JP2013198977A - Drilling tool - Google Patents

Drilling tool Download PDF

Info

Publication number
JP2013198977A
JP2013198977A JP2013039891A JP2013039891A JP2013198977A JP 2013198977 A JP2013198977 A JP 2013198977A JP 2013039891 A JP2013039891 A JP 2013039891A JP 2013039891 A JP2013039891 A JP 2013039891A JP 2013198977 A JP2013198977 A JP 2013198977A
Authority
JP
Japan
Prior art keywords
chip discharge
groove
discharge groove
twist angle
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013039891A
Other languages
Japanese (ja)
Other versions
JP5474227B2 (en
Inventor
Yukiyoshi Hoshi
幸義 星
Yusei Mizuno
遊星 水野
Yusaku Kazama
悠作 風間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Union Tool Co
Original Assignee
Union Tool Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Union Tool Co filed Critical Union Tool Co
Priority to JP2013039891A priority Critical patent/JP5474227B2/en
Priority to TW102134532A priority patent/TWI480112B/en
Publication of JP2013198977A publication Critical patent/JP2013198977A/en
Priority to KR1020130168864A priority patent/KR101594659B1/en
Priority to CN201410054284.2A priority patent/CN104014853A/en
Application granted granted Critical
Publication of JP5474227B2 publication Critical patent/JP5474227B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B51/00Tools for drilling machines
    • B23B51/02Twist drills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B51/00Tools for drilling machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2251/00Details of tools for drilling machines
    • B23B2251/04Angles, e.g. cutting angles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2251/00Details of tools for drilling machines
    • B23B2251/40Flutes, i.e. chip conveying grooves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2251/00Details of tools for drilling machines
    • B23B2251/40Flutes, i.e. chip conveying grooves
    • B23B2251/408Spiral grooves
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0044Mechanical working of the substrate, e.g. drilling or punching
    • H05K3/0047Drilling of holes

Abstract

PROBLEM TO BE SOLVED: To provide a highly practical drilling tool capable of greatly improving breaking resistance and hole position accuracy compared with a conventional PCB drill.SOLUTION: A drilling tool is configured so that, at the outer periphery of a tool body 1, a first chip exhaust groove 2a including three twist regions having predetermined twist angles and a second chip exhaust groove 2b including two twist regions having predetermined twist angles are arranged, and in the midway part of one chip exhaust groove, the other is continuously disposed, and two grooves, a parallel running transfer part, and a parallel traveling part are sequentially arranged from the tip side. The twist angles of the parallel traveling parts of both chip exhaust grooves are set larger than those of the two grooves, and the changing position of the twist angle located at the most tool tip side is set at a position of 1/2 or smaller than the groove length of the chip exhaust groove formed from the tool tip to a predetermined position of the base end side of the tool body 1 larger by 1.5 times or more than a tool diameter.

Description

本発明は、穴明け工具に関するものである。   The present invention relates to a drilling tool.

近年、特許文献1に開示されるようなプリント配線板(PCB)の穴明け加工用のドリル(以下、PCBドリルと言う。)は径小化が進み、アスペクト比(溝長/直径で表される値)が高くなっている傾向があり、更なる耐折損性及び穴位置精度の改善が要望されているのが現状である。   In recent years, drills for drilling printed wiring boards (PCBs) disclosed in Patent Document 1 (hereinafter referred to as PCB drills) have been reduced in diameter, and aspect ratios (represented by groove length / diameter). Therefore, further improvement in breakage resistance and hole position accuracy is demanded at present.

特開2012−11489号公報JP 2012-11489 A

本発明は、上述のような現状に鑑みなされたもので、従来のPCBドリルに比し、耐折損性及び穴位置精度を大幅に改善できる実用性に秀れた穴明け工具を提供するものである。   The present invention has been made in view of the current situation as described above, and provides a drilling tool excellent in practicality that can greatly improve the breakage resistance and the hole position accuracy as compared with conventional PCB drills. is there.

添付図面を参照して本発明の要旨を説明する。   The gist of the present invention will be described with reference to the accompanying drawings.

工具本体1の先端に2つの切れ刃が設けられ、この工具本体1の外周に工具先端から基端側に向かう2つの螺旋状の第一の切り屑排出溝2a及び第二の切り屑排出溝2bが設けられ、前記第一の切り屑排出溝2aは夫々所定のねじれ角を有する3つのねじれ領域を備え、前記第二の切り屑排出溝2bは夫々所定のねじれ角を有する2つのねじれ領域を備え、これら2つの切り屑排出溝2a・2bのうち、一方の切り屑排出溝2a・2bは他方の切り屑排出溝2a・2bの途中部に連設され、前記第一の切り屑排出溝2a若しくは前記第二の切り屑排出溝2bのうち少なくとも一方の切り屑排出溝は工具本体1の基端側の所定位置まで形成されており、工具先端側から、前記第一の切り屑排出溝2a及び前記第二の切り屑排出溝2bのねじれ角が等しい2溝部、前記第一の切り屑排出溝2a及び前記第二の切り屑排出溝2bのねじれ角を異ならせて連設させる並走移行部並びに連設させた前記第一の切り屑排出溝2a及び前記第二の切り屑排出溝2bのねじれ角を等しくして両者を並走させる並走部が順次設けられた穴明け工具であって、前記第一の切り屑排出溝2a及び前記第二の切り屑排出溝2bの前記並走部のねじれ角は前記2溝部のねじれ角より大きい角度に設定され、最も工具先端側に位置する前記ねじれ角の変化位置は、工具先端から工具直径の1.5倍以上工具本体1の基端側の所定位置まで形成される切り屑排出溝の溝長の1/2以下の位置に設けられていることを特徴とする穴明け工具に係るものである。   Two cutting edges are provided at the tip of the tool body 1, and two spiral first chip discharge grooves 2 a and a second chip discharge groove from the tool tip to the base end side on the outer periphery of the tool body 1. 2b, the first chip discharge groove 2a has three twist regions each having a predetermined twist angle, and the second chip discharge groove 2b has two twist regions each having a predetermined twist angle. Of these two chip discharge grooves 2a, 2b, one of the chip discharge grooves 2a, 2b is connected to the middle of the other chip discharge groove 2a, 2b, and the first chip discharge At least one of the grooves 2a or the second chip discharge groove 2b is formed up to a predetermined position on the base end side of the tool body 1, and the first chip discharge from the tool front end side. Twist angle of groove 2a and second chip discharge groove 2b Two equal groove portions, a parallel running transition portion in which the twist angles of the first chip discharge groove 2a and the second chip discharge groove 2b are made different from each other, and the first chip discharge groove provided in a row 2a and the second chip discharge groove 2b are equal to each other, and a drilling tool is provided in which a parallel running portion is provided in order to make the twist angle parallel to each other, the first chip discharge groove 2a and the second chip discharge groove 2b. The twist angle of the parallel running part of the second chip discharge groove 2b is set to an angle larger than the twist angle of the two groove parts, and the change position of the twist angle located closest to the tool tip side is the tool diameter from the tool tip. The present invention relates to a drilling tool characterized in that it is provided at a position not more than 1/2 times the groove length of a chip discharge groove formed to a predetermined position on the base end side of the tool body 1 at least 1.5 times. is there.

また、請求項1記載の穴明け工具において、前記第一の切り屑排出溝2aにおける前記並走移行部のねじれ角は、前記2溝部のねじれ角より大きいことを特徴とする穴明け工具に係るものである。   The drilling tool according to claim 1, wherein the twist angle of the parallel running transition portion in the first chip discharge groove 2a is larger than the twist angle of the two groove portions. Is.

また、請求項1,2いずれか1項に記載の穴明け工具において、前記第一の切り屑排出溝2aの前記並走移行部のねじれ角と前記2溝部のねじれ角の差が3°以上25°以下に設定されていることを特徴とする穴明け工具に係るものである。   Further, in the drilling tool according to any one of claims 1 and 2, a difference between a twist angle of the parallel running transition portion of the first chip discharge groove 2a and a twist angle of the two groove portions is 3 ° or more. The present invention relates to a drilling tool characterized by being set to 25 ° or less.

また、請求項1,2いずれか1項に記載の穴明け工具において、前記第一の切り屑排出溝2aの前記並走移行部のねじれ角と前記2溝部のねじれ角の差が5°以上15°以下に設定されていることを特徴とする穴明け工具に係るものである。   Further, in the drilling tool according to any one of claims 1 and 2, the difference between the twist angle of the parallel running transition portion and the twist angle of the two groove portions of the first chip discharge groove 2a is 5 ° or more. The present invention relates to a drilling tool characterized by being set to 15 ° or less.

また、請求項1〜4いずれか1項に記載の穴明け工具において、前記第一の切り屑排出溝2a及び前記第二の切り屑排出溝2bの2溝部のねじれ角は、30°以上50°以下に設定されていることを特徴とする穴明け工具に係るものである。   Moreover, the drilling tool of any one of Claims 1-4 WHEREIN: The twist angle of 2 groove parts of said 1st chip discharge groove 2a and said 2nd chip discharge groove 2b is 30 degrees or more and 50 It relates to a drilling tool characterized in that it is set to ° or less.

また、請求項1〜5いずれか1項に記載の穴明け工具において、前記第一の切り屑排出溝2a及び前記第二の切り屑排出溝2bの並走部のねじれ角は、前記2溝部のねじれ角より2°以上20°以下大きい角度に設定されていることを特徴とする穴明け工具に係るものである。   Further, in the drilling tool according to any one of claims 1 to 5, the twist angle of the parallel running part of the first chip discharge groove 2a and the second chip discharge groove 2b is the two groove part. The present invention relates to a drilling tool characterized in that it is set at an angle that is 2 ° or more and 20 ° or less larger than the twist angle.

また、請求項1〜6いずれか1項に記載の穴明け工具において、前記並走部の始端位置における並走溝の軸方向溝幅は、最も工具先端側に位置するねじれ角の変化位置における軸方向溝幅の1.1倍以上1.9倍以下に設定されていることを特徴とする穴明け工具に係るものである。   Moreover, the drilling tool of any one of Claims 1-6 WHEREIN: The axial direction groove width of the parallel groove in the starting end position of the said parallel running part is in the change position of the twist angle located in the tool front end side most. The present invention relates to a drilling tool characterized by being set to 1.1 times or more and 1.9 times or less of the axial groove width.

また、請求項1〜7いずれか1項に記載の穴明け工具において、前記2つの切り屑排出溝のうち一方の切り屑排出溝の溝長は、他方の切り屑排出溝の溝長の50%以上95%以下に設定されていることを特徴とする穴明け工具に係るものである。   Moreover, the drilling tool of any one of Claims 1-7 WHEREIN: The groove length of one chip discharge groove is the groove length of the other chip discharge groove among the two chip discharge grooves. % To 95% or less, which relates to a drilling tool.

また、請求項1〜8いずれか1項に記載の穴明け工具において、前記第一の切り屑排出溝2a及び前記第二の切り屑排出溝2bの切れ上がり狭角が90°より大きく180°以下に設定されていることを特徴とする穴明け工具に係るものである。   Moreover, the drilling tool of any one of Claims 1-8 WHEREIN: The narrow angle at which the first chip discharge groove 2a and the second chip discharge groove 2b rise is larger than 90 ° and 180 °. The present invention relates to a drilling tool characterized by being set as follows.

本発明は上述のように構成したから、従来のPCBドリルに比し、耐折損性及び穴位置精度を大幅に改善できる実用性に秀れた穴明け工具となる。   Since the present invention is configured as described above, it is a drilling tool excellent in practicality that can greatly improve the breakage resistance and the hole position accuracy as compared with the conventional PCB drill.

実施例1の工具軸方向先端視図及び要部の概略説明図である。It is a tool axis direction front view of Example 1, and a schematic explanatory view of a main part. 実施例1の第一の切り屑排出溝と第二の切り屑排出溝の概要を示す概略展開図である。It is a general | schematic expanded view which shows the outline | summary of the 1st chip discharge groove | channel and the 2nd chip discharge groove | channel of Example 1. FIG. 実施例2の第一の切り屑排出溝と第二の切り屑排出溝の概要を示す概略展開図である。It is a general | schematic expanded view which shows the outline | summary of the 1st chip discharge groove | channel and the 2nd chip discharge groove | channel of Example 2. FIG. 別例の第一の切り屑排出溝と第二の切り屑排出溝の概要を示す概略展開図である。It is a general | schematic expansion | deployment figure which shows the outline | summary of the 1st chip discharge groove and 2nd chip discharge groove of another example. 実験条件及び実験結果を示す表である。It is a table | surface which shows an experimental condition and an experimental result. 実験条件及び実験結果を示す表である。It is a table | surface which shows an experimental condition and an experimental result. 実験条件及び実験結果を示す表である。It is a table | surface which shows an experimental condition and an experimental result.

好適と考える本発明の実施形態を、図面に基づいて本発明の作用を示して簡単に説明する。   An embodiment of the present invention which is considered to be suitable will be briefly described with reference to the drawings showing the operation of the present invention.

第一の切り屑排出溝2a及び第二の切り屑排出溝2bを並走させる並走部を設けることで、2つの切り屑排出溝を連設させずに夫々独立して設けた場合に比し、溝容積を小さくして剛性を確保することが可能となる。   Compared to the case where the two chip discharge grooves are provided independently without providing the two chip discharge grooves by providing a parallel running part for running the first chip discharge groove 2a and the second chip discharge groove 2b side by side. In addition, the groove volume can be reduced to ensure rigidity.

更に、第一の切り屑排出溝2a及び第二の切り屑排出溝2bの一方のねじれ角を2段に、他方のねじれ角を3段に変化させて両者を連設させる構成とすることで、切り屑排出溝のねじれ角の変化数を最小限としつつ並走移行部(工具軸方向における並走移行部の距離)を可及的に短くすることが可能となり、剛性向上に寄与する並走部(工具軸方向における並走部の距離)をそれだけ長くすることができ、よって、耐折損性及び穴位置精度を大幅に改善することが可能となる。   Furthermore, the first chip discharge groove 2a and the second chip discharge groove 2b are configured such that one of the twist angles is changed to two steps and the other twist angle is changed to three steps so as to connect both. In addition, it is possible to minimize the number of changes in the twist angle of the chip discharge groove while minimizing the parallel running transition part (distance of the parallel running transition part in the tool axis direction). The running portion (distance of the parallel running portion in the tool axis direction) can be increased by that much, and therefore the breakage resistance and the hole position accuracy can be greatly improved.

本発明の具体的な実施例1について図面に基づいて説明する。   A first embodiment of the present invention will be described with reference to the drawings.

実施例1は、工具本体1の先端に2つの切れ刃が設けられ、この工具本体1の外周に工具先端から基端側に向かう2つの螺旋状の第一の切り屑排出溝2a及び第二の切り屑排出溝2bが設けられ、前記第一の切り屑排出溝2aは夫々所定のねじれ角を有する3つのねじれ領域を備え、前記第二の切り屑排出溝2bは夫々所定のねじれ角を有する2つのねじれ領域を備え、この切り屑排出溝2a・2bのうち、一方の切り屑排出溝2a・2bは他方の切り屑排出溝2a・2bの途中部に連設され、前記第一の切り屑排出溝2a若しくは前記第二の切り屑排出溝2bのうち少なくとも一方の切り屑排出溝は工具本体1の基端側の所定位置まで形成されており、工具先端側から、前記第一の切り屑排出溝2a及び前記第二の切り屑排出溝2bのねじれ角が等しい2溝部、前記第一の切り屑排出溝2a及び前記第二の切り屑排出溝2bのねじれ角を異ならせて連設させる並走移行部並びに連設させた前記第一の切り屑排出溝2a及び前記第二の切り屑排出溝2bのねじれ角を等しくして両者を並走させる並走部が順次設けられた穴明け工具であって、前記第一の切り屑排出溝2a及び前記第二の切り屑排出溝2bの前記並走部のねじれ角は前記2溝部のねじれ角より大きい角度に設定され、最も工具先端側に位置する前記ねじれ角の変化位置は、工具先端から工具直径の1.5倍以上工具本体1の基端側の所定位置まで形成される切り屑排出溝の全長の1/2以下の位置に設けられているものである。   In the first embodiment, two cutting edges are provided at the tip of the tool body 1, and two spiral first chip discharge grooves 2 a and a second one extending from the tool tip to the base side on the outer periphery of the tool body 1. The first chip discharge groove 2a includes three twist regions each having a predetermined twist angle, and the second chip discharge groove 2b has a predetermined twist angle. Of the chip discharge grooves 2a and 2b, one of the chip discharge grooves 2a and 2b is continuously provided in the middle of the other chip discharge groove 2a and 2b, At least one of the chip discharge groove 2a and the second chip discharge groove 2b is formed up to a predetermined position on the base end side of the tool body 1, and the first chip side is formed from the tool tip side. Screws for the chip discharge groove 2a and the second chip discharge groove 2b Two groove portions having equal angles, the parallel running transition portion in which the twist angles of the first chip discharge groove 2a and the second chip discharge groove 2b are made different from each other, and the first chip that are connected in series A drilling tool in which parallel running portions for making the twist angles of the discharge groove 2a and the second chip discharge groove 2b equal to each other and running them in parallel are sequentially provided, and the first chip discharge groove 2a and The twist angle of the parallel running portion of the second chip discharge groove 2b is set to an angle larger than the twist angle of the two groove portions, and the change position of the twist angle located closest to the tool tip is determined from the tool tip to the tool. It is provided at a position not less than ½ of the total length of the chip discharge groove formed to a predetermined position on the base end side of the tool body 1 at least 1.5 times the diameter.

実施例1は、外周に螺旋状の切り屑排出溝が設けられている工具本体1と、工具本体1に連設され工具基端側ほど漸次拡径するシャンクテーパ部と、シャンクテーパ部に連設され直径が3.175mmのシャンク部とから成るPCBドリルである。工具本体1は超硬合金部材で形成され、シャンク部はステンレス鋼部材で形成されており、この両者が接合されて構成されている。シャンクテーパ部及びシャンク部は図示しないが、シャンクテーパ部は20°以上90°以下に設定されるのが一般的であり、実施例1においては30°で形成されている。   In the first embodiment, a tool main body 1 having a spiral chip discharge groove provided on the outer periphery, a shank taper portion continuously provided on the tool main body 1 and gradually increasing in diameter toward the tool base end side, and connected to the shank taper portion. It is a PCB drill which is provided and has a shank portion having a diameter of 3.175 mm. The tool body 1 is formed of a cemented carbide member, and the shank portion is formed of a stainless steel member, and both are joined. Although the shank taper portion and the shank portion are not shown, the shank taper portion is generally set to 20 ° or more and 90 ° or less, and is formed at 30 ° in the first embodiment.

実施例1においては、図1に図示したように、工具本体1の外周に第一の切り屑排出溝2aと第二の切り屑排出溝2bとが1つずつ設けられ、この2つの切り屑排出溝は工具先端視において回転中心に対して180°の分割角度で設けられ、この第一の切り屑排出溝2a及び第二の切り屑排出溝2bのすくい面と工具本体1の先端逃げ面との交差稜線部に、夫々工具本体1と一体に切れ刃4が設けられた2刃2溝形状のドリルである。即ち、当該切れ刃4も工具先端視において回転中心に対して180°の分割角度で設けられている。具体的には、工具のアスペクト比が15以上で工具直径が0.7mm以下のPCBドリルである。   In the first embodiment, as shown in FIG. 1, a first chip discharge groove 2 a and a second chip discharge groove 2 b are provided on the outer periphery of the tool body 1, and the two chips are provided. The discharge grooves are provided at a split angle of 180 ° with respect to the center of rotation when viewed from the tip of the tool. The rake face of the first chip discharge groove 2a and the second chip discharge groove 2b and the tip flank of the tool body 1 are provided. Is a two-edged, two-grooved drill in which cutting edges 4 are provided integrally with the tool body 1 at the intersecting ridges. That is, the cutting edge 4 is also provided at a split angle of 180 ° with respect to the center of rotation in the tool tip view. Specifically, it is a PCB drill having a tool aspect ratio of 15 or more and a tool diameter of 0.7 mm or less.

実施例1においては、第二の切り屑排出溝2bが工具本体1の基端側の所定位置(前記シャンクテーパ部の手前位置)まで形成されており、この第二の切り屑排出溝2bに連設されて並走する第一の切り屑排出溝2aは、第二の切り屑排出溝2bより短く形成されている。即ち、第一の切り屑排出溝2aと第二の切り屑排出溝2bとが異なるねじれ角で連設して両者の一部が重なり、その後等しいねじれ角で夫々の溝の最深点が所定距離離れた状態で、2つの溝が並走する構成(並走溝)としている。なお、2つの切り屑排出溝の溝長を逆転させて、第一の切り屑排出溝2aを第二の切り屑排出溝2bより長く形成する構成としてもよい。   In the first embodiment, the second chip discharge groove 2b is formed up to a predetermined position on the base end side of the tool body 1 (a position before the shank taper portion), and the second chip discharge groove 2b is formed in the second chip discharge groove 2b. The first chip discharge groove 2a that is continuously provided and runs in parallel is formed shorter than the second chip discharge groove 2b. That is, the first chip discharge groove 2a and the second chip discharge groove 2b are arranged at different twist angles, and a part of both overlaps, and then the deepest point of each groove is a predetermined distance with the same twist angle. It is set as the structure (parallel running groove) in which two grooves run in parallel in a separated state. In addition, it is good also as a structure which reverses the groove length of two chip discharge grooves, and forms the 1st chip discharge groove 2a longer than the 2nd chip discharge groove 2b.

上述のように第一の切り屑排出溝2aを第二の切り屑排出溝2bの途中部に連設させる理由は以下の通りである。   The reason why the first chip discharge groove 2a is connected to the middle part of the second chip discharge groove 2b as described above is as follows.

PCBドリルの折損要因としては、(a)ドリル剛性(強度)不足に起因する穴曲がり、(b)切り屑排出溝の溝容積不足、ねじれ角が小さい(切り屑排出溝内の切り屑上昇作用に影響)等に起因する切り屑排出難、(c)摩耗に起因する穴曲がり、切り屑排出悪化等が挙げられる。   Causes of PCB drill breakage include: (a) hole bending due to lack of drill stiffness (strength), (b) insufficient groove volume of chip discharge groove, small helix angle (chip rising action in chip discharge groove) And the like, and (c) hole bending due to wear, chip discharge deterioration, and the like.

いずれの場合も加工穴の径に対して加工深さが深くなるほど上記(a)〜(c)に起因して切削抵抗が上昇し、ドリルの強度が耐えられなくなることから折損にいたる。よって、ドリルの耐折損性を改善するには剛性の確保と切削抵抗の低減(排出性の改善、穴内壁との接触面積低下)が課題となるが、これら剛性の確保と切削抵抗の低減はトレードオフの関係にある。   In any case, as the machining depth becomes deeper than the diameter of the machining hole, the cutting resistance increases due to the above (a) to (c), and the strength of the drill becomes unbearable, leading to breakage. Therefore, securing the rigidity and reducing the cutting resistance (improving the discharge performance and reducing the contact area with the inner wall of the hole) are issues to improve the breakage resistance of the drill. However, ensuring the rigidity and reducing the cutting resistance There is a trade-off relationship.

また、PCBドリルは、剛性が高くなる形状にすればするほど撓みにくくなり、穴位置精度が改善する傾向にある。しかし、その分切り屑排出性が悪化し、穴内壁粗さが悪化したり、良好な切り屑排出性が得られないことによる穴周囲の切り屑残り、またはそれに伴う当て板の変形により、当て板進入時の直進性が悪化し穴位置精度が悪化することがある。   Further, the more the PCB drill has a higher rigidity, the more difficult it is to bend, and the hole position accuracy tends to improve. However, the chip discharge performance deteriorates, the hole inner wall roughness deteriorates, the chip remaining around the hole due to the lack of good chip discharge performance, or the deformation of the backing plate associated therewith. The straight advanceability when entering the plate may deteriorate and the hole position accuracy may deteriorate.

そこで、前述したような第一の切り屑排出溝2aと第二の切り屑排出溝2bを連設させる形状(2刃溝連設形状)とすることで、工具先端側に良好な切削性と排出性をもたせ、工具基端側(根元側)において剛性を確保することができ、従来の2刃2溝形状に比べて、耐折損性や穴位置精度を改善することができる。   Thus, by making the first chip discharge groove 2a and the second chip discharge groove 2b as described above into a continuous shape (two-blade groove continuous shape), good cutting performance can be achieved on the tool tip side. It is possible to provide a discharge property, ensure rigidity on the tool base end side (base side), and improve breakage resistance and hole position accuracy as compared with the conventional 2-blade 2-groove shape.

更に、実施例1では、単に上記2刃溝連設形状とするだけでなく、第一の切り屑排出溝2aと第二の切り屑排出溝2bのねじれ角の変化段数を工夫することで、工具軸方向における並走移行部の距離を短くし、剛性向上に寄与する並走部の距離を可及的に長くして、ドリルの剛性向上と穴位置精度の改善を図れるようにしている。   Furthermore, in Example 1, it is not only simply the above-mentioned two-blade groove continuous shape, but also by devising the change step number of the twist angle of the first chip discharge groove 2a and the second chip discharge groove 2b, The distance of the parallel running transition part in the tool axis direction is shortened, and the distance of the parallel running part contributing to the rigidity improvement is made as long as possible so that the rigidity of the drill can be improved and the hole position accuracy can be improved.

即ち、実施例1は、第一の切り屑排出溝2a及び第二の切り屑排出溝2bの両者のねじれ角を途中で変化させて可及的に工具軸方向における並走移行部の距離が短くなるように連設させている。具体的には、第二の切り屑排出溝2bとしてねじれ角を2段に変化させる(2つのねじれ領域を持つように1回ねじれ角を変化させる)と共に、第一の切り屑排出溝2aとしてねじれ角を3段に変化させ(3つのねじれ領域を持つように2回ねじれ角を変化させ)、工具途中部において両者を連設させるように構成している。   That is, in Example 1, the distance between the parallel running transition portions in the tool axis direction is made as much as possible by changing the twist angles of both the first chip discharging groove 2a and the second chip discharging groove 2b in the middle. It is connected continuously so as to be shorter. Specifically, as the second chip discharge groove 2b, the twist angle is changed in two steps (the twist angle is changed once so as to have two twist areas) and the first chip discharge groove 2a is formed. The twist angle is changed in three stages (the twist angle is changed twice so as to have three twist regions), and both are connected in the middle of the tool.

具体的には、実施例1においては、図2に図示したように、第一の切り屑排出溝2a及び第二の切り屑排出溝2bの先端部(2溝部)のねじれ角θ1は同角度に設定し、第二の切り屑排出溝2bを第1のねじれ角変化位置P1からねじれ角θ2に設定すると共に、第一の切り屑排出溝2aを第2のねじれ角変化位置P2からねじれ角θ3を大きくすることで第二の切り屑排出溝2bに連設させ、連設後、第一の切り屑排出溝2aを第3のねじれ角変化位置P3からねじれ角θ2に設定することで、両者を並走させる構成としている。ねじれ角変化位置は、切り屑排出溝の別を問わず、工具先端側から順に、第1のねじれ角変化位置(最も工具先端側に位置するねじれ角変化位置)、第2のねじれ角変化位置、第3のねじれ角変化位置と言う。また、上記第一の切り屑排出溝2aにおける並走移行部のねじれ角θ3を連設角と言う。   Specifically, in the first embodiment, as illustrated in FIG. 2, the twist angle θ1 of the tip portion (two groove portions) of the first chip discharge groove 2a and the second chip discharge groove 2b is the same angle. The second chip discharge groove 2b is set to the twist angle θ2 from the first twist angle change position P1, and the first chip discharge groove 2a is set to the twist angle from the second twist angle change position P2. Increasing θ3 is connected to the second chip discharge groove 2b, and after the connection, the first chip discharge groove 2a is set to the twist angle θ2 from the third twist angle change position P3. Both are configured to run in parallel. The torsion angle change position is the first torsion angle change position (the torsion angle change position located closest to the tool tip side) and the second torsion angle change position in order from the tool tip side, regardless of the chip discharge groove. This is referred to as a third twist angle change position. Further, the twist angle θ3 of the parallel running transition portion in the first chip discharge groove 2a is referred to as a continuous angle.

また、図中、2溝部とは、工具先端から前記第一の切り屑排出溝2a及び前記第二の切り屑排出溝2bのねじれ角が等しく、且つ、工具軸方向において第1のねじれ角変化位置P1まで、並走移行部とは、第1のねじれ角変化位置P1から第3のねじれ角変化位置P3まで、並走部とは、第3のねじれ角変化位置P3から工具基端側に前記第一の切り屑排出溝2aと前記第二の切り屑排出溝2bとが並走して形成されている区間を言う。なお、実施例1において、第1のねじれ角変化位置P1は、工具先端から工具直径の1.5倍以上工具本体1の基端側の所定位置まで形成される切り屑排出溝(第二の切り屑排出溝2b)の溝長の1/2以下の位置に設けられている。第1のねじれ角変化位置P1を工具先端から工具直径の1.5倍未満の位置に設けると、再研磨時に該変化位置P1まで研磨される可能性が高く、適した刃形状を得にくくなり、工具先端から第二の切り屑排出溝2bの溝長の1/2より基端側の位置に設けると、2溝部が長くなりすぎて溝容積が大きくなり、工具の剛性が劣化し、穴位置精度が悪化したり折損の可能性が高くなる。なお、前述したように、2つの切り屑排出溝の溝長を逆転させた構成の場合は、第1のねじれ角変化位置P1が、工具先端から工具直径の1.5倍以上第一の切り屑排出溝2aの溝長の1/2以下の位置に設けられるようにする。   Further, in the drawing, the two-groove portion means that the first chip discharge angle change in the tool axis direction is equal in the twist angle of the first chip discharge groove 2a and the second chip discharge groove 2b from the tool tip. Up to the position P1, the parallel running transition part is from the first twist angle change position P1 to the third twist angle change position P3, and the parallel run part is from the third twist angle change position P3 to the tool proximal end side. It refers to a section in which the first chip discharge groove 2a and the second chip discharge groove 2b are formed in parallel. In the first embodiment, the first twist angle change position P1 is a chip discharge groove (second shape) formed from the tip of the tool to a predetermined position on the base end side of the tool body 1 at least 1.5 times the tool diameter. It is provided at a position of 1/2 or less of the groove length of the chip discharge groove 2b). If the first twist angle changing position P1 is provided at a position less than 1.5 times the tool diameter from the tool tip, it is highly likely that the tool will be polished to the changing position P1 at the time of re-polishing, making it difficult to obtain a suitable blade shape. If it is provided at a position closer to the base end side than 1/2 of the groove length of the second chip discharge groove 2b from the tip of the tool, the two groove portions become too long, the groove volume becomes large, the rigidity of the tool deteriorates, and the hole Positional accuracy deteriorates and the possibility of breakage increases. As described above, in the case where the groove lengths of the two chip discharge grooves are reversed, the first twist angle change position P1 is not less than 1.5 times the tool diameter from the tool tip. It is provided at a position that is 1/2 or less of the groove length of the waste discharge groove 2a.

さらに具体的には、実施例1においては、第一の切り屑排出溝2a及び第二の切り屑排出溝2bの2溝部のねじれ角θ1を30°以上50°以下(同一角度)に設定し、第一の切り屑排出溝2aの並走移行部のねじれ角θ3(連設角)と2溝部のねじれ角θ1の差を3°以上25°以下に設定して第二の切り屑排出溝2bに連設させ、並走部のねじれ角θ2を2溝部のねじれ角θ1より2°以上20°以下大きい角度(同一角度)に設定して両者を並走させている。   More specifically, in Example 1, the twist angle θ1 of the two groove portions of the first chip discharge groove 2a and the second chip discharge groove 2b is set to 30 ° to 50 ° (same angle). The difference between the twist angle θ3 (consecutive angle) of the parallel running transition part of the first chip discharge groove 2a and the twist angle θ1 of the two groove parts is set to 3 ° or more and 25 ° or less, and the second chip discharge groove 2 b is arranged in parallel, and the torsion angle θ2 of the parallel running part is set to an angle (same angle) that is 2 ° or more and 20 ° or less larger than the torsion angle θ1 of the two groove parts.

2溝部のねじれ角が30°より小さい場合、切り屑の排出性が悪化し、内壁粗さが悪化しやすく、また、折損しやすくなる。一方、50°より大きくなると、切れ刃の刃物角(すくい面と逃げ面とがなす角)が小さくなるため、切れ刃が欠損しやすくなり、切削性が悪化し、穴位置精度や内壁粗さの悪化に繋がりやすくなる。実施例1においては、45°に設定している。   When the twist angle of the two groove portions is smaller than 30 °, the chip dischargeability is deteriorated, the inner wall roughness is easily deteriorated, and breakage is easily caused. On the other hand, when the angle exceeds 50 °, the blade angle of the cutting edge (the angle formed by the rake face and the flank face) becomes small, so that the cutting edge tends to be lost, cutting performance deteriorates, and the hole position accuracy and inner wall roughness are reduced. It becomes easy to lead to deterioration. In Example 1, it is set to 45 °.

また、2刃2溝形状の場合、先端部において2つのねじれ角を等しい角度に設定することで、被削材への進入時に直進性が良く、良好な穴位置精度を得ることができる。   Further, in the case of a two-blade, two-groove shape, by setting the two twist angles at the tip portion to be equal, the straightness is good when entering the work material, and good hole position accuracy can be obtained.

従来の一般的なPCBドリルは、製造の容易さを考慮し、切り屑排出溝のねじれ角は先端から基端まで一定であった。しかし、溝長内でねじれ角を変化させることで、ねじれ角一定のドリルに比べて性能改善が可能である。即ち、例えば、先端部においては巻き付きを防止するためねじれ角を小さく設定し、その分基端側のねじれ角を大きく設定して切り屑の排出性を向上させること等が可能である。   In the conventional general PCB drill, the twist angle of the chip discharge groove is constant from the front end to the base end in consideration of ease of manufacture. However, by changing the torsion angle within the groove length, performance can be improved as compared to a drill with a constant torsion angle. That is, for example, it is possible to improve the chip discharging property by setting a small twist angle in order to prevent winding at the distal end and setting a large twist angle on the base end side accordingly.

このように、切り屑排出溝のねじれ角を複数段に変化させることで、性能改善のための形状最適化が図れるが、そのねじれ角の段階数が多いほど(例えば、第二の切り屑排出溝2bのねじれ角を3段に、第一の切り屑排出溝2aのねじれ角を4段に変化させる構成や、第二の切り屑排出溝2bのねじれ角を4段に、第一の切り屑排出溝2aのねじれ角を5段に変化させる構成など)形状は複雑となり製造は困難となる。よって最小限の段階数で効率よく形状最適化されることが望ましい。   In this way, by changing the twist angle of the chip discharge groove into a plurality of stages, the shape can be optimized for improving the performance. However, as the number of stages of the twist angle increases (for example, the second chip discharge) The configuration in which the twist angle of the groove 2b is changed to three steps and the twist angle of the first chip discharge groove 2a is changed to four steps, and the twist angle of the second chip discharge groove 2b is changed to four steps, Such as a configuration in which the twist angle of the waste discharge groove 2a is changed to 5 steps), and the shape becomes complicated, making the manufacture difficult. Therefore, it is desirable to optimize the shape efficiently with the minimum number of steps.

ところで、溝連設後に並走する形状(溝連設並走形状)のドリルは、2溝部、並走移行部及び並走部で構成される。   By the way, the drill of the shape (parallel connection shape of a groove | channel continuous arrangement | positioning) which parallels after a groove | channel continuous arrangement | sequence is comprised by a 2 groove part, a parallel movement transfer part, and a parallel movement part.

並走部では切り屑排出溝同士を重ね、2つの切り屑排出溝を独立して設ける場合よりも溝容積を小さくできることから剛性を確保している。よって、溝長内で並走部の比率を2溝部(および並走移行部)の比率に対して大きく設定するほど、ドリルが撓みにくくなる。   In the parallel running portion, the chip discharge grooves are overlapped with each other, so that the groove volume can be reduced as compared with the case where the two chip discharge grooves are provided independently, thereby ensuring rigidity. Therefore, the larger the ratio of the parallel running parts within the groove length is set with respect to the ratio of the 2 groove parts (and the parallel running transition part), the harder the drill is bent.

工具先端部における2溝部では、2つの切り屑排出溝を独立して設け、夫々の切り屑排出溝に切れ刃を設けるため、良好な切削性能と排出性を得ることができる。   In the two grooves at the tool tip, two chip discharge grooves are provided independently, and a cutting edge is provided in each chip discharge groove, so that good cutting performance and discharge can be obtained.

上述のように並走部では剛性を確保できる反面、排出性が悪化する場合があり、それにより折損しやすくなる場合がある。そのため、並走部のねじれ角は2溝部のねじれ角よりも2°以上20°以下大きく設定することで排出性を補い、耐折損性を改善する。ここで、2°より小さいと十分な排出性改善効果を得にくく、20°より大きいと剛性が劣化しドリルが撓みやすくなる。   As described above, the parallel running portion can secure rigidity, but the discharge performance may be deteriorated, and it may be easily broken. Therefore, by setting the twist angle of the parallel running portion to be 2 ° or more and 20 ° or less larger than the twist angle of the two groove portions, the discharge property is supplemented and the breakage resistance is improved. Here, if the angle is less than 2 °, it is difficult to obtain a sufficient effect of improving dischargeability. If the angle is larger than 20 °, the rigidity is deteriorated and the drill is easily bent.

更に、並走移行部においては、ねじれ角が異なる独立した2つの切り屑排出溝が設けられる区間が存在する。この区間においては切り屑の流れがアンバランスとなり、更に2つの切り屑排出溝が独立して存在するため、並走部に比べて溝容積が大きくなり、剛性面で不安定となりやすい。よって、この並走移行部の長さ(工具軸方向における並走移行部の距離)は可及的に短い方(溝長内における並走移行部の比率を小さくした方)がよい。   Furthermore, in the parallel running transition portion, there is a section in which two independent chip discharge grooves having different twist angles are provided. In this section, the flow of chips becomes unbalanced, and further, two chip discharge grooves exist independently, so that the groove volume becomes larger than that of the parallel running portion, and the rigidity tends to be unstable. Therefore, the length of the parallel transition portion (distance of the parallel transition portion in the tool axis direction) is preferably as short as possible (one in which the ratio of the parallel transition portions in the groove length is reduced).

また、ねじれ角の段階数を最小の回数で溝連設並走形状を形成するためには、夫々の切り屑排出溝において、ねじれ角を2段に変化させるように設定し、夫々のねじれ角が変化する位置を異なる位置に設定すれば溝連設並走形状とすることができる。しかし、一方の切り屑排出溝のねじれ角を3段に変化させるように設定し、他方の切り屑排出溝のねじれ角を2段に変化させるように設定した方が、工具軸方向における並走移行部の距離を短くして溝長内における並走移行部の比率を小さくすることができ、よりドリル性能の改善が図れる。   In addition, in order to form a groove-connected parallel running shape with a minimum number of twist angle steps, each twist discharge angle is set to change in two steps in each chip discharge groove. If the position where the angle changes is set to a different position, it is possible to form a parallel running shape with grooves. However, it is more parallel in the tool axis direction if the twist angle of one chip discharge groove is set to change in three steps and the twist angle of the other chip discharge groove is changed in two steps. The distance of the transition part can be shortened to reduce the ratio of the parallel transition part in the groove length, and the drill performance can be further improved.

なお、より多くのねじれ角段階数を設けることで、工具軸方向における並走移行部の距離を更に短くすることは可能であるが、上述のようにねじれ角の変化の回数が多いほど製造が困難となる。このことから、一方の切り屑排出溝のねじれ角を3段に変化させるように設定し、他方の切り屑排出溝のねじれ角を2段に変化させるように設定し並走形状とすることで、より少ないねじれ角段階数で、性能改善が可能となる。   Although it is possible to further reduce the distance of the parallel transition portion in the tool axis direction by providing a larger number of twist angle steps, the more the number of changes in the twist angle as described above, the more the manufacturing becomes. It becomes difficult. For this reason, the twist angle of one chip discharge groove is set to be changed in three steps, and the twist angle of the other chip discharge groove is set to be changed in two steps to form a parallel running shape. The performance can be improved with a smaller number of twist angle steps.

実施例1においては、図2に図示したように、第二の切り屑排出溝2bのねじれ角を2段に変化させ(θ1からP1の位置でθ2に変化させ)、第一の切り屑排出溝2aのねじれ角を3段に変化させる(θ1からP2の位置でθ3に、θ3からP3の位置でθ2に変化させる)構成としている。   In the first embodiment, as shown in FIG. 2, the twist angle of the second chip discharge groove 2b is changed in two steps (changed from θ1 to θ2 at the position of P1), and the first chip discharge is performed. The twist angle of the groove 2a is changed in three steps (changed from θ1 to P2 to θ3 and from θ3 to P3 to θ2).

2溝部のねじれ角θ1及び並走部のねじれ角θ2より、連設角θ3を大きくして連設並走させた場合、並走移行部における切り屑排出性が良好となり、耐折損性が良好となる。このとき、θ3とθ1の差を3°以上25°以下とすることが望ましく、3°より小さくなると並走移行部が長くなりすぎてその分並走部が短くなるため、工具の剛性が低下してしまい、25°より大きくなると並走移行部のねじれ角が大きくなりすぎるため、並走移行部におけるねじり剛性が低下し折損しやすくなる。なお、より好ましくはθ3とθ1の差を5°以上15°以下にするとよい。   When the continuous angle θ3 is made larger than the twist angle θ1 of the two grooves and the twist angle θ2 of the parallel running part, the chip discharging property at the parallel running part is good and the breakage resistance is good. It becomes. At this time, it is desirable that the difference between θ3 and θ1 be 3 ° or more and 25 ° or less. If the angle is smaller than 3 °, the parallel running transition portion becomes too long and the parallel running portion becomes shorter accordingly, so that the rigidity of the tool is reduced. If the angle is greater than 25 °, the twist angle of the parallel running transition portion becomes too large, so that the torsional rigidity at the parallel running transition portion is lowered and easily broken. More preferably, the difference between θ3 and θ1 is 5 ° or more and 15 ° or less.

また、図4に図示した別例のように、2溝部のねじれ角θ1及び並走部のねじれ角θ2より、連設角θ3を小さくして連設並走させた場合、並走移行部におけるねじり剛性が強化され、穴位置精度が良好となる。このとき、θ3とθ1の差を3°以上25°以下とすることが望ましく、3°より小さくなると並走移行部が長くなりすぎてその分並走部が短くなるため、工具の剛性が低下してしまい、25°より大きくなると並走移行部における排出性が低下し折損しやすくなる。なお、より好ましくはθ3とθ1の差を5°以上15°以下にするとよい。   Further, as in another example illustrated in FIG. 4, when the parallel running is performed with the continuous angle θ3 smaller than the twist angle θ1 of the two grooves and the twist angle θ2 of the parallel running part, in the parallel running transition part The torsional rigidity is enhanced and the hole position accuracy is improved. At this time, it is desirable that the difference between θ3 and θ1 be 3 ° or more and 25 ° or less. If the angle is smaller than 3 °, the parallel running transition portion becomes too long and the parallel running portion becomes shorter accordingly, so that the rigidity of the tool is reduced. If the angle is greater than 25 °, the discharge performance at the parallel running transition portion is reduced and breakage tends to occur. More preferably, the difference between θ3 and θ1 is 5 ° or more and 15 ° or less.

実施例1においては、θ1及びθ2よりθ3を大きくして連設並走させる構成としている。具体的には、θ1を45°、θ2を50°、θ3を55°に設定している。即ち、θ3とθ1の差を10°としている。なお、図4の別例では、θ1及びθ2よりθ3を小さくして連設並走させる構成としてθ1を45°、θ2を50°、θ3を35°に設定している。即ち、θ3とθ1の差を10°としている。   In the first embodiment, θ3 is made larger than θ1 and θ2, and the parallel running is performed. Specifically, θ1 is set to 45 °, θ2 is set to 50 °, and θ3 is set to 55 °. That is, the difference between θ3 and θ1 is 10 °. In another example of FIG. 4, θ1 is set to 45 °, θ2 is set to 50 °, and θ3 is set to 35 ° as a configuration in which θ3 is made smaller than θ1 and θ2 to run in parallel. That is, the difference between θ3 and θ1 is 10 °.

上記ねじれ角θ1〜θ3の設定は、プリント配線板材料の加工特性、製品の要求品質を踏まえて選定し、一般的に穴明け加工が難しいとされるアスペクト比15以上のドリルに適用することで特に効果が発揮される。   The twist angles θ1 to θ3 are selected based on the processing characteristics of the printed wiring board material and the required quality of the product, and are applied to drills with an aspect ratio of 15 or more, which are generally difficult to drill. Especially effective.

また、前記並走部の始端位置における並走溝の軸方向溝幅は最も工具先端側に位置するねじれ角の変化位置における軸方向溝幅の1.1倍以上1.9倍以下となるように設定している。実施例1においては、並走部の始端位置おける並走溝の軸方向溝幅Bが、連設点(第一の切り屑排出溝2aと第二の切り屑排出溝2bの溝稜線の交点)手前の第1のねじれ角変化位置P1の軸方向溝幅Aの1.1倍以上1.9倍以下となるように設定している。並走部の始端位置Qは第3のねじれ角変化位置P3である。並走部の始端位置Qにおける並走溝の軸方向溝幅Bは、並走部の始端位置を含み且つ工具軸方向基端側に測定した溝幅を言う。具体的には、実施例1においては、第二の切り屑排出溝2bの溝稜線と交差する並走部の始端位置を始点として工具軸方向基端側に向かって測定した軸方向の溝幅Bを言う。前記並走部の始端位置Qにおける並走溝の軸方向溝幅Bが最も工具先端側に位置する第1のねじれ角の変化位置P1における軸方向溝幅Aの1.1倍未満の場合、溝容積が小さ過ぎてスムーズな切り屑排出性を得にくくなり、1.9倍より大きい場合、溝容積が大きいためにドリルの剛性が確保しににくくなる。実施例1においては、並走部の始端位置Qにおける並走溝の軸方向溝幅Bが、連設点手前の第1のねじれ角変化位置P1の軸方向溝幅Aの1.5倍に設定されている。   Further, the axial groove width of the parallel groove at the starting end position of the parallel running portion is 1.1 times or more and 1.9 times or less of the axial groove width at the change position of the torsion angle located closest to the tool tip side. Is set. In Example 1, the axial groove width B of the parallel running groove at the start end position of the parallel running part is the connecting point (the intersection of the groove ridge lines of the first chip discharging groove 2a and the second chip discharging groove 2b). ) It is set to be 1.1 times or more and 1.9 times or less of the axial groove width A of the first twist angle changing position P1 on the front side. The starting end position Q of the parallel running portion is the third twist angle change position P3. The axial groove width B of the parallel running groove at the starting end position Q of the parallel running portion refers to the groove width measured on the proximal side in the tool axis direction including the starting end position of the parallel running portion. Specifically, in Example 1, the groove width in the axial direction measured from the starting end position of the parallel running portion intersecting the groove ridge line of the second chip discharge groove 2b toward the base end side in the tool axial direction. Say B. When the axial groove width B of the parallel groove at the starting end position Q of the parallel running portion is less than 1.1 times the axial groove width A at the first twist angle change position P1 located closest to the tool tip, When the groove volume is too small, it is difficult to obtain a smooth chip discharging property. When the groove volume is larger than 1.9 times, it is difficult to ensure the rigidity of the drill because the groove volume is large. In Example 1, the axial groove width B of the parallel groove at the starting end position Q of the parallel running part is 1.5 times the axial groove width A of the first twist angle changing position P1 before the connection point. Is set.

また、2つの切り屑排出溝のうち一方の切り屑排出溝の溝長は、他方の切り屑排出溝の溝長の50%以上95%以下に設定されている。実施例1においては、第一の切り屑排出溝2aの溝長は工具本体1の基端まで形成された第二の切り屑排出溝2bの溝長より短く、第二の切り屑排出溝2bの溝長の50%以上95%以下となるように設定されている。2つの溝長を同じ長さとしてもよいが、異なる長さとすることで、折損の起点となりやすい工具基端部(根元部)で剛性を確保することができ、耐折損性をより改善することができる。第一の切り屑排出溝2aの溝長が第二の切り屑排出溝2bの溝長の50%未満の場合、基板外に切り屑を排出するために重要となる溝中間部から基端にかけての溝容積が小さくなるため、切り屑詰まりにより折損の可能性が高まり、95%より長い場合、第二の切り屑排出溝2bの溝長との差が小さくなり、工具基端部において剛性が確保しにくくなる。実施例1においては、第一の切り屑排出溝2aの溝長は第二の切り屑排出溝2bの溝長の90%に設定されている。なお、図4に図示した別例においては、第二の切り屑排出溝2bの溝長は工具本体1の基端まで形成された第一の切り屑排出溝2aの溝長より短くなるように、具体的には第二の切り屑排出溝2bの溝長は第一の切り屑排出溝2aの溝長の90%に設定されている。   In addition, the length of one of the two chip discharge grooves is set to 50% or more and 95% or less of the length of the other chip discharge groove. In Example 1, the groove length of the first chip discharge groove 2a is shorter than the groove length of the second chip discharge groove 2b formed up to the base end of the tool body 1, and the second chip discharge groove 2b. The groove length is set to be 50% or more and 95% or less. The two groove lengths may be the same length, but by using different lengths, rigidity can be secured at the tool base end (base) that tends to be the starting point of breakage, and breakage resistance is further improved. Can do. When the groove length of the first chip discharge groove 2a is less than 50% of the groove length of the second chip discharge groove 2b, from the intermediate portion of the groove, which is important for discharging chips to the outside of the substrate, from the base end Therefore, if the length is longer than 95%, the difference from the groove length of the second chip discharge groove 2b is reduced, and the rigidity at the tool base end is increased. It becomes difficult to secure. In Example 1, the groove length of the first chip discharge groove 2a is set to 90% of the groove length of the second chip discharge groove 2b. In the other example shown in FIG. 4, the groove length of the second chip discharge groove 2 b is shorter than the groove length of the first chip discharge groove 2 a formed up to the base end of the tool body 1. Specifically, the groove length of the second chip discharge groove 2b is set to 90% of the groove length of the first chip discharge groove 2a.

また、実施例1においては、前記第一の切り屑排出溝2a及び前記第二の切り屑排出溝2bの終端の切れ上がり端点を含む夫々の工具軸直角断面における、前記第一の切り屑排出溝2a及び前記第二の切り屑排出溝2bいずれか一方の切れ上がり端点と工具の回転軸心とを結ぶ第一の線及び他方の切れ上がり端点と工具の回転軸心とを結ぶ第二の線を、工具の軸方向視における同一の軸直角投影面に投影した際、この投影面において前記第一の線と前記第二の線とがなす狭角(所謂切れ上がり狭角)が90°より大きく180°以下に設定されている(切れ上がり狭角は、第一の切り屑排出溝2aの切れ上がり端点と第二の切り屑排出溝2bの切れ上がり端点の回転位相差(角度差)により表される。)。   Further, in the first embodiment, the first chip discharge in the respective cross sections perpendicular to the tool axis including the end points at the ends of the first chip discharge groove 2a and the second chip discharge groove 2b. A first line connecting one of the groove 2a and the second chip discharge groove 2b and the rotation axis of the tool, and a second line connecting the other edge and the rotation axis of the tool. When a line is projected onto the same axis perpendicular projection plane in the axial view of the tool, the narrow angle (so-called cut-off narrow angle) formed by the first line and the second line on this projection plane is 90 °. More specifically, the angle is set to 180 ° or less (the narrowing angle is the rotational phase difference (angle difference) between the rising end point of the first chip discharge groove 2a and the rising end point of the second chip discharge groove 2b. Represented by :).

切れ上がり狭角が90°以下であると、切り屑の排出方向が偏るため、工具基端側でアンバランスな排出となり、突発的な穴曲がりが引き起こされる可能性がある。   When the cut-off narrow angle is 90 ° or less, the chip discharge direction is deviated, so that unbalanced discharge occurs on the tool base end side, which may cause sudden hole bending.

よって、第一の切り屑排出溝2aと第二の切り屑排出溝2bの切れ上がり狭角を90°より大きく180°以下とすることで、切り屑の排出の偏りを防ぐことができ、バランスよく切り屑を排出することができる。   Therefore, by making the narrow angle of the first chip discharge groove 2a and the second chip discharge groove 2b greater than 90 ° and 180 ° or less, uneven discharge of chips can be prevented, and the balance Chips can be discharged well.

また、工具本体1には潤滑性皮膜、例えば非晶質炭素皮膜などを被覆しても良い。非晶質炭素皮膜等の潤滑性皮膜を被覆することで、切り屑排出性を改善し、剛性に秀れた形状であることを活かした高精度な穴明け加工が可能となる。   Further, the tool body 1 may be coated with a lubricating film such as an amorphous carbon film. Coating with a lubricious coating such as an amorphous carbon coating improves chip evacuation and enables highly accurate drilling utilizing the shape with excellent rigidity.

また、切り屑排出溝とランド部3との間に二番取り面を設ける構成としても良い。この場合、穴明け加工時にランド部の外周と穴内壁との接触面積を減少させることができるため、工具先端部における切削抵抗を低減することができる。   Moreover, it is good also as a structure which provides a 2nd picking surface between the chip discharge groove | channel and the land part 3. FIG. In this case, since the contact area between the outer periphery of the land portion and the inner wall of the hole can be reduced during drilling, cutting resistance at the tool tip can be reduced.

実施例1は上述のように構成したから、第一の切り屑排出溝2a及び第二の切り屑排出溝2bを並走させる並走部を設けることで、複数の切り屑排出溝を連設させずに夫々独立して設けた場合に比し、溝容積を小さくして剛性を確保することが可能となるのは勿論、第二の切り屑排出溝2bのねじれ角を2段に、第一の切り屑排出溝2aのねじれ角を3段に変化させて両者を連設させる構成とすることで、切り屑排出溝のねじれ角の変化数を最小限としつつ工具軸方向における並走移行部の距離を可及的に短くすることが可能となり、剛性向上に寄与する並走部をそれだけ長くすることができ、よって、耐折損性及び穴位置精度を大幅に改善することが可能となる。   Since Example 1 is configured as described above, a plurality of chip discharge grooves are continuously provided by providing a parallel running section that causes the first chip discharge groove 2a and the second chip discharge groove 2b to run side by side. As compared with the case where each of them is provided independently, the groove volume can be reduced and the rigidity can be ensured. Of course, the second chip discharge groove 2b has two twist angles, By changing the torsion angle of one chip discharge groove 2a in three stages and connecting them in parallel, the parallel movement in the tool axis direction is minimized while minimizing the number of changes in the torsion angle of the chip discharge groove. It is possible to shorten the distance of the part as much as possible, and it is possible to lengthen the parallel running part that contributes to the improvement of rigidity, thereby greatly improving the breakage resistance and the hole position accuracy. .

本発明の具体的な実施例2について図面に基づいて説明する。   A second embodiment of the present invention will be described with reference to the drawings.

実施例2は、図3に図示したように、第一の切り屑排出溝2a及び第二の切り屑排出溝2bの先端部(2溝部)のねじれ角θ1は同角度に設定し、第一の切り屑排出溝2aを第1のねじれ角変化位置P1からねじれ角θ3(連設角)を大きくすることで第二の切り屑排出溝2bに連設させ、連設後、第一の切り屑排出溝2aを第3のねじれ角変化位置P3からねじれ角θ2に設定することで、両者を並走させる構成としたものである。   In the second embodiment, as shown in FIG. 3, the first chip discharge groove 2a and the second chip discharge groove 2b have their twist angles θ1 set to the same angle. The chip discharge groove 2a is continuously connected to the second chip discharge groove 2b by increasing the twist angle θ3 (consecutive angle) from the first twist angle changing position P1. By setting the waste discharge groove 2a to the twist angle θ2 from the third twist angle change position P3, the two are moved in parallel.

その余は実施例1と同様である。   The rest is the same as in Example 1.

上記実施例1,2の効果を裏付ける実験例について説明する。   An experimental example supporting the effects of Examples 1 and 2 will be described.

図5〜7は、ドリルの2つの切り屑排出溝の形態を変化させて耐折損性及び穴位置精度を評価した実験条件及び実験結果を示す表である。   FIGS. 5-7 is a table | surface which shows the experimental condition and experimental result which changed the form of the two chip | tip discharge groove | channels of a drill, and evaluated fracture resistance and hole position accuracy.

図5の実験で使用したドリルは、工具直径を0.1mm、溝長(2つの切り屑排出溝のうち長い方の溝長)を1.8mm、アスペクト比を18としている。図5中、従来例1及び従来例2においては、実験例との比較のため、2つの切り屑排出溝を第一の切り屑排出溝、第二の切り屑排出溝と表現している(図6及び図7も同様)が、従来例1は一方の切り屑排出溝(第一の切り屑排出溝)のねじれ角を3段に変化させて他方の切り屑排出溝(第二の切り屑排出溝)のねじれ角を変化させない(1段、45°のままの)例、従来例2は2つの切り屑排出溝(第一の切り屑排出溝及び第二の切り屑排出溝)を夫々2段に変化させた例を示している。また、実験例1、実験例2(実施例1)及び実験例3(別例)は第一の切り屑排出溝のねじれ角を3段に第二の切り屑排出溝を2段に変化させた例であり、実験例1及び実験例2においては図2に図示したように連設角θ3を2溝部のねじれ角θ1より大きくし、実験例3においては図4に図示したように連設角θ3を2溝部のねじれ角θ1より小さくした例である。なお、ドリルの材質、その他の形状項目(先端角、ウェブ厚等)は同一としている。また、各ドリルの最も先端側にあるねじれ角変化位置は0.35mmとしている。   The drill used in the experiment of FIG. 5 has a tool diameter of 0.1 mm, a groove length (longer one of the two chip discharge grooves) of 1.8 mm, and an aspect ratio of 18. In FIG. 5, in the conventional example 1 and the prior art example 2, for comparison with the experimental example, the two chip discharge grooves are expressed as a first chip discharge groove and a second chip discharge groove ( The same applies to FIGS. 6 and 7). However, in the conventional example 1, the twist angle of one chip discharge groove (first chip discharge groove) is changed in three stages to change the other chip discharge groove (second chip discharge groove). In the conventional example 2 in which the twist angle of the (scrap discharge groove) is not changed (1 stage, remains 45 °), the conventional example 2 has two chip discharge grooves (first chip discharge groove and second chip discharge groove). Each example is changed in two stages. In Experimental Example 1, Experimental Example 2 (Example 1), and Experimental Example 3 (another example), the twist angle of the first chip discharge groove is changed to three stages and the second chip discharge groove is changed to two stages. In Experimental Example 1 and Experimental Example 2, the continuous angle θ3 is made larger than the twist angle θ1 of the two grooves as shown in FIG. 2, and in Experimental Example 3, the continuous angle as shown in FIG. In this example, the angle θ3 is smaller than the twist angle θ1 of the two grooves. The drill material and other shape items (tip angle, web thickness, etc.) are the same. Moreover, the twist angle change position on the most distal end side of each drill is set to 0.35 mm.

以上のドリルにより、基材としての「BT 厚さ0.1mm(両面板)」を8枚重ね、当て板として樹脂付きアルミ板(厚さ0.11mm)、捨て板としてベーク板(厚さ1.5mm)を用い、ドリル(スピンドル)の回転数:300krpm、送り速度:3.0m/min、スピンドルの上昇速度:50m/minにて穴明け加工実験を行った。   With the above drill, 8 sheets of “BT thickness 0.1 mm (double-sided plate)” as a base material are stacked, an aluminum plate with resin (thickness 0.11 mm) as a backing plate, and a bake plate (thickness 1) 5 mm), drilling experiments were performed at a drill (spindle) rotation speed of 300 krpm, a feed rate of 3.0 m / min, and a spindle lift rate of 50 m / min.

折損寿命は、各仕様5本ずつ、各ドリルが折損するまでのヒット数の平均値を算出して評価した。また、穴位置精度は、各仕様5本ずつ(1本あたり4,000ヒット、計20,000ヒット)の最下基板裏側の全加工穴の穴ズレ量の平均+3σ値を算出して評価した。   The fracture life was evaluated by calculating the average value of the number of hits until each drill breaks for each of five specifications. In addition, the hole position accuracy was evaluated by calculating the average + 3σ value of the hole misalignment amount of all the processed holes on the back side of the bottom substrate of each specification 5 pieces (4,000 hits per piece, total 20,000 hits). .

図5から、従来例1,2に比し実験例1,2及び3は、いずれも耐折損性及び穴位置精度が秀れていることが確認できた。また、連設角θ3が大きい方は耐折損性が秀れており、小さい方は穴位置精度が秀れていることが確認できた。   From FIG. 5, it was confirmed that all of Experimental Examples 1, 2, and 3 were superior in break resistance and hole position accuracy compared to Conventional Examples 1 and 2. Further, it was confirmed that the larger the connecting angle θ3, the better the breakage resistance, and the smaller one, the better the hole position accuracy.

図6の実験で使用したドリルは、工具直径を0.3mm、溝長を6.5mm、アスペクト比を22としている。また、従来例3は一方の切り屑排出溝のねじれ角を変化させず他方の切り屑排出溝を3段に変化させた例、従来例4は2つの切り屑排出溝を夫々2段に変化させた例、実験例4及び実験例5は第一の切り屑排出溝のねじれ角を3段に第二の切り屑排出溝を2段に変化させた例であり、実験例4においては図2に図示したように連設角θ3を2溝部のねじれ角θ1より大きくし、実験例5においては図4に図示したように連設角θ3を2溝部のねじれ角θ1より小さくした例である。なお、ドリルの材質、その他の形状項目(先端角、ウェブ厚等)は同一としている。また、各ドリルの最も先端側にあるねじれ角変化位置は1.0mmとしている。   The drill used in the experiment of FIG. 6 has a tool diameter of 0.3 mm, a groove length of 6.5 mm, and an aspect ratio of 22. Further, Conventional Example 3 is an example in which the twist angle of one chip discharge groove is not changed and the other chip discharge groove is changed to three stages, and Conventional Example 4 is that two chip discharge grooves are changed to two stages respectively. Example 4, Experimental Example 4 and Experimental Example 5 are examples in which the twist angle of the first chip discharge groove is changed to three steps and the second chip discharge groove is changed to two steps. As shown in FIG. 2, the continuous angle θ3 is made larger than the twist angle θ1 of the two grooves, and in Experimental Example 5, the continuous angle θ3 is made smaller than the twist angle θ1 of the two grooves as shown in FIG. . The drill material and other shape items (tip angle, web thickness, etc.) are the same. Further, the twist angle change position on the most distal end side of each drill is 1.0 mm.

以上のドリルにより、基材としての「FR−4ハロゲンフリー材 厚さ1.6mm(6層板)」を3枚重ね、当て板としてアルミ板(厚さ0.15mm)、捨て板としてベーク板(厚さ1.5mm)を用い、ドリル(スピンドル)の回転数:120krpm、送り速度:2.1m/min、スピンドルの上昇速度:25.4m/minにて穴明け加工実験を行った。   Using the drills above, three “FR-4 halogen-free material thickness 1.6 mm (six-layer plate)” as a base material is stacked, an aluminum plate (thickness 0.15 mm) as a backing plate, and a bake plate as a discard plate (Thickness 1.5 mm) was used, and a drilling experiment was performed at a drill (spindle) rotation speed of 120 krpm, a feed rate of 2.1 m / min, and a spindle ascending speed of 25.4 m / min.

折損寿命は、各仕様10本ずつ、10,000ヒット設定で加工し、10,000ヒット以前で折損したドリルの折損率を算出して評価した。また、穴位置精度は、各仕様10本ずつ(1本あたり2,000ヒット、計20,000ヒット)の最下基板裏側の全加工穴の穴ズレ量の平均+3σ値を算出して評価した。   The breakage life was evaluated by calculating the breakage rate of drills that were broken at a setting of 10,000 hits for each of the 10 specifications and broken before 10,000 hits. In addition, the hole position accuracy was evaluated by calculating the average + 3σ value of the hole misalignment amount of all the processed holes on the back side of the bottom substrate of each specification 10 pieces (2,000 hits per piece, total 20,000 hits). .

図6から、従来例3,4に比し実験例4,5は、いずれも耐折損性及び穴位置精度が秀れていることが確認できた。また、連設角θ3が大きい方は耐折損性が秀れており、小さい方は穴位置精度が秀れていることが確認できた。   From FIG. 6, it was confirmed that the experimental examples 4 and 5 were superior in the fracture resistance and the hole position accuracy to the conventional examples 3 and 4. Further, it was confirmed that the larger the connecting angle θ3, the better the breakage resistance, and the smaller one, the better the hole position accuracy.

図7の実験で使用したドリルは、工具直径を0.65mm、溝長を10mm、アスペクト比を15としている。また、従来例5は一方の切り屑排出溝のねじれ角を変化させず他方の切り屑排出溝を3段に変化させた例、従来例6は2つの切り屑排出溝を夫々2段に変化させた例、実験例6及び実験例7は第一の切り屑排出溝のねじれ角を3段に第二の切り屑排出溝を2段に変化させた例であり、実験例6においては図2に図示したように連設角θ3を2溝部のねじれ角θ1より大きくし、実験例7においては図4に図示したように連設角θ3を2溝部のねじれ角θ1より小さくした例である。なお、ドリルの材質、その他の形状項目(先端角、ウェブ厚等)は同一としている。また、各ドリルの最も先端側にあるねじれ角変化位置は1.2mmとしている。   The drill used in the experiment of FIG. 7 has a tool diameter of 0.65 mm, a groove length of 10 mm, and an aspect ratio of 15. Conventional example 5 is an example in which the twist angle of one chip discharge groove is not changed and the other chip discharge groove is changed to three stages, and conventional example 6 is that two chip discharge grooves are changed to two stages, respectively. Example 6 and Experiment 7 are examples in which the twist angle of the first chip discharge groove is changed to three steps and the second chip discharge groove is changed to two steps. As shown in FIG. 2, the continuous angle θ3 is made larger than the twist angle θ1 of the two grooves, and in Experimental Example 7, the continuous angle θ3 is made smaller than the twist angle θ1 of the two grooves as shown in FIG. . The drill material and other shape items (tip angle, web thickness, etc.) are the same. Moreover, the twist angle change position on the most distal end side of each drill is set to 1.2 mm.

以上のドリルにより、基材としての「FR−4ハロゲンフリー材 厚さ1.6mm(6層板)」を5枚重ね、当て板としてアルミ板(厚さ0.15mm)、捨て板としてベーク板(厚さ1.5mm)を用い、ドリル(スピンドル)の回転数:70krpm、送り速度:2.1m/min、スピンドルの上昇速度:25.4m/minにて穴明け加工実験を行った。   Using the above drill, 5 sheets of “FR-4 halogen-free material thickness 1.6 mm (6-layer plate)” as a base material are stacked, an aluminum plate (thickness 0.15 mm) as a backing plate, and a bake plate as a discard plate (Thickness 1.5 mm) was used, and a drilling experiment was performed at a drill (spindle) rotation speed of 70 krpm, a feed rate of 2.1 m / min, and a spindle lift rate of 25.4 m / min.

折損寿命は、各仕様10本ずつ、10,000ヒット設定で加工し、10,000ヒット以前で折損したドリルの折損率を算出して評価した。また、穴位置精度は、各仕様10本ずつ(1本あたり2,000ヒット、計20,000ヒット)の最下基板裏側の全加工穴の穴ズレ量の平均+3σ値を算出して評価した。   The breakage life was evaluated by calculating the breakage rate of drills that were broken at a setting of 10,000 hits for each of the 10 specifications and broken before 10,000 hits. In addition, the hole position accuracy was evaluated by calculating the average + 3σ value of the hole misalignment amount of all the processed holes on the back side of the bottom substrate of each specification 10 pieces (2,000 hits per piece, total 20,000 hits). .

図7から、従来例5,6に比し実験例6,7は、いずれも耐折損性及び穴位置精度が秀れていることが確認できた。また、連設角θ3が大きい方は耐折損性が秀れており、小さい方は穴位置精度が秀れていることが確認できた。   From FIG. 7, it was confirmed that the experimental examples 6 and 7 were superior in the fracture resistance and the hole position accuracy to the conventional examples 5 and 6. Further, it was confirmed that the larger the connecting angle θ3, the better the breakage resistance, and the smaller one, the better the hole position accuracy.

以上から、工具直径が0.7mm以下のドリルにおいて、いずれの実験例も従来例に比し耐折損性及び穴位置精度に秀れたものとなることが確認できた。   From the above, it was confirmed that in the drill having a tool diameter of 0.7 mm or less, all of the experimental examples were excellent in breakage resistance and hole position accuracy as compared with the conventional example.

1 工具本体
2a・2b 切り屑排出溝
1 Tool body 2a, 2b Chip discharge groove

Claims (9)

工具本体の先端に2つの切れ刃が設けられ、この工具本体の外周に工具先端から基端側に向かう2つの螺旋状の第一の切り屑排出溝及び第二の切り屑排出溝が設けられ、前記第一の切り屑排出溝は夫々所定のねじれ角を有する3つのねじれ領域を備え、前記第二の切り屑排出溝は夫々所定のねじれ角を有する2つのねじれ領域を備え、これら2つの切り屑排出溝のうち、一方の切り屑排出溝は他方の切り屑排出溝の途中部に連設され、前記第一の切り屑排出溝若しくは前記第二の切り屑排出溝のうち少なくとも一方の切り屑排出溝は工具本体の基端側の所定位置まで形成されており、工具先端側から、前記第一の切り屑排出溝及び前記第二の切り屑排出溝のねじれ角が等しい2溝部、前記第一の切り屑排出溝及び前記第二の切り屑排出溝のねじれ角を異ならせて連設させる並走移行部並びに連設させた前記第一の切り屑排出溝及び前記第二の切り屑排出溝のねじれ角を等しくして両者を並走させる並走部が順次設けられた穴明け工具であって、前記第一の切り屑排出溝及び前記第二の切り屑排出溝の前記並走部のねじれ角は前記2溝部のねじれ角より大きい角度に設定され、最も工具先端側に位置する前記ねじれ角の変化位置は、工具先端から工具直径の1.5倍以上工具本体の基端側の所定位置まで形成される切り屑排出溝の溝長の1/2以下の位置に設けられていることを特徴とする穴明け工具。   Two cutting edges are provided at the tip of the tool body, and two spiral first chip discharge grooves and second chip discharge grooves from the tool tip to the base end side are provided on the outer periphery of the tool body. The first chip discharge groove includes three twist regions each having a predetermined twist angle, and the second chip discharge groove includes two twist regions each having a predetermined twist angle. Of the chip discharge grooves, one of the chip discharge grooves is connected to a middle portion of the other chip discharge groove, and at least one of the first chip discharge groove or the second chip discharge groove. The chip discharge groove is formed up to a predetermined position on the base end side of the tool body, and from the tool tip side, the two groove portions having the same twist angle of the first chip discharge groove and the second chip discharge groove, The first chip discharge groove and the second chip discharge groove A parallel running part that is arranged continuously with different angles, and a parallel running part that makes the twist angles of the first chip discharge groove and the second chip discharge groove connected in parallel to make both run in parallel. Are provided in order, and the twist angle of the parallel running portion of the first chip discharge groove and the second chip discharge groove is set to be larger than the twist angle of the two groove portions. The change position of the torsional angle located closest to the tool tip side is 1/5 of the groove length of the chip discharge groove formed from the tool tip to a predetermined position 1.5 times the tool diameter or more on the base end side of the tool body. A drilling tool provided at a position of 2 or less. 請求項1記載の穴明け工具において、前記第一の切り屑排出溝における前記並走移行部のねじれ角は、前記2溝部のねじれ角より大きいことを特徴とする穴明け工具。   2. The drilling tool according to claim 1, wherein a twist angle of the parallel running transition portion in the first chip discharge groove is larger than a twist angle of the two groove portions. 請求項1,2いずれか1項に記載の穴明け工具において、前記第一の切り屑排出溝の前記並走移行部のねじれ角と前記2溝部のねじれ角の差が3°以上25°以下に設定されていることを特徴とする穴明け工具。   The drilling tool according to any one of claims 1 and 2, wherein a difference between a twist angle of the parallel transition portion of the first chip discharge groove and a twist angle of the two groove portions is 3 ° or more and 25 ° or less. Drilling tool characterized by being set to. 請求項1,2いずれか1項に記載の穴明け工具において、前記第一の切り屑排出溝の前記並走移行部のねじれ角と前記2溝部のねじれ角の差が5°以上15°以下に設定されていることを特徴とする穴明け工具。   The drilling tool according to any one of claims 1 and 2, wherein a difference between a twist angle of the parallel transition portion of the first chip discharge groove and a twist angle of the two groove portions is 5 ° or more and 15 ° or less. Drilling tool characterized by being set to. 請求項1〜4いずれか1項に記載の穴明け工具において、前記第一の切り屑排出溝及び前記第二の切り屑排出溝の2溝部のねじれ角は、30°以上50°以下に設定されていることを特徴とする穴明け工具。   5. The drilling tool according to claim 1, wherein a twist angle of the two groove portions of the first chip discharge groove and the second chip discharge groove is set to 30 ° or more and 50 ° or less. Drilling tool characterized by being made. 請求項1〜5いずれか1項に記載の穴明け工具において、前記第一の切り屑排出溝及び前記第二の切り屑排出溝の並走部のねじれ角は、前記2溝部のねじれ角より2°以上20°以下大きい角度に設定されていることを特徴とする穴明け工具。   6. The drilling tool according to claim 1, wherein the twist angle of the parallel running portion of the first chip discharge groove and the second chip discharge groove is greater than the twist angle of the two groove portions. A drilling tool characterized by being set at an angle greater than 2 ° and less than 20 °. 請求項1〜6いずれか1項に記載の穴明け工具において、前記並走部の始端位置における並走溝の軸方向溝幅は、最も工具先端側に位置するねじれ角の変化位置における軸方向溝幅の1.1倍以上1.9倍以下に設定されていることを特徴とする穴明け工具。   The drilling tool according to any one of claims 1 to 6, wherein the axial groove width of the parallel groove at the start end position of the parallel running part is an axial direction at a change position of a twist angle located closest to the tool tip side. A drilling tool characterized by being set to 1.1 times or more and 1.9 times or less of the groove width. 請求項1〜7いずれか1項に記載の穴明け工具において、前記2つの切り屑排出溝のうち一方の切り屑排出溝の溝長は、他方の切り屑排出溝の溝長の50%以上95%以下に設定されていることを特徴とする穴明け工具。   The drilling tool according to any one of claims 1 to 7, wherein a groove length of one of the two chip discharge grooves is 50% or more of a groove length of the other chip discharge groove. A drilling tool characterized by being set to 95% or less. 請求項1〜8いずれか1項に記載の穴明け工具において、前記第一の切り屑排出溝及び前記第二の切り屑排出溝の切れ上がり狭角が90°より大きく180°以下に設定されていることを特徴とする穴明け工具。   9. The drilling tool according to claim 1, wherein the first chip discharge groove and the second chip discharge groove have a narrow angle of rise greater than 90 ° and less than or equal to 180 °. A drilling tool characterized by
JP2013039891A 2013-02-28 2013-02-28 Drilling tool Active JP5474227B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013039891A JP5474227B2 (en) 2013-02-28 2013-02-28 Drilling tool
TW102134532A TWI480112B (en) 2013-02-28 2013-09-25 Drilling tool
KR1020130168864A KR101594659B1 (en) 2013-02-28 2013-12-31 Drilling tool
CN201410054284.2A CN104014853A (en) 2013-02-28 2014-02-18 Drilling tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013039891A JP5474227B2 (en) 2013-02-28 2013-02-28 Drilling tool

Publications (2)

Publication Number Publication Date
JP2013198977A true JP2013198977A (en) 2013-10-03
JP5474227B2 JP5474227B2 (en) 2014-04-16

Family

ID=49519614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013039891A Active JP5474227B2 (en) 2013-02-28 2013-02-28 Drilling tool

Country Status (4)

Country Link
JP (1) JP5474227B2 (en)
KR (1) KR101594659B1 (en)
CN (1) CN104014853A (en)
TW (1) TWI480112B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015029963A1 (en) * 2013-08-26 2015-03-05 京セラ株式会社 Drill and method for manufacturing cut product using same
US10821526B2 (en) * 2016-11-15 2020-11-03 Kyocera Corporation Rotary tool and method for manufacturing machined product

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10064285B2 (en) * 2016-12-15 2018-08-28 Perfect Point Precision Carbide Tools Inc. Drill bit for use in forming holes in printed circuit boards
CN108080679A (en) * 2017-12-26 2018-05-29 深圳市金洲精工科技股份有限公司 A kind of drill bit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007307642A (en) * 2006-05-17 2007-11-29 Sumitomo Electric Hardmetal Corp Drill
JP3173703U (en) * 2011-12-05 2012-02-16 創國精密股▲ふん▼有限公司 Drill bit structure
JP2012110984A (en) * 2010-11-22 2012-06-14 Union Tool Co Drilling tool

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19841978C2 (en) * 1998-09-14 2000-11-23 Heller Dinklage Gmbh Geb drill
JP4714283B2 (en) * 2009-04-21 2011-06-29 ユニオンツール株式会社 Drilling tool
CN201755680U (en) * 2010-03-22 2011-03-09 深圳市金洲精工科技股份有限公司 Micro drill-bit
JP5066229B2 (en) 2010-06-30 2012-11-07 ユニオンツール株式会社 Drilling tool
TWI402121B (en) * 2010-11-19 2013-07-21 Carbide Internat Co Ltd Drill bit structure
CN103097062B (en) * 2011-01-31 2014-11-05 京瓷株式会社 dirll and manufacturing method of machining product used by drill
TWM411302U (en) * 2011-04-01 2011-09-11 Topoint Technology Co Ltd Improved chip discharge structure of drill
CN202180242U (en) * 2011-05-06 2012-04-04 尖点科技股份有限公司 Improved junk slot structure of drill bit
TWM412822U (en) * 2011-05-10 2011-10-01 Topoint Technology Co Ltd Improved chip-discharge structure of drill
TWM421177U (en) * 2011-08-16 2012-01-21 Carbide Internat Co Ltd Drill bit structure
TWM427221U (en) * 2011-10-18 2012-04-21 Carbide Internat Co Ltd Drill bit structure with reduplicate flutes
TWM422444U (en) * 2011-10-21 2012-02-11 Tungaloy Taiwan Corp Double cutting-edge confluent groove drill
CN202684161U (en) * 2012-05-09 2013-01-23 凯崴电子股份有限公司 Drill high in chip removing performance

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007307642A (en) * 2006-05-17 2007-11-29 Sumitomo Electric Hardmetal Corp Drill
JP2012110984A (en) * 2010-11-22 2012-06-14 Union Tool Co Drilling tool
JP3173703U (en) * 2011-12-05 2012-02-16 創國精密股▲ふん▼有限公司 Drill bit structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015029963A1 (en) * 2013-08-26 2015-03-05 京セラ株式会社 Drill and method for manufacturing cut product using same
JPWO2015029963A1 (en) * 2013-08-26 2017-03-02 京セラ株式会社 Drill and method of manufacturing cut product using the same
US10821526B2 (en) * 2016-11-15 2020-11-03 Kyocera Corporation Rotary tool and method for manufacturing machined product

Also Published As

Publication number Publication date
TWI480112B (en) 2015-04-11
KR101594659B1 (en) 2016-02-16
CN104014853A (en) 2014-09-03
JP5474227B2 (en) 2014-04-16
TW201433388A (en) 2014-09-01
KR20140108106A (en) 2014-09-05

Similar Documents

Publication Publication Date Title
JP4505007B2 (en) Drilling tool
JP5140142B2 (en) Drilling tool
JP5474227B2 (en) Drilling tool
KR101701023B1 (en) Drilling tool
WO2021038841A1 (en) Drill
US6976812B2 (en) Small drill
JP4324211B2 (en) Drilling tool
WO2012017645A1 (en) Drill
JP6499610B2 (en) Drilling tool
JP4116629B2 (en) Single blade drill
JP2003311522A (en) One-flute drill
JP4564562B2 (en) Drilling tool
JP3929901B2 (en) Drill
JP2002154005A (en) Twist drill
JP3539227B2 (en) Drilling tool
JP2021120171A (en) Rotary cutting tool
JP5734137B2 (en) Drill and method of manufacturing workpiece using the drill
JPWO2015030212A1 (en) Replaceable drill body and drill
JP2003039218A (en) Drill for deep hole
JP6410544B2 (en) Drill and cutting method
JP7257310B2 (en) Drill for glass fiber reinforced substrate
JP2003334711A (en) Drill
JP5890202B2 (en) Drill and method of manufacturing cut product using the same
KR101959120B1 (en) Drill
JP2007098569A (en) Drill

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140204

R150 Certificate of patent or registration of utility model

Ref document number: 5474227

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250