WO2012017645A1 - Drill - Google Patents

Drill Download PDF

Info

Publication number
WO2012017645A1
WO2012017645A1 PCT/JP2011/004386 JP2011004386W WO2012017645A1 WO 2012017645 A1 WO2012017645 A1 WO 2012017645A1 JP 2011004386 W JP2011004386 W JP 2011004386W WO 2012017645 A1 WO2012017645 A1 WO 2012017645A1
Authority
WO
WIPO (PCT)
Prior art keywords
drill
cutting edge
outer peripheral
cutting
cutting blade
Prior art date
Application number
PCT/JP2011/004386
Other languages
French (fr)
Japanese (ja)
Inventor
昌尚 岩田
良太 長江
秀城 福岡
Original Assignee
株式会社イワタツール
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社イワタツール filed Critical 株式会社イワタツール
Publication of WO2012017645A1 publication Critical patent/WO2012017645A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B51/00Tools for drilling machines
    • B23B51/02Twist drills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2251/00Details of tools for drilling machines
    • B23B2251/04Angles, e.g. cutting angles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2251/00Details of tools for drilling machines
    • B23B2251/14Configuration of the cutting part, i.e. the main cutting edges

Definitions

  • the present invention relates to a drill suitable for high-speed machining of holes.
  • Patent Document 1 discloses a twist drill in which the corner cutting edge is formed on the outer periphery of the cutting edge and the strength of the outer peripheral end portion is improved to improve the strength of the cutting edge.
  • the corner cutting edge is made large in order to improve the strength of the cutting edge, the chips are discharged toward the outer circumference, so that the chips hit the wall surface of the hole and generate heat or are not easily discharged to the outside.
  • a large resistance is applied to the drill, cutting performance is degraded, the drill is broken, and the life of the drill is shortened. For this reason, there is a problem that the feed amount of the drill cannot be increased and the sufficiently high-speed drilling cannot be performed.
  • the present invention realizes a long-life drill capable of high-speed machining by improving the cutting edge strength and controlling the chip discharge direction to the upward direction of the hole so that it is efficiently discharged. Objective.
  • a chip discharge groove is formed on the outer peripheral portion of the drill, and the relief formed on the rake face of the inner peripheral surface of the chip discharge groove and the tip of the drill.
  • the cutting edge is formed to recede toward the rear in the rotation direction of the drill toward the outer circumferential direction, and the cutting when the drill tip is viewed from the front.
  • the rake angle ⁇ in the radial direction at the outer peripheral edge of the blade is ⁇ 50 ° ⁇ ⁇ ⁇ 15 °
  • the tip angle of the cutting blade is the largest at the center
  • the width W from the outer peripheral edge of the cutting blade is The technical means that the tip angle ⁇ is formed to satisfy 50 ° ⁇ ⁇ ⁇ 110 ° in a region satisfying 0.2D ⁇ W ⁇ 0.4D (D: diameter of the drill) is used.
  • the cutting edge is formed by retreating toward the rear in the rotation direction of the drill toward the outer circumferential direction, and at the outer peripheral end of the cutting edge when the front end of the drill is viewed from the front.
  • the tip angle of the cutting edge is maximum at the center, and the tip angle ⁇ is in a region where the width W from the outer peripheral end of the cutting edge satisfies 0.2D ⁇ W ⁇ 0.4D (D: diameter of the drill).
  • D diameter of the drill
  • the chamfer portion is chamfered at the outer peripheral end portion of the cutting blade, and the width L of the chamfer portion is 0.05D ⁇ L ⁇ 0.
  • the chip discharge direction can be controlled in the hole upward direction so as to be efficiently discharged, so that the width is wider than the conventional drill as in the invention of claim 2.
  • a chamfer part can be provided.
  • the cutting blade has a plurality of linear shapes in which the tip angle and the rake angle in the radial direction become smaller toward the outer peripheral direction of the drill.
  • the technical means of being constituted by a cutting blade is used.
  • the cutting blade when the cutting blade is constituted by a plurality of linear cutting blades, it is possible to facilitate re-polishing of the cutting blade after manufacturing and use of the drill.
  • a drill 1 that rotates around an axis and drills a hole includes a pair of chip discharge grooves 11 formed in a spiral shape in the axial direction of the outer peripheral portion, a rake face 11 a of the chip discharge groove 11, and a drill A cutting edge 14 having a predetermined tip angle is formed at the ridge line portion by the flank formed in the tip (in this embodiment, the first flank 12 and the second flank 13).
  • a chisel edge 15 is formed at the center of the tip of the drill 1 by intersecting the first flank 12. Further, a thinning portion 16 is formed on the inner peripheral side of the tip portion of the cutting blade 14 by cutting out the inner wall surface of the rake face 11a.
  • a margin portion 17 and a second picking surface 18 having an outer diameter smaller than that of the margin portion 17 are formed.
  • the cutting edge 14 is formed to recede toward the rear in the rotation direction of the drill so that the rake angle in the radial direction becomes smaller toward the outer periphery of the drill.
  • the cutting blade 14 is formed by connecting a plurality of cutting blades formed in a straight line, and the first cutting blade formed by the first flank 12 and the rake face 11a from the center side. 14a, a second cutting edge 14b formed by the second flank 13 and the rake face 11a is provided.
  • the cutting blade 14 by constituting the cutting blade 14 with a plurality of linear cutting blades, re-polishing of the cutting blade after the manufacture and use of the drill can be facilitated.
  • a chamfer portion 19 chamfered toward the rear in the rotation direction of the drill is formed at the outer peripheral end portion of the cutting blade 14.
  • the chamfer portion 19 is formed so that the rake angle ⁇ in the radial direction satisfies ⁇ 50 ° ⁇ ⁇ ⁇ 15 °.
  • the width L of the chamfer portion is formed such that 0.05D ⁇ L ⁇ 0.3D with respect to the diameter D of the drill.
  • the cutting edge 14 is formed such that the rake angle ⁇ in the radial direction at the outer peripheral end portion satisfies the above condition.
  • the cutting edge 14 is formed so that the tip angle becomes smaller toward the outer peripheral direction of the drill.
  • the tip angle ⁇ of the first cutting edge 14a is formed to be 118 ° to 150 °.
  • the cutting edge 14 has a tip angle ⁇ of 50 ° ⁇ ⁇ ⁇ 110 ° in a region where the width W from the outer peripheral edge of the cutting blade satisfies 0.2D ⁇ W ⁇ 0.4D (D: diameter of the drill). It is comprised so that.
  • the 2nd cutting blade 14b and the chamfer part 19 (area
  • the cutting edge 14 is formed so as to recede toward the rear in the rotation direction of the drill toward the outer peripheral direction, thereby increasing the contact length between the work material and the cutting edge 14 and per unit length of the cutting edge.
  • the load can be reduced. If the rake angle ⁇ is too large, the effect of preventing the outer peripheral edge from being lost is reduced. If the rake angle ⁇ is too small, the cutting resistance increases, so ⁇ 50 ° ⁇ ⁇ ⁇ 15 °, preferably ⁇ 40 °. It is preferable to configure so that ⁇ ⁇ ⁇ ⁇ 20 °.
  • the chamfer portion 19 having a width L wider than that of the conventional drill can be obtained because the chip can be discharged efficiently by controlling the chip discharge direction to the upward direction of the hole as described later. Can be provided. Thereby, the intensity
  • the region where the rake angle in the radial direction has a negative value corresponds to the first cutting edge 14a, the second cutting edge 14b, and the chamfer portion 19.
  • chips are discharged toward the outer peripheral direction, but the width W from the outer peripheral end of the cutting blade is 0.2D ⁇ W ⁇ 0.4D (D: drill
  • the tip angle ⁇ is 50 ° ⁇ ⁇ ⁇ 110 °, preferably 60 ° ⁇ ⁇ ⁇ 100 ° in a region satisfying It can be efficiently discharged.
  • the tip angle ⁇ when the tip angle ⁇ is less than 50 °, chips are easily discharged in the central direction, and the cutting edge becomes longer, so that the cutting resistance increases. Moreover, even if the tip angle ⁇ exceeds 100 °, the action of discharging chips to the upper surface of the hole surface becomes small.
  • the configuration in which the cutting blade 14 includes the first cutting blade 14a and the second cutting blade 14b and the chamfer portion 19 is illustrated is exemplified, but the configuration is not limited thereto.
  • the cutting edge 14 may be constituted by three or more linear cutting edges such that the tip angle ⁇ and the rake angle ⁇ in the radial direction become smaller toward the outer peripheral direction of the drill 1.
  • the cutting edge 14 can be formed by a circular arc or a smooth curve convex in the rotation direction. According to this, since the cutting edge 14 has no corners, the stress concentration is small and the length of the cutting edge 14 is increased, so that the strength of the cutting edge 14 can be improved.
  • the chamfer part 19 may not be formed. It can also be formed in a curved shape in which the tip angle ⁇ continuously decreases. In this case, the outer side corresponds to the region having the width W from the point where the tip angle ⁇ is 110 ° or less.
  • Example 1 Hole drilling was performed using a drill according to an example of the present invention and a conventional drill, and the life of each drill was evaluated.
  • the drill of the example is the same as the drill 1 in the above embodiment, the diameter D is 1 mm, the rake angle ⁇ is ⁇ 38 °, the tip angle ⁇ of the first cutting edge 14a is 140 °, and the tip angle ⁇ of the second cutting edge 14b.
  • the chamfer portion 19 had a width L of 0.13 mm (0.13D).
  • a twist drill having a straight edge with no chamfer portion formed and having a tip angle of 120 ° was used as a drill of the comparative example.
  • Example 1 shows the processing conditions and life. As high-speed machining conditions, the feed amount was set to 0.1 mm / rev, which is twice the 0.05 mm / rev adopted as general machining conditions. Example 1 and Comparative Example 1 are the same processing conditions, and Example 2 is a condition in which the number of rotations is increased.
  • the drill of the present invention has a longer life than conventional drills under high-speed machining conditions.
  • the cutting edge 14 is formed so as to recede toward the rear in the rotation direction of the drill 1 in the outer peripheral direction, and the rake angle ⁇ in the radial direction at the outer peripheral end of the cutting edge 14 is ⁇
  • the contact length between the work material and the cutting blade 14 is lengthened to reduce the load per unit length of the cutting blade 14, and the cutting blade
  • the strength of the outer peripheral end portion of 14 can be improved.
  • the tip angle ⁇ is 50 ° ⁇ ⁇ ⁇ 110 ° in a region where the width W from the outer peripheral end portion of the cutting edge satisfies 0.2D ⁇ W ⁇ 0.4D (D: diameter of the drill).

Abstract

[Problem] To achieve a drill which has a long service life and enables high-speed cutting by providing improved strength to the cutting edge thereof and providing control so that cuttings are directed in an upward direction along a hole and thereby discharged efficiently. [Solution] A cutting edge (14) of a drill (1) is formed to retreat backward in the direction of rotation of the drill (1) so that the radial rake angle increases toward the outer circumference of the drill (1). The cutting edge is also formed in a manner such that the radial rake angle α at the end of the outer circumference satisfies the relation, -50 degrees ≤ α ≤ -15 degrees. The cutting edge (14) is formed to increase in the point angle toward the outer circumference of the drill, so that the point angle β satisfies the relation, 50 degrees ≤ β ≤ 110 degrees, in the area of a second cutting edge (14b) and a chamfered portion (19).

Description

ドリルDrill
本発明は、穴の高速加工に適したドリルに関する。 The present invention relates to a drill suitable for high-speed machining of holes.
従来より、金属材料などに穴加工を行うために、先端に切刃が形成され、外周部に螺旋状に形成された切屑排出溝を備えたツイストドリルが広く使用されている。このようなドリルによれば、このドリルを回転させ、切刃によって金属材料などの被削材を切削し、切刃によって切削された切屑を、切屑排出溝を介して穴の外部に排出することにより穴加工を行うことができる。
近年、高速で穴加工を行うニーズが増大しているが、ドリルの送り量を増大させると、切刃、特に切刃の外周端部に大きな負荷がかかり、ドリルが欠損しやすいという問題があった。そこで、例えば、特許文献1には、切刃外周にコーナー切れ刃を形成して、外周端部の強度を向上させることにより切刃の強度を向上させたツイストドリルが開示されている。
2. Description of the Related Art Conventionally, in order to drill holes in a metal material or the like, a twist drill having a cutting edge formed at the tip and a chip discharge groove formed in a spiral shape on the outer periphery has been widely used. According to such a drill, the drill is rotated, a work material such as a metal material is cut by the cutting blade, and the chips cut by the cutting blade are discharged to the outside of the hole through the chip discharge groove. Can be drilled.
In recent years, there has been an increasing need for drilling at high speeds. However, increasing the feed rate of a drill places a large load on the cutting edge, especially the outer peripheral edge of the cutting edge, and the drill tends to break. It was. Therefore, for example, Patent Document 1 discloses a twist drill in which the corner cutting edge is formed on the outer periphery of the cutting edge and the strength of the outer peripheral end portion is improved to improve the strength of the cutting edge.
特開2000-198011号公報JP 2000-198011 A
しかし、切刃の強度を向上させるためにコーナー切れ刃を大きく形成すると、切屑が外周方向に向かって排出されるため、切屑が穴の壁面にぶつかって熱を発生したり、外部に排出されにくくなったりして、ドリルに大きな抵抗が加わり、切削性能の低下、ドリルの折損などが生じ、ドリルの寿命が短くなってしまう。そのため、ドリルの送り量を増大させることができず、十分に高速な穴加工を行うことができないという問題があった。 However, if the corner cutting edge is made large in order to improve the strength of the cutting edge, the chips are discharged toward the outer circumference, so that the chips hit the wall surface of the hole and generate heat or are not easily discharged to the outside. As a result, a large resistance is applied to the drill, cutting performance is degraded, the drill is broken, and the life of the drill is shortened. For this reason, there is a problem that the feed amount of the drill cannot be increased and the sufficiently high-speed drilling cannot be performed.
そこで、本発明は、切刃強度を向上させるとともに、切屑の排出方向を穴上方向に制御して効率よく排出されるようにすることにより高速加工が可能で長寿命なドリルを実現することを目的とする。 Therefore, the present invention realizes a long-life drill capable of high-speed machining by improving the cutting edge strength and controlling the chip discharge direction to the upward direction of the hole so that it is efficiently discharged. Objective.
この発明は、上記目的を達成するため、請求項1に記載の発明では、ドリルの外周部に切屑排出溝が形成され、切屑排出溝の内周面のすくい面とドリル先端に形成された逃げ面とにより稜線部に切刃が形成されたドリルにおいて、切刃は、外周方向に向かって、ドリルの回転方向後方に向かって後退して形成されており、ドリル先端を正面視したときの切刃の外周端部における径方向のすくい角αが-50°≦α≦-15°であるとともに、切刃の先端角は中央部が最大であり、切刃の外周端部からの幅Wが0.2D≦W≦0.4D(D:ドリルの直径)を満足する領域において先端角βが50°≦β≦110°であるように形成されている、という技術的手段を用いる。 In order to achieve the above object, according to the first aspect of the present invention, in the invention described in claim 1, a chip discharge groove is formed on the outer peripheral portion of the drill, and the relief formed on the rake face of the inner peripheral surface of the chip discharge groove and the tip of the drill. In a drill in which a cutting edge is formed in the ridge line portion by the surface, the cutting edge is formed to recede toward the rear in the rotation direction of the drill toward the outer circumferential direction, and the cutting when the drill tip is viewed from the front. The rake angle α in the radial direction at the outer peripheral edge of the blade is −50 ° ≦ α ≦ −15 °, the tip angle of the cutting blade is the largest at the center, and the width W from the outer peripheral edge of the cutting blade is The technical means that the tip angle β is formed to satisfy 50 ° ≦ β ≦ 110 ° in a region satisfying 0.2D ≦ W ≦ 0.4D (D: diameter of the drill) is used.
請求項1に記載の発明によれば、切刃を、外周方向に向かって、ドリルの回転方向後方に向かって後退して形成し、ドリル先端を正面視したときの切刃の外周端部における径方向のすくい角αが-50°≦α≦-15°であるように構成することにより、被削材と切刃との接触長さを長くして切刃の単位長さ当りの負荷を低減するとともに、切刃の外周端部の強度を向上させることができる。
また、切刃の先端角は中央部が最大であり、切刃の外周端部からの幅Wが0.2D≦W≦0.4D(D:ドリルの直径)を満足する領域において先端角βが50°≦β≦110°であるように構成することにより、切屑の排出方向を穴上方向に制御して効率よく排出されるようにすることができる。
これにより、切刃強度を向上するとともに、切屑を効率的に排出することができるので、ドリルの送り量を増大させることが可能となり、高速加工が可能で長寿命なドリルとすることができる。
According to the first aspect of the present invention, the cutting edge is formed by retreating toward the rear in the rotation direction of the drill toward the outer circumferential direction, and at the outer peripheral end of the cutting edge when the front end of the drill is viewed from the front. By configuring the rake angle α in the radial direction to be −50 ° ≦ α ≦ −15 °, the contact length between the work material and the cutting blade is increased, and the load per unit length of the cutting blade is reduced. While reducing, the intensity | strength of the outer peripheral edge part of a cutting blade can be improved.
Further, the tip angle of the cutting edge is maximum at the center, and the tip angle β is in a region where the width W from the outer peripheral end of the cutting edge satisfies 0.2D ≦ W ≦ 0.4D (D: diameter of the drill). Is configured to satisfy 50 ° ≦ β ≦ 110 °, the chip can be discharged efficiently by controlling the chip discharging direction to the upward direction of the hole.
As a result, the strength of the cutting edge can be improved and the chips can be efficiently discharged, so that the feed amount of the drill can be increased, and a high-speed machining and long-life drill can be achieved.
請求項2に記載の発明では、請求項1に記載のドリルにおいて、前記切刃の外周端部に面取りされたチャンファー部を備え、チャンファー部の幅Lが0.05D≦L≦0.3Dである、という技術的手段を用いる。 According to a second aspect of the present invention, in the drill according to the first aspect, the chamfer portion is chamfered at the outer peripheral end portion of the cutting blade, and the width L of the chamfer portion is 0.05D ≦ L ≦ 0. Use technical means of 3D.
本発明のドリルでは、切屑の排出方向を穴上方向に制御して効率よく排出されるようにすることができるので、請求項2に記載の発明のように、従来のドリルよりも幅が広いチャンファー部を設けることができる。これにより、切刃の外周端部の強度を更に向上させることができるので、高速加工が可能で長寿命なドリルとすることができる。 In the drill of the present invention, the chip discharge direction can be controlled in the hole upward direction so as to be efficiently discharged, so that the width is wider than the conventional drill as in the invention of claim 2. A chamfer part can be provided. Thereby, since the intensity | strength of the outer peripheral edge part of a cutting blade can be improved further, it can be set as a long-life drill which can be processed at high speed.
請求項3に記載の発明では、請求項1または請求項2に記載のドリルにおいて、前記切刃は、ドリルの外周方向に向かうに従い先端角及び径方向のすくい角が小さくなる複数の直線状の切刃により構成されている、という技術的手段を用いる。 According to a third aspect of the present invention, in the drill according to the first or second aspect, the cutting blade has a plurality of linear shapes in which the tip angle and the rake angle in the radial direction become smaller toward the outer peripheral direction of the drill. The technical means of being constituted by a cutting blade is used.
請求項3に記載の発明のように、切刃を複数の直線状の切刃により構成することにより、ドリルの製造及び使用後の切刃の再研磨を容易にすることができる。 According to the third aspect of the present invention, when the cutting blade is constituted by a plurality of linear cutting blades, it is possible to facilitate re-polishing of the cutting blade after manufacturing and use of the drill.
本発明の一実施形態に係るドリルの先端部の正面図(A)及び側面図(B)である。It is the front view (A) and side view (B) of the front-end | tip part of the drill which concern on one Embodiment of this invention.
本発明のドリルについて、図を参照して説明する。なお、本発明は、以下の実施形態に限定されるものではない。 The drill of this invention is demonstrated with reference to figures. In addition, this invention is not limited to the following embodiment.
図1に示すように、軸線回りに回転され穴加工を行うドリル1は、外周部の軸線方向にらせん状に形成された一対の切屑排出溝11と、切屑排出溝11のすくい面11aとドリル先端に形成された逃げ面(本実施形態では、第1逃げ面12、第2逃げ面13)とにより稜線部に所定の先端角を有する切刃14が形成されている。 As shown in FIG. 1, a drill 1 that rotates around an axis and drills a hole includes a pair of chip discharge grooves 11 formed in a spiral shape in the axial direction of the outer peripheral portion, a rake face 11 a of the chip discharge groove 11, and a drill A cutting edge 14 having a predetermined tip angle is formed at the ridge line portion by the flank formed in the tip (in this embodiment, the first flank 12 and the second flank 13).
ドリル1の先端中央には、第1逃げ面12が交差することによりチゼルエッジ15が形成されている。また、切刃14の先端部の内周側には、すくい面11aの内壁面が切り欠かれてシンニング部16が形成されている。 A chisel edge 15 is formed at the center of the tip of the drill 1 by intersecting the first flank 12. Further, a thinning portion 16 is formed on the inner peripheral side of the tip portion of the cutting blade 14 by cutting out the inner wall surface of the rake face 11a.
切刃14の外周面には、マージン部17と、マージン部17よりも外径が一段小さくされた二番取り面18が形成されている。 On the outer peripheral surface of the cutting edge 14, a margin portion 17 and a second picking surface 18 having an outer diameter smaller than that of the margin portion 17 are formed.
切刃14は、ドリルの外周方向に向かうに従い径方向のすくい角が小さくなるように、ドリルの回転方向後方に向かって後退して形成されている。本実施形態では、切刃14は、直線状に形成された複数の切刃が連なって構成されており、中心側から、第1逃げ面12とすくい面11aとにより形成される第1切刃14a、第2逃げ面13とすくい面11aとにより形成される第2切刃14bが設けられている。
ここで、切刃14を複数の直線状の切刃により構成することにより、ドリルの製造及び使用後の切刃の再研磨を容易にすることができる。
The cutting edge 14 is formed to recede toward the rear in the rotation direction of the drill so that the rake angle in the radial direction becomes smaller toward the outer periphery of the drill. In the present embodiment, the cutting blade 14 is formed by connecting a plurality of cutting blades formed in a straight line, and the first cutting blade formed by the first flank 12 and the rake face 11a from the center side. 14a, a second cutting edge 14b formed by the second flank 13 and the rake face 11a is provided.
Here, by constituting the cutting blade 14 with a plurality of linear cutting blades, re-polishing of the cutting blade after the manufacture and use of the drill can be facilitated.
切刃14の外周端部には、ドリルの回転方向後方に向かって面取りされたチャンファー部19が形成されている。チャンファー部19は、径方向のすくい角αが-50°≦α≦-15°を満足するように形成されている。また、チャンファー部の幅Lは、ドリルの直径Dに対し、0.05D≦L≦0.3Dとなるように形成されている。
ここで、チャンファー部19を形成しない場合には、切刃14は外周端部における径方向のすくい角αが上記の条件を満足するように形成されている。
A chamfer portion 19 chamfered toward the rear in the rotation direction of the drill is formed at the outer peripheral end portion of the cutting blade 14. The chamfer portion 19 is formed so that the rake angle α in the radial direction satisfies −50 ° ≦ α ≦ −15 °. Further, the width L of the chamfer portion is formed such that 0.05D ≦ L ≦ 0.3D with respect to the diameter D of the drill.
Here, when the chamfer portion 19 is not formed, the cutting edge 14 is formed such that the rake angle α in the radial direction at the outer peripheral end portion satisfies the above condition.
切刃14は、ドリルの外周方向に向かうに従い先端角が小さくなるように形成されている。本実施形態では、第1切刃14aの先端角θは118°~150°に形成されている。
また、切刃14は、切刃の外周端部からの幅Wが0.2D≦W≦0.4D(D:ドリルの直径)を満足する領域において先端角βが50°≦β≦110°であるように構成されている。
本実施形態では、第2切刃14b及びチャンファー部19(切刃14の外周端部からの幅Wの領域)が上記領域に相当する。
The cutting edge 14 is formed so that the tip angle becomes smaller toward the outer peripheral direction of the drill. In the present embodiment, the tip angle θ of the first cutting edge 14a is formed to be 118 ° to 150 °.
Further, the cutting edge 14 has a tip angle β of 50 ° ≦ β ≦ 110 ° in a region where the width W from the outer peripheral edge of the cutting blade satisfies 0.2D ≦ W ≦ 0.4D (D: diameter of the drill). It is comprised so that.
In this embodiment, the 2nd cutting blade 14b and the chamfer part 19 (area | region of the width W from the outer peripheral edge part of the cutting edge 14) correspond to the said area | region.
切刃14は、外周方向に向かってドリルの回転方向後方に向かって後退して形成することにより、被削材と切刃14との接触長さを長くして切刃の単位長さ当りの負荷を低減することができる。
すくい角αが大きすぎると外周端部の欠損などを防止する効果が低減し、すくい角αが小さすぎると切削抵抗が増大するため、-50°≦α≦-15°、好ましくは-40°≦α≦-20°であるように構成することが好適である。
The cutting edge 14 is formed so as to recede toward the rear in the rotation direction of the drill toward the outer peripheral direction, thereby increasing the contact length between the work material and the cutting edge 14 and per unit length of the cutting edge. The load can be reduced.
If the rake angle α is too large, the effect of preventing the outer peripheral edge from being lost is reduced. If the rake angle α is too small, the cutting resistance increases, so −50 ° ≦ α ≦ −15 °, preferably −40 °. It is preferable to configure so that ≦ α ≦ −20 °.
本発明のドリル1では、後述のように切屑の排出方向を穴上方向に制御して効率よく排出されるようにすることができるので、従来のドリルよりも幅Lが広いチャンファー部19を設けることができる。これにより、切刃14の外周端部の強度を更に向上させることができる。
チャンファー部19の幅Lが小さすぎると外周端部の欠損などを防止する効果が低減し、幅Lが大きすぎると切削抵抗が増大するため、幅Lはドリル1の直径Dに対し、0.05D≦L≦0.3Dとなるように形成することが好適である。
In the drill 1 of the present invention, the chamfer portion 19 having a width L wider than that of the conventional drill can be obtained because the chip can be discharged efficiently by controlling the chip discharge direction to the upward direction of the hole as described later. Can be provided. Thereby, the intensity | strength of the outer peripheral edge part of the cutting blade 14 can further be improved.
If the width L of the chamfer portion 19 is too small, the effect of preventing the outer peripheral end portion from being lost is reduced. If the width L is too large, the cutting resistance increases, so the width L is 0 with respect to the diameter D of the drill 1. .05D ≦ L ≦ 0.3D is preferably formed.
本実施形態において、径方向のすくい角が負の値となる領域は、第1切刃14a、第2切刃14b及びチャンファー部19が相当する。径方向のすくい角が負の値となる領域では、切屑が外周方向に向かって排出されるが、切刃の外周端部からの幅Wが0.2D≦W≦0.4D(D:ドリルの直径)を満足する領域において先端角βが50°≦β≦110°、好ましくは60°≦β≦100°であるように構成することにより、切屑の排出方向を穴上方向に制御して効率よく排出されるようにすることができる。
ここで、先端角βが50°未満であると、切屑が中心方向に排出されやすくなるとともに、切刃が長くなるため切削抵抗が増大してしまう。
また、先端角βが100°を超えても、切屑を穴面上方へ排出する作用が小さくなる。
In the present embodiment, the region where the rake angle in the radial direction has a negative value corresponds to the first cutting edge 14a, the second cutting edge 14b, and the chamfer portion 19. In a region where the rake angle in the radial direction is a negative value, chips are discharged toward the outer peripheral direction, but the width W from the outer peripheral end of the cutting blade is 0.2D ≦ W ≦ 0.4D (D: drill The tip angle β is 50 ° ≦ β ≦ 110 °, preferably 60 ° ≦ β ≦ 100 ° in a region satisfying It can be efficiently discharged.
Here, when the tip angle β is less than 50 °, chips are easily discharged in the central direction, and the cutting edge becomes longer, so that the cutting resistance increases.
Moreover, even if the tip angle β exceeds 100 °, the action of discharging chips to the upper surface of the hole surface becomes small.
これにより、切刃14の強度を向上するとともに、切屑を効率的に排出することができ、ドリルの送り量を増大させることができるので、高速加工が可能で長寿命なドリルとすることができる。また、切屑が切屑排出溝11を通して効率よく排出されるため、切屑排出溝11を大きくしなくてもよいので、芯厚を大きくしてドリル1の剛性を高めることができる。これにより、ドリル1の寿命を長くすることができる。 Thereby, while improving the intensity | strength of the cutting blade 14, a chip | tip can be discharged | emitted efficiently and the feed amount of a drill can be increased, Therefore A high-speed machining is possible and it can be set as a long-life drill. . In addition, since the chips are efficiently discharged through the chip discharge groove 11, the chip discharge groove 11 does not have to be enlarged, so that the core thickness can be increased and the rigidity of the drill 1 can be increased. Thereby, the lifetime of the drill 1 can be lengthened.
(変更例)
上述の実施形態では、切刃14が第1切刃14a及び第2切刃14bからなり、チャンファー部19が形成された構成を例示したが、これに限定されるものではない。
例えば、切刃14は、ドリル1の外周方向に向かうに従い先端角β及び径方向のすくい角αが小さくなるような3以上の直線状の切刃により構成してもよい。
また、切刃14は、回転方向に凸な円弧や滑らかな曲線により形成することができる。これによれば、切刃14に角部がないため応力集中が小さく、切刃14の長さが長くなるので、切刃14の強度を向上させることができる。この場合、チャンファー部19を形成しなくてもよい。
先端角βが連続的に減少するような曲線状に形成することもできる。この場合、先端角βが110°以下になる箇所から外方が幅Wの領域に相当する。
(Example of change)
In the above-described embodiment, the configuration in which the cutting blade 14 includes the first cutting blade 14a and the second cutting blade 14b and the chamfer portion 19 is illustrated is exemplified, but the configuration is not limited thereto.
For example, the cutting edge 14 may be constituted by three or more linear cutting edges such that the tip angle β and the rake angle α in the radial direction become smaller toward the outer peripheral direction of the drill 1.
Further, the cutting edge 14 can be formed by a circular arc or a smooth curve convex in the rotation direction. According to this, since the cutting edge 14 has no corners, the stress concentration is small and the length of the cutting edge 14 is increased, so that the strength of the cutting edge 14 can be improved. In this case, the chamfer part 19 may not be formed.
It can also be formed in a curved shape in which the tip angle β continuously decreases. In this case, the outer side corresponds to the region having the width W from the point where the tip angle β is 110 ° or less.
(実施例1)
本発明の実施例に係るドリルと従来のドリルとを使用して穴加工を行い、各ドリルの寿命を評価した。
Example 1
Hole drilling was performed using a drill according to an example of the present invention and a conventional drill, and the life of each drill was evaluated.
実施例のドリルは、上述の実施形態におけるドリル1において、直径Dが1mm、すくい角αが-38°、第1切刃14aの先端角θが140°、第2切刃14bの先端角βが90°、チャンファー部19の幅Lが0.13mm(0.13D)としたものを用いた。また、比較例のドリルとして、チャンファー部が形成されていない直線状の切刃からなり、先端角120°のツイストドリルを用いた。 The drill of the example is the same as the drill 1 in the above embodiment, the diameter D is 1 mm, the rake angle α is −38 °, the tip angle θ of the first cutting edge 14a is 140 °, and the tip angle β of the second cutting edge 14b. Was 90 °, and the chamfer portion 19 had a width L of 0.13 mm (0.13D). Moreover, as a drill of the comparative example, a twist drill having a straight edge with no chamfer portion formed and having a tip angle of 120 ° was used.
被削材はS50Cを用い、直径1mm、深さ4mmの穴加工を行い、加工が可能であった穴数により寿命を評価した。加工条件及び寿命を表1に示す。
高速加工条件として、送り量を一般的な加工条件として採用されている0.05mm/revの2倍の0.1mm/revとした。
実施例1及び比較例1は同一加工条件であり、実施例2は回転数を増大させた条件である。
S50C was used as a work material, a hole having a diameter of 1 mm and a depth of 4 mm was performed, and the life was evaluated based on the number of holes that could be processed. Table 1 shows the processing conditions and life.
As high-speed machining conditions, the feed amount was set to 0.1 mm / rev, which is twice the 0.05 mm / rev adopted as general machining conditions.
Example 1 and Comparative Example 1 are the same processing conditions, and Example 2 is a condition in which the number of rotations is increased.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 従来のドリルによれば、比較例1に示すように3000穴の加工により刃先が欠損し加工できなくなった。一方、本発明のドリルによれば、実施例1、2に示すように17000穴以上の加工が可能であり、大幅に寿命が長くなった。
また、1穴当たりの加工時間は従来加工条件では2秒程度必要であったが、0.4秒以内と大幅に短縮することができた。
According to the conventional drill, as shown in Comparative Example 1, the cutting edge was lost due to the processing of 3000 holes, and it was impossible to process. On the other hand, according to the drill of the present invention, as shown in Examples 1 and 2, processing of 17,000 holes or more was possible, and the life was significantly prolonged.
Further, the machining time per hole required about 2 seconds under the conventional machining conditions, but it was able to be significantly reduced to within 0.4 seconds.
以上より、本発明のドリルは、高速加工条件において従来のドリルよりも長寿命であることが確認された。 From the above, it was confirmed that the drill of the present invention has a longer life than conventional drills under high-speed machining conditions.
[実施形態の効果]
本発明のドリルによれば、切刃14を、外周方向に向かって、ドリル1の回転方向後方に向かって後退して形成し、切刃14の外周端部における径方向のすくい角αが-50°≦α≦-15°であるように構成することにより、被削材と切刃14との接触長さを長くして切刃14の単位長さ当りの負荷を低減するとともに、切刃14の外周端部の強度を向上させることができる。
また、切刃の外周端部からの幅Wが0.2D≦W≦0.4D(D:ドリルの直径)を満足する領域において先端角βが50°≦β≦110°であるように構成することにより、切屑の排出方向を穴上方向に制御して効率よく排出されるようにすることができる。
これにより、切刃強度を向上するとともに、切屑を効率的に排出することができるので、ドリルの送り量を増大させることが可能となり、高速加工が可能で長寿命なドリルとすることができる。
[Effect of the embodiment]
According to the drill of the present invention, the cutting edge 14 is formed so as to recede toward the rear in the rotation direction of the drill 1 in the outer peripheral direction, and the rake angle α in the radial direction at the outer peripheral end of the cutting edge 14 is − By configuring so that 50 ° ≦ α ≦ −15 °, the contact length between the work material and the cutting blade 14 is lengthened to reduce the load per unit length of the cutting blade 14, and the cutting blade The strength of the outer peripheral end portion of 14 can be improved.
The tip angle β is 50 ° ≦ β ≦ 110 ° in a region where the width W from the outer peripheral end portion of the cutting edge satisfies 0.2D ≦ W ≦ 0.4D (D: diameter of the drill). By doing so, it is possible to control the chip discharge direction in the upward direction of the hole so as to be discharged efficiently.
As a result, the strength of the cutting edge can be improved and the chips can be efficiently discharged, so that the feed amount of the drill can be increased, and a high-speed machining and long-life drill can be achieved.
1…ドリル
11…切屑排出溝
11a…すくい面
12…第1逃げ面
13…第2逃げ面
14…切刃、
14a…第1切刃
14b…第2切刃
15…チゼルエッジ
16…シンニング部
17…マージン部
18…二番取り面
19…チャンファー部
DESCRIPTION OF SYMBOLS 1 ... Drill 11 ... Chip discharge groove 11a ... Rake face 12 ... 1st flank 13 ... 2nd flank 14 ... Cutting blade,
14a ... 1st cutting edge 14b ... 2nd cutting edge 15 ... Chisel edge 16 ... Thinning part 17 ... Margin part 18 ... Second picking surface 19 ... Chamfer part

Claims (3)

  1. ドリルの外周部に切屑排出溝が形成され、切屑排出溝の内周面のすくい面とドリル先端に形成された逃げ面とにより稜線部に切刃が形成されたドリルにおいて、
    切刃は、外周方向に向かって、ドリルの回転方向後方に向かって後退して形成されており、
    ドリル先端を正面視したときの切刃の外周端部における径方向のすくい角αが-50°≦α≦-15°であるとともに、
    切刃の先端角は中央部が最大であり、切刃の外周端部からの幅Wが0.2D≦W≦0.4D(D:ドリルの直径)を満足する領域において先端角βが50°≦β≦110°であるように形成されていることを特徴とするドリル。
    In a drill in which a chip discharge groove is formed in the outer peripheral portion of the drill, and a cutting edge is formed in the ridge line portion by a scoop surface of the inner peripheral surface of the chip discharge groove and a flank surface formed at the tip of the drill,
    The cutting edge is formed to recede toward the rear in the rotation direction of the drill toward the outer circumferential direction,
    The rake angle α in the radial direction at the outer peripheral end of the cutting edge when the drill tip is viewed from the front is −50 ° ≦ α ≦ −15 °,
    The tip angle of the cutting edge is maximum at the center, and the tip angle β is 50 in a region where the width W from the outer peripheral end of the cutting edge satisfies 0.2D ≦ W ≦ 0.4D (D: diameter of the drill). A drill characterized in that it is formed such that ° ≦ β ≦ 110 °.
  2. 前記切刃の外周端部に面取りされたチャンファー部を備え、チャンファー部の幅Wが0.05D≦W≦0.3Dであることを特徴とする請求項1に記載のドリル。 The drill according to claim 1, further comprising a chamfer portion chamfered at an outer peripheral end portion of the cutting blade, wherein a width W of the chamfer portion is 0.05D ≦ W ≦ 0.3D.
  3. 前記切刃は、ドリルの外周方向に向かうに従い先端角及び径方向のすくい角が小さくなる複数の直線状の切刃により構成されていることを特徴とする請求項1または請求項2に記載のドリル。 The said cutting blade is comprised by the some linear cutting blade with which a tip angle and radial rake angle become small as it goes to the outer peripheral direction of a drill, The claim 1 or Claim 2 characterized by the above-mentioned. Drill.
PCT/JP2011/004386 2010-08-06 2011-08-03 Drill WO2012017645A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-176946 2010-08-06
JP2010176946A JP5800477B2 (en) 2010-08-06 2010-08-06 drill

Publications (1)

Publication Number Publication Date
WO2012017645A1 true WO2012017645A1 (en) 2012-02-09

Family

ID=45559166

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/004386 WO2012017645A1 (en) 2010-08-06 2011-08-03 Drill

Country Status (2)

Country Link
JP (1) JP5800477B2 (en)
WO (1) WO2012017645A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107530792A (en) * 2015-05-08 2018-01-02 特固克有限会社 Cutting tool
WO2019233509A1 (en) * 2018-06-08 2019-12-12 Zcc Cutting Tools Europe Gmbh Drilling tool
US11278970B2 (en) 2018-10-09 2022-03-22 Milwaukee Electric Tool Corporation Drill bit
US11407039B2 (en) * 2018-01-29 2022-08-09 Milwaukee Electric Tool Corporation Drill bit

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6236851B2 (en) * 2013-04-19 2017-11-29 株式会社不二越 drill
JP6294095B2 (en) * 2014-02-21 2018-03-14 京セラ株式会社 Drill and method of manufacturing cut product using the same
JP7375329B2 (en) 2019-04-17 2023-11-08 三菱マテリアル株式会社 Drill

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59166405A (en) * 1983-03-07 1984-09-19 Daijietsuto Kogyo Kk Drill
GB2184046A (en) * 1985-12-13 1987-06-17 Skf & Dormer Tools Twist drill
JPH0780714A (en) * 1993-09-14 1995-03-28 Kobe Steel Ltd Ultra-hard drill
JPH0871824A (en) * 1994-09-12 1996-03-19 O S G Kk Composite material machining drill
JP2000198011A (en) * 1998-10-27 2000-07-18 Nachi Fujikoshi Corp Twist drill
JP2003205412A (en) * 2002-01-15 2003-07-22 Nachi Fujikoshi Corp Tri-flute drill
JP2005153023A (en) * 2002-09-05 2005-06-16 Hitachi Tool Engineering Ltd Drill for deep hole boring

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02198707A (en) * 1989-01-24 1990-08-07 Masao Kubota Drill
KR20030084082A (en) * 2002-04-24 2003-11-01 고성림 Step drill for burr minimization in drilling
US7575401B1 (en) * 2004-11-18 2009-08-18 Precorp, Inc. PCD drill for composite materials

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59166405A (en) * 1983-03-07 1984-09-19 Daijietsuto Kogyo Kk Drill
GB2184046A (en) * 1985-12-13 1987-06-17 Skf & Dormer Tools Twist drill
JPH0780714A (en) * 1993-09-14 1995-03-28 Kobe Steel Ltd Ultra-hard drill
JPH0871824A (en) * 1994-09-12 1996-03-19 O S G Kk Composite material machining drill
JP2000198011A (en) * 1998-10-27 2000-07-18 Nachi Fujikoshi Corp Twist drill
JP2003205412A (en) * 2002-01-15 2003-07-22 Nachi Fujikoshi Corp Tri-flute drill
JP2005153023A (en) * 2002-09-05 2005-06-16 Hitachi Tool Engineering Ltd Drill for deep hole boring

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107530792A (en) * 2015-05-08 2018-01-02 特固克有限会社 Cutting tool
US11407039B2 (en) * 2018-01-29 2022-08-09 Milwaukee Electric Tool Corporation Drill bit
WO2019233509A1 (en) * 2018-06-08 2019-12-12 Zcc Cutting Tools Europe Gmbh Drilling tool
US11278970B2 (en) 2018-10-09 2022-03-22 Milwaukee Electric Tool Corporation Drill bit

Also Published As

Publication number Publication date
JP5800477B2 (en) 2015-10-28
JP2012035359A (en) 2012-02-23

Similar Documents

Publication Publication Date Title
JP5013435B2 (en) Ball end mill
JP6589462B2 (en) Drill
JP5800477B2 (en) drill
JP5823840B2 (en) Drill and cutting method
JP6086171B2 (en) drill
WO2014069265A1 (en) End mill with coolant holes
JP5828217B2 (en) drill
US8690493B2 (en) End mill
WO2015029850A1 (en) End mill with coolant hole
JP6848176B2 (en) Drill
JP2019171493A (en) Drill
JP2013202748A (en) End mill
JP2008142834A (en) Drill
JP2009178787A (en) Drill, cutting insert for drill, and cutting method
JP2018176360A (en) Rotary cutting type drilling tool
JP6825400B2 (en) Taper ball end mill
JP2010201565A (en) End mill
JP3686022B2 (en) Drilling tool with coolant hole
JP2005177891A (en) Drill
JP4992460B2 (en) End mill
WO2018131537A1 (en) Drill and drill head
JP2014012317A (en) Drill
JP5439821B2 (en) Drill and grinding method of the drill
JP2010167539A (en) Drill
JP2016203369A (en) Hole drilling tool

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11814282

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11814282

Country of ref document: EP

Kind code of ref document: A1