JP2000084719A - Boring tool - Google Patents

Boring tool

Info

Publication number
JP2000084719A
JP2000084719A JP10260654A JP26065498A JP2000084719A JP 2000084719 A JP2000084719 A JP 2000084719A JP 10260654 A JP10260654 A JP 10260654A JP 26065498 A JP26065498 A JP 26065498A JP 2000084719 A JP2000084719 A JP 2000084719A
Authority
JP
Japan
Prior art keywords
core
thickness
thick portion
web thickness
core thick
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10260654A
Other languages
Japanese (ja)
Inventor
Koji Masamoto
浩司 柾本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP10260654A priority Critical patent/JP2000084719A/en
Publication of JP2000084719A publication Critical patent/JP2000084719A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To enhance rigidity and improve bore position accuracy. SOLUTION: A small size drill 20 for through holes of a printed board is provided with a pair of chip discharge grooves on the outer circumferential surface of an edge 5, which includes a cutting edge on the tip, from the tip toward the base end. The web thickness 22 of the edge 5 is equipped with a first web thickness portion 24 including approximately identical thickness dimension from a d1 on the end to a d2 on the base end side of the web thickness 22 of the edge 5, a second web thickness portion 26 including web thickness of approximately identical thickness from d3 to d4 larger than the first web thickness portion 24, and an intermediate thickness portion 28 smoothly connecting the first and the second web thickness portions 24, 26 together. The intermediate web thickness portion 28 is of approximately a tapered shape having an inclination of a range from 1/20 to 1/1. Thus not only is the shape of the web thickness portions kept unchanged even if the cutting edge is repolished but chip discharging property and breaking-proof property are satisfactory.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、主としてプリント
基板に小径の孔を穿設するのに用いられる小型ドリルな
どの穴明け工具に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a drilling tool such as a small drill used mainly for drilling a small-diameter hole in a printed circuit board.

【0002】[0002]

【従来の技術】一般にプリント基板に穴明け加工するた
めに用いる小型ドリルは、穿孔すべき孔がきわめて小径
であるため、ドリル本体の刃部の先端に例えば外径0.
1〜3.175mm程度の小径の切刃が設けられ、後端
側にドリル本体を工作機械の回転軸に把持するための比
較的大径のシャンク部が刃部と一体にまたはろう付け等
で接続されて設けられている。刃部の材質は、通常、超
硬合金が採用され、シャンク部は超硬合金やスチール等
の鋼材等が採用されている。ところで、小型ドリルでプ
リント基板に穿孔する場合、通常、プリント基板は合成
樹脂板にアルミ箔、銅箔、ガラス繊維等が付着されて形
成されており、穿孔時には、図4に示すように複数枚、
例えば4枚のプリント基板1を積層し、更にその上下に
あて板2と敷板3を密着させた状態で、小型ドリル4を
用いて4枚のプリント基板に一気に穿孔することにな
る。
2. Description of the Related Art Generally, a small drill used for boring a printed circuit board has a very small hole to be drilled.
A cutting blade having a small diameter of about 1-3.175 mm is provided, and a relatively large shank portion for gripping a drill body on a rotating shaft of a machine tool at the rear end side is integrated with the blade portion or by brazing or the like. They are connected and provided. The material of the blade portion is usually a cemented carbide, and the shank portion is a cemented carbide or a steel material such as steel. By the way, when a small drill is used to pierce a printed circuit board, usually, the printed circuit board is formed by attaching aluminum foil, copper foil, glass fiber, or the like to a synthetic resin plate. ,
For example, four printed circuit boards 1 are laminated, and furthermore, a small drill 4 is used to punch holes in the four printed circuit boards at once at a state in which the contact plate 2 and the floor plate 3 are in close contact with each other.

【0003】このような小型ドリル4は、例えば図5及
び図6に示す構成を備えている。即ち、ドリル本体とし
て刃部5とシャンク部6とを備えており、刃部5の外周
面には、その先端面7から基端側に向けて回転軸線Oを
中心に例えば一対の切屑排出溝8,8が対向して螺旋状
に形成されている。各切屑排出溝8,8と先端面7との
交差稜線は一対の切刃9,9とされており、先端面7は
例えば鈍角の先端角を備えていて各切刃9,9の逃げ面
とされ、切屑排出溝8,8の先端側領域がすくい面とさ
れている。図6に示す先端面7において、切刃9の外側
端縁につながる刃部5の外周面は、切刃9,9の外側端
縁につながるマージン10と、マージン10より回転軸
線Oからの外径寸法が短く設定された外周逃げ面11
(二番取り面)とで形成されている。そして回転軸線O
を含む切屑排出溝8,8間の厚み部分は芯厚部13とさ
れている。芯厚部13は図6に示す刃部5の先端面7に
おいて厚み寸法t0を備え、図7における回転軸線Oに
沿う芯厚部13の形状を説明するための仮想的な断面図
で示すように、刃部5の先端面7から切屑排出溝8,8
の終端部まで漸次厚みtがt0から均一に増大するよう
に断面視直線をなすテーパ状に形成されている。
[0003] Such a small drill 4 has, for example, a structure shown in Figs. That is, a drill body is provided with a blade portion 5 and a shank portion 6, and the outer peripheral surface of the blade portion 5 has, for example, a pair of chip discharge grooves around a rotation axis O from a distal end surface 7 to a proximal end side. 8, 8 are spirally formed facing each other. The intersection ridge line between each chip discharge groove 8, 8 and the front end face 7 is a pair of cutting edges 9, 9, and the front end face 7 has, for example, an obtuse end angle, and the flank face of each cutting edge 9, 9 is provided. The tip side area of the chip discharge grooves 8 is a rake face. In the front end face 7 shown in FIG. 6, the outer peripheral surface of the blade portion 5 connected to the outer edge of the cutting blade 9 has a margin 10 connected to the outer edge of the cutting blades 9, 9, and the outer side of the margin 10 from the rotation axis O. Peripheral flank 11 with short diameter
(Second face). And the rotation axis O
The thickness portion between the chip discharge grooves 8, 8 is a core thick portion 13. The core thick portion 13 has a thickness dimension t0 at the tip end surface 7 of the blade portion 5 shown in FIG. 6, and is shown in a virtual cross-sectional view for explaining the shape of the core thick portion 13 along the rotation axis O in FIG. In the meantime, the chip discharge grooves 8, 8
Is formed in a tapered shape that forms a straight line in a sectional view so that the thickness t gradually increases uniformly from t0 to the end portion of.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、プリン
ト基板は年々微細化と多層化が進み、これに伴い穴径の
小径深穴化、穴位置の高精度化の要求がますます厳しく
なっている。そのため、上述のような均一なテーパ状に
形成されている芯厚部13ではこれらの要求に十分対応
できなくなりつつある。即ち、上述のような均一なテー
パ状に形成されている芯厚部13を全体により厚くする
と小型ドリル4の剛性は増大するが、先端側においてス
ラスト抵抗が増大してプリント基板への食い付きが悪く
なって穴の位置ずれを生じ易くなり、基端側においても
芯厚部13が大きくなるために切屑排出溝8が浅くなっ
て深穴加工時に切屑の排出性が悪くなるという欠点があ
る。ドリルにおいては先端面7の先端角の頂点と重なる
回転軸線O上での食い付きの良さが穴位置精度を決定す
る。逆に芯厚部13の厚みを小さくして食い付きと切屑
排出性を良くするとドリル剛性が低下して折損しやすい
という欠点が生じる。また芯厚部13のテーパの傾斜を
大きくするとドリル剛性を高めながら切屑排出溝8の深
さを確保できるが、それでもアスペクト比が15以上に
なると切屑排出溝8の基端側では溝深さが一層浅くなる
ために同様に切屑排出性が悪化するという欠点がある。
また芯厚部13以外に刃部5の先端角やねじれ角、溝幅
比、マージン幅等を変化させたり組み合わせを変えたり
して穴加工試験をしてみても満足できる結果が得られな
かった。
However, printed circuit boards are becoming finer and multilayered year by year, and with this, there is an increasing demand for smaller hole diameters and deeper hole diameters, and higher precision in hole positions. Therefore, it is becoming difficult for the core thick portion 13 formed in the uniform taper shape as described above to sufficiently meet these requirements. That is, when the core thick portion 13 formed in a uniform taper shape as described above is made thicker as a whole, the rigidity of the small drill 4 is increased, but the thrust resistance is increased on the distal end side, and the bite on the printed circuit board is reduced. There is a disadvantage that the position of the hole is easily deteriorated and the displacement of the hole is liable to occur, and the chip thickness groove 13 is also large on the base end side, so that the chip discharge groove 8 becomes shallow and the chip discharge performance is deteriorated during deep hole processing. In the drill, the good biting on the rotation axis O overlapping the vertex of the tip angle of the tip face 7 determines the hole position accuracy. Conversely, if the thickness of the core thick portion 13 is reduced to improve the biting and chip discharging properties, there is a disadvantage in that the drill stiffness is reduced and the drill is easily broken. In addition, if the inclination of the taper of the core thick portion 13 is increased, the depth of the chip discharge groove 8 can be secured while increasing the drill rigidity. However, when the aspect ratio becomes 15 or more, the groove depth at the base end side of the chip discharge groove 8 is increased. There is also a disadvantage that the chip discharge performance is similarly deteriorated because the depth is further reduced.
In addition, satisfactory results were not obtained even when the hole forming test was performed by changing the tip angle, the torsion angle, the groove width ratio, the margin width, and the like of the blade portion 5 in addition to the core thickness portion 13 and changing the combination. .

【0005】本発明は、このような実情に鑑みて、穴加
工精度を向上させると共にドリル剛性を維持できるよう
にした穴明け工具を提供することを目的とする。
The present invention has been made in view of the above circumstances, and has as its object to provide a drilling tool capable of improving drilling accuracy and maintaining drill rigidity.

【0006】[0006]

【課題を解決するための手段】本発明にかかる穴明け工
具は、刃部とシャンク部とを備え、刃部の外周面に先端
側から基端側に向けて切屑排出溝が設けられ、この切屑
排出溝と刃部の先端面との交差稜線に切刃が設けられて
なる穴明け工具において、刃部の芯厚が、先端側から基
端側に向けてほぼ同一の厚み寸法を有する第一芯厚部
と、この第一芯厚部より厚み寸法が大きく且つほぼ同一
の厚み寸法を有する第二芯厚部と、第一芯厚部及び第二
芯厚部を滑らかに接続する中間芯厚部とを備えたことを
特徴とする。第一芯厚部を比較的小さいほぼ同一の厚み
に設定することで、穴明け加工時の被削材への食い付き
がよくて穴位置ずれや穴曲がりを起こしにくくなり、切
刃が摩耗した際に再研磨しても芯厚の厚みがほとんど変
化しないために新品と同様な穴位置精度が得られる。し
かも第二芯厚部は第一芯厚部より厚みが大きいためにド
リルの剛性が高くなり、またほぼ同一の厚み寸法である
ために切屑排出性が良好である。そして中間芯厚部で第
一芯厚部の厚みから第二芯厚部の厚みまで滑らかに増大
しているために切屑流れがスムーズで切屑排出性が良
く、しかも厚みに段差がつけられたり階段状に急激に変
化したりしていないから第一芯厚部と第二芯厚部の接続
部に応力が集中することもなく工具の折損などを生じる
ことがない。尚、第一芯厚部と第二芯厚部においてほぼ
同一の厚みとはストレート状と微少のテーパ状とを含む
ものとする。
A drilling tool according to the present invention has a blade portion and a shank portion, and a chip discharge groove is provided on an outer peripheral surface of the blade portion from a tip side to a base end side. In a drilling tool in which a cutting edge is provided at an intersection ridge line between a chip discharge groove and a distal end surface of a blade portion, a core thickness of the blade portion has substantially the same thickness dimension from the distal side toward the proximal side. One core thick portion, a second core thick portion having a thickness larger than the first core thick portion and having substantially the same thickness, and an intermediate core for smoothly connecting the first core thick portion and the second core thick portion. And a thick portion. By setting the first core thickness part to be relatively small and almost the same thickness, the bite into the work material during drilling is good, it is difficult to cause hole displacement and hole bending, and the cutting blade has worn out Even when re-polishing, the thickness of the core thickness hardly changes, so that the same hole position accuracy as a new product can be obtained. In addition, the second core thick portion is thicker than the first core thick portion, so that the rigidity of the drill is high, and since the thickness is almost the same, the chip discharging property is good. And, since the thickness of the first core thick section increases smoothly from the thickness of the second core thick section in the middle core thick section, the chip flow is smooth and the chip discharge property is good, and there is a step difference in the thickness and the step Since the shape does not suddenly change, stress is not concentrated on the connection portion between the first thick core portion and the second thick core portion, and breakage of the tool does not occur. It should be noted that the substantially same thickness in the first core thick portion and the second core thick portion includes a straight shape and a slightly tapered shape.

【0007】尚、中間芯厚部の厚み変化は段差をつける
ことなく滑らかにすると共により急傾斜にした方が剛性
確保のためにより好ましい。また第一芯厚部の先端の厚
みをd1、第一芯厚部と中間芯厚部の接続部の厚みをd
2、中間芯厚部と第二芯厚部の接続部の厚みをd3、第
二芯厚部の後端の厚みをd4とし、刃部の切刃外径をD
としたとき、d1≦d2<d3≦d4とされ、かつd1
は0.15D〜0.60D、d2は0.15D〜0.7
0D、d3は0.30D〜0.90D、d4は0.30
D〜0.90Dの範囲に設定されていることとしてもよ
い。これによって特にD=3.175mm以下の小径ド
リルにおいて特に好適な特性を発揮できる。
[0007] It is more preferable to change the thickness of the intermediate core thick portion smoothly without a step and to make the thickness change more steeply in order to secure rigidity. The thickness of the tip of the first thick part is d1, and the thickness of the connection part between the first thick part and the middle thick part is d1.
2. The thickness of the connecting portion between the intermediate core thick portion and the second core thick portion is d3, the thickness of the rear end of the second core thick portion is d4, and the cutting blade outer diameter of the blade portion is D.
, D1 ≦ d2 <d3 ≦ d4, and d1
Is 0.15D to 0.60D, d2 is 0.15D to 0.7
0D, d3 is 0.30D to 0.90D, d4 is 0.30D
D to 0.90D. Thereby, particularly suitable characteristics can be exhibited particularly in a small-diameter drill with D = 3.175 mm or less.

【0008】また、刃部の切刃の直径が3.175mm
以下であってもよい。切刃の直径が3.175mm以下
となるような小径の小型ドリルにおいては刃部の外径が
比較的小さいために芯厚を本発明のように設定すること
で、穴位置精度を向上させると共に、切屑排出性、剛
性、耐折損性を良好にしてバランスさせることができ
る。また、中間芯厚部は1/20から1/1の範囲の傾
斜を備えた略テーパ形状とされていてもよい。傾斜が1
/20未満では第一芯厚部と第二芯厚部とで厚みの変化
が小さいために、第一芯厚部の厚みを大きくすれば剛性
は向上するが被削材への食い付きが悪く穴位置のずれや
穴曲がりを生じる等穴位置精度が低下したり切屑排出性
が低下し、逆に厚みを小さくすれば被削材への食い付き
と穴位置精度と切屑排出性が良くなるが、剛性が低下し
中間芯厚部等で折損しやすくなる。他方、傾斜が1/1
を越えると厚みの変化が急激になりすぎて略階段状に変
化するために切屑流れが悪くなり切屑排出性が低下する
上に中間芯厚部で応力が集中して折損しやすくなる。
The diameter of the cutting edge of the blade is 3.175 mm.
It may be as follows. In a small drill having a small diameter such that the cutting edge has a diameter of 3.175 mm or less, since the outer diameter of the blade portion is relatively small, setting the core thickness as in the present invention improves the hole position accuracy and In addition, the chip discharging property, the rigidity, and the breakage resistance can be improved and balanced. Further, the intermediate core thick portion may be formed in a substantially tapered shape having an inclination in a range of 1/20 to 1/1. 1 slope
If the thickness is less than / 20, the change in thickness between the first core thick part and the second core thick part is small. Therefore, if the thickness of the first core thick part is increased, the rigidity is improved, but the bite to the work material is poor. If the hole position shifts or the hole bends, the hole position accuracy decreases and the chip discharge performance decreases.On the contrary, if the thickness is reduced, the bite into the work material and the hole position accuracy and the chip discharge performance improve. , The rigidity is reduced, and it is easy to break in the middle core thick portion and the like. On the other hand, the slope is 1/1
If the thickness exceeds, the thickness changes too rapidly and changes in a substantially stepwise manner, so that the chip flow deteriorates, the chip discharge performance is reduced, and stress is concentrated at the intermediate core thick portion to cause breakage easily.

【0009】[0009]

【発明の実施の形態】以下、本発明の実施の形態を図1
により説明するが、上述の従来技術と同一または同様の
部分には同一の符号を用いて説明する。図1は実施の形
態による小型ドリルの芯厚部の形状を説明するための仮
想的な要部断面図である。図1に示すプリント基板穿孔
用の小型ドリル20は、従来技術の小型ドリル4と同様
に刃部5とシャンク部6からなり、刃部5の外周面に回
転軸線Oを挟んで一対の切屑排出溝8,8が対向して形
成されている。切屑排出溝8,8間に形成された芯厚部
22は刃部5の先端面7から切屑排出溝8の終端部まで
延在して形成されており、切屑排出溝8の延在方向に沿
う一対の切屑排出溝8,8間の最小厚み寸法が芯厚部2
2の厚み寸法diとされている。特に本実施の形態によ
る小型ドリル20では、芯厚部22は図1に示すように
先端側に位置していて比較的小さい厚み寸法の第一芯厚
部24と、基端側に位置していて第一芯厚部24より大
きい厚み寸法を有する第二芯厚部26と、第一及び第二
芯厚部24,26を接続して芯厚の厚み寸法diが滑ら
かに変化する例えばテーパ状の中間芯厚部28とを備え
て形成されている。
FIG. 1 is a block diagram showing an embodiment of the present invention.
However, the same or similar parts as those of the above-described related art will be described using the same reference numerals. FIG. 1 is a cross-sectional view of a virtual main part for describing the shape of a core thick portion of a small drill according to an embodiment. A small drill 20 for drilling a printed circuit board shown in FIG. 1 includes a blade portion 5 and a shank portion 6 like the small drill 4 of the prior art, and discharges a pair of chips with the rotation axis O interposed on the outer peripheral surface of the blade portion 5. The grooves 8, 8 are formed facing each other. The core thick portion 22 formed between the chip discharge grooves 8 extends from the tip end face 7 of the blade portion 5 to the end of the chip discharge groove 8, and extends in the extending direction of the chip discharge groove 8. The minimum thickness dimension between the pair of chip discharge grooves 8
The thickness di is 2. In particular, in the small drill 20 according to the present embodiment, the core thick portion 22 is located on the distal end side as shown in FIG. 1 and is located on the proximal end side with the first core thick portion 24 having a relatively small thickness. The second core thick portion 26 having a larger thickness dimension than the first core thick portion 24 and the first and second core thick portions 24, 26 are connected, for example, a tapered shape in which the thickness di of the core thickness changes smoothly. And an intermediate core thick portion 28.

【0010】ここで、第一芯厚部24の先端の厚みをd
1、第一芯厚部24と中間芯厚部28の接続部の厚みを
d2、中間芯厚部28と第二芯厚部26の接続部の厚み
をd3、第二芯厚部26の後端の厚みをd4とし、刃部
5の切刃外径をDとしたとき、 d1≦d2<d3≦d4 とされ、かつd1は0.15D〜0.60D、d2は
0.15D〜0.70D、d3は0.30D〜0.90
D、d4は0.30D〜0.90Dの範囲に設定されて
いる。このような条件を満足することによって、特に小
径ドリル20が切刃外径D=3.175mm以下場合に
おいて後述するような特に好適な特性を発揮できる。
Here, the thickness of the tip of the first core thick part 24 is d
1. The thickness of the connecting portion between the first thick core portion 24 and the middle thick portion 28 is d2, the thickness of the connecting portion between the middle thick portion 28 and the second thick portion 26 is d3, after the second thick portion 26 When the thickness of the end is d4 and the cutting edge outer diameter of the blade portion 5 is D, d1 ≦ d2 <d3 ≦ d4, and d1 is 0.15D to 0.60D, and d2 is 0.15D to 0. 70D, d3 is 0.30D to 0.90
D and d4 are set in the range of 0.30D to 0.90D. By satisfying such conditions, particularly preferable characteristics as described later can be exhibited particularly when the small diameter drill 20 has a cutting edge outer diameter D of 3.175 mm or less.

【0011】ここで、第一芯厚部24の芯厚寸法d1を
0.15D〜0.60D、d2を0.15D〜0.70
Dの範囲に設定すると共に、第一芯厚部24のd1,d
2間の外周面形状について、傾斜を例えば0/1000
〜15/1000の範囲としてストレート形状か微量の
テーパ状(これをほぼ同一厚みという)に設定する。こ
れによってプリント基板の穴明け加工時に切刃9の食い
付きがよく穴位置ずれを抑制して穴位置精度を向上で
き、またこの領域のドリル剛性を確保できる。尚、図1
では第一芯厚部24は0/1000のストレート形状と
されている。また回転軸線に沿う切屑排出溝8の長さ
(有効溝長)をLとすると、第一芯厚部24の回転軸線
Oに沿う長さL1は0.03L〜0.25Lとし、例え
ばL1=0.05〜5.0mmの範囲とする。このよう
に第一芯厚部24の長さをL1に設定することで、先端
面7と切屑排出溝8,8との交差稜線に形成された切刃
9,9が穴明け加工によって摩耗した場合、再研磨によ
って切刃9を数回研ぎだした時に第一芯厚部24の形状
変化が生じないようにすることができる。
Here, the core thickness dimension d1 of the first core thickness portion 24 is 0.15D to 0.60D, and d2 is 0.15D to 0.70D.
D, and d1, d of the first core thick portion 24.
For the outer peripheral surface shape between the two, the inclination is, for example, 0/1000.
A straight shape or a slight tapered shape (this is called substantially the same thickness) is set as a range of up to 15/1000. As a result, the biting of the cutting blade 9 is good at the time of drilling a printed circuit board, and the hole position deviation can be suppressed, the hole position accuracy can be improved, and the drill rigidity in this region can be secured. FIG.
The first core thick portion 24 has a straight shape of 0/1000. If the length (effective groove length) of the chip discharge groove 8 along the rotation axis is L, the length L1 of the first core thick portion 24 along the rotation axis O is 0.03L to 0.25L, for example, L1 = The range is 0.05 to 5.0 mm. By setting the length of the first core thick part 24 to L1, the cutting blades 9, 9 formed at the intersection ridge line between the tip end face 7 and the chip discharge grooves 8, 8 are worn by drilling. In this case, when the cutting blade 9 is sharpened several times by re-grinding, the shape of the first core thick portion 24 can be prevented from changing.

【0012】また、第二芯厚部26の芯厚寸法d3を
0.30D〜0.90D、d4を0.30D〜0.90
Dの範囲に設定すると共に、第二芯厚部26のd3,d
4間の外周面形状は、傾斜を例えば0/1000〜15
/1000の範囲としてストレート形状か微量のテーパ
状(これをほぼ同一厚みという)に設定する。これによ
って小型ドリル20の剛性を向上できると共にアスペク
ト比が15を越えるような深穴加工においても生成され
た切り粉を切屑排出溝8,8を通してスムーズに外部に
排出することができ、切屑排出性を良好に維持できる。
尚、図1では第二芯厚部26は0/1000のストレー
ト形状とされている。
The core thickness d3 of the second core thickness portion 26 is set to 0.30D to 0.90D, and d4 is set to 0.30D to 0.90D.
D and d3, d of the second core thick portion 26
The shape of the outer peripheral surface between the four has a slope of, for example, 0/1000 to 15
The range of / 1000 is set to a straight shape or a slight tapered shape (this is called substantially the same thickness). As a result, the rigidity of the small drill 20 can be improved, and the generated chips can be smoothly discharged to the outside through the chip discharge grooves 8, 8 even in deep hole processing in which the aspect ratio exceeds 15. Can be favorably maintained.
In FIG. 1, the second core thick portion 26 has a straight shape of 0/1000.

【0013】第一芯厚部24と第二芯厚部26を接続す
る中間芯厚部28においては、厚みdiが先端側のd2
から基端側のd3まで変化するように例えば略テーパ状
に形成されており、d2は0.15D〜0.70D、d
3は0.30D〜0.90Dの範囲にそれぞれ設定さ
れ、d2,d3間のテーパ(傾斜)は1/20〜1/1
の範囲で設定されている。また回転軸線Oに沿う長さL
2は0.03L〜0.25L、例えば0.05〜5.0
mmの範囲で設定されている。ここで、中間芯厚部28
の傾斜が1/20より小さいと相対的に厚み寸法d2と
d3の差が小さいために、d2が大きければ第一芯厚部
24で食い付きが悪く穴位置精度が低下し、第二芯厚部
26では切屑排出溝8が浅くなって切屑排出性が低下す
ることになる。逆にd2が小さければ第二芯厚部26の
剛性が不足してドリル剛性が不十分になるという問題が
生じる。また傾斜が1/1より大きいと中間芯厚部28
で切屑排出溝8に大きな段差が生じて切屑流れが悪くな
って切屑詰まりが生じたり、穴加工時に応力が集中して
折損されやすいという問題が生じる。
In an intermediate core thick portion 28 connecting the first core thick portion 24 and the second core thick portion 26, the thickness di is d2 on the tip side.
To d3 on the base end side, for example, in a substantially tapered shape, d2 is 0.15D to 0.70D, d
3 is set in the range of 0.30D to 0.90D, and the taper (slope) between d2 and d3 is 1/20 to 1/1.
Is set in the range. The length L along the rotation axis O
2 is 0.03 L to 0.25 L, for example, 0.05 to 5.0.
mm. Here, the intermediate core thickness portion 28
Is smaller than 1/20, the difference between the thickness dimensions d2 and d3 is relatively small. Therefore, if d2 is large, biting is poor at the first core thickness portion 24, and the hole position accuracy is reduced. In the portion 26, the chip discharge groove 8 becomes shallow, and the chip discharge performance is reduced. Conversely, if d2 is small, there is a problem that the rigidity of the second core thick portion 26 is insufficient and the drill rigidity is insufficient. If the inclination is greater than 1/1, the middle core thick portion 28
As a result, a large step is generated in the chip discharge groove 8 and the chip flow becomes poor, causing chip clogging, and there is a problem that stress is concentrated during drilling and the chip is easily broken.

【0014】また中間芯厚部28は必ずしも直線のテー
パ状に形成されている必要はなく、例えば断面視で第一
芯厚部24側と第二芯厚部26側とでそれぞれ反対側に
湾曲する二つの略円弧状の曲線を接続することで第一芯
厚部24と第二芯厚部26とを滑らかに接続して形成し
てもよいし、断面視で全体に1つの凸又は凹状の略円弧
状に湾曲させて形成してもよい。中間芯厚部28を断面
視で滑らかなテーパ状または曲面状に形成して第一及び
第二芯厚部24,26を接続することで、ドリル剛性を
基端側に向かうに従って次第に大きくすることができる
上に段差を形成しないために切屑流れをスムーズにして
第二芯厚部26の領域の切屑排出溝8,8まで切屑を送
り出すことができる。
The intermediate core portion 28 does not necessarily need to be formed in a linear tapered shape. For example, in the cross-sectional view, the first core portion 24 and the second core portion 26 are curved to opposite sides. The first and second core thick portions 24 and 26 may be smoothly connected to each other by connecting two substantially arc-shaped curves to each other, or may have one convex or concave shape as a whole in cross section. May be formed in a substantially arc shape. By forming the intermediate core thick portion 28 into a smooth tapered or curved shape in cross section and connecting the first and second core thick portions 24 and 26, the drill rigidity gradually increases toward the base end side. In addition, since no step is formed, the flow of the chips can be made smooth and the chips can be sent out to the chip discharge grooves 8 in the region of the second thick core portion 26.

【0015】本実施の形態による小型ドリル20は上述
のように構成されているから、第一芯厚部24を先端側
から基端側に亘って比較的小さいほぼ同一の厚みd1〜
d2の範囲に設定することで、穴明け加工時の被削材へ
の食い付きがよく穴位置ずれや穴曲がり等が生じること
なく穴位置精度が向上し、切刃9が摩耗した際に再研磨
しても芯厚の厚みd1〜d2間がほとんど変化しないた
めに新品と同様の穴位置精度が得られる。しかも第二芯
厚部26は第一芯厚部24より大きい厚みd3〜d4で
あるためにドリルの剛性が高く、またd3,d4がほぼ
同一の厚み寸法であるために切屑排出性が良好である。
そして中間芯厚部28で厚みdiが傾斜1/20〜1/
1の範囲でd2からd3まで滑らかに増大しているため
に切屑流れがスムーズで排出性が良く、しかも段差がつ
けられたり階段状に厚みが変化したりしていないから第
一芯厚部24と第二芯厚部26の接続部に応力が集中す
ることもなく小型ドリル20の折損などを生じることが
ない。従って、小型ドリル20全体で剛性を高めて食い
付き時の位置ずれや穴曲がりを抑制して穴位置精度を高
めることができ、アスペクト比が15を越えるような深
穴加工時においても、切屑排出性や耐折損性を良好に保
つことができる。しかも切刃9が摩耗して再研磨しても
第一芯厚部24では厚み寸法がほとんど変化しないため
に新品と同一の穴位置精度が得られる。
Since the small drill 20 according to the present embodiment is configured as described above, the first core thick portion 24 has a relatively small thickness d1 to d1 from the distal end to the proximal end.
By setting the diameter d2 in the range, the bite into the work material at the time of drilling is improved, and the hole position accuracy is improved without causing a hole position shift or a hole bending. Since the thickness between the core thicknesses d1 and d2 hardly changes even after polishing, the same hole position accuracy as a new product can be obtained. Moreover, the second core thick portion 26 has a thickness d3 to d4 larger than the first core thick portion 24, so that the drill has high rigidity. Further, since d3 and d4 have almost the same thickness, the chip discharging property is good. is there.
Then, the thickness di in the middle core thick portion 28 is inclined 1/20 to 1 /
Since the flow smoothly increases from d2 to d3 in the range of 1, the chip flow is smooth and the dischargeability is good, and the first core thick portion 24 is not formed because there is no step or the thickness changes stepwise. The stress is not concentrated on the connecting portion between the second core thickness portion 26 and the small drill 20 and the small drill 20 does not break. Therefore, the rigidity of the entire small drill 20 can be increased to suppress the positional deviation and the bending of the hole at the time of biting, thereby improving the hole position accuracy. And breakage resistance can be kept good. Moreover, even if the cutting blade 9 is worn and polished again, the thickness dimension of the first core thick portion 24 hardly changes, so that the same hole position accuracy as that of a new product can be obtained.

【0016】次に本発明の実施例について行った穴明け
加工試験について説明する。実施例として図1に示す芯
厚部22の形状を備えた小型ドリル20を用い、比較の
ために従来例として図7に示す均一なテーパ状の芯厚部
13を備えた小型ドリル4を用いてそれぞれ穴明け加工
試験を行った。実施例と従来例の各小型ドリル20,4
の各部位の寸法等は表1に示す通りである。尚、各芯厚
部22,13の先端の厚みd1,t0は共に0.130
である。
Next, a drilling test performed on an embodiment of the present invention will be described. As an example, a small drill 20 having the shape of the core thick portion 22 shown in FIG. 1 was used, and for comparison, a small drill 4 having a uniform tapered core thick portion 13 shown in FIG. 7 was used as a conventional example. Each was subjected to a drilling test. Examples and conventional small drills 20, 4
Are as shown in Table 1. The thicknesses d1 and t0 of the tips of the core thick portions 22 and 13 are both 0.130.
It is.

【0017】テスト用の小型ドリルの寸法一覧表(単
位:mm)
List of dimensions of small drills for testing (unit: mm)

【表1】 [Table 1]

【0018】被削材として、Cu箔が4枚重ねられてな
る厚さ1.6mmの基板を3枚積層した3枚重ねのプリ
ント基板を用い、その上にアルミニウム製の厚さ0.1
5mmのあて板を載置すると共に、下にベーク製の厚さ
1.6mmの敷き板を密着させた状態で、実施例及び従
来例の小型ドリル20,4を用いて穴明け加工を行っ
た。小型ドリルの回転数Nは70Krpm、送り速度Fは
1.8m/min、1回転当たりの切り込み量fは25.
71μmとし、シングル加工で5000ヒット(回数)
の穴明けを行った。尚、工作機械に装着された初期位置
の小型ドリル20,4の先端とプリント基板との距離で
あるストロークは9.85mmである。穴明け試験の結果
は、実施例による小型ドリル20の場合では図2及び表
2に示す成績が、また従来例による小型ドリル4の場合
では図3及び表3に示す通りの成績が得られた。
As a work material, a three-layer printed circuit board in which three 1.6 mm-thick substrates each formed by stacking four Cu foils were used, and an aluminum-made 0.1-mm thick board was formed thereon.
A 5-mm patch plate was placed, and a bake 1.6 mm-thick laying plate was adhered underneath, and drilling was performed using the small drills 20 and 4 of the embodiment and the conventional example. . The rotation speed N of the small drill is 70 Krpm, the feed speed F is 1.8 m / min, and the cutting depth f per rotation is 25.
5,000 hits (number of times) in single processing with 71 μm
Was drilled. Note that the stroke, which is the distance between the tip of the small drills 20, 4 at the initial position mounted on the machine tool and the printed circuit board, is 9.85 mm. The results of the drilling test were as shown in FIG. 2 and Table 2 in the case of the small drill 20 according to the embodiment, and as shown in FIGS. 3 and 3 in the case of the small drill 4 according to the conventional example. .

【0019】実施例の穴位置精度成績表Hole Position Accuracy Report of Example

【表2】 [Table 2]

【0020】比較例の穴位置精度成績表Hole Position Accuracy Report of Comparative Example

【表3】 [Table 3]

【0021】表2及び表3において、「平均値」とは目
標位置から実際の穴出口位置までの深さ方向に対して直
交する方向の「平均穴位置ズレ量」をいう。「シュート
量」とは穴の曲がり量を示すもので、穴の入り口から深
さ方向に対して直交する方向への穴曲がりによるズレの
最大量を指す。「スリップ量」は穴加工開始時における
目標位置から実際の穴の入り口位置までのズレ量をい
う。一般に、穴位置精度は正規分布による「平均値+3
σ」の大きさによって主として決定される。試験結果に
よれば、実施例による穴加工では、図2に示すように1
(スタート)〜1000ヒット、1001〜2000ヒ
ット、2001〜3000ヒット、3001〜4000
ヒット、4001〜5000ヒットの各1000ヒット
づつのいずれの段階においても、穴明けの目標位置であ
るX軸とY軸の交点からのずれ量が小さい。即ち表2に
示すように正規分布による「平均値+3σ」は、上記各
段階のヒットにおいて、52μm、63μm、71μ
m、71μm、68μmとなり、同様に「シュート量」
も40μm、51μm、58μm、59μm、55μm
となった。これに対して従来例による穴加工では、各段
階のヒットで正規分布による「平均値+3σ」は86μ
m、104μm、115μm、118μm、114μm
となり、同様に「シュート量」も71μm、93μm、
104μm、106μm、104μmとなった。従っ
て、実施例の方が、従来例よりも明らかに目標位置に対
する穴位置のずれ量と穴曲がり量も小さく、穴位置精度
が非常に向上した。
In Tables 2 and 3, "average value" refers to "average hole position deviation amount" in a direction orthogonal to the depth direction from the target position to the actual hole exit position. The “shoot amount” indicates the amount of bending of the hole, and indicates the maximum amount of deviation due to bending of the hole in a direction perpendicular to the depth direction from the entrance of the hole. The “slip amount” refers to a deviation amount from a target position at the start of drilling to an actual hole entrance position. In general, the hole position accuracy is calculated as “average value + 3”
It is mainly determined by the magnitude of “σ”. According to the test results, in the hole drilling according to the embodiment, as shown in FIG.
(Start) ~ 1000 hits, 1001-2000 hits, 2001-3000 hits, 3001-4000 hits
At each stage of 1000 hits of 400 hits and 400 hits to 5000 hits, the amount of deviation from the intersection of the X axis and the Y axis, which is the target position for drilling, is small. That is, as shown in Table 2, the “average value + 3σ” based on the normal distribution is 52 μm, 63 μm, and 71 μm in the hits at each stage.
m, 71 μm, 68 μm, and similarly the “shoot amount”
Also 40 μm, 51 μm, 58 μm, 59 μm, 55 μm
It became. On the other hand, in the drilling according to the conventional example, the “average value + 3σ” by the normal distribution is 86 μm at each stage hit.
m, 104 μm, 115 μm, 118 μm, 114 μm
Similarly, the “shoot amount” is 71 μm, 93 μm,
It was 104 μm, 106 μm, and 104 μm. Therefore, in the embodiment, the amount of deviation of the hole position from the target position and the amount of bending of the hole are clearly smaller than in the conventional example, and the hole position accuracy is greatly improved.

【0022】尚、上述の実施の形態では、芯厚部22
は、同軸を成す第一芯厚部24と中間芯厚部28と第二
芯厚部26とで構成されているが、本発明はこのような
構成に限定されることなく第二芯厚部26に更に第二の
中間芯厚部を介してより厚みdiの大きい第三芯厚部を
接続する等して、複数の中間芯厚部を介して順次厚みを
増大させたストレート若しくは微量テーパ状の複数種類
の芯厚部を略多段状に形成するようにしてもよい。要す
るにテーパ状または凹又は凸曲面状(これを略テーパ状
という)の中間芯厚部を介してその前後によりテーパの
小さい厚みの異なる複数の芯厚部を接続して構成すれば
よい。また実施の形態では切屑排出溝8をねじれ溝とし
て一対設けたが、これに限定されることなく切屑排出溝
を直線状の溝としてもよいし、また切屑排出溝の本数は
任意に設定してよい。また本発明は刃先の直径が3.1
75mm以下のプリント基板用の小径ドリル20に好適
であるが、本発明は実施の形態に限定されることなく刃
先の直径がこれより大きいドリルについても適用でき
る。また本発明はドリルに限定されることなくリーマな
ど穴明け用の各種穴明け工具にも適用できる。
In the above embodiment, the core thick portion 22
Is composed of a first core thick part 24, an intermediate core thick part 28, and a second core thick part 26 which form a coaxial axis. However, the present invention is not limited to such a configuration, and the second core thick part A straight or micro tapered shape in which the thickness is sequentially increased through a plurality of intermediate core portions by connecting a third core thick portion having a larger thickness di to a second 26 through a second intermediate core portion. May be formed in a substantially multi-stage shape. In short, it may be configured by connecting a plurality of core portions having different taper thicknesses before and behind the intermediate core portion having a tapered or concave or convex curved surface (referred to as a substantially tapered shape). In the embodiment, a pair of the chip discharge grooves 8 is provided as a twist groove. However, the present invention is not limited to this. The chip discharge grooves may be linear grooves, and the number of the chip discharge grooves may be set arbitrarily. Good. In the present invention, the cutting edge diameter is 3.1.
Although the present invention is suitable for a small-diameter drill 20 for a printed board of 75 mm or less, the present invention is not limited to the embodiment, and can be applied to a drill having a larger cutting edge diameter. Further, the present invention is not limited to drills, but can be applied to various drilling tools such as reamers.

【0023】[0023]

【発明の効果】上述のように、本発明に係る穴明け工具
は、刃部の芯厚が、先端側から基端側に向けてほぼ同一
の厚み寸法を有する第一芯厚部と、この第一芯厚部より
厚み寸法が大きく且つほぼ同一の厚み寸法を有する第二
芯厚部と、第一芯厚部及び第二芯厚部を滑らかに接続す
る中間芯厚部とを備えているから、第一芯厚部によって
穴明け加工時の被削材への食い付きがよくて穴位置ズレ
や穴曲がりを抑制できて、切刃が摩耗した際に再研磨し
ても芯厚の厚みがほぼ変化しないために新品と同様の穴
位置精度が得られ、第二芯厚部によってドリルの剛性が
高く切屑排出性が良好である。そして中間芯厚部を有し
ていても切屑流れがスムーズで排出性が良く、しかも段
差がつけられたり階段状に急激に厚みが変化したりして
いないから第一芯厚部と第二芯厚部の接続部に応力が集
中することもなく穴明け工具の折損などを生じることが
ない。
As described above, in the drilling tool according to the present invention, the core thickness of the blade portion is substantially the same from the distal end to the proximal end, and the first core thick portion has the same thickness. A second core thick part having a thickness dimension larger than the first core thick part and having substantially the same thickness dimension, and an intermediate core thick part for smoothly connecting the first core thick part and the second core thick part. From the first core thickness part, the bite to the work material at the time of drilling is good, the hole position shift and hole bending can be suppressed, and even if the cutting edge is worn out, the thickness of the core thickness even if re-polishing Is almost unchanged, so that the same hole position accuracy as that of a new product can be obtained, and the drill thickness is high due to the second core thick portion, and the chip discharging property is good. And even if it has an intermediate core thickness part, the chip flow is smooth and the dischargeability is good, and furthermore, since there is no step or sudden change in thickness in a step shape, the first core part and the second core part The stress is not concentrated on the thick connection portion, and the drilling tool does not break.

【0024】また、刃部の切刃の直径が3.175mm
以下であるから、このような小型ドリルにおいて穴位置
精度を向上できると共に、切屑排出性、剛性、耐折損性
を良好にしてバランスさせることができる。また、中間
芯厚部は1/20から1/1の範囲の傾斜を備えた略テ
ーパ形状とされているから、穴位置精度を向上できると
共に、切屑詰まりを抑制して切屑排出性を良好に維持で
き、剛性、耐折損性を良好にしてバランスさせることが
できる。
The diameter of the cutting edge of the blade is 3.175 mm.
From the following, in such a small drill, the hole position accuracy can be improved, and the chip dischargeability, rigidity, and breakage resistance can be improved and balanced. In addition, since the intermediate core portion has a substantially tapered shape having a slope in the range of 1/20 to 1/1, the hole position accuracy can be improved, and chip clogging can be suppressed to improve chip dischargeability. It is possible to maintain good rigidity and breakage resistance and balance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施の形態による小型ドリルの芯厚
部の形状を説明するための回転軸線に沿う仮想的な断面
図である。
FIG. 1 is a virtual sectional view along a rotation axis for explaining a shape of a core thick portion of a small drill according to an embodiment of the present invention.

【図2】 実施例による小型ドリルで穴加工試験した穴
位置の精度を1000ヒット単位で示す図である。
FIG. 2 is a diagram showing the accuracy of a hole position in a hole drilling test with a small drill according to an embodiment in units of 1000 hits.

【図3】 図7に従う従来例の小型ドリルで穴加工試験
した穴位置の精度を1000ヒット単位で示す図であ
る。
FIG. 3 is a diagram showing the accuracy of a hole position in a hole drilling test with the conventional small drill according to FIG. 7 in units of 1000 hits.

【図4】 小型ドリルによるプリント基板の穿孔状態を
示す一般的な図である。
FIG. 4 is a general view showing a state of piercing a printed circuit board by a small drill.

【図5】 一般的な小型ドリルの側面図である。FIG. 5 is a side view of a general small drill.

【図6】 図5に示す小型ドリルの先端面図である。FIG. 6 is a front end view of the small drill shown in FIG. 5;

【図7】 従来の小型ドリルの芯厚部の形状を説明する
ための回転軸線に沿う仮想的な断面図である。
FIG. 7 is a virtual sectional view taken along a rotation axis for explaining a shape of a core thick portion of a conventional small drill.

【符号の説明】[Explanation of symbols]

5 刃部 6 シャンク部 8 切屑排出溝 9 切刃 20 小型ドリル 22 芯厚部 24 第一芯厚部 26 第二芯厚部 28 中間芯厚部 Reference Signs List 5 blade part 6 shank part 8 chip discharge groove 9 cutting blade 20 small drill 22 core thick part 24 first core thick part 26 second core thick part 28 middle core thick part

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 刃部とシャンク部とを備え、刃部の外周
面に先端側から基端側に向けて切屑排出溝が設けられ、
この切屑排出溝と刃部の先端面との交差稜線に切刃が設
けられてなる穴明け工具において、前記刃部の芯厚が、
先端側から基端側に向けてほぼ同一の厚み寸法を有する
第一芯厚部と、この第一芯厚部より厚み寸法が大きく且
つほぼ同一の厚み寸法を有する第二芯厚部と、前記第一
芯厚部及び第二芯厚部を滑らかに接続する中間芯厚部と
を備えたことを特徴とする穴明け工具。
1. A cutting part is provided with a blade part and a shank part, and a chip discharge groove is provided on an outer peripheral surface of the blade part from a tip end side to a base end side,
In a drilling tool in which a cutting edge is provided at an intersection ridge line between the chip discharge groove and the tip surface of the blade portion, the core thickness of the blade portion is
A first core thick portion having substantially the same thickness dimension from the distal end side toward the base end side, a second core thick portion having a thickness dimension larger than the first core thick portion and having substantially the same thickness dimension, A drilling tool, comprising: an intermediate core portion that smoothly connects the first core portion and the second core portion.
【請求項2】 前記刃部の切刃の直径が3.175mm
以下であることを特徴とする請求項1記載の穴明け工
具。
2. The diameter of the cutting edge of the blade is 3.175 mm.
The drilling tool according to claim 1, wherein:
【請求項3】 前記中間芯厚部は1/20から1/1の
範囲の傾斜を備えた略テーパ形状とされていることを特
徴とする請求項1または2記載の穴明け工具。
3. The drilling tool according to claim 1, wherein the intermediate core portion has a substantially tapered shape having an inclination in a range of 1/20 to 1/1.
JP10260654A 1998-09-14 1998-09-14 Boring tool Pending JP2000084719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10260654A JP2000084719A (en) 1998-09-14 1998-09-14 Boring tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10260654A JP2000084719A (en) 1998-09-14 1998-09-14 Boring tool

Publications (1)

Publication Number Publication Date
JP2000084719A true JP2000084719A (en) 2000-03-28

Family

ID=17350930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10260654A Pending JP2000084719A (en) 1998-09-14 1998-09-14 Boring tool

Country Status (1)

Country Link
JP (1) JP2000084719A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001322018A (en) * 2000-05-19 2001-11-20 Toshiba Tungaloy Co Ltd Drill

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001322018A (en) * 2000-05-19 2001-11-20 Toshiba Tungaloy Co Ltd Drill

Similar Documents

Publication Publication Date Title
JP5385976B2 (en) Drill and cutting method of work material using the drill
US6857832B2 (en) Drill bit with pilot point
EP2913131B1 (en) Small-diameter drill
JP5877789B2 (en) drill
KR20120055442A (en) Drilling tool
KR101701023B1 (en) Drilling tool
JP4415485B2 (en) Small drill
JP6235737B2 (en) 3-flute drill
JP4723599B2 (en) Drilling tool
JP5066229B2 (en) Drilling tool
JP4239414B2 (en) Drill
JP2008142834A (en) Drill
JP3539227B2 (en) Drilling tool
JP3929901B2 (en) Drill
JP2020023051A (en) Drill
JP2000084719A (en) Boring tool
JP2002154005A (en) Twist drill
JP4135314B2 (en) Drill
WO2020261999A1 (en) Drill for carbon-fiber composite material
JP2001121332A (en) Twist drill
JP2002205212A (en) Drill
JP4193360B2 (en) Drill
JP2648934B2 (en) Small diameter drill for printed circuit board processing
JP2002028810A (en) Small-sized drill
CN217370759U (en) Reamer bit

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20031202