WO2012053090A1 - Three-bladed drill - Google Patents

Three-bladed drill Download PDF

Info

Publication number
WO2012053090A1
WO2012053090A1 PCT/JP2010/068611 JP2010068611W WO2012053090A1 WO 2012053090 A1 WO2012053090 A1 WO 2012053090A1 JP 2010068611 W JP2010068611 W JP 2010068611W WO 2012053090 A1 WO2012053090 A1 WO 2012053090A1
Authority
WO
WIPO (PCT)
Prior art keywords
drill
blade
range
diameter
axis
Prior art date
Application number
PCT/JP2010/068611
Other languages
French (fr)
Japanese (ja)
Inventor
一豊 伊藤
一輝 高井
Original Assignee
オーエスジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オーエスジー株式会社 filed Critical オーエスジー株式会社
Priority to PCT/JP2010/068611 priority Critical patent/WO2012053090A1/en
Publication of WO2012053090A1 publication Critical patent/WO2012053090A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B51/00Tools for drilling machines
    • B23B51/02Twist drills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2251/00Details of tools for drilling machines
    • B23B2251/20Number of cutting edges
    • B23B2251/202Three cutting edges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2251/00Details of tools for drilling machines
    • B23B2251/40Flutes, i.e. chip conveying grooves
    • B23B2251/406Flutes, i.e. chip conveying grooves of special form not otherwise provided for

Definitions

  • the present invention relates to a three-blade drill in which three twist grooves are provided around a drill axis and three main cutting edges are provided corresponding to each twist groove, and particularly, high-efficiency machining by high feed is performed. It relates to improvements to make it possible.
  • a three-flute drill in which three torsion grooves are provided around the drill axis O, and the main cutting edges are formed along the respective torsion grooves at portions where the torsion grooves open at the tip of the drill, is used for drilling. It is known as one form of a rotary cutting tool. For example, this is the drill described in Patent Document 1.
  • the negative angle part in the range of the radial rake angle ⁇ as viewed from the drill tip side in the range of ⁇ 20 ° ⁇ ⁇ ⁇ 0 ° is provided within the range of 0.1 D or less with respect to the drill diameter D from the outer corner.
  • the portion of the main cutting edge closer to the drill axis than the negative angle portion has a concave arc shape that is smoothly dented to the opposite side of the drill rotation direction in bottom view. High-efficiency machining is possible by high feed such that the feed amount per rotation exceeds 5% of the drill diameter D.
  • the chips are not sufficiently divided, and the chips are connected for a long time, so that the twisted grooves are clogged with chips, and processing is difficult, or the durability of the drill is affected. There was a fear.
  • relatively viscous work materials such as carbon steel materials such as S25C (JIS G 4051) and rolled steel materials such as SS400 (JIS G 3101)
  • the feed rate per rotation is relative to the drill diameter D.
  • This tendency is remarkable when high-efficiency machining with high feed exceeding 0.05 D (5% of D) is performed.
  • the development of a 3-flute drill that realizes good machining by suitably cutting chips is required. It was done.
  • the present invention has been made against the background of the above circumstances, and the object of the present invention is to perform cutting in high-efficiency machining with high feed such that the feed amount per revolution exceeds 5% of the drill diameter D.
  • An object of the present invention is to provide a three-blade drill that suitably separates scraps to achieve good machining.
  • the gist of the present invention is that three torsion grooves are provided around the drill axis O, and the torsion grooves are formed along the respective torsion grooves at portions where the torsion grooves open at the drill tip.
  • a three-edged drill in which a main cutting edge is formed, wherein the torsional groove is the lowest on the inner peripheral side in the cross-sectional shape with respect to the cross-sectional shape of the torsional groove in a cross section perpendicular to the axis O of the drill shaft.
  • the maximum dent W which is the maximum value of the distance between the reference line AB and the cross-sectional shape, is 3% to 3% of the drill diameter D. It is characterized by being configured to be in the range of 6%.
  • the torsional groove has an inner peripheral lowermost point A in the cross-sectional shape and a heel side end point B on the outer periphery with respect to the cross-sectional shape of the torsional groove in the cross section perpendicular to the axis O of the drill shaft.
  • the maximum dent W which is the maximum value of the distance between the reference line AB and the cross-sectional shape, is within the range of 3% to 6% of the drill diameter D. Therefore, even when machining relatively viscous work materials, it is possible to divide chips, and high-efficiency machining with high feed even for such work materials that were difficult to machine. Is possible. That is, it is possible to provide a three-blade drill that achieves good machining by suitably dividing chips in high-efficiency machining with high feed such that the feed amount per rotation exceeds 5% of the drill diameter D. it can.
  • the core thickness D2 of the three-blade drill is in the range of 20% to 50% of the drill diameter D. If it does in this way, chips can be divided suitably at the time of processing, guaranteeing sufficient endurance.
  • a thinning is provided in the vicinity of the drill axis O at the tip of the drill, and a thinning blade is provided so as to be smoothly connected to the main cutting edge.
  • the part has a negative angle part with a rake angle ⁇ in the range of ⁇ 20 ° ⁇ ⁇ ⁇ 0 ° as viewed from the bottom when viewed from the drill tip side, which is 0.1 D or less from the outer corner to the drill diameter D.
  • the portion of the main cutting edge closer to the drill axis O than the negative angle portion of the main cutting edge has a concave arc shape that is smoothly recessed toward the opposite side of the drill rotation direction in the bottom view. It is what.
  • FIG. 4 is a cross-sectional view taken along the line IV-IV in FIG.
  • the three-blade drill of the present invention high feed processing with a feed amount per revolution exceeding 5% of the drill diameter D is possible for steel, and feed per revolution for aluminum alloy. High feed processing with an amount exceeding 30% of the drill diameter D is possible. That is, it is particularly effective when the feed amount per rotation is 5% of the drill diameter D, and even when used at a high feed rate exceeding 10%, but the feed amount per rotation is 5% of the drill diameter D. It is also possible to use it for a normal drilling process that is less than 1. In addition, by improving the chip breaking property, it is effective for deep hole machining of about 10D with respect to the drill diameter D. In addition, drilling of various work materials such as drilling of cast iron and general steel, which require relatively high rigidity, and drilling of aluminum alloy, etc., which has relatively poor chip discharge performance.
  • the three-blade drill of the invention is preferably used.
  • the twist groove is preferably twisted in the same direction as the drill rotation direction when viewed from the shank side, and is provided to discharge chips to the shank side, and the twist angle is in the range of about 10 ° to 50 °, for example. Is set as appropriate.
  • various tool materials such as cemented carbide and high-speed tool steel can be used, and a hard coating such as TiAlN, TiCN, TiN, and diamond is coated as necessary. It is also possible to provide a fluid supply hole (oil hole) that passes through in the axial direction and opens to the flank at the tip.
  • the maximum dent amount W which is the maximum value in the distance between the reference line AB and the cross-sectional shape, is less than 3%, chips are clogged in the torsion groove, the load increases, and machining is difficult. The trouble that becomes.
  • the maximum dent W is larger than 6%, there is a risk of breakage due to a problem in durability due to insufficient rigidity of the tool.
  • the maximum dent W can be cut even when machining relatively viscous work materials. Therefore, it is possible to perform high-efficiency machining by high feed even for such a work material that has been difficult to achieve.
  • the core thickness D2 of the three-blade drill is less than 20% of the drill diameter D, that is, less than 0.2D
  • the maximum dent amount W related to the torsion groove is 3% to 6% of the drill diameter D which is the preferred range. It is difficult to make it within the range, and as a result, the twisted groove is clogged with chips, increasing the load and causing a problem that machining becomes difficult.
  • the core thickness D2 of the three-blade drill is preferably in the range of 20% to 50% of the drill diameter D, and more preferably in the range of 25% to 45% of the drill diameter D. It is configured to be inside.
  • the core thickness D2 may be constant over the entire length of the drill body provided with the twist groove, but it is also possible to provide a back taper that decreases from the drill tip toward the shank side. .
  • the negative angle portion has a rake angle ⁇ in the radial direction as viewed from the drill tip side in a range of ⁇ 20 ° ⁇ ⁇ ⁇ 0 °.
  • the radial rake angle ⁇ is, for example, substantially constant in the negative angle range L, and the main cutting edge may be substantially linear in a bottom view, but the diameter increases toward the inner side (tip side) from the outer peripheral corner.
  • the main cutting edge may have a shape curved in a convex shape toward the drill rotation direction so that the direction rake angle ⁇ gradually increases (increases gradually from a negative angle to 0 °).
  • the negative angle range L is a linear distance in the direction from the outer corner to the drill axis O.
  • the main cutting edge preferably has a concave arc shape that is smoothly recessed toward the opposite side of the drill rotation direction in the bottom view at the portion closer to the drill axis O than the negative angle portion.
  • the shape radius is preferably in the range of about 0.19D to 1.1D, for example.
  • the arc does not necessarily have a constant radius, and may have a shape corresponding to a curve whose curvature changes continuously.
  • the concave arcuate portion has a positive radial rake angle ⁇ at the outer peripheral portion connected to the negative angle portion, but gradually decreases toward the drill axis O (from positive angle to 0 °).
  • the inner peripheral side portion connected to the thinning blade is negative.
  • the ratio (land / groove ratio) ⁇ 1 : ⁇ 2 of the land width angle ⁇ 1 around the drill axis O and the groove width angle ⁇ 2 of the twisted groove is preferably 35: The range is from 65 to 65:35.
  • the ratio of the groove width angle ⁇ 2 is larger than the land / groove ratio ⁇ 1 : ⁇ 2 of 35:65, the land width angle ⁇ 1 is decreased and the durability and cutting edge strength of the tool are impaired.
  • the ratio of the groove width angle ⁇ 2 is smaller than the land / groove ratio ⁇ 1 : ⁇ 2 of 65:35, the chip discharging performance may be impaired.
  • the twisted grooves are provided, for example, at equiangular intervals around the drill axis O, but can also be provided at unequal intervals. Even in this case, all land / groove ratios ⁇ 1 : ⁇ 2 are 35: 65 ⁇ It is desirable to configure so that it falls within the range of 65:35.
  • the axial rake angle of the thinning blade is preferably in the range of ⁇ 5 ° to 0 ° at the portion closest to the drill axis O, but 0 ° to + 15 ° at the connection with the main cutting edge. It is configured to increase smoothly and continuously as it goes from the drill axis O side to the connecting portion side so as to be within the range of.
  • the rake angle in the axial direction of the portion closest to the drill axis O of the thinning blade is smaller than ⁇ 5 ° (large toward the negative side), cutting resistance and thrust resistance are increased.
  • the axial rake angle is larger than 0 °, that is, a positive angle, the blade edge strength may be impaired.
  • the range of ⁇ 5 ° to 0 ° is desirable.
  • the angle is less than 0 °, that is, a negative angle
  • the cutting resistance increases at the connecting portion with the main cutting edge.
  • the angle exceeds + 15 °
  • the strength of the cutting edge may be impaired, so the range of 0 ° to + 15 °.
  • the inside is desirable.
  • the rake angle of the thinning blade does not necessarily have to be configured to increase smoothly and continuously from the drill axis O side toward the connecting portion side as described above, and takes a constant value. There may be.
  • FIG. 1 is a view schematically showing a three-blade drill 10 which is an embodiment of the present invention, and is a front view seen from a direction perpendicular to the axis O.
  • the three-blade drill 10 of the present embodiment is a three-blade twist drill integrally formed of, for example, a cemented carbide that is a superhard tool material, and is held by a main shaft.
  • the shank 12 to be rotationally driven, the shaft portion 14, and the tip portion 16 are provided coaxially in the axial direction.
  • each part in the three-blade drill 10 of the present embodiment are such that the drill diameter (tool diameter) D is about 10 (mm ⁇ ), the diameter of the shaft portion 14 is about 9.85 (mm ⁇ ), and the shaft of the shank 12 is, for example.
  • the directional dimension is, for example, about 60 (mm)
  • the axial dimension of the drill body (shaft portion 14 and tip portion 16) is, for example, about 128 (mm)
  • the overall length of the drill is, for example, about 188 (mm).
  • the surfaces of the shaft portion 14 and the tip portion 16 are coated with a hard coating having a multilayer structure such as TiAlN.
  • the shaft portion 14 and the tip portion 16 are provided with three twisted grooves 18 in a spiral shape at equiangular intervals clockwise around the drill axis O, and these twisted grooves 18 are opened at the tip of the drill in the tip portion 16.
  • Main cutting edges 20 are formed along the respective twist grooves 18 in the portions to be formed.
  • FIG. 2 is a front view showing the tip 16 of the three-blade drill 10 in an enlarged manner from the direction indicated by the arrow II in FIG.
  • FIG. 3 is a bottom view showing the distal end portion 16 of the three-blade drill 10 in an enlarged manner from the direction indicated by the arrow III in FIG. 1, that is, from the distal end side.
  • the torsion groove 18 is, for example, 10 ° in the same direction as the drill rotation direction (clockwise direction in this embodiment) when viewed from the shank 12 side, that is, from above in FIG. It is twisted at a predetermined twist angle (for example, about 30 °) within a range of about ⁇ 50 °, and chips are discharged to the shank 12 side during processing.
  • a predetermined twist angle for example, about 30 °
  • the three-blade drill 10 is provided with a plurality of (three in this embodiment) fluid supply holes (three in this embodiment) that pass through in the axial direction from the rear end of the shank 12 and open to the flank. Oil hole) 22 is provided.
  • a thinning 24 is applied corresponding to each of the three main cutting edges 20.
  • a thinning blade 26 is provided so as to be connected smoothly.
  • the thinning blade 26 is preferably connected to the main cutting edge 20 so that the rake angle in the axial direction is within the range of ⁇ 5 ° to 0 ° at the portion closest to the drill axis O.
  • the portion is configured to be within a range of 0 ° to + 15 °, and the axial rake angle increases smoothly and continuously from the drill axis O side toward the connecting portion side ( Configured to be gradually increased from a negative angle to a positive angle).
  • the rake angle of the thinning blade does not necessarily have to be configured to increase smoothly and continuously from the drill axis O side toward the connecting portion side as described above, and takes a constant value. There may be.
  • the outer peripheral portion of the main cutting edge 20 is provided with a negative angle portion 28 in which the radial rake angle ⁇ is negative with respect to the bottom view seen from the drill tip side, that is, the form shown in FIG.
  • the negative angle portion 28 corresponds to a portion where the radial rake angle ⁇ in the outer peripheral portion of the main cutting edge 20 is within a range of ⁇ 20 ° ⁇ ⁇ ⁇ 0 °, and the negative angle range L is preferably
  • the linear distance in the direction from the outer corner to the drill axis O is 0.1 D or less with respect to the drill diameter D.
  • the main cutting edge 20 has a shape that projects smoothly and protrudes in the direction of drill rotation, that is, in the counterclockwise direction around the drill axis O in FIG.
  • the rake angle ⁇ in the radial direction is the smallest at the outer peripheral corner (larger toward the negative side) and gradually increases toward the drill axis O side (the drill tip side) (from the negative angle gradually increases to 0 °). Configured).
  • the radial rake angle ⁇ shown in FIG. 3 is an angle of the outermost outer peripheral corner portion. In the three-edged drill 10, the radial rake angle ⁇ of this portion is preferably ⁇ 20 ° ⁇ ⁇ .
  • the predetermined angle is within a range of ⁇ 0 °.
  • the portion closer to the drill axis O than the negative angle portion 28 is a recess that is smoothly recessed in the direction opposite to the drill rotation direction in the bottom view shown in FIG. 3, that is, in the clockwise direction of the drill axis O in FIG. It is comprised so that circular arc shape may be comprised.
  • the radius of the concave arc shape is preferably within a range of 0.19D to 1.1D with respect to the drill diameter D, for example, an arc shape having a constant radius of about 0.23D.
  • the radial rake angle ⁇ is positive at the outer peripheral portion connected to the negative angle portion 28, but gradually decreases toward the drill axis O and becomes negative.
  • a predetermined negative angle is set at the inner peripheral side portion connected to H.26. Further, the boundary between the negative angle portion 28 forming a convex shape and the concave arc shape is smoothly connected by a small convex arc.
  • the core thickness D2 in the three-blade drill 10 of the present embodiment is preferably in the range of 20% to 50% of the drill diameter D, that is, in the range of 0.20D to 0.50D, and more preferably. Is in the range of 25% to 45% of the drill diameter, ie in the range of 0.25D to 0.45D.
  • the core thickness D2 may be constant over the entire length of the drill body provided with the twisted groove 18, that is, the shaft portion 14.
  • FIG. A predetermined back taper is provided such that the drill diameter decreases from the tip of the drill toward the shank 12 at the tip 16 shown. Further, the back taper is not necessarily provided, and there is no difference in diameter between the shaft portion 14 and the tip portion 16.
  • the present invention is preferably applied to a three-blade drill having no neck.
  • FIG. 4 is a cross-sectional view taken along the line IV-IV in FIG. 1, and is a diagram showing a cross-section perpendicular to the shaft 14 (cross section perpendicular to the axis O of the drill shaft) in the three-blade drill 10.
  • the torsion groove 18 opened to the tip end portion 16 is continuously provided from the tip end portion 16 to the drill body, that is, the shaft portion 14.
  • the land / groove ratio ⁇ 1 : ⁇ 2 which is the ratio to the angle ⁇ 2 , is preferably in the range of 35:65 to 65:35.
  • the twist groove 18 has an inner peripheral lowermost point A and an outer periphery in the sectional shape of the twist groove 18 in a section perpendicular to the axis O of the drill shaft portion 14.
  • the maximum dent W which is the maximum value of the distance between the reference line AB and the cross-sectional shape, is in the range of 3% to 6% of the drill diameter D. In other words, it is configured to be within the range of 0.03D to 0.06D.
  • This innermost lowermost point A is the point closest to the axial center O in the twisted groove 18, in other words, the cross-sectional shape of the twisted groove 18 in the cross section perpendicular to the axial center O of the shaft portion 14.
  • FIG. 4 is an intersection (a common contact point related to the same tangent line) with a circle corresponding to the core thickness (web) D2 indicated by a broken line in FIG.
  • the heel side end point B is an end point on the heel side, that is, the side opposite to the main cutting edge 20, of the outer peripheral surface side end points of the twist groove 18.
  • FIG. 5 is a diagram showing an axial straight section (a section perpendicular to the axis O of the drill shaft portion) of the shaft portion 100 in a conventional three-blade drill for comparison with the three-blade drill 10 of the present embodiment. It is.
  • the torsion groove 102 provided in the shaft portion 100 has a cross-sectional shape of the torsion groove 102 in a cross section perpendicular to the axis O of the shaft portion 100.
  • the straight line A'B' connecting the innermost side lowest point A 'and the outer heel side end point B' in the cross-sectional shape is used as a reference line.
  • the maximum dent amount W ′ which is the maximum value in distance, is configured to be, for example, about 1% of the drill diameter D, that is, about 0.01D.
  • the core thickness D2 ' is configured to be, for example, about 25% of the drill diameter D, that is, about 0.25D.
  • test conditions were performed under the following test conditions (processing conditions).
  • “good” is the result related to the test product that was able to process 20 holes or more continuously on the work material, and other test products such as 1 to 2 holes were processed.
  • the results relating to the test specimens for which further cutting is difficult are indicated by “defects”.
  • the chips are not divided by the processing of about 1 to 2 holes but are connected as shown in FIG. 7, and the twisted grooves are clogged with chips, resulting in difficulty in processing. The result was “bad”.
  • the load is 100% or more in the processing of the second hole, and further processing is performed. The result was “bad”.
  • breakage occurs in the processing of the second hole, and further processing can be performed.
  • the result was “bad”.
  • the chips were appropriately divided as shown in FIG. 8, and the result was “good”.
  • the load is 100% or more in the processing of the second hole, and further processing is performed. The result was “bad”.
  • the maximum dent W relating to the cross-sectional shape of the torsion groove 18 falls within the range of 3% to 6% of the drill diameter D.
  • the maximum dent amount W relating to the cross-sectional shape of the twisted groove 18 is in the range of 3% to 6% of the drill diameter D.
  • the tool diameter ratios are all in the range of 0.20D to 0.50D.
  • the core thickness D2 is configured to be in the range of 20% to 50% of the drill diameter D.
  • the test product 1 and the test product 7 in which the core thickness D2 is less than 20% of the drill diameter D, that is, less than 0.2D breakage occurs due to insufficient rigidity of the tool.
  • the test product 6 and the test product 12 in which the core thickness D2 is larger than 50% of the drill diameter D, that is, larger than 0.5D the twist is caused by the chips being connected for a long time without being sufficiently divided.
  • the core thickness D2 is configured to be larger than 50% of the drill diameter D, so that the maximum dent amount W relating to the twisted groove 18 is in the range of 3% to 6% of the drill diameter D, which is the preferred range. This is probably because it is difficult to configure the inside. That is, it has become clear from the results of this test that the core thickness D2 of the three-blade drill is preferably configured to be in the range of 20% to 50% of the drill diameter D.
  • the twisted groove 18 is the innermost side lowermost point A in the cross-sectional shape with respect to the cross-sectional shape of the twisted groove 18 in the cross section perpendicular to the axis O of the shaft portion 14.
  • the maximum dent W which is the maximum value of the distance between the reference line AB and the cross-sectional shape, is 3% to 6% of the drill diameter D, with the straight line AB connecting the heel side end point B on the outer periphery as a reference line. Therefore, it is possible to divide chips even when processing a relatively viscous work material, which is difficult for conventional work materials. Even high-efficiency machining with high feed is possible.
  • the core thickness D2 is increased while ensuring a predetermined chip discharging performance as compared with the two-blade drill.
  • the rigidity can be increased, centripetality is increased and core blurring is suppressed, and the machining hole diameter enlargement margin is reduced and the machining hole accuracy is improved. That is, to provide a three-blade drill 10 that achieves good machining by suitably dividing chips in high-efficiency machining with high feed such that the feed amount per rotation exceeds 5% of the drill diameter D. Can do.
  • the core thickness D2 of the three-blade drill 10 is configured to be in the range of 0.20D to 0.50D with respect to the drill diameter D, the chip discharging performance is achieved. It is possible to ensure a good balance between the rigidity of the tool and the strength of the cutting edge, which is advantageous for high-efficiency machining with high feed.
  • the outer peripheral portion of the main cutting edge 14 is provided with a negative angle portion 28 having a negative radial rake angle ⁇ , so that the cutting edge strength in the vicinity of the outer peripheral corner is increased.
  • a negative angle portion 28 having a negative radial rake angle ⁇
  • the rake angle ⁇ in the radial direction of the negative angle portion 28 is in the range of ⁇ 20 ° ⁇ ⁇ ⁇ 0 °, and the range L of the negative angle portion 28 is set to 0.1 D or less from the outer corner. Further, an increase in cutting resistance and thrust resistance due to a negative angle, or a decrease in sharpness is suppressed to a necessary minimum, and high-efficiency machining with high feed as a whole becomes possible. Moreover, since the portion closer to the drill axis O than the negative angle portion 28 has a concave arc shape that is smoothly recessed in the direction opposite to the drill rotation direction, the curling of the chips is promoted, and it becomes easy to divide. The chip discharge performance is improved, and the cutting edge length is longer than that of the straight cutting edge and the cutting load is dispersed. This is also advantageous for high-efficiency machining with high feed.
  • the ratio between the land width angle ⁇ 1 and the groove width angle ⁇ 2 is in the range of 35:65 to 65:35. Therefore, it is possible to ensure a good balance between the chip discharge performance and the rigidity and cutting edge strength of the tool, which is advantageous for high-efficiency machining with high feed.
  • a thinning 24 is provided in the vicinity of the drill axis O of the tip portion 16, and a thinning blade 26 is provided so as to be smoothly connected to the main cutting edge 20.
  • the rake angle in the axial direction is in the range of ⁇ 5 ° to 0 ° at the portion closest to the drill axis O, but is in the range of 0 ° to + 15 ° at the connection with the main cutting edge 20.
  • the rake angle of the thinning blade does not necessarily have to be configured to increase smoothly and continuously from the drill axis O side toward the connecting portion side as described above, and takes a constant value. There may be.
  • the three-blade drill 10 of the present embodiment it is possible to divide chips even when processing a relatively high-viscosity work material.
  • high-efficiency machining with high feed is possible, and high-efficiency drilling with high feed such that the feed amount per rotation exceeds, for example, 5% or even 10% of the drill diameter D becomes possible.
  • high feed is possible in this way, the number of rotations per hole is reduced, and an improvement in tool life can be expected.
  • the three-blade drill of the present invention is provided with three twisted grooves around the drill axis O, and the main cutting edges are formed along the respective twisted grooves at portions where these twisted grooves open at the tip of the drill.
  • the torsional groove is related to the cross-sectional shape of the torsional groove in the cross section perpendicular to the axis O of the drill shaft, and the innermost side lowermost point A in the cross-sectional shape and the heel side end point on the outer periphery
  • the maximum dent W which is the maximum value of the distance between the reference line AB and the cross-sectional shape, is in the range of 3% to 6% of the drill diameter D.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Drilling Tools (AREA)

Abstract

Spiral flutes (18) are configured in such a manner that, with a straight line (AB) connecting a lowest point (A) on the inner peripheral side and an endpoint (B) on the heel side on the outer periphery in the cross sectional shape of the spiral flutes (18) in cross section perpendicular to a shaft center (O) of a shaft section (14) as a reference line, a maximum recessed amount (W) which is the maximum value in the distance between the reference line (AB) and the cross sectional shape falls within the range of 3 to 6% of drill diameter (D). This enables cutting chips to be divided even in the processing of a material to be cut which has relatively high viscosity, and also enables highly-efficient processing by high feeding even relative to the material to be cut, the processing of which has been difficult so far. More specifically, a three-bladed drill (10) for implementing excellent processing by suitably dividing the cutting chips can be provided in the highly-efficient processing by such high feeding as a feeding amount per turn exceeds 5% of the drill diameter (D).

Description

3枚刃ドリル3-flute drill
 本発明は、ドリル軸心まわりに3本のねじれ溝が設けられると共に各ねじれ溝に対応して3枚の主切れ刃が設けられた3枚刃ドリルに関し、特に、高送りによる高能率加工を可能とするための改良に関する。 The present invention relates to a three-blade drill in which three twist grooves are provided around a drill axis and three main cutting edges are provided corresponding to each twist groove, and particularly, high-efficiency machining by high feed is performed. It relates to improvements to make it possible.
 ドリル軸心Oまわりに3本のねじれ溝が設けられ、それらねじれ溝がドリル先端に開口する部分にそれぞれのねじれ溝に沿って主切れ刃が形成された3枚刃ドリルが、穴空け用の回転切削工具の一形態として知られている。例えば、特許文献1に記載されたドリルがそれである。この技術によれば、ドリル先端のドリル軸心付近にはシンニングが施され、主切れ刃に滑らかに接続されるようにシンニング刃が設けられているドリルにおいて、その主切れ刃の外周部には、ドリル先端側から見た底面視における径方向すくい角φが-20°≦φ<0°の範囲内の負角部が、外周コーナーからドリル径Dに対して0.1D以下の範囲に設けられていると共に、その主切れ刃のその負角部よりもドリル軸心側の部分は、底面視においてドリル回転方向と反対側へ滑らかに凹んだ凹円弧形状を成していることにより、1回転当たりの送り量がドリル径Dの5%を超えるような高送りによる高能率加工が可能とされる。 A three-flute drill, in which three torsion grooves are provided around the drill axis O, and the main cutting edges are formed along the respective torsion grooves at portions where the torsion grooves open at the tip of the drill, is used for drilling. It is known as one form of a rotary cutting tool. For example, this is the drill described in Patent Document 1. According to this technique, in a drill in which a thinning is provided in the vicinity of the drill axis at the tip of the drill and a thinning blade is provided so as to be smoothly connected to the main cutting edge, In addition, the negative angle part in the range of the radial rake angle φ as viewed from the drill tip side in the range of −20 ° ≦ φ <0 ° is provided within the range of 0.1 D or less with respect to the drill diameter D from the outer corner. And the portion of the main cutting edge closer to the drill axis than the negative angle portion has a concave arc shape that is smoothly dented to the opposite side of the drill rotation direction in bottom view. High-efficiency machining is possible by high feed such that the feed amount per rotation exceeds 5% of the drill diameter D.
国際公開第2010/038279号公報International Publication No. 2010/038279
 しかし、前記従来の技術では、切り屑が十分に分断されず、切り屑が長く繋がってしまうことにより前記ねじれ溝に切り屑が詰まって加工に困難が生じたり、ドリルの耐久性に影響を与えるおそれがあった。特に、S25C(JIS G 4051)等の炭素鋼鋼材やSS400(JIS G 3101)等の圧延鋼材等の比較的粘性の高い被削材の加工において、1回転当りの送り量がドリル径Dに対して0.05D(Dの5%)を超えるような高送りによる高能率加工を行う場合等にその傾向が顕著である。このため、1回転当りの送り量がドリル径Dの5%を超えるような高送りによる高能率加工において、切り屑を好適に分断して良好な加工を実現する3枚刃ドリルの開発が求められていた。 However, in the conventional technique, the chips are not sufficiently divided, and the chips are connected for a long time, so that the twisted grooves are clogged with chips, and processing is difficult, or the durability of the drill is affected. There was a fear. In particular, in the processing of relatively viscous work materials such as carbon steel materials such as S25C (JIS G 4051) and rolled steel materials such as SS400 (JIS G 3101), the feed rate per rotation is relative to the drill diameter D. This tendency is remarkable when high-efficiency machining with high feed exceeding 0.05 D (5% of D) is performed. For this reason, in high-efficiency machining with high feed rate where the feed amount per rotation exceeds 5% of the drill diameter D, the development of a 3-flute drill that realizes good machining by suitably cutting chips is required. It was done.
 本発明は、以上の事情を背景として為されたものであり、その目的とするところは、1回転当りの送り量がドリル径Dの5%を超えるような高送りによる高能率加工において、切り屑を好適に分断して良好な加工を実現する3枚刃ドリルを提供することにある。 The present invention has been made against the background of the above circumstances, and the object of the present invention is to perform cutting in high-efficiency machining with high feed such that the feed amount per revolution exceeds 5% of the drill diameter D. An object of the present invention is to provide a three-blade drill that suitably separates scraps to achieve good machining.
 斯かる目的を達成するために、本発明の要旨とするところは、ドリル軸心Oまわりに3本のねじれ溝が設けられ、それらねじれ溝がドリル先端に開口する部分にそれぞれのねじれ溝に沿って主切れ刃が形成された3枚刃ドリルであって、前記ねじれ溝は、ドリル軸部の軸心Oに垂直な断面におけるそのねじれ溝の断面形状に関して、その断面形状における内周側最下点Aと外周上のヒール側端点Bとを連結する直線ABを基準線として、その基準線ABと前記断面形状との距離における最大値である最大凹み量Wが、ドリル径Dの3%~6%の範囲内となるように構成されたものであることを特徴とするものである。 In order to achieve such an object, the gist of the present invention is that three torsion grooves are provided around the drill axis O, and the torsion grooves are formed along the respective torsion grooves at portions where the torsion grooves open at the drill tip. A three-edged drill in which a main cutting edge is formed, wherein the torsional groove is the lowest on the inner peripheral side in the cross-sectional shape with respect to the cross-sectional shape of the torsional groove in a cross section perpendicular to the axis O of the drill shaft. Using the straight line AB connecting the point A and the heel side end point B on the outer periphery as a reference line, the maximum dent W, which is the maximum value of the distance between the reference line AB and the cross-sectional shape, is 3% to 3% of the drill diameter D. It is characterized by being configured to be in the range of 6%.
 このようにすれば、前記ねじれ溝は、ドリル軸部の軸心Oに垂直な断面におけるそのねじれ溝の断面形状に関して、その断面形状における内周側最下点Aと外周上のヒール側端点Bとを連結する直線ABを基準線として、その基準線ABと前記断面形状との距離における最大値である最大凹み量Wが、ドリル径Dの3%~6%の範囲内となるように構成されたものであることから、比較的粘性の高い被削材の加工においても切り屑の分断が可能となり、従来加工が困難であった斯かる被削材に対しても高送りによる高能率加工が可能とされる。すなわち、1回転当りの送り量がドリル径Dの5%を超えるような高送りによる高能率加工において、切り屑を好適に分断して良好な加工を実現する3枚刃ドリルを提供することができる。 In this way, the torsional groove has an inner peripheral lowermost point A in the cross-sectional shape and a heel side end point B on the outer periphery with respect to the cross-sectional shape of the torsional groove in the cross section perpendicular to the axis O of the drill shaft. The maximum dent W, which is the maximum value of the distance between the reference line AB and the cross-sectional shape, is within the range of 3% to 6% of the drill diameter D. Therefore, even when machining relatively viscous work materials, it is possible to divide chips, and high-efficiency machining with high feed even for such work materials that were difficult to machine. Is possible. That is, it is possible to provide a three-blade drill that achieves good machining by suitably dividing chips in high-efficiency machining with high feed such that the feed amount per rotation exceeds 5% of the drill diameter D. it can.
 ここで、好適には、前記3枚刃ドリルの心厚D2は、ドリル径Dの20%~50%の範囲内である。このようにすれば、十分な耐久性を保証しつつ加工時において切り屑を好適に分断することができる。 Here, preferably, the core thickness D2 of the three-blade drill is in the range of 20% to 50% of the drill diameter D. If it does in this way, chips can be divided suitably at the time of processing, guaranteeing sufficient endurance.
 また、好適には、前記ドリル先端のドリル軸心O付近にはシンニングが施され、前記主切れ刃に滑らかに接続されるようにシンニング刃が設けられたものであり、その主切れ刃の外周部には、ドリル先端側から見た底面視における径方向すくい角φが-20°≦φ<0°の範囲内の負角部が、外周コーナーからドリル径Dに対して0.1D以下の範囲Lに設けられていると共に、その主切れ刃のその負角部よりもドリル軸心O側の部分は、前記底面視においてドリル回転方向と反対側へ滑らかに凹んだ凹円弧形状を成しているものである。このようにすれば、前記負角部による切削抵抗やスラスト抵抗の増加、或いは切れ味の低下が必要最小限に抑制され、全体として高送りによる高能率加工が可能となる。また、前記負角部よりもドリル軸心O側の部分がドリル回転方向と反対側へ滑らかに凹んだ凹円弧形状とされているため、切り屑のカールが促進されて分断し易くなり、切り屑の排出性能が向上すると共に、直線切れ刃に比較して切れ刃長さが長くなって切削負荷が分散され、更に好適な高送りによる高能率加工を実現することができる。 Further, preferably, a thinning is provided in the vicinity of the drill axis O at the tip of the drill, and a thinning blade is provided so as to be smoothly connected to the main cutting edge. The part has a negative angle part with a rake angle φ in the range of −20 ° ≦ φ <0 ° as viewed from the bottom when viewed from the drill tip side, which is 0.1 D or less from the outer corner to the drill diameter D. The portion of the main cutting edge closer to the drill axis O than the negative angle portion of the main cutting edge has a concave arc shape that is smoothly recessed toward the opposite side of the drill rotation direction in the bottom view. It is what. In this way, an increase in cutting resistance and thrust resistance due to the negative angle portion, or a decrease in sharpness is suppressed to a necessary minimum, and high-efficiency machining with high feed as a whole becomes possible. Further, since the portion closer to the drill axis O than the negative angle portion has a concave arc shape that is smoothly recessed in the direction opposite to the drill rotation direction, the curling of the chips is promoted and the cutting becomes easy to cut. The waste discharging performance is improved, the cutting edge length is longer than that of the straight cutting edge, the cutting load is dispersed, and further high-efficiency machining by high feed can be realized.
本発明の一実施例である3枚刃ドリルを概略的に示す図であり、その軸心に垂直な方向から見た正面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows schematically the 3 blade drill which is one Example of this invention, and is the front view seen from the direction perpendicular | vertical to the axial center. 図1に示す3枚刃ドリルにおける先端部を矢印IIで示す方向すなわち軸心に垂直な方向から拡大して示す正面図である。It is a front view which expands and shows the front-end | tip part in the 3-blade drill shown in FIG. 1 from the direction shown by arrow II, ie, the direction perpendicular | vertical to an axial center. 図1に示す3枚刃ドリルにおける先端部を矢印IIIで示す方向すなわち先端側から拡大して示す底面図である。It is a bottom view which expands and shows the front-end | tip part in the 3-blade drill shown in FIG. 1 from the direction shown by arrow III, ie, a front end side. 図1のIV-IV視断面図であり、ドリル軸部における軸心に垂直な断面を示す図である。FIG. 4 is a cross-sectional view taken along the line IV-IV in FIG. 1 and showing a cross section perpendicular to the axis of the drill shaft. 本実施例の3枚刃ドリルとの比較のために、従来の3枚刃ドリルにおけるドリル軸部の軸心に垂直な断面を示す図である。It is a figure which shows a cross section perpendicular | vertical to the axial center of the drill axial part in the conventional 3 blade drill for the comparison with the 3 blade drill of a present Example. 本発明の3枚刃ドリルの効果を検証するために本発明者等が行った試験に関して、各試験品の形態及び試験結果を示す表である。It is a table | surface which shows the form and test result of each test article regarding the test which the present inventors etc. performed in order to verify the effect of the 3 blade drill of this invention. 本発明の3枚刃ドリルの効果を検証するために本発明者等が行った試験において、結果が不良であった試験品の加工において排出された長く繋がった切り屑の写真である。It is the photograph of the long connected chips discharged | emitted in the process of the test article which the result etc. were inferior in the test which the present inventors conducted in order to verify the effect of the 3 blade drill of this invention. 本発明の3枚刃ドリルの効果を検証するために本発明者等が行った試験において、結果が良であった試験品の加工において排出された好適に分断された切り屑の写真である。In the test which the present inventors conducted in order to verify the effect of the 3 blade drill of the present invention, it is a photograph of the suitably divided chip discharged in the processing of the test product which had a good result. 本発明の3枚刃ドリルの変形例を概略的に示す図であり、その軸心に垂直な方向から見た正面図である。It is a figure which shows roughly the modification of the 3 blade drill of this invention, and is the front view seen from the direction perpendicular | vertical to the axial center.
 本発明の3枚刃ドリルにおいては、鋼に対しては1回転当りの送り量がドリル径Dの5%を超える高送り加工が可能で、且つ、アルミニウム合金に対しては1回転当りの送り量がドリル径Dの30%を超える高送り加工が可能である。すなわち、1回転当りの送り量がドリル径Dの5%、更には10%を超える高送りで使用される場合に特に効果的であるが、1回転当りの送り量がドリル径Dの5%に満たない通常の穴空け加工に用いることも可能である。また、切り屑の分断性向上により、ドリル径Dに対して10D程度の深穴加工にも効果を発揮する。更に、比較的高い剛性が要求される鋳鉄や一般鋼等に対する穴空け加工や、比較的切り屑の排出性が悪いアルミニウム合金等に対する穴空け加工等、種々の被削材に対する穴空け加工に本発明の3枚刃ドリルは好適に用いられる。 In the three-blade drill of the present invention, high feed processing with a feed amount per revolution exceeding 5% of the drill diameter D is possible for steel, and feed per revolution for aluminum alloy. High feed processing with an amount exceeding 30% of the drill diameter D is possible. That is, it is particularly effective when the feed amount per rotation is 5% of the drill diameter D, and even when used at a high feed rate exceeding 10%, but the feed amount per rotation is 5% of the drill diameter D. It is also possible to use it for a normal drilling process that is less than 1. In addition, by improving the chip breaking property, it is effective for deep hole machining of about 10D with respect to the drill diameter D. In addition, drilling of various work materials such as drilling of cast iron and general steel, which require relatively high rigidity, and drilling of aluminum alloy, etc., which has relatively poor chip discharge performance. The three-blade drill of the invention is preferably used.
 前記ねじれ溝は、好適には、シャンク側から見てドリル回転方向と同じ方向へねじれており、切り屑をシャンク側へ排出するように設けられ、ねじれ角は例えば10°~50°程度の範囲内で適宜設定される。前記3枚刃ドリルの材質としては、超硬合金や高速度工具鋼等の種々の工具材料を使用でき、必要に応じてTiAlNやTiCN、TiN、ダイヤモンド等の硬質被膜がコーティングされる。また、軸方向に縦通して先端の逃げ面に開口する流体供給穴(オイルホール)を設けることも可能である。 The twist groove is preferably twisted in the same direction as the drill rotation direction when viewed from the shank side, and is provided to discharge chips to the shank side, and the twist angle is in the range of about 10 ° to 50 °, for example. Is set as appropriate. As the material of the three-blade drill, various tool materials such as cemented carbide and high-speed tool steel can be used, and a hard coating such as TiAlN, TiCN, TiN, and diamond is coated as necessary. It is also possible to provide a fluid supply hole (oil hole) that passes through in the axial direction and opens to the flank at the tip.
 前記ねじれ溝において、前記基準線ABと前記断面形状との距離における最大値である最大凹み量Wが3%未満となる構成では、ねじれ溝に切り屑が詰まって負荷が上昇し、加工が困難になるという不具合を生じる。一方、前記最大凹み量Wが6%より大きい構成では、工具の剛性が不足することにより耐久性に問題が生じて例えば折損等のおそれがある。前記最大凹み量Wが、ドリル径Dの3%~6%の範囲内となるように構成することで、比較的粘性の高い被削材の加工においても切り屑の分断が可能となり、従来加工が困難であった斯かる被削材に対しても高送りによる高能率加工が可能とされる。 In the torsion groove, when the maximum dent amount W, which is the maximum value in the distance between the reference line AB and the cross-sectional shape, is less than 3%, chips are clogged in the torsion groove, the load increases, and machining is difficult. The trouble that becomes. On the other hand, in the configuration in which the maximum dent W is larger than 6%, there is a risk of breakage due to a problem in durability due to insufficient rigidity of the tool. By configuring the maximum dent W to be in the range of 3% to 6% of the drill diameter D, chips can be cut even when machining relatively viscous work materials. Therefore, it is possible to perform high-efficiency machining by high feed even for such a work material that has been difficult to achieve.
 前記3枚刃ドリルの心厚D2がドリル径Dの20%未満すなわち0.2D未満となる構成では、工具の剛性が不足することにより耐久性に問題が生じて例えば折損等のおそれがある。一方、心厚D2がドリル径Dの50%より大きい構成すなわち0.5Dより大きい構成では、前記ねじれ溝に係る最大凹み量Wを前記好適な範囲であるドリル径Dの3%~6%の範囲内とすることが困難であり、結果としてねじれ溝に切り屑が詰まって負荷が上昇し、加工が困難になるという不具合を生じる。従って、前記3枚刃ドリルの心厚D2は、好適には、ドリル径Dの20%~50%の範囲内となるように、更に好適には、ドリル径Dの25%~45%の範囲内となるように構成される。また、前記心厚D2は、前記ねじれ溝が設けられたドリル本体部の全長に亘って一定であっても良いが、ドリル先端からシャンク側へ向かうに従って小さくなるバックテーパを設けることも可能である。 In the configuration in which the core thickness D2 of the three-blade drill is less than 20% of the drill diameter D, that is, less than 0.2D, there is a problem in durability due to insufficient rigidity of the tool, which may cause breakage, for example. On the other hand, in the configuration in which the core thickness D2 is larger than 50% of the drill diameter D, that is, the configuration larger than 0.5D, the maximum dent amount W related to the torsion groove is 3% to 6% of the drill diameter D which is the preferred range. It is difficult to make it within the range, and as a result, the twisted groove is clogged with chips, increasing the load and causing a problem that machining becomes difficult. Accordingly, the core thickness D2 of the three-blade drill is preferably in the range of 20% to 50% of the drill diameter D, and more preferably in the range of 25% to 45% of the drill diameter D. It is configured to be inside. The core thickness D2 may be constant over the entire length of the drill body provided with the twist groove, but it is also possible to provide a back taper that decreases from the drill tip toward the shank side. .
 前記主切れ刃の外周部に関して、ドリル先端側から見た底面視における径方向すくい角φが-20°未満となる構成では、切削抵抗やスラスト抵抗が大きくなると共に切れ味が悪くなる。一方、前記径方向すくい角φが0°以上となる構成では、外周コーナー付近でチッピングや欠損が発生し易くなる。従って、前記負角部は、ドリル先端側から見た底面視における径方向すくい角φが-20°≦φ<0°の範囲内とされるのが望ましい。また、負角範囲Lが0.1Dを超えると、切削抵抗やスラスト抵抗が大きくなると共に切れ味が悪くなるため、L≦0.1Dとされるのが望ましい。前記径方向すくい角φは、例えば負角範囲Lで略一定とされ、底面視において主切れ刃が略直線状を成していても良いが、外周コーナーから内側(先端側)へ向かうに従って径方向すくい角φが徐々に大きくなる(負角から0°まで漸増する)ように、前記主切れ刃がドリル回転方向側へ凸状に湾曲した形状を成していても良い。なお、負角範囲Lは、外周コーナーからドリル軸心Oに向かう方向の直線距離である。 With respect to the outer peripheral portion of the main cutting edge, when the radial rake angle φ as viewed from the bottom of the drill is less than −20 °, the cutting resistance and thrust resistance increase and the sharpness deteriorates. On the other hand, in the configuration in which the radial rake angle φ is 0 ° or more, chipping and chipping are likely to occur near the outer peripheral corner. Therefore, it is desirable that the negative angle portion has a rake angle φ in the radial direction as viewed from the drill tip side in a range of −20 ° ≦ φ <0 °. Further, if the negative angle range L exceeds 0.1D, the cutting resistance and thrust resistance increase and the sharpness deteriorates, so it is desirable that L ≦ 0.1D. The radial rake angle φ is, for example, substantially constant in the negative angle range L, and the main cutting edge may be substantially linear in a bottom view, but the diameter increases toward the inner side (tip side) from the outer peripheral corner. The main cutting edge may have a shape curved in a convex shape toward the drill rotation direction so that the direction rake angle φ gradually increases (increases gradually from a negative angle to 0 °). The negative angle range L is a linear distance in the direction from the outer corner to the drill axis O.
 前記主切れ刃は、前記負角部よりもドリル軸心O側の部分では底面視においてドリル回転方向と反対側へ滑らかに凹んだ凹円弧形状を成していることが望ましいが、この凹円弧形状の半径は、例えば0.19D~1.1D程度の範囲内が好適である。なお、必ずしも一定の半径の円弧である必要はなく、曲率が連続的に変化する曲線に対応する形状であってもよい。また、この凹円弧形状部は、負角部に接続される外周側部分では径方向すくい角φが正となるが、ドリル軸心O側へ向かうに従って徐々に小さくなり(正角から0°まで漸減し)、例えばシンニング刃に接続される内周側部分では負となるように形成される。 The main cutting edge preferably has a concave arc shape that is smoothly recessed toward the opposite side of the drill rotation direction in the bottom view at the portion closer to the drill axis O than the negative angle portion. The shape radius is preferably in the range of about 0.19D to 1.1D, for example. Note that the arc does not necessarily have a constant radius, and may have a shape corresponding to a curve whose curvature changes continuously. The concave arcuate portion has a positive radial rake angle φ at the outer peripheral portion connected to the negative angle portion, but gradually decreases toward the drill axis O (from positive angle to 0 °). For example, the inner peripheral side portion connected to the thinning blade is negative.
 前記ドリル軸部等に関して、ドリル軸心Oまわりにおけるランド幅角度θ1 と前記ねじれ溝の溝幅角度θ2 との比(ランド・溝比)θ1:θ2は、好適には、35:65~65:35の範囲内とされる。ランド・溝比θ1:θ2が35:65よりも溝幅角度θ2の割合が大きくなるとランド幅角度θ1が小さくなって工具の耐久性や切れ刃強度が損なわれる。一方、ランド・溝比θ1:θ2が65:35よりも溝幅角度θ2の割合が小さくなると切り屑排出性能が損なわれるおそれが生じる。前記ねじれ溝は、例えばドリル軸心Oまわりにおいて等角度間隔で設けられるが、不等間隔で設けることも可能で、その場合でも、全てのランド・溝比θ1:θ2が35:65~65:35の範囲内になるように構成することが望ましい。 Regarding the drill shaft and the like, the ratio (land / groove ratio) θ 1 : θ 2 of the land width angle θ 1 around the drill axis O and the groove width angle θ 2 of the twisted groove is preferably 35: The range is from 65 to 65:35. When the ratio of the groove width angle θ 2 is larger than the land / groove ratio θ 1 : θ 2 of 35:65, the land width angle θ 1 is decreased and the durability and cutting edge strength of the tool are impaired. On the other hand, when the ratio of the groove width angle θ 2 is smaller than the land / groove ratio θ 1 : θ 2 of 65:35, the chip discharging performance may be impaired. The twisted grooves are provided, for example, at equiangular intervals around the drill axis O, but can also be provided at unequal intervals. Even in this case, all land / groove ratios θ 1 : θ 2 are 35: 65˜ It is desirable to configure so that it falls within the range of 65:35.
 前記シンニング刃の軸方向すくい角は、好適には、ドリル軸心Oに最も近い部分では-5°~0°の範囲内であるが、前記主切れ刃との接続部では0°~+15°の範囲内となるように、ドリル軸心O側からその接続部側へ向かうに従って滑らかに連続的に増加するように構成される。前記シンニング刃のドリル軸心Oに最も近い部分の軸方向すくい角が-5°よりも小さい(負側へ大)と切削抵抗やスラスト抵抗が大きくなる。一方、軸方向すくい角が0°よりも大きい角度すなわち正角となると刃先強度が損なわれるおそれが生じるため、-5°~0°の範囲内が望ましい。主切れ刃との接続部では、0°よりも小さい角度すなわち負角となると切削抵抗が大きくなる一方、+15°よりも大きくなると刃先強度が損なわれるおそれが生じるため、0°~+15°の範囲内が望ましい。なお、シンニング刃のすくい角については、必ずしも上記のようにドリル軸心O側からその接続部側へ向かうに従って滑らかに連続的に増加するように構成されなくともよく、一定の値をとるものであってもよい。 The axial rake angle of the thinning blade is preferably in the range of −5 ° to 0 ° at the portion closest to the drill axis O, but 0 ° to + 15 ° at the connection with the main cutting edge. It is configured to increase smoothly and continuously as it goes from the drill axis O side to the connecting portion side so as to be within the range of. When the rake angle in the axial direction of the portion closest to the drill axis O of the thinning blade is smaller than −5 ° (large toward the negative side), cutting resistance and thrust resistance are increased. On the other hand, if the axial rake angle is larger than 0 °, that is, a positive angle, the blade edge strength may be impaired. Therefore, the range of −5 ° to 0 ° is desirable. When the angle is less than 0 °, that is, a negative angle, the cutting resistance increases at the connecting portion with the main cutting edge. On the other hand, when the angle exceeds + 15 °, the strength of the cutting edge may be impaired, so the range of 0 ° to + 15 °. The inside is desirable. The rake angle of the thinning blade does not necessarily have to be configured to increase smoothly and continuously from the drill axis O side toward the connecting portion side as described above, and takes a constant value. There may be.
 以下、本発明の好適な実施例を図面に基づいて詳細に説明する。なお、以下の説明に用いる図面において、各部の寸法比等は必ずしも正確に描かれていない。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In the drawings used for the following description, the dimensional ratios of the respective parts are not necessarily drawn accurately.
 図1は、本発明の一実施例である3枚刃ドリル10を概略的に示す図であり、その軸心Oに垂直な方向から見た正面図である。この図1に示すように、本実施例の3枚刃ドリル10は、例えば超硬質工具材料である超硬合金にて一体に構成された3枚刃のツイストドリルであり、主軸に把持されて回転駆動されるシャンク12と、軸部14と、先端部16とを軸心方向に同軸に備えている。本実施例の3枚刃ドリル10における各部の寸法は、ドリル径(工具径)Dが例えば10(mmφ)程度、軸部14の径寸法が例えば9.85(mmφ)程度、シャンク12の軸方向寸法が例えば60(mm)程度、ドリル本体(軸部14及び先端部16)の軸方向寸法が例えば128(mm)程度、ドリル全長が例えば188(mm)程度とされたものである。また、好適には、この軸部14及び先端部16の表面には、TiAlN等の多層構造の硬質皮膜がコーティングされている。上記軸部14及び先端部16には、ドリル軸心Oの右まわりに等角度間隔で3本のねじれ溝18がスパイラル状に設けられ、それらねじれ溝18が上記先端部16におけるドリル先端に開口する部分にそれぞれのねじれ溝18に沿って主切れ刃20(図2及び図3等を参照)が形成されている。 FIG. 1 is a view schematically showing a three-blade drill 10 which is an embodiment of the present invention, and is a front view seen from a direction perpendicular to the axis O. FIG. As shown in FIG. 1, the three-blade drill 10 of the present embodiment is a three-blade twist drill integrally formed of, for example, a cemented carbide that is a superhard tool material, and is held by a main shaft. The shank 12 to be rotationally driven, the shaft portion 14, and the tip portion 16 are provided coaxially in the axial direction. The dimensions of each part in the three-blade drill 10 of the present embodiment are such that the drill diameter (tool diameter) D is about 10 (mmφ), the diameter of the shaft portion 14 is about 9.85 (mmφ), and the shaft of the shank 12 is, for example. The directional dimension is, for example, about 60 (mm), the axial dimension of the drill body (shaft portion 14 and tip portion 16) is, for example, about 128 (mm), and the overall length of the drill is, for example, about 188 (mm). Preferably, the surfaces of the shaft portion 14 and the tip portion 16 are coated with a hard coating having a multilayer structure such as TiAlN. The shaft portion 14 and the tip portion 16 are provided with three twisted grooves 18 in a spiral shape at equiangular intervals clockwise around the drill axis O, and these twisted grooves 18 are opened at the tip of the drill in the tip portion 16. Main cutting edges 20 (see FIG. 2 and FIG. 3 and the like) are formed along the respective twist grooves 18 in the portions to be formed.
 図2は、上記3枚刃ドリル10における先端部16を図1に矢印IIで示す方向すなわち軸心Oと直角方向から拡大して示す正面図である。また、図3は、上記3枚刃ドリル10における先端部16を図1に矢印IIIで示す方向すなわち先端側から拡大して示す底面図である。これら図2及び図3に示すように、上記ねじれ溝18は、上記シャンク12側すなわち図2の上方から見て、ドリル回転方向(本実施例では右まわり方向)と同じ方向へ、例えば10°~50°程度の範囲内である所定のねじれ角(例えば、30°程度)でねじれており、加工に際して切り屑を上記シャンク12側へ排出するようになっている。また、好適には、上記3枚刃ドリル10には、上記シャンク12の後端から軸方向に縦通して先端の逃げ面に開口する複数本(本実施例では3本)の流体供給穴(オイルホール)22が設けられている。 FIG. 2 is a front view showing the tip 16 of the three-blade drill 10 in an enlarged manner from the direction indicated by the arrow II in FIG. FIG. 3 is a bottom view showing the distal end portion 16 of the three-blade drill 10 in an enlarged manner from the direction indicated by the arrow III in FIG. 1, that is, from the distal end side. As shown in FIGS. 2 and 3, the torsion groove 18 is, for example, 10 ° in the same direction as the drill rotation direction (clockwise direction in this embodiment) when viewed from the shank 12 side, that is, from above in FIG. It is twisted at a predetermined twist angle (for example, about 30 °) within a range of about ˜50 °, and chips are discharged to the shank 12 side during processing. Preferably, the three-blade drill 10 is provided with a plurality of (three in this embodiment) fluid supply holes (three in this embodiment) that pass through in the axial direction from the rear end of the shank 12 and open to the flank. Oil hole) 22 is provided.
 図3に示すように、前記3枚刃ドリル10の先端部16におけるドリル軸心O付近には、前記3枚の主切れ刃20それぞれに対応してシンニング24が施され、各主切れ刃20に滑らかに接続されるようにシンニング刃26が設けられている。このシンニング刃26は、好適には、その軸方向すくい角がドリル軸心Oに最も近い部分においては-5°~0°の範囲内となるように、また、前記主切れ刃20との接続部においては0°~+15°の範囲内となるように構成されており、斯かる軸方向すくい角がドリル軸心O側からその接続部側へ向かうに従って滑らかに連続的に増加するように(負角から正角へ漸増させられるように)構成されている。なお、シンニング刃のすくい角については、必ずしも上記のようにドリル軸心O側からその接続部側へ向かうに従って滑らかに連続的に増加するように構成されなくともよく、一定の値をとるものであってもよい。 As shown in FIG. 3, in the vicinity of the drill axis O at the tip portion 16 of the three-blade drill 10, a thinning 24 is applied corresponding to each of the three main cutting edges 20. A thinning blade 26 is provided so as to be connected smoothly. The thinning blade 26 is preferably connected to the main cutting edge 20 so that the rake angle in the axial direction is within the range of −5 ° to 0 ° at the portion closest to the drill axis O. The portion is configured to be within a range of 0 ° to + 15 °, and the axial rake angle increases smoothly and continuously from the drill axis O side toward the connecting portion side ( Configured to be gradually increased from a negative angle to a positive angle). The rake angle of the thinning blade does not necessarily have to be configured to increase smoothly and continuously from the drill axis O side toward the connecting portion side as described above, and takes a constant value. There may be.
 前記主切れ刃20の外周部には、ドリル先端側から見た底面視すなわち図3に示す形態に関して、径方向すくい角φが負となる負角部28が設けられている。この負角部28は、前記主切れ刃20の外周部における径方向すくい角φが-20°≦φ<0°の範囲内である部分に相当し、その負角範囲Lは、好適には、外周コーナーからドリル軸心Oに向かう方向の直線距離でドリル径Dに対して0.1D以下とされる。この負角範囲Lにおいて、前記主切れ刃20は、ドリル回転方向側すなわち図3におけるドリル軸心Oを中心とする左まわり方向へ滑らかに凸状に湾曲して突き出す形状を成しており、径方向すくい角φは、外周コーナーで最も小さく(負側へ大きく)なるように、且つドリル軸心O側(ドリル先端側)へ向かうに従って徐々に大きくなるように(負角から0°へ漸増させられるように)構成されている。また、図3に示す径方向すくい角φは、最も外側の外周コーナー部分の角度であり、前記3枚刃ドリル10において、好適には、この部分の径方向すくい角φが-20°≦φ<0°の範囲内の所定の角度とされている。 The outer peripheral portion of the main cutting edge 20 is provided with a negative angle portion 28 in which the radial rake angle φ is negative with respect to the bottom view seen from the drill tip side, that is, the form shown in FIG. The negative angle portion 28 corresponds to a portion where the radial rake angle φ in the outer peripheral portion of the main cutting edge 20 is within a range of −20 ° ≦ φ <0 °, and the negative angle range L is preferably The linear distance in the direction from the outer corner to the drill axis O is 0.1 D or less with respect to the drill diameter D. In this negative angle range L, the main cutting edge 20 has a shape that projects smoothly and protrudes in the direction of drill rotation, that is, in the counterclockwise direction around the drill axis O in FIG. The rake angle φ in the radial direction is the smallest at the outer peripheral corner (larger toward the negative side) and gradually increases toward the drill axis O side (the drill tip side) (from the negative angle gradually increases to 0 °). Configured). Also, the radial rake angle φ shown in FIG. 3 is an angle of the outermost outer peripheral corner portion. In the three-edged drill 10, the radial rake angle φ of this portion is preferably −20 ° ≦ φ. The predetermined angle is within a range of <0 °.
 また、上記負角部28よりもドリル軸心O側の部分は、図3に示す底面視においてドリル回転方向と反対側、すなわち図3におけるドリル軸心Oの右まわり方向へ滑らかに凹んだ凹円弧形状を成すように構成されている。この凹円弧形状の半径は、好適には、ドリル径Dに対して0.19D~1.1Dの範囲内とされ、例えば0.23D程度の一定の半径の円弧形状とされる。また、好適には、径方向すくい角φは、前記負角部28に接続される外周側部分では正であるが、ドリル軸心O側へ向かうに従って徐々に小さくなって負となり、前記シンニング刃26に接続される内周側部分では所定の負角とされる。また、凸形状を成している前記負角部28と凹円弧形状との境界は、小さな凸円弧によって滑らかに接続されている。 Further, the portion closer to the drill axis O than the negative angle portion 28 is a recess that is smoothly recessed in the direction opposite to the drill rotation direction in the bottom view shown in FIG. 3, that is, in the clockwise direction of the drill axis O in FIG. It is comprised so that circular arc shape may be comprised. The radius of the concave arc shape is preferably within a range of 0.19D to 1.1D with respect to the drill diameter D, for example, an arc shape having a constant radius of about 0.23D. Preferably, the radial rake angle φ is positive at the outer peripheral portion connected to the negative angle portion 28, but gradually decreases toward the drill axis O and becomes negative. A predetermined negative angle is set at the inner peripheral side portion connected to H.26. Further, the boundary between the negative angle portion 28 forming a convex shape and the concave arc shape is smoothly connected by a small convex arc.
 また、本実施例の3枚刃ドリル10における心厚D2は、好適には、ドリル径Dの20%~50%の範囲内すなわち0.20D~0.50Dの範囲内であり、更に好適には、ドリル径の25%~45%の範囲内すなわち0.25D~0.45Dの範囲内である。また、この心厚D2は、前記ねじれ溝18が設けられたドリル本体すなわち軸部14の全長に渡って一定であってもよいが、本実施例の3枚刃ドリル10においては、図1に示す先端部16においてドリル先端からシャンク12側へ向かうに従ってドリル径が小さくなる所定のバックテーパが設けられている。また、このバックテーパは必ずしも設けられなくともよく、また、前記軸部14と先端部16との間で径寸法に差がなくともよい。すなわち、図9に示すように、前記シャンク12から先端部16′(ドリル先端)に至るまで一定の径寸法(=ドリル径D)とされた3枚刃ドリル10′であっても、図1等に示す3枚刃ドリル10と同じく良好な切削性能が得られるよい。換言すれば、首部を有しない3枚刃ドリルにも本発明は好適に適用される。 Further, the core thickness D2 in the three-blade drill 10 of the present embodiment is preferably in the range of 20% to 50% of the drill diameter D, that is, in the range of 0.20D to 0.50D, and more preferably. Is in the range of 25% to 45% of the drill diameter, ie in the range of 0.25D to 0.45D. The core thickness D2 may be constant over the entire length of the drill body provided with the twisted groove 18, that is, the shaft portion 14. In the three-blade drill 10 of the present embodiment, FIG. A predetermined back taper is provided such that the drill diameter decreases from the tip of the drill toward the shank 12 at the tip 16 shown. Further, the back taper is not necessarily provided, and there is no difference in diameter between the shaft portion 14 and the tip portion 16. That is, as shown in FIG. 9, even a three-blade drill 10 ′ having a constant diameter (= drill diameter D) from the shank 12 to the tip 16 ′ (drill tip) can be used as shown in FIG. As with the three-blade drill 10 shown in FIG. In other words, the present invention is preferably applied to a three-blade drill having no neck.
 図4は、図1のIV-IV視断面図であり、前記3枚刃ドリル10における軸部14の軸直断面(ドリル軸部の軸心Oに垂直な断面)を示す図である。この図4に示すように、前記先端部16に開口するねじれ溝18は、その先端部16からドリル本体すなわち前記軸部14まで連続的に設けられている。また、斯かる軸部14においては、ドリル軸心Oに対して直角な断面における外周面及びねじれ溝18の断面形状に関して、ドリル軸心Oまわりにおけるランド幅角度θ1とねじれ溝18の溝幅角度θ2との比であるランド・溝比θ1 :θ2 は、好適には、35:65~65:35の範囲内とされている。 4 is a cross-sectional view taken along the line IV-IV in FIG. 1, and is a diagram showing a cross-section perpendicular to the shaft 14 (cross section perpendicular to the axis O of the drill shaft) in the three-blade drill 10. As shown in FIG. 4, the torsion groove 18 opened to the tip end portion 16 is continuously provided from the tip end portion 16 to the drill body, that is, the shaft portion 14. Further, in the shaft portion 14, the land width angle θ 1 around the drill axis O and the groove width of the torsion groove 18 with respect to the outer peripheral surface and the cross-sectional shape of the torsion groove 18 in a cross section perpendicular to the drill axis O. The land / groove ratio θ 1 : θ 2 , which is the ratio to the angle θ 2 , is preferably in the range of 35:65 to 65:35.
 また、図4に示すように、前記ねじれ溝18は、ドリル軸部14の軸心Oに垂直な断面におけるそのねじれ溝18の断面形状に関して、その断面形状における内周側最下点Aと外周上のヒール側端点Bとを連結する直線ABを基準線として、その基準線ABと前記断面形状との距離における最大値である最大凹み量Wが、ドリル径Dの3%~6%の範囲内すなわち0.03D~0.06Dの範囲内となるように構成されている。この内周側最下点Aは、前記ねじれ溝18における最も軸心Oに近い点であり、換言すれば、前記軸部14の軸心Oに垂直な断面における前記ねじれ溝18の断面形状と、図4に破線で示す心厚(ウェブ)D2に対応する円との交点(同一の接線に係る共通の接点)である。また、上記ヒール側端点Bは、前記ねじれ溝18における外周面側両端点のうちヒール側すなわち前記主切れ刃20とは反対側の端点である。 Further, as shown in FIG. 4, the twist groove 18 has an inner peripheral lowermost point A and an outer periphery in the sectional shape of the twist groove 18 in a section perpendicular to the axis O of the drill shaft portion 14. With the straight line AB connecting the upper heel side end point B as a reference line, the maximum dent W, which is the maximum value of the distance between the reference line AB and the cross-sectional shape, is in the range of 3% to 6% of the drill diameter D. In other words, it is configured to be within the range of 0.03D to 0.06D. This innermost lowermost point A is the point closest to the axial center O in the twisted groove 18, in other words, the cross-sectional shape of the twisted groove 18 in the cross section perpendicular to the axial center O of the shaft portion 14. FIG. 4 is an intersection (a common contact point related to the same tangent line) with a circle corresponding to the core thickness (web) D2 indicated by a broken line in FIG. Further, the heel side end point B is an end point on the heel side, that is, the side opposite to the main cutting edge 20, of the outer peripheral surface side end points of the twist groove 18.
 図5は、本実施例の3枚刃ドリル10との比較のために、従来の3枚刃ドリルにおける軸部100の軸直断面(ドリル軸部の軸心Oに垂直な断面)を示す図である。この図5に示すように、従来の3枚刃ドリルにおいて、その軸部100に設けられたねじれ溝102は、斯かる軸部100の軸心Oに垂直な断面におけるそのねじれ溝102の断面形状に関して、その断面形状における内周側最下点A′と外周上のヒール側端点B′とを連結する直線A′B′を基準線として、その基準線A′B′と前記断面形状との距離における最大値である最大凹み量W′が、例えばドリル径Dの1%程度すなわち0.01D程度となるように構成されている。また、その心厚D2′は、例えばドリル径Dの25%程度すなわち0.25D程度となるように構成されている。 FIG. 5 is a diagram showing an axial straight section (a section perpendicular to the axis O of the drill shaft portion) of the shaft portion 100 in a conventional three-blade drill for comparison with the three-blade drill 10 of the present embodiment. It is. As shown in FIG. 5, in the conventional three-edged drill, the torsion groove 102 provided in the shaft portion 100 has a cross-sectional shape of the torsion groove 102 in a cross section perpendicular to the axis O of the shaft portion 100. With respect to the reference line A'B 'and the cross-sectional shape, the straight line A'B' connecting the innermost side lowest point A 'and the outer heel side end point B' in the cross-sectional shape is used as a reference line. The maximum dent amount W ′, which is the maximum value in distance, is configured to be, for example, about 1% of the drill diameter D, that is, about 0.01D. The core thickness D2 'is configured to be, for example, about 25% of the drill diameter D, that is, about 0.25D.
 以下、本発明の3枚刃ドリルの効果を検証するために本発明者等が行った試験について説明する。本試験において、本発明者等は、工具径D=10(mm)の3枚刃ドリルであって、心厚D2及び最大凹み量Wをそれぞれ変化させた12種類の試験品1~12を用意し、以下の試験条件(加工条件)で穴空け加工試験を行った。 Hereinafter, a test conducted by the present inventors in order to verify the effect of the three-blade drill of the present invention will be described. In this test, the present inventors prepared 12 types of test products 1 to 12, which are three-edged drills having a tool diameter D = 10 (mm), with the core thickness D2 and the maximum dent W being changed. Then, a drilling test was performed under the following test conditions (processing conditions).
[試験条件]
・被削材:S25C(JIS G 4051)
・工具径:D=10(mm)
・切削速度:65(m/min)
・回転送り量:0.55(mm/rev)
・加工深さ:50(mm)
・水溶性内部給油
・模型マシンニングセンタ
[Test conditions]
・ Work material: S25C (JIS G 4051)
・ Tool diameter: D = 10 (mm)
・ Cutting speed: 65 (m / min)
・ Rotation feed amount: 0.55 (mm / rev)
・ Processing depth: 50 (mm)
・ Water-soluble internal lubrication ・ Model machining center
 図6は、上記試験の結果を示す図であり、各試験品の心厚D2(mm)、工具径比率すなわち心厚と工具径との比(=D2/D)、最大凹み量W(mm)、及び凹み比率(%)すなわち最大凹み量と工具径との比(=W/D)を示すと共に、各試験品に係る試験の結果を「良」又は「不良」で示している。この結果としては、被削材に対して20穴以上連続して良好な加工を行うことができた試験品に係る結果を「良」、それ以外の試験品例えば1~2穴程度の加工でそれ以上の切削が困難となった試験品に係る結果を「不良」でそれぞれ示している。 FIG. 6 is a diagram showing the results of the above test, and the core thickness D2 (mm), the tool diameter ratio of each test product, that is, the ratio of the core thickness to the tool diameter (= D2 / D), and the maximum dent amount W (mm). ) And dent ratio (%), that is, the ratio between the maximum dent amount and the tool diameter (= W / D), and the result of the test relating to each test product is indicated by “good” or “bad”. As a result, “good” is the result related to the test product that was able to process 20 holes or more continuously on the work material, and other test products such as 1 to 2 holes were processed. The results relating to the test specimens for which further cutting is difficult are indicated by “defects”.
 図6に示すように、工具径比率が0.19D、凹み比率が1.8%(=0.018D)である試験品1では、1穴目の加工で折損が発生してそれ以上の加工を行うことができず、結果は「不良」であった。また、工具径比率が0.20D、凹み比率が1.7%(=0.017D)である試験品2、工具径比率が0.25D、凹み比率が1.4%(=0.014D)である試験品3、工具径比率が0.36D、凹み比率が1.1%(=0.011D)である試験品4、及び工具径比率が0.51D、凹み比率が0.7%(=0.007D)である試験品5では、1~2穴程度の加工で切り屑が分断されず図7に示すように繋がったものとなり、ねじれ溝に切り屑が詰まって加工に困難が生じ、結果は「不良」であった。また、工具径比率が0.52D、凹み比率が0.7%(=0.007D)である試験品6では、2穴目の加工で負荷が100%以上となってそれ以上の加工を行うことが困難となり、結果は「不良」であった。また、工具径比率が0.19D、凹み比率が7.1%(=0.071D)である試験品7では、2穴目の加工で折損が発生してそれ以上の加工を行うことができず、結果は「不良」であった。また、工具径比率が0.22D、凹み比率が5.9%(=0.059D)である試験品8、工具径比率が0.25D、凹み比率が5.0%(=0.050D)である試験品9、工具径比率が0.36D、凹み比率が4.1%(=0.041D)である試験品10、及び工具径比率が0.50D、凹み比率が3.2%(=0.032D)である試験品11では、20穴以上連続して加工を行っても切り屑が図8に示すように好適に分断されたものとなり、結果は「良」であった。また、工具径比率が0.52D、凹み比率が2.2%(=0.022D)である試験品12では、2穴目の加工で負荷が100%以上となってそれ以上の加工を行うことが困難となり、結果は「不良」であった。 As shown in FIG. 6, in the test product 1 having a tool diameter ratio of 0.19D and a dent ratio of 1.8% (= 0.018D), breakage occurs in the processing of the first hole, and further processing is performed. The result was “bad”. Moreover, the test piece 2 whose tool diameter ratio is 0.20D and the dent ratio is 1.7% (= 0.177D), the tool diameter ratio is 0.25D, and the dent ratio is 1.4% (= 0.014D). Specimen 3 with a tool diameter ratio of 0.36D and a dent ratio of 1.1% (= 0.011D), Specimen 4 with a tool diameter ratio of 0.51D and a dent ratio of 0.7% ( = 0.007D) In the test product 5, the chips are not divided by the processing of about 1 to 2 holes but are connected as shown in FIG. 7, and the twisted grooves are clogged with chips, resulting in difficulty in processing. The result was “bad”. Further, in the test product 6 having a tool diameter ratio of 0.52D and a dent ratio of 0.7% (= 0.007D), the load is 100% or more in the processing of the second hole, and further processing is performed. The result was “bad”. Further, in the test product 7 having a tool diameter ratio of 0.19D and a dent ratio of 7.1% (= 0.071D), breakage occurs in the processing of the second hole, and further processing can be performed. The result was “bad”. Moreover, the test article 8 whose tool diameter ratio is 0.22D and the dent ratio is 5.9% (= 0.059D), the tool diameter ratio is 0.25D, and the dent ratio is 5.0% (= 0.050D). , Test product 9 with a tool diameter ratio of 0.36D and a dent ratio of 4.1% (= 0.041D), and a tool diameter ratio of 0.50D and a dent ratio of 3.2% ( = 0.032D) In the test product 11 in which processing was continued for 20 holes or more, the chips were appropriately divided as shown in FIG. 8, and the result was “good”. Further, in the test article 12 having a tool diameter ratio of 0.52D and a dent ratio of 2.2% (= 0.022D), the load is 100% or more in the processing of the second hole, and further processing is performed. The result was “bad”.
 すなわち、本試験の結果として、凹み比率が3.2%~5.9%すなわち最大凹み量Wがドリル径Dの3.2%~5.9%である試験品8~11では、図8に示すように切り屑が1カール程度乃至それ以下に分断され、20穴以上連続して良好な加工を行うことができた。一方、凹み比率が3%未満である試験品1~6、試験品12では、図7に示すように切り屑が十分に分断されず長く繋がってしまうことにより前記ねじれ溝に切り屑が詰まったり、更には負荷の上昇が発生すること等により加工が困難となった。また、凹み比率が6%より大きい試験品7では、工具の剛性が不足すること等により折損が発生した。従って、前記ねじれ溝18の断面形状に係る最大凹み量Wが、ドリル径Dの3%~6%の範囲内となるように構成された本発明の実施例に対応する試験品8~11では、1回転当りの送り量がドリル径Dの5%を超えるような高送りによる高能率加工において、切り屑を好適に分断して良好な加工を実現できることが検証された。すなわち、前記ねじれ溝18の断面形状に係る最大凹み量Wは、ドリル径Dの3%~6%の範囲内となるように構成することが好ましいことが本試験の結果から明らかになった。 That is, as a result of this test, in the test products 8 to 11 in which the dent ratio is 3.2% to 5.9%, that is, the maximum dent amount W is 3.2% to 5.9% of the drill diameter D, FIG. As shown in FIG. 1, the chips were divided into about 1 curl or less, and good processing could be performed continuously for 20 holes or more. On the other hand, in the test products 1 to 6 and the test product 12 in which the dent ratio is less than 3%, as shown in FIG. In addition, machining has become difficult due to an increase in load. Further, in the test product 7 having a dent ratio larger than 6%, breakage occurred due to insufficient rigidity of the tool. Accordingly, in the test products 8 to 11 corresponding to the examples of the present invention configured so that the maximum dent W relating to the cross-sectional shape of the torsion groove 18 falls within the range of 3% to 6% of the drill diameter D. In high-efficiency machining with high feed such that the feed amount per rotation exceeds 5% of the drill diameter D, it was verified that good machining can be realized by suitably dividing the chips. That is, it has been clarified from the results of this test that it is preferable that the maximum dent amount W relating to the cross-sectional shape of the twisted groove 18 is in the range of 3% to 6% of the drill diameter D.
 また、本試験において良好な結果が得られた本発明の実施例に対応する試験品8~11では、その工具径比率が何れも0.20D~0.50Dの範囲内とされている。換言すれば、心厚D2がドリル径Dの20%~50%の範囲内となるように構成されている。一方、心厚D2がドリル径Dの20%未満すなわち0.2D未満とされた試験品1、試験品7では、工具の剛性が不足することにより折損が発生している。また、心厚D2がドリル径Dの50%より大きい構成すなわち0.5Dより大きい試験品5、試験品6、試験品12では、切り屑が十分に分断されず長く繋がってしまうことにより前記ねじれ溝に切り屑が詰まる等して負荷が上昇し、連続して加工を行うことが困難となった。これは、心厚D2がドリル径Dの50%より大きい構成とされることで、前記ねじれ溝18に係る最大凹み量Wを前記好適な範囲であるドリル径Dの3%~6%の範囲内となるように構成することが困難であるためと考えられる。すなわち、前記3枚刃ドリルの心厚D2は、ドリル径Dの20%~50%の範囲内となるように構成することが好ましいことが本試験の結果から明らかになった。 In addition, in the test products 8 to 11 corresponding to the examples of the present invention in which good results were obtained in this test, the tool diameter ratios are all in the range of 0.20D to 0.50D. In other words, the core thickness D2 is configured to be in the range of 20% to 50% of the drill diameter D. On the other hand, in the test product 1 and the test product 7 in which the core thickness D2 is less than 20% of the drill diameter D, that is, less than 0.2D, breakage occurs due to insufficient rigidity of the tool. Further, in the test product 5, the test product 6, and the test product 12 in which the core thickness D2 is larger than 50% of the drill diameter D, that is, larger than 0.5D, the twist is caused by the chips being connected for a long time without being sufficiently divided. The load increased due to clogging of chips in the groove, and it became difficult to perform continuous processing. This is because the core thickness D2 is configured to be larger than 50% of the drill diameter D, so that the maximum dent amount W relating to the twisted groove 18 is in the range of 3% to 6% of the drill diameter D, which is the preferred range. This is probably because it is difficult to configure the inside. That is, it has become clear from the results of this test that the core thickness D2 of the three-blade drill is preferably configured to be in the range of 20% to 50% of the drill diameter D.
 このように、本実施例によれば、前記ねじれ溝18は、前記軸部14の軸心Oに垂直な断面におけるそのねじれ溝18の断面形状に関して、その断面形状における内周側最下点Aと外周上のヒール側端点Bとを連結する直線ABを基準線として、その基準線ABと前記断面形状との距離における最大値である最大凹み量Wが、ドリル径Dの3%~6%の範囲内となるように構成されたものであることから、比較的粘性の高い被削材の加工においても切り屑の分断が可能となり、従来加工が困難であった斯かる被削材に対しても高送りによる高能率加工が可能とされる。また、前記主切れ刃20がドリル軸心Oまわりに等角度間隔で3枚設けられているため、2枚刃ドリルに比較して所定の切り屑排出性能を確保しつつ心厚D2を大きくして剛性を高くすることができると共に、求心性が高くなって芯ブレが抑制され、加工穴径の拡大代が小さくなって加工穴精度が向上する。すなわち、1回転当りの送り量がドリル径Dの5%を超えるような高送りによる高能率加工において、切り屑を好適に分断して良好な加工を実現する3枚刃ドリル10を提供することができる。 Thus, according to the present embodiment, the twisted groove 18 is the innermost side lowermost point A in the cross-sectional shape with respect to the cross-sectional shape of the twisted groove 18 in the cross section perpendicular to the axis O of the shaft portion 14. The maximum dent W, which is the maximum value of the distance between the reference line AB and the cross-sectional shape, is 3% to 6% of the drill diameter D, with the straight line AB connecting the heel side end point B on the outer periphery as a reference line. Therefore, it is possible to divide chips even when processing a relatively viscous work material, which is difficult for conventional work materials. Even high-efficiency machining with high feed is possible. Further, since three main cutting edges 20 are provided at equal angular intervals around the drill axis O, the core thickness D2 is increased while ensuring a predetermined chip discharging performance as compared with the two-blade drill. In addition, the rigidity can be increased, centripetality is increased and core blurring is suppressed, and the machining hole diameter enlargement margin is reduced and the machining hole accuracy is improved. That is, to provide a three-blade drill 10 that achieves good machining by suitably dividing chips in high-efficiency machining with high feed such that the feed amount per rotation exceeds 5% of the drill diameter D. Can do.
 また、本実施例では、前記3枚刃ドリル10の心厚D2がドリル径Dに対して0.20D~0.50Dの範囲内となるように構成されたものであるため、切り屑排出性能と工具の剛性や切れ刃強度とをバランス良く確保することが可能で、高送りによる高能率加工に有利である。 Further, in this embodiment, since the core thickness D2 of the three-blade drill 10 is configured to be in the range of 0.20D to 0.50D with respect to the drill diameter D, the chip discharging performance is achieved. It is possible to ensure a good balance between the rigidity of the tool and the strength of the cutting edge, which is advantageous for high-efficiency machining with high feed.
 また、本実施例では、前記主切れ刃14の外周部には径方向すくい角φが負となる負角部28が設けられているため、外周コーナー近傍の切れ刃強度が高められ、これ等の相乗効果により、例えば1回転当りの送り量が鋼についてはドリル径Dの5%、アルミニウム合金に対してはドリル径Dの30%を超えるような高送りで穴空け加工を行う場合でも、外周コーナー付近の欠けや欠損等が抑制されて高送りによる高能率加工を行うことができる。 In the present embodiment, the outer peripheral portion of the main cutting edge 14 is provided with a negative angle portion 28 having a negative radial rake angle φ, so that the cutting edge strength in the vicinity of the outer peripheral corner is increased. For example, even when drilling is performed at a high feed rate such that the feed amount per rotation exceeds 5% of the drill diameter D for steel and 30% of the drill diameter D for aluminum alloys, Chipping, chipping, and the like near the outer corner are suppressed, and high-efficiency machining with high feed can be performed.
 また、前記負角部28の径方向すくい角φは-20°≦φ<0°の範囲内で且つその負角部28の範囲Lは外周コーナーから0.1D以下とされたものであるため、負角による切削抵抗やスラスト抵抗の増加、或いは切れ味の低下が必要最小限に抑制され、全体として高送りによる高能率加工が可能となる。また、前記負角部28よりもドリル軸心O側の部分はドリル回転方向と反対側へ滑らかに凹んだ凹円弧形状とされているため、切り屑のカールが促進されて分断し易くなり、切り屑の排出性能が向上すると共に、直線切れ刃に比較して切れ刃長さが長くなって切削負荷が分散され、この点でも高送りによる高能率加工に有利である。 Further, the rake angle φ in the radial direction of the negative angle portion 28 is in the range of −20 ° ≦ φ <0 °, and the range L of the negative angle portion 28 is set to 0.1 D or less from the outer corner. Further, an increase in cutting resistance and thrust resistance due to a negative angle, or a decrease in sharpness is suppressed to a necessary minimum, and high-efficiency machining with high feed as a whole becomes possible. Moreover, since the portion closer to the drill axis O than the negative angle portion 28 has a concave arc shape that is smoothly recessed in the direction opposite to the drill rotation direction, the curling of the chips is promoted, and it becomes easy to divide. The chip discharge performance is improved, and the cutting edge length is longer than that of the straight cutting edge and the cutting load is dispersed. This is also advantageous for high-efficiency machining with high feed.
 また、本実施例では、ランド幅角度θ1と溝幅角度θ2との比すなわちランド・溝比θ1:θ2が35:65~65:35の範囲内となるように構成されたものであるため、切り屑排出性能と工具の剛性や切れ刃強度とをバランス良く確保することが可能で、高送りによる高能率加工に有利である。 In this embodiment, the ratio between the land width angle θ 1 and the groove width angle θ 2 , that is, the land / groove ratio θ 1 : θ 2 is in the range of 35:65 to 65:35. Therefore, it is possible to ensure a good balance between the chip discharge performance and the rigidity and cutting edge strength of the tool, which is advantageous for high-efficiency machining with high feed.
 また、本実施例では、前記先端部16のドリル軸心O付近にはシンニング24が施され、前記主切れ刃20に滑らかに接続されるようにシンニング刃26が設けられると共に、そのシンニング刃26の軸方向すくい角が、ドリル軸心Oに最も近い部分では-5°~0°の範囲内であるが、前記主切れ刃20との接続部では0°~+15°の範囲内となるように、ドリル軸心O側からその接続部側へ向かうに従って滑らかに連続的に増加しているため、切削抵抗やスラスト抵抗の増加を抑制しつつ所定の刃先強度を確保することが可能で、前記シンニング刃26と主切れ刃20との接続部の欠損が抑制されると共に、高送りによる高能率加工に有利である。なお、シンニング刃のすくい角については、必ずしも上記のようにドリル軸心O側からその接続部側へ向かうに従って滑らかに連続的に増加するように構成されなくともよく、一定の値をとるものであってもよい。 In the present embodiment, a thinning 24 is provided in the vicinity of the drill axis O of the tip portion 16, and a thinning blade 26 is provided so as to be smoothly connected to the main cutting edge 20. The rake angle in the axial direction is in the range of −5 ° to 0 ° at the portion closest to the drill axis O, but is in the range of 0 ° to + 15 ° at the connection with the main cutting edge 20. In addition, since it increases smoothly and continuously from the drill axis O side toward the connecting portion side, it is possible to ensure a predetermined cutting edge strength while suppressing an increase in cutting resistance and thrust resistance, The chipping of the connecting portion between the thinning blade 26 and the main cutting blade 20 is suppressed, and it is advantageous for high-efficiency machining by high feed. The rake angle of the thinning blade does not necessarily have to be configured to increase smoothly and continuously from the drill axis O side toward the connecting portion side as described above, and takes a constant value. There may be.
 このように、本実施例の3枚刃ドリル10によれば、比較的粘性の高い被削材の加工においても切り屑の分断が可能となり、従来加工が困難であった斯かる被削材に対しても高送りによる高能率加工が可能とされ、1回転当りの送り量が例えばドリル径Dの5%、更には10%を超えるような高送りによる高能率の穴空け加工が可能となる。また、このように高送りが可能であることから1穴当りの回転数が減少し、工具寿命の向上が期待できる。 As described above, according to the three-blade drill 10 of the present embodiment, it is possible to divide chips even when processing a relatively high-viscosity work material. On the other hand, high-efficiency machining with high feed is possible, and high-efficiency drilling with high feed such that the feed amount per rotation exceeds, for example, 5% or even 10% of the drill diameter D becomes possible. . In addition, since high feed is possible in this way, the number of rotations per hole is reduced, and an improvement in tool life can be expected.
 以上、本発明の好適な実施例を図面に基づいて詳細に説明したが、本発明はこれに限定されるものではなく、その趣旨を逸脱しない範囲内において種々の変更が加えられて実施されるものである。 The preferred embodiments of the present invention have been described in detail with reference to the drawings. However, the present invention is not limited to these embodiments, and various modifications can be made without departing from the spirit of the present invention. Is.
産業の利用可能性Industrial applicability
 本発明の3枚刃ドリルは、ドリル軸心Oまわりに3本のねじれ溝が設けられ、それらねじれ溝がドリル先端に開口する部分にそれぞれのねじれ溝に沿って主切れ刃が形成された3枚刃ドリルであって、前記ねじれ溝は、ドリル軸部の軸心Oに垂直な断面におけるそのねじれ溝の断面形状に関して、その断面形状における内周側最下点Aと外周上のヒール側端点Bとを連結する直線ABを基準線として、その基準線ABと前記断面形状との距離における最大値である最大凹み量Wが、ドリル径Dの3%~6%の範囲内となるように構成されたものであることから、1回転当りの送り量がドリル径Dの5%を超えるような高送りによる高能率加工において、切り屑を好適に分断して良好な加工を実現することができると共に、比較的高い剛性が要求される鋳鉄や一般鋼から切り屑の排出性が悪いアルミニウム合金等まで、種々の被削材に対する穴空け加工に好適に用いられる。 The three-blade drill of the present invention is provided with three twisted grooves around the drill axis O, and the main cutting edges are formed along the respective twisted grooves at portions where these twisted grooves open at the tip of the drill. In the single-edged drill, the torsional groove is related to the cross-sectional shape of the torsional groove in the cross section perpendicular to the axis O of the drill shaft, and the innermost side lowermost point A in the cross-sectional shape and the heel side end point on the outer periphery With a straight line AB connecting B as a reference line, the maximum dent W, which is the maximum value of the distance between the reference line AB and the cross-sectional shape, is in the range of 3% to 6% of the drill diameter D. Since it is configured, in high-efficiency machining with high feed such that the feed amount per revolution exceeds 5% of the drill diameter D, it is possible to achieve good machining by suitably dividing the chips. And relatively high rigidity Of cast iron and general steel is determined to the discharge is poor aluminum alloy of the chip, is suitably used in a hole drilled machining to various workpiece.
10:3枚刃ドリル  12:シャンク  14:軸部  16:先端部  18:ねじれ溝  20:主切れ刃  22:流体供給穴  24:シンニング  26:シンニング刃  28:負角部  100:軸部(従来技術)  102:ねじれ溝(従来技術)  A:内周側最下点  B:ヒール側端点  AB:基準線  D:ドリル径  L:負角範囲  O:軸心  W:最大凹み量  φ:径方向すくい角  θ1:ランド幅角度  θ2:溝幅角度 10: 3-flute drill 12: Shank 14: Shaft portion 16: Tip portion 18: Torsion groove 20: Main cutting edge 22: Fluid supply hole 24: Thinning 26: Thinning blade 28: Negative angle portion 100: Shaft portion (conventional technology) 102: Twisted groove (conventional technology) A: Inner peripheral side lowest point B: Heel side end point AB: Reference line D: Drill diameter L: Negative angle range O: Center axis W: Maximum dent amount φ: Radial rake angle θ 1 : Land width angle θ 2 : Groove width angle

Claims (3)

  1.  ドリル軸心Oまわりに3本のねじれ溝が設けられ、それらねじれ溝がドリル先端に開口する部分にそれぞれのねじれ溝に沿って主切れ刃が形成された3枚刃ドリルであって、
     前記ねじれ溝は、ドリル軸部の軸心Oに垂直な断面における該ねじれ溝の断面形状に関して、該断面形状における内周側最下点Aと外周上のヒール側端点Bとを連結する直線ABを基準線として、該基準線ABと前記断面形状との距離における最大値である最大凹み量Wが、ドリル径Dの3%~6%の範囲内となるように構成されたものである
     ことを特徴とする3枚刃ドリル。
    A three-edged drill in which three twist grooves are provided around the drill axis O, and the main cutting edges are formed along the respective twist grooves in the portions where the twist grooves are open at the tip of the drill,
    The twisted groove is a straight line AB connecting the innermost side lowermost point A and the heel side end point B on the outer circumference of the torsional groove in the cross section perpendicular to the axis O of the drill shaft. And the maximum dent amount W, which is the maximum value in the distance between the reference line AB and the cross-sectional shape, is within the range of 3% to 6% of the drill diameter D. A three-blade drill characterized by
  2.  前記3枚刃ドリルの心厚D2は、ドリル径Dの20%~50%の範囲内である請求項1に記載の3枚刃ドリル。 The three-blade drill according to claim 1, wherein the core thickness D2 of the three-blade drill is in the range of 20% to 50% of the drill diameter D.
  3.  前記ドリル先端のドリル軸心O付近にはシンニングが施され、前記主切れ刃に滑らかに接続されるようにシンニング刃が設けられたものであり、
     該主切れ刃の外周部には、ドリル先端側から見た底面視における径方向すくい角φが-20°≦φ<0°の範囲内の負角部が、外周コーナーからドリル径Dに対して0.1D以下の範囲Lに設けられていると共に、
     該主切れ刃の該負角部よりもドリル軸心O側の部分は、前記底面視においてドリル回転方向と反対側へ滑らかに凹んだ凹円弧形状を成している
     ものである請求項1又は2に記載の3枚刃ドリル。
    Thinning is performed in the vicinity of the drill axis O at the tip of the drill, and a thinning blade is provided so as to be smoothly connected to the main cutting edge,
    The outer peripheral portion of the main cutting edge has a negative angle portion in the range of -20 ° ≦ φ <0 ° in the radial direction when viewed from the bottom of the drill with respect to the drill diameter D from the outer corner. And within a range L of 0.1D or less,
    The portion closer to the drill axis O than the negative angle portion of the main cutting edge has a concave arc shape that is smoothly recessed toward the opposite side of the drill rotation direction in the bottom view. A three-blade drill according to 2.
PCT/JP2010/068611 2010-10-21 2010-10-21 Three-bladed drill WO2012053090A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/068611 WO2012053090A1 (en) 2010-10-21 2010-10-21 Three-bladed drill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/068611 WO2012053090A1 (en) 2010-10-21 2010-10-21 Three-bladed drill

Publications (1)

Publication Number Publication Date
WO2012053090A1 true WO2012053090A1 (en) 2012-04-26

Family

ID=45974826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/068611 WO2012053090A1 (en) 2010-10-21 2010-10-21 Three-bladed drill

Country Status (1)

Country Link
WO (1) WO2012053090A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014210325A (en) * 2013-04-19 2014-11-13 株式会社不二越 Drill
EP2857131A4 (en) * 2012-05-30 2016-01-27 Osg Corp 3-blade drill
WO2021153599A1 (en) * 2020-01-30 2021-08-05 京セラ株式会社 Rotating tool and method for manufacturing cut workpieces

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6352908A (en) * 1986-08-22 1988-03-07 Toshiba Tungaloy Co Ltd Twist drill
JP2003025125A (en) * 2001-07-10 2003-01-29 Mitsubishi Materials Corp Drill
WO2009054400A1 (en) * 2007-10-26 2009-04-30 Sumitomo Electric Hardmetal Corp. Twist drill
WO2010038279A1 (en) * 2008-09-30 2010-04-08 オーエスジー株式会社 Drill

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6352908A (en) * 1986-08-22 1988-03-07 Toshiba Tungaloy Co Ltd Twist drill
JP2003025125A (en) * 2001-07-10 2003-01-29 Mitsubishi Materials Corp Drill
WO2009054400A1 (en) * 2007-10-26 2009-04-30 Sumitomo Electric Hardmetal Corp. Twist drill
WO2010038279A1 (en) * 2008-09-30 2010-04-08 オーエスジー株式会社 Drill

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2857131A4 (en) * 2012-05-30 2016-01-27 Osg Corp 3-blade drill
US9713846B2 (en) 2012-05-30 2017-07-25 Osg Corporation 3-blade drill
JP2014210325A (en) * 2013-04-19 2014-11-13 株式会社不二越 Drill
WO2021153599A1 (en) * 2020-01-30 2021-08-05 京セラ株式会社 Rotating tool and method for manufacturing cut workpieces
JPWO2021153599A1 (en) * 2020-01-30 2021-08-05
JP7344321B2 (en) 2020-01-30 2023-09-13 京セラ株式会社 Manufacturing method for rotating tools and cutting products

Similar Documents

Publication Publication Date Title
WO2010038279A1 (en) Drill
US9511424B2 (en) Drill
JP5013435B2 (en) Ball end mill
US9028179B2 (en) Drilling tool
US8807882B2 (en) Face milling cutter
US9492877B2 (en) Drill
JP5816364B2 (en) 3-flute drill
WO2016068064A1 (en) Multi flute ball end mill
WO2019044791A1 (en) Tapered reamer
JP5368384B2 (en) Deep hole drill
WO2010086988A1 (en) Double angle drill
JP2019171493A (en) Drill
WO2012053090A1 (en) Three-bladed drill
JP6604437B2 (en) Cutting insert and cutting edge exchangeable rotary cutting tool
JP2008142834A (en) Drill
JP7206496B2 (en) Drill
JP2018176360A (en) Rotary cutting type drilling tool
JP6977228B1 (en) Cutting inserts for rotary cutting tools and rotary cutting tools
JP4996278B2 (en) Long drill made of super hard material for deep hole machining
WO2020240892A1 (en) Cutting tool
JP5013434B2 (en) Ball end mill
JP2005205526A (en) Deep hole boring tool
JP2001341015A (en) Twist drill for cutting stainless steel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10858646

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10858646

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP