the main groove 2 is brought close to the sub-groove 3 and immediately after the main groove 2 is connected to the sub-groove 3 (FIG. 8) or after intersecting the sub-groove (FIG. ), The twist angle of the sub-groove 3 may be changed to the same angle as the twist angle of the main groove 2.

また、本実施例は、前記主溝2及び副溝3の終端の切れ上がり端点5,6を含む夫々の工具軸直角断面における、前記主溝2の切れ上がり端点5と工具の回転軸心Oとを結ぶ第一の線及び前記副溝3の切れ上がり端点6と工具の回転軸心Oとを結ぶ第二の線を、工具の軸方向視における同一の軸直角投影面に投影した際、この投影面において前記第一の線と前記第二の線とがなす狭角のうち、少なくとも1つの狭角γが90°より大きく180°以下となるように構成されている。言い換えると、前記主溝2及び副溝3の終端の切れ上がり端点5,6を含む夫々の工具軸直角断面において、前記夫々の切れ上がり端点5,6と工具の回転軸心Oとを結ぶ夫々の線を工具の軸方向視における同一の軸直角投影面に投影した投影線にして、前記主溝2の切れ上がり端点5を含む投影線と前記夫々の副溝3の切れ上がり端点6を含む投影線とがなす狭角のうち、少なくとも1つの狭角γが90°より大きく180°以下となるように構成されている。   Further, in the present embodiment, the cut-off end point 5 of the main groove 2 and the rotation axis O of the tool in each cross section perpendicular to the tool axis including the end-up end points 5 and 6 of the main groove 2 and the sub-groove 3 are used. And the second line connecting the cut end point 6 of the sub-groove 3 and the rotation axis O of the tool are projected on the same axis orthogonal projection surface in the axial direction of the tool, Of the narrow angles formed by the first line and the second line on the projection plane, at least one narrow angle γ is greater than 90 ° and equal to or less than 180 °. In other words, in each cross section perpendicular to the tool axis, including the end points 5 and 6 at the ends of the main groove 2 and the sub-groove 3, the respective end points 5 and 6 are connected to the rotation axis O of the tool. Are projected lines that are projected on the same axis orthogonal projection plane in the axial direction of the tool, and include projection lines including the cut-up end points 5 of the main grooves 2 and the cut-up end points 6 of the respective sub grooves 3. Of the narrow angles formed by the projection lines, at least one narrow angle γ is configured to be greater than 90 ° and equal to or less than 180 °.

具体的には、本実施例においては、主溝2及び副溝3が1つずつ設けられており、主溝2の切れ上がり端点5を含む工具軸直角断面において該切れ上がり端点5と工具の回転軸心Oとを結ぶ第一の線(図5(b)参照)と、副溝3の切れ上がり端点6を含む工具軸直角断面において該切れ上がり端点6と工具の回転軸心Oとを結ぶ第二の線(図5(a)参照)を工具の軸方向視における同一の軸直角投影面に投影し、前記軸直角投影面上で前記の夫々の線(投影線)がなす狭角γ(以下、切れ上がり狭角と言う。図5(c)参照)が90°より大きく180°以下となるように構成されている。   Specifically, in this embodiment, one main groove 2 and one sub-groove 3 are provided, and the cut end point 5 and the tool of the tool in the cross section perpendicular to the tool axis including the cut end point 5 of the main groove 2 are provided. A first line connecting the rotation axis O (see FIG. 5B) and the cut-off end point 6 and the rotation axis O of the tool in a cross section perpendicular to the tool axis including the cut-up end point 6 of the auxiliary groove 3 A second line (see FIG. 5A) to be connected is projected onto the same axis perpendicular projection plane in the axial view of the tool, and the narrow angle formed by each of the lines (projection lines) on the axis perpendicular projection plane It is configured such that γ (hereinafter referred to as a cut-off narrow angle; see FIG. 5C) is greater than 90 ° and equal to or less than 180 °.

即ち、切れ上がり狭角γが90°より大きく180°以下となるように主溝2及び副溝3の溝長l1,l2を設定している。これは後述する実験結果から導かれるもので、切れ上がり狭角γが上記範囲内であると、穴位置精度が極めて良好となる。一方切れ上がり狭角の全てが90°以下であると、切り屑の排出方向が偏るため、工具基端側でアンバランスな排出となり、突発的な穴曲がりが引き起こされる可能性がある。3枚刃以上のドリル(例えば1つの主溝と2つの副溝を有するもの)の場合の軸直角投影面の一例を図5(d)に図示した。3溝の場合、主溝2の切れ上がり端点5を含む投影線(第一の線)と一方の副溝3の切れ上がり端点6を含む投影線(第二の線)とがなす切れ上がり狭角γが90°より大きく180°以下であれば、切り屑の排出方向の偏りを回避することができるため、バランスのよい排出が得られる。即ち、副溝が2つ以上存在する場合には、前記第二の線が2つ以上存在することになるが、前記第一の線と前記複数の第二の線とがなす切れ上がり狭角γのうち、1つでも90°より大きく180°以下であれば、切り屑の排出方向の偏りを回避することができるため、バランスのよい排出が得られることになる。   That is, the groove lengths l1 and l2 of the main groove 2 and the sub groove 3 are set so that the cut-off narrow angle γ is greater than 90 ° and equal to or less than 180 °. This is derived from the experimental results to be described later. When the cut-off narrow angle γ is within the above range, the hole position accuracy is extremely good. On the other hand, if all of the cut-off narrow angles are 90 ° or less, the chip discharge direction is biased, resulting in unbalanced discharge on the tool base end side, which may cause sudden hole bending. FIG. 5D shows an example of an axis perpendicular projection surface in the case of a drill having three or more blades (for example, one having one main groove and two sub grooves). In the case of three grooves, the cut-off narrowness formed by the projection line (first line) including the cut-up end point 5 of the main groove 2 and the projection line (second line) including the cut-up end point 6 of one sub-groove 3 is formed. If the angle γ is greater than 90 ° and less than or equal to 180 °, it is possible to avoid a deviation in the discharge direction of the chips, and thus a well-balanced discharge is obtained. That is, when there are two or more sub-grooves, there are two or more of the second lines, but the cut-off narrow angle formed by the first line and the plurality of second lines. If at least one of γ is greater than 90 ° and 180 ° or less, deviation in the discharge direction of the chips can be avoided, so that a well-balanced discharge can be obtained.

尚、切れ上がり狭角γは、主溝2の切れ上がり端点5と副溝3の切れ上がり端点6の回転位相差(角度差)により表される。   The narrow angle γ is expressed by the rotational phase difference (angle difference) between the rising end point 5 of the main groove 2 and the rising end point 6 of the sub-groove 3.

また、工具本体1には潤滑性皮膜として非晶質炭素皮膜が被覆されている。即ち、本実施例は、従来の2枚刃ドリルの形状に比べ、工具基端側で溝容積が小さくなるため(ウェブ、ウェブテーパ値を同じにした場合)、基板の種類、厚さ、重ね枚数によってはスムーズな切り屑排出性能を得られにくく、内壁粗さの悪化や折損を引き起こす可能性がある。しかし、非晶質炭素皮膜を被覆することで、切り屑排出性を改善し、剛性形状であることを活かした高精度な穴明け加工が可能となる。   Further, the tool body 1 is coated with an amorphous carbon film as a lubricating film. That is, in this embodiment, since the groove volume is smaller on the tool base end side (when the web and web taper values are the same) compared to the shape of the conventional two-edged drill, the type, thickness, and overlap of the substrate Depending on the number of sheets, it is difficult to obtain smooth chip discharging performance, which may cause deterioration of inner wall roughness and breakage. However, by covering the amorphous carbon film, it is possible to improve the chip discharging property and to perform highly accurate drilling utilizing the rigid shape.

各部を具体的に説明する。   Each part will be specifically described.

本実施例は、基材としては、WCを主成分とする硬質粒子とCoを主成分とする結合材から成る超硬合金製であり、この超硬合金のWC粒子の平均粒径が0.1μm〜2μmでありCo含有量が重量%で5〜15%であるものが採用されており、少なくとも工具本体1の切り屑排出溝に非晶質炭素皮膜が被覆されている。非晶質炭素皮膜は硬質であるため工具の摩耗を抑制し、また高い潤滑性を有することから切り屑が切り屑排出溝に沿って工具本体1の基端部へ排出され易くなって切り屑詰まりを防止して折損し難くなる。   In this embodiment, the substrate is made of a cemented carbide made of hard particles mainly composed of WC and a binder mainly composed of Co, and the average particle size of the WC particles of the cemented carbide is 0.00. One having a Co content of 5 to 15% by weight is employed, and at least a chip discharge groove of the tool body 1 is coated with an amorphous carbon film. Since the amorphous carbon film is hard, the wear of the tool is suppressed, and since it has high lubricity, the chips are easily discharged along the chip discharge groove to the base end portion of the tool body 1, and the chips. Prevents clogging and makes it difficult to break.

また、本実施例においては、潤滑性皮膜として、炭素原子を主体として構成されビッカース硬さが3000以上である高硬度の非晶質炭素(DLC)から成る非晶質炭素皮膜を採用しているが、ビッカース硬さが2000以上であれば、比較的低硬度の非晶質炭素(DLC)若しくはDLCと他の物質(例えば金属)との混合物から成る皮膜を採用しても良いし、クロム窒化物等、他の潤滑性皮膜を採用しても良い。   In this embodiment, an amorphous carbon film made of high-hardness amorphous carbon (DLC) composed mainly of carbon atoms and having a Vickers hardness of 3000 or more is used as the lubricating film. However, if the Vickers hardness is 2000 or more, a film made of a relatively low hardness amorphous carbon (DLC) or a mixture of DLC and another substance (for example, metal) may be used, or chromium nitride Other lubricating films such as materials may be employed.

尚、本実施例においては、非晶質炭素皮膜は基材直上に形成しているが、例えば、基材直上に、周期律表の4a、5a、6a族及びSiから選択される1種若しくは2種以上の元素からなる金属若しくは半金属から成り、膜厚が200nm以下1nm以上である下層皮膜層(下地膜)を形成し、この下層皮膜層の上に前記非晶質炭素皮膜を形成する構成としても良い。また、下層皮膜層としては、上記構成に限らず、周期律表の4a、5a、6a族及びSiから選択される1種若しくは2種以上の元素と窒素及び炭素から選択される1種以上の元素との化合物から成るものを採用しても良い。   In this example, the amorphous carbon film is formed immediately above the base material. For example, the amorphous carbon film is directly selected from the group 4a, 5a, 6a and Si in the periodic table, or just above the base material. A lower film layer (undercoat film) made of a metal or metalloid composed of two or more elements and having a film thickness of 200 nm or less and 1 nm or more is formed, and the amorphous carbon film is formed on the lower film layer. It is good also as a structure. In addition, the lower coating layer is not limited to the above-described configuration, but one or more elements selected from Group 4a, 5a, 6a and Si of the periodic table and Si and one or more elements selected from nitrogen and carbon You may employ | adopt what consists of a compound with an element.

また、本実施例では非晶質炭素皮膜や下地膜の成膜の際、アークイオンプレーティング方式の成膜装置を用いたが、スパッタリング方式やレーザーアブレーション方式などのPVD成膜装置を使っても良い。   In this embodiment, an arc ion plating film forming apparatus is used for forming an amorphous carbon film or an undercoat film. However, a PVD film forming apparatus such as a sputtering method or a laser ablation method may be used. good.

本発明はPCBなどの非鉄系被削材の穴明け加工等に使用する非晶質炭素皮膜等の潤滑性皮膜が被覆されたドリルとして発明されたものであるが、その基材としては、WCを主成分とする硬質粒子とCoを主成分とする結合材からなる超硬合金が、硬度と靭性のバランスが取れた材料であることから望ましい。   The present invention was invented as a drill coated with a lubricating film such as an amorphous carbon film used for drilling a non-ferrous work material such as PCB. A cemented carbide alloy composed of hard particles mainly composed of Co and a binder mainly composed of Co is desirable because it is a material having a balance between hardness and toughness.

WC粒子の平均粒径を小さくしすぎると、結合材中にWC粒子を均一に分散させることが難しくなり、超硬合金の抗折力低下を引き起こしやすい。一方、WC粒子を大きくしすぎると超硬合金の硬度が低下する。また、Co含有量を少なくしすぎると超硬合金の抗折力が低下し、逆にCo含有量を多くしすぎると超硬合金の硬度が低下する。そのため、WC粒子の平均粒径が0.1μm〜2μmであり、Co含有量が重量%で5〜15%の超硬合金を基材とすることが望ましい。   If the average particle size of the WC particles is too small, it will be difficult to uniformly disperse the WC particles in the binder, which tends to cause a reduction in the bending strength of the cemented carbide. On the other hand, if the WC particles are too large, the hardness of the cemented carbide decreases. Further, if the Co content is too small, the bending strength of the cemented carbide decreases, and conversely if the Co content is excessively increased, the hardness of the cemented carbide decreases. Therefore, it is desirable to use a cemented carbide having a mean particle size of WC particles of 0.1 μm to 2 μm and a Co content of 5 to 15% by weight as a base material.

また、PCBなどの難削材に対して皮膜剥離のない安定した穴明け加工を行うためには、基材と非晶質炭素皮膜との密着性をより高くすることが望ましい。Ti,Cr,Taなどの周期律表の4a,5a,6a族元素及びSiから選択される1種若しくは2種以上の元素から成る金属または半金属を基材直上に下地膜として成膜し、その上に非晶質炭素皮膜を成膜することで、基材と非晶質炭素皮膜の密着性をより高めることができる。また、周期律表の4a,5a,6a族及びSiから選択される1種若しくは2種以上の元素と窒素及び炭素から選択される1種以上の元素との化合物を基材直上に下地膜として成膜しても良い。   Further, in order to perform a stable drilling process without peeling of a film on a difficult-to-cut material such as PCB, it is desirable to increase the adhesion between the base material and the amorphous carbon film. A metal or a semimetal composed of one or more elements selected from the group 4a, 5a, 6a elements of the periodic table such as Ti, Cr, Ta, and Si and a base metal film is formed directly on the substrate. By forming an amorphous carbon film thereon, the adhesion between the substrate and the amorphous carbon film can be further enhanced. In addition, a compound of one or more elements selected from Group 4a, 5a, 6a and Si of the periodic table and one or more elements selected from nitrogen and carbon is used as a base film directly on the substrate. A film may be formed.

下地膜は基材と非晶質炭素皮膜との密着性を向上させる目的で成膜されるので、あまり厚すぎても意味がなく、200nm以下1nm以上の膜厚にすることが望ましい。   Since the base film is formed for the purpose of improving the adhesion between the base material and the amorphous carbon film, it is meaningless if it is too thick, and it is desirable to make the film thickness 200 nm or less and 1 nm or more.

本実施例は上述のように構成したから、穴明け加工時に工具先端部で生じた切り屑が切り屑排出溝2,3に沿って排出される際、主溝2と副溝3との連設部4において切り屑同士が衝突することで、切り屑が(工具径方向に)強制的に飛散せしめられ、工具基端部まで到達し難くなるため、工具基端部における切り屑の巻き付きが防止されることになる。   Since the present embodiment is configured as described above, when chips generated at the tip of the tool at the time of drilling are discharged along the chip discharge grooves 2, 3, the connection between the main groove 2 and the sub-groove 3 is performed. Since the chips collide with each other in the installation portion 4, the chips are forcibly scattered (in the tool radial direction) and do not easily reach the tool base end, so that the chips are wound around the tool base end. Will be prevented.

また、連設部4以降、主溝2と副溝3とを並走させることで、複数の切り屑排出溝を連設させずに夫々独立して設けた場合に比し、溝容積を小さくして剛性を確保することが可能となり、それだけ穴位置精度を改善することができる。   In addition, since the main groove 2 and the sub-groove 3 are run side by side after the continuous portion 4, the groove volume is reduced as compared with the case where a plurality of chip discharge grooves are provided independently without being provided continuously. Thus, rigidity can be ensured, and the hole position accuracy can be improved accordingly.

更に、主溝2と副溝3の溝長を異ならせることで、複数の切り屑排出溝の溝長を同じ長さにした場合に比し、折損の起点となり易い工具基端側(根元部)で剛性を確保することが可能となり、耐折損性を改善することができる。   Further, by making the groove lengths of the main groove 2 and the sub-groove 3 different from each other, the tool base end side (the root portion) that is likely to be a starting point of breakage compared to the case where the groove lengths of the plurality of chip discharge grooves are made the same. ) Makes it possible to ensure rigidity and improve breakage resistance.

よって、本実施例は、樹脂付きアルミ板を当て板として用いた場合でも、折損し難く且つ切り屑排出性も飛躍的に良好となって切り屑の巻き付きを防止でき、直径が0.7mm以下、特に0.4mm以下の小径ドリルであっても、折損寿命が長く穴位置精度が良好で安定した穴明け加工が実現可能な極めて実用性に秀れた穴明け工具となる。   Therefore, in this example, even when an aluminum plate with a resin is used as a backing plate, it is difficult to break and the chip discharge performance is remarkably improved, so that the chip can be prevented from being wound and the diameter is 0.7 mm or less. In particular, even a small-diameter drill of 0.4 mm or less is a highly practical drilling tool that has a long breakage life and good hole position accuracy and can realize stable drilling.

本実施例の効果を裏付ける実験例について説明する。   An experimental example supporting the effect of the present embodiment will be described.

図10は、副溝長を変化させて(それに伴い切れ上がり狭角も変化させて)穴位置精度及び巻き付き残りを評価した実験条件及び実験結果を示す表である。この実験で使用したドリルは、工具直径を0.1mm、主溝2の溝長を1.8mmとし、従来例を従来の2枚刃2溝形状のドリル(2つの切り屑排出溝のねじれ角はいずれも45°一定)とし、実験例1〜10は、図6に図示した態様で主溝と副溝とを連設し、実験例11は図8に図示した態様で主溝と副溝とを連設し、その他、心厚、先端角など、他の仕様を同じ値としている。また、各ドリルには非晶質炭素皮膜(DLC)を被覆している。   FIG. 10 is a table showing experimental conditions and experimental results in which the hole position accuracy and the remaining winding are evaluated by changing the sub-groove length (and changing the cut-off narrow angle accordingly). The drill used in this experiment had a tool diameter of 0.1 mm and a groove length of the main groove 2 of 1.8 mm. The conventional example is a conventional two-blade, two-groove drill (twist angle of two chip discharge grooves). In each of Experimental Examples 1 to 10, the main groove and the auxiliary groove are connected in the manner shown in FIG. 6, and in Experimental Example 11, the main groove and the auxiliary groove are shown in FIG. And other specifications such as core thickness and tip angle are set to the same value. Each drill is covered with an amorphous carbon film (DLC).

この実験では、難削材である半導体パッケージ用のPCB(基板:厚さ0.15mm/表裏両面Cu層)を4枚重ねてその上面に当て板として厚さ0.11mmの樹脂付きアルミ板を載置し、貫通穴加工ができるように前記PCBの下面には捨て板として一般に使用されている厚さ1.5mmの紙フェノール材を配置した。またドリル(スピンドル)の回転数を200krpm、送り速度を1.8m/min、上昇速度を25.4m/minとし、設定ヒット数を3,000ヒットとした。   In this experiment, four PCBs for a semiconductor package, which is a difficult-to-cut material (substrate: thickness 0.15 mm / both front and back Cu layers), are stacked, and an aluminum plate with a resin having a thickness of 0.11 mm is used as a backing plate on the upper surface. A 1.5-mm-thick paper phenolic material generally used as a discarded plate was placed on the lower surface of the PCB so that it could be placed and processed through holes. The number of revolutions of the drill (spindle) was 200 krpm, the feed rate was 1.8 m / min, the ascent rate was 25.4 m / min, and the set hit number was 3,000 hits.

図10より、実験例1〜8,11は、従来例に比しいずれも巻き付き残りが少ないことが確認できた。特に、図11に示すように、実験例11は巻き付き残りがほとんどなく最も良好であることが確認できた。これは両者のねじれ角を途中で変化させることで、切り屑飛散効果がより高まったためと考えられる。   From FIG. 10, it was confirmed that all of Experimental Examples 1 to 8 and 11 had less winding residue than the conventional example. In particular, as shown in FIG. 11, it was confirmed that Experimental Example 11 was the most favorable with almost no winding residue. This is considered to be because the effect of chip scattering was further increased by changing the twist angle between the two.

また、実験例1〜8,11は、従来例に比しいずれも穴位置精度が良好であることが確認できた。また、副溝長が主溝長の56〜89%の場合で且つ切れ上がり狭角が106〜180°の範囲の実験例2,4,6,7,11は、穴位置精度が特に良好となることが確認できた。尚、副溝長が主溝長の56〜89%の範囲内である実験例3,5,8においては、穴位置精度は従来例に比し良好となっているが、切れ上がり狭角が小さいために、突発的な穴曲がりを引き起こし、Max値が大きくなってしまい(図10においてはMax飛びと表現)、安定した穴加工が得られない可能性がある。また、実験例1においては、穴位置精度は従来例に比し良好となっているが、主溝2の溝長と副溝3の溝長が同じであり、且つ切れ上がり狭角が小さいという両者の要因により、同様にMax飛びが発生し、安定した穴加工が得られない可能性がある。   Moreover, it has confirmed that all of Experimental Examples 1-8 and 11 had favorable hole position precision compared with the prior art example. Further, in Experimental Examples 2, 4, 6, 7, and 11 in which the minor groove length is 56 to 89% of the main groove length and the cut-off narrow angle is in the range of 106 to 180 °, the hole position accuracy is particularly good. It was confirmed that In Experimental Examples 3, 5, and 8 in which the sub-groove length is in the range of 56 to 89% of the main groove length, the hole position accuracy is better than the conventional example, but the cut-off narrow angle is small. Since it is small, sudden hole bending is caused, and the Max value becomes large (expressed as Max jump in FIG. 10), and there is a possibility that stable hole machining cannot be obtained. In Experimental Example 1, the hole position accuracy is better than that of the conventional example, but the groove length of the main groove 2 and the groove length of the sub groove 3 are the same, and the cut-off narrow angle is small. Due to both factors, Max jump occurs in the same manner, and there is a possibility that stable drilling cannot be obtained.

尚、副溝長が極端に短い実験例9,10ではドリルが折損した。これは切り屑排出性が悪化したためと考えられる。   In Examples 9 and 10 in which the minor groove length was extremely short, the drill was broken. This is thought to be due to the deterioration of chip discharge.

以上から、切り屑の巻き付き残りは切れ上がり狭角には依存せず、穴位置精度にのみ影響を与えることが確認でき、副溝長と切れ上がり狭角とが共に上記の範囲内に含まれる実験例2,4,6,7,11は、巻き付き残りが少なく且つ穴位置精度も良好な穴明け工具となることが確認できた。   From the above, it can be confirmed that the remaining winding of the chips does not depend on the cut-off narrow angle and only affects the hole position accuracy, and both the minor groove length and the cut-off narrow angle are included in the above range. It was confirmed that Experimental Examples 2, 4, 6, 7, and 11 were drilling tools with little winding residue and good hole position accuracy.

1 工具本体
2 切り屑排出溝
3 切り屑排出溝
4 連設部
5 切れ上がり端点
6 切れ上がり端点
O 工具軸心
DESCRIPTION OF SYMBOLS 1 Tool main body 2 Chip discharge groove 3 Chip discharge groove 4 Connection part 5 Rounding up end point 6 Rounding up end point O Tool axis

Claims (9)

工具本体の先端に1つ若しくは複数の切れ刃が設けられ、この工具本体の外周に工具先端から基端側に向かう複数の螺旋状の切り屑排出溝が設けられ、この複数の切り屑排出溝は1つの主溝と1つ以上の副溝とを含み、前記主溝の途中部に前記副溝が連設される穴明け工具であって、前記主溝及び前記副溝のねじれ角は該主溝と該副溝との連設部から工具基端側において略等しい角度に設定され、前記副溝の溝長は前記主溝の溝長の50〜95%に設定され、前記副溝が前記連設部から前記主溝の終端より手前の所定位置まで前記主溝と並走するように設けられていることを特徴とする穴明け工具。   One or a plurality of cutting edges are provided at the tip of the tool body, and a plurality of spiral chip discharge grooves extending from the tool tip to the base end side are provided on the outer periphery of the tool body. Is a drilling tool including one main groove and one or more sub-grooves, and the sub-grooves are provided in the middle of the main groove, and the twist angles of the main grooves and the sub-grooves are The angle between the main groove and the auxiliary groove is set to be substantially equal on the tool base end side, the groove length of the auxiliary groove is set to 50 to 95% of the groove length of the main groove, and the auxiliary groove is A drilling tool, wherein the drilling tool is provided so as to run in parallel with the main groove from the continuous portion to a predetermined position before the end of the main groove. 工具本体の先端に1つ若しくは複数の切れ刃が設けられ、この工具本体の外周に工具先端から基端側に向かう複数の螺旋状の切り屑排出溝が設けられ、この複数の切り屑排出溝は1つの主溝と1つ以上の副溝とを含み、前記主溝の途中部に前記副溝が連設される穴明け工具であって、前記主溝及び前記副溝のねじれ角は該主溝と該副溝との連設部から工具基端側において略等しい角度に設定され、前記副溝の溝長は前記主溝の溝長の70〜95%に設定され、前記副溝が前記連設部から前記主溝の終端より手前の所定位置まで前記主溝と並走するように設けられていることを特徴とする穴明け工具。   One or a plurality of cutting edges are provided at the tip of the tool body, and a plurality of spiral chip discharge grooves extending from the tool tip to the base end side are provided on the outer periphery of the tool body. Is a drilling tool including one main groove and one or more sub-grooves, and the sub-grooves are provided in the middle of the main groove, and the twist angles of the main grooves and the sub-grooves are The tool groove is set at an approximately equal angle on the tool proximal side from the connecting portion of the main groove and the sub groove, and the groove length of the sub groove is set to 70 to 95% of the groove length of the main groove. A drilling tool, wherein the drilling tool is provided so as to run in parallel with the main groove from the continuous portion to a predetermined position before the end of the main groove. 請求項1,2いずれか1項に記載の穴明け工具において、前記連設部における前記主溝と前記副溝との連設溝幅は、連設前の前記主溝の溝幅の1.1〜1.9倍であることを特徴とする穴明け工具。   The drilling tool according to any one of claims 1 and 2, wherein the continuous groove width between the main groove and the sub-groove in the continuous portion is 1 of the groove width of the main groove before continuous connection. A drilling tool characterized by being 1 to 1.9 times. 請求項1,2いずれか1項に記載の穴明け工具において、前記連設部における前記主溝と前記副溝との連設溝幅は、連設前の前記主溝の溝幅の1.3〜1.8倍であることを特徴とする穴明け工具。   The drilling tool according to any one of claims 1 and 2, wherein the continuous groove width between the main groove and the sub-groove in the continuous portion is 1 of the groove width of the main groove before continuous connection. Drilling tool characterized by being 3 to 1.8 times. 請求項1〜4いずれか1項に記載の穴明け工具において、前記連設部の始端は工具先端から工具直径の2倍以上の位置で且つ前記主溝の溝長の50%以下の位置に設けられていることを特徴とする穴明け工具。   5. The drilling tool according to claim 1, wherein the start end of the continuous portion is at a position that is at least twice the tool diameter from the tool tip and at a position that is 50% or less of the groove length of the main groove. A drilling tool characterized by being provided. 請求項1〜5いずれか1項に記載の穴明け工具において、前記主溝及び副溝の終端の切れ上がり端点を含む夫々の工具軸直角断面における、前記主溝の切れ上がり端点と工具の回転軸心とを結ぶ第一の線及び前記副溝の切れ上がり端点と工具の回転軸心とを結ぶ第二の線を、工具の軸方向視における同一の軸直角投影面に投影した際、この投影面において前記第一の線と前記第二の線とがなす狭角のうち、少なくとも1つの狭角が90°より大きく180°以下であることを特徴とする穴明け工具。   The drilling tool according to any one of claims 1 to 5, wherein the main groove has a rounded end point and a rotation of the tool in a cross section perpendicular to the tool axis, including the rounded end points at the ends of the main groove and the secondary groove. When the first line connecting the axis and the second line connecting the cut end point of the sub-groove and the rotation axis of the tool are projected onto the same axis orthogonal projection plane in the axial view of the tool, A drilling tool characterized in that at least one of the narrow angles formed by the first line and the second line on the projection plane is greater than 90 ° and equal to or less than 180 °. 請求項1〜6いずれか1項に記載の穴明け工具において、前記切り屑排出溝として前記主溝と前記副溝とが1つずつ設けられていることを特徴とする穴明け工具。   The drilling tool according to any one of claims 1 to 6, wherein each of the main groove and the sub-groove is provided as the chip discharge groove. 請求項1〜7いずれか1項に記載の穴明け工具において、潤滑性皮膜として非晶質炭素皮膜が被覆されていることを特徴とする穴明け工具。   The drilling tool according to any one of claims 1 to 7, wherein an amorphous carbon film is coated as a lubricating film. 請求項1〜8いずれか1項に記載の穴明け工具において、工具直径が0.4mm以下であることを特徴とする穴明け工具。   The drilling tool according to any one of claims 1 to 8, wherein the tool diameter is 0.4 mm or less.
JP2010260090A 2010-11-22 2010-11-22 Drilling tool Active JP5140142B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010260090A JP5140142B2 (en) 2010-11-22 2010-11-22 Drilling tool
TW100113554A TWI455780B (en) 2010-11-22 2011-04-19 Drilling tool
CN201110142912.9A CN102476209B (en) 2010-11-22 2011-05-30 Drilling tool
KR1020110076952A KR101329881B1 (en) 2010-11-22 2011-08-02 Drilling tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010260090A JP5140142B2 (en) 2010-11-22 2010-11-22 Drilling tool

Publications (2)

Publication Number Publication Date
JP2012110984A true JP2012110984A (en) 2012-06-14
JP5140142B2 JP5140142B2 (en) 2013-02-06

Family

ID=46089056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010260090A Active JP5140142B2 (en) 2010-11-22 2010-11-22 Drilling tool

Country Status (4)

Country Link
JP (1) JP5140142B2 (en)
KR (1) KR101329881B1 (en)
CN (1) CN102476209B (en)
TW (1) TWI455780B (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013099326A1 (en) * 2011-12-28 2013-07-04 京セラ株式会社 Drill and method for manufacturing drilled product using same
JP2013198977A (en) * 2013-02-28 2013-10-03 Union Tool Co Drilling tool
WO2015029963A1 (en) * 2013-08-26 2015-03-05 京セラ株式会社 Drill and method for manufacturing cut product using same
JP2016534889A (en) * 2013-08-26 2016-11-10 深▲せん▼市金洲精工科技股▲ふん▼有限公司 Micro drill
TWI621487B (en) * 2015-06-29 2018-04-21 京瓷股份有限公司 Rod-like article, cutting tool and manufacturing method of cutting tool
CN108080679A (en) * 2017-12-26 2018-05-29 深圳市金洲精工科技股份有限公司 A kind of drill bit
JP2018167341A (en) * 2017-03-29 2018-11-01 京セラ株式会社 Drill and manufacturing method of cutting workpiece
CN110757601A (en) * 2019-11-06 2020-02-07 湖北鑫运祥科技发展有限公司 V-shaped diamond shank milling cutter and manufacturing method thereof
US11123809B2 (en) 2018-06-14 2021-09-21 Black & Decker Inc. Drill bit

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI523714B (en) * 2012-05-31 2016-03-01 創國興業有限公司 Drill structure
CN102922007B (en) * 2012-10-29 2016-08-24 深圳市金洲精工科技股份有限公司 A kind of micro-brill of PCB and processing method thereof
TWM449048U (en) * 2012-11-06 2013-03-21 Tct Global Ltd Drill structure
JP5702431B2 (en) * 2013-04-25 2015-04-15 ユニオンツール株式会社 Drilling tool
JP5873532B2 (en) * 2014-07-08 2016-03-01 ユニオンツール株式会社 Drilling tool

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0460608U (en) * 1990-09-28 1992-05-25
JPH0680512U (en) * 1993-04-27 1994-11-15 東芝タンガロイ株式会社 Twist drill
JP2002144122A (en) * 2000-11-09 2002-05-21 Mitsubishi Materials Corp Drill
JP2006218589A (en) * 2005-02-14 2006-08-24 Hitachi Tool Engineering Ltd Amorphous carbon film coated member
JP2007307642A (en) * 2006-05-17 2007-11-29 Sumitomo Electric Hardmetal Corp Drill
JP2009190116A (en) * 2008-02-14 2009-08-27 Union Tool Co Drilling tool
JP3162901U (en) * 2010-06-18 2010-09-24 鄭 黄錚 Single-edged drill bit structure
JP2010253616A (en) * 2009-04-24 2010-11-11 Tungaloy Corp Drilling tool
JP2012011489A (en) * 2010-06-30 2012-01-19 Union Tool Co Drilling tool

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE524021A (en) * 1951-10-12
EP0211106A3 (en) * 1985-08-03 1987-09-02 HAWERA Präzisionswerkzeuge GmbH Drill with a plurality of lips
US5888036A (en) * 1990-02-27 1999-03-30 Hitachi Seiko, Ltd. Drill bit and step feeding method
JP3164479B2 (en) * 1994-11-01 2001-05-08 兼房株式会社 Rotary drilling tool
US5584617A (en) * 1995-04-04 1996-12-17 International Business Machines Corporation Single flute drill for drilling holes in printed circuit boards and method of drilling holes in a printed circuit board
JP4415485B2 (en) * 2000-11-14 2010-02-17 三菱マテリアル株式会社 Small drill
JP4239414B2 (en) 2001-01-10 2009-03-18 三菱マテリアル株式会社 Drill
TWM273407U (en) * 2004-12-24 2005-08-21 Huang-Jeng Jeng Structure of multiple-helical-angle cutting tool
CN101227992A (en) * 2005-07-20 2008-07-23 Osg株式会社 Drill bit
CN201102088Y (en) * 2007-04-18 2008-08-20 张茂治 Machining tool bit for circuit board wire lead slot
TWM351757U (en) * 2008-08-27 2009-03-01 Topoint Technology Co Ltd Helix angle structure of drill bit
KR20100043798A (en) * 2008-10-21 2010-04-29 삼성전기주식회사 Drill bit
CN101791717B (en) * 2010-03-22 2011-07-27 深圳市金洲精工科技股份有限公司 Minitype drill bit and processing method thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0460608U (en) * 1990-09-28 1992-05-25
JPH0680512U (en) * 1993-04-27 1994-11-15 東芝タンガロイ株式会社 Twist drill
JP2002144122A (en) * 2000-11-09 2002-05-21 Mitsubishi Materials Corp Drill
JP2006218589A (en) * 2005-02-14 2006-08-24 Hitachi Tool Engineering Ltd Amorphous carbon film coated member
JP2007307642A (en) * 2006-05-17 2007-11-29 Sumitomo Electric Hardmetal Corp Drill
JP2009190116A (en) * 2008-02-14 2009-08-27 Union Tool Co Drilling tool
JP2010253616A (en) * 2009-04-24 2010-11-11 Tungaloy Corp Drilling tool
JP3162901U (en) * 2010-06-18 2010-09-24 鄭 黄錚 Single-edged drill bit structure
JP2012011489A (en) * 2010-06-30 2012-01-19 Union Tool Co Drilling tool

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013099326A1 (en) * 2011-12-28 2015-04-30 京セラ株式会社 Drill and method of manufacturing cut product using the same
WO2013099326A1 (en) * 2011-12-28 2013-07-04 京セラ株式会社 Drill and method for manufacturing drilled product using same
KR101594659B1 (en) 2013-02-28 2016-02-16 유니온쓰루 가부시키가이샤 Drilling tool
KR20140108106A (en) * 2013-02-28 2014-09-05 유니온쓰루 가부시키가이샤 Drilling tool
CN104014853A (en) * 2013-02-28 2014-09-03 佑能工具株式会社 Drilling tool
JP2013198977A (en) * 2013-02-28 2013-10-03 Union Tool Co Drilling tool
WO2015029963A1 (en) * 2013-08-26 2015-03-05 京セラ株式会社 Drill and method for manufacturing cut product using same
JP2016534889A (en) * 2013-08-26 2016-11-10 深▲せん▼市金洲精工科技股▲ふん▼有限公司 Micro drill
JPWO2015029963A1 (en) * 2013-08-26 2017-03-02 京セラ株式会社 Drill and method of manufacturing cut product using the same
US9969012B2 (en) 2013-08-26 2018-05-15 Kyocera Corporation Drill and method for manufacturing cut product using same
TWI621487B (en) * 2015-06-29 2018-04-21 京瓷股份有限公司 Rod-like article, cutting tool and manufacturing method of cutting tool
JP2018167341A (en) * 2017-03-29 2018-11-01 京セラ株式会社 Drill and manufacturing method of cutting workpiece
CN108080679A (en) * 2017-12-26 2018-05-29 深圳市金洲精工科技股份有限公司 A kind of drill bit
US11123809B2 (en) 2018-06-14 2021-09-21 Black & Decker Inc. Drill bit
CN110757601A (en) * 2019-11-06 2020-02-07 湖北鑫运祥科技发展有限公司 V-shaped diamond shank milling cutter and manufacturing method thereof

Also Published As

Publication number Publication date
TW201221254A (en) 2012-06-01
JP5140142B2 (en) 2013-02-06
TWI455780B (en) 2014-10-11
CN102476209A (en) 2012-05-30
CN102476209B (en) 2015-05-06
KR20120055442A (en) 2012-05-31
KR101329881B1 (en) 2013-11-15

Similar Documents

Publication Publication Date Title
JP5140142B2 (en) Drilling tool
JP4505007B2 (en) Drilling tool
JP5385976B2 (en) Drill and cutting method of work material using the drill
TWI549766B (en) Drilling tool
JP5066229B2 (en) Drilling tool
US10357832B2 (en) Drill and method for manufacturing machined product using same
KR101701023B1 (en) Drilling tool
JP2012223882A (en) Drilling tool and drilling method of fiber-reinforced composite material
JP2011212804A (en) Drilling tool
JP5474227B2 (en) Drilling tool
JP2008142834A (en) Drill
JP2020023051A (en) Drill
WO2012053090A1 (en) Three-bladed drill
JP2004090150A (en) Surface cover cutting tool
JP2006212724A (en) Drill for high efficiency machining of aluminum
JP6127341B2 (en) 3-flute twist drill
WO2023032180A1 (en) Drill
JP2002205214A (en) Drill
JP2001341015A (en) Twist drill for cutting stainless steel
JP2011173215A (en) Drill
JP2000084719A (en) Boring tool
JP2006167848A (en) Deep hole drill with spiral through-hole
JP2006130570A (en) Twist drill

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121018

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121116

R150 Certificate of patent or registration of utility model

Ref document number: 5140142

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250