JP2012107204A - レジスト組成物及びレジストパターンの製造方法 - Google Patents

レジスト組成物及びレジストパターンの製造方法 Download PDF

Info

Publication number
JP2012107204A
JP2012107204A JP2011208602A JP2011208602A JP2012107204A JP 2012107204 A JP2012107204 A JP 2012107204A JP 2011208602 A JP2011208602 A JP 2011208602A JP 2011208602 A JP2011208602 A JP 2011208602A JP 2012107204 A JP2012107204 A JP 2012107204A
Authority
JP
Japan
Prior art keywords
group
formula
carbon atoms
resin
structural unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011208602A
Other languages
English (en)
Inventor
Mitsuyoshi Ochiai
光良 落合
Koji Ichikawa
幸司 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2011208602A priority Critical patent/JP2012107204A/ja
Publication of JP2012107204A publication Critical patent/JP2012107204A/ja
Withdrawn legal-status Critical Current

Links

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Materials For Photolithography (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

【課題】CD均一性に優れ、欠陥の発生数の少ないレジスト組成物に有用な樹脂及びレジスト組成物を提供する。
【解決手段】以下の〔1〕及び〔1〕と、酸発生剤と、溶剤とを含有するレジスト。〔1〕式(a)で表される構造単位を有する樹脂。
Figure 2012107204

[式(a)中、Rfは、フッ素原子又はフッ素化アルキル基を表す。Wは、炭素数3〜36の脂肪族環を表す。Rxは、ハロゲン原子を有してもよいアルキル基、水素原子又はハロゲン原子を表す。]
【選択図】なし

Description

本発明は、レジスト組成物及び該レジスト組成物を用いるレジストパターンの製造方法に関する。
近年、半導体の微細加工技術として、ArFエキシマレーザー(波長:193nm)等の短波長光を露光源とする光リソグラフィ技術が活発に検討されている。かかる光リソグラフィ技術に用いられるレジスト組成物としては、酸の作用によってアルカリ水溶液に対する溶解性が変化する樹脂と、酸発生剤とが含有されている。
例えば、特許文献1には、下記の構造単位からなる樹脂、
Figure 2012107204

該樹脂と、酸発生剤と、溶剤とを含有するレジスト組成物とが記載されている。
特開2009−63889号公報
従来から知られる上記樹脂を含有するレジスト組成物を用いて得られるレジストパターンは、そのCD均一性(CDU)が必ずしも満足できない場合や、欠陥の発生数が極めて多い場合があった。
本発明者等は前記課題を解決すべく鋭意検討した結果、本発明に至った。
すなわち、本発明は、以下の発明を含む。
〔1〕式(a)で表される構造単位を有する樹脂。
Figure 2012107204
[式(a)中、
は、フッ素原子又は炭素数1〜6のフッ素化アルキル基を表し、複数のRはそれぞれ独立である。
nは、1〜10の整数を表す。
Wは、炭素数3〜36の脂肪族環を表す。該脂肪族環を構成するメチレン基は、酸素原子、硫黄原子、カルボニル基又はスルホニル基に置き換わっていてもよく、該脂肪族環に含まれる水素原子は、ヒドロキシ基、炭素数1〜12のアルキル基、炭素数1〜12のアルコキシ基、炭素数3〜12の脂環式炭化水素基又は炭素数6〜10の芳香族炭化水素基で置換されていてもよい。
は、炭素数1〜17の脂肪族炭化水素基又は単結合を表し、該脂肪族炭化水素基を構成するメチレン基は酸素原子又はカルボニル基に置き換わっていてもよい。
は、ハロゲン原子を有してもよい炭素数1〜6のアルキル基、水素原子又はハロゲン原子を表す。]
〔2〕前記式(a)の
Figure 2012107204
で表される部分構造が、式(aa−1)、式(aa−2)、式(aa−3)又は式(aa−4)で表される構造である、前記〔1〕記載の樹脂。
Figure 2012107204

[式(aa−1)、式(aa−2)、式(aa−3)及び式(aa−4)中、環を構成するメチレン基は、酸素原子、硫黄原子、カルボニル基又はスルホニル基に置き換わっていてもよく、環を構成する水素原子は、ヒドロキシ基、炭素数1〜12のアルキル基、炭素数1〜12のアルコキシ基、炭素数3〜12の脂環式炭化水素基又は炭素数6〜10の芳香族炭化水素基に置換されていてもよい。]
〔3〕前記式(a)の
Figure 2012107204
で表される部分構造が、前記式(aa−1)で表される構造である、前記〔2〕記載の樹脂。
〔4〕前記式(a)の複数のRのうち、少なくとも1つはフッ素原子である、前記〔1〕〜〔3〕のいずれか記載の樹脂。
〔5〕前記〔1〕〜〔4〕のいずれか記載の樹脂と、酸発生剤と、溶剤とを含有するレジスト組成物。
〔6〕さらに塩基性化合物を含有する前記〔5〕記載のレジスト組成物。
〔7〕(1)前記〔5〕又は〔6〕記載のレジスト組成物を基板上に塗布する工程、
(2)塗布後の組成物を乾燥させて組成物層を形成する工程、
(3)組成物層を露光する工程、
(4)露光後の組成物層を加熱する工程、
(5)加熱後の組成物層を現像する工程、
を含むレジストパターンの製造方法。
〔8〕式(a’)で表される化合物。
Figure 2012107204
[式(a’)中、
は、フッ素原子又は炭素数1〜6のフッ素化アルキル基を表し、複数のRはそれぞれ独立である。
nは、1〜10の整数を表す。
Wは、炭素数3〜36の脂肪族環を表す。該脂肪族環を構成するメチレン基は、酸素原子、硫黄原子、カルボニル基又はスルホニル基に置き換わっていてもよく、該脂肪族環に含まれる水素原子は、ヒドロキシ基、炭素数1〜12のアルキル基、炭素数1〜12のアルコキシ基、炭素数3〜12の脂環式炭化水素基又は炭素数6〜10の芳香族炭化水素基で置換されていてもよい。
は、炭素数1〜17の脂肪族炭化水素基又は単結合を表し、該脂肪族炭化水素基を構成するメチレン基は酸素原子又はカルボニル基に置き換わっていてもよい。
は、ハロゲン原子を有してもよい炭素数1〜6のアルキル基、水素原子又はハロゲン原子を表す。]
本発明の樹脂を含有するレジスト組成物によれば、CD均一性(CDU)に優れ、欠陥の発生数が少ないレジストパターンを製造できる。
本発明は、式(a)で表される構造単位(以下、場合により「構造単位(a)」という。)を有する樹脂(以下、場合により「樹脂(A)」という。)、該樹脂(A)を含有するレジスト組成物(以下、場合により「本レジスト組成物」という。)及び本レジスト組成物を用いるレジストパターンの製造方法を提供する。さらに、該構造単位を誘導しうる新規な化合物を提供する。本レジスト組成物は、式(a)で表される構造単位を含む樹脂(A)の効果によりCD均一性(CDU)が良好なレジストパターンを製造できるものである。
本レジスト組成物の構成成分である樹脂(A)などを説明するに当たり、本明細書に示す種々の化合物などにおいて、官能基(基)を例示することがあるが、ここで共通する基を定義しておく。このような定義において、「C」に付して記載した数値は、各々の基の炭素数を示すものである。
本明細書において、「炭化水素基」とは、脂肪族炭化水素基及び芳香族炭化水素基をいう。該脂肪族炭化水素基はさらに鎖式及び脂環式に分類される。本明細書でいう脂肪族炭化水素基とは、特に定義しない限り、鎖式及び脂環式の脂肪族炭化水素基が組み合わさった脂肪族炭化水素基を含む。
鎖式の脂肪族炭化水素基(鎖式炭化水素基)のうち1価のものは、典型的にはアルキル基であり、当該アルキル基としては、メチル基(C)、エチル基(C)、プロピル基(C)、ブチル基(C)、ペンチル基(C)、ヘキシル基(C)、ヘプチル基(C)、オクチル基(C)、デシル基(C10)、ドデシル基(C12)、ヘキサデシル基(C14)、ペンタデシル基(C15)、ヘキシルデシル基(C16)、ヘプタデシル基(C17)及びオクタデシル基(C18)などが挙げられ、これらは直鎖でも分岐していてもよい。この鎖式炭化水素基は特に限定しない限り、ここに例示したアルキル基の一部に炭素炭素二重結合を含んでいてもよいが、このような炭素炭素二重結合などを有さない、飽和の鎖式炭化水素基、特に飽和のアルキル基が好ましい。2価の鎖式炭化水素基は、ここに示したアルキル基から水素原子を1個取り去ったアルカンジイル基が該当する。
脂環式の脂肪族炭化水素基(以下、場合により「脂環式炭化水素基」という。)のうち1価のものは、例えば、脂環式炭化水素から水素原子1個を取り去った基である。該脂環式炭化水素基には、炭素炭素不飽和結合1個程度を含む不飽和脂環式炭化水素基でもよく、このような炭素炭素不飽和結合を含まない飽和脂環式炭化水素基でもよいが、本明細書でいう脂環式炭化水素基は飽和であると好ましい。また、脂環式炭化水素基は単環式のものであっても、多環式のものであってもよい。ここでは、水素原子を取り去る前の脂環式炭化水素基としては例えば、脂環式炭化水素基が挙げられ、単環式の脂環式炭化水素は例えば、シクロアルカンが好ましい。例えば、
式(KA−1)で表されるシクロプロパン(C)、
式(KA−2)で表されるシクロブタン(C)、
式(KA−3)で表されるシクロペンタン(C)、
式(KA−4)で表されるシクロヘキサン(C)、
式(KA−5)で表されるシクロヘプタン(C)、
式(KA−6)で表されるシクロオクタン(C8)、及び、
式(KA−7)で表されるシクロドデカン(C12
Figure 2012107204
などが挙げられる。
多環式の脂環式炭化水素としては例えば、
式(KA−8)で示されるビシクロ〔2.2.1〕ヘプタン(以下「ノルボルナン」という場合がある。)(C)、
式(KA−9)で示されるアダマンタン(C10)、
式(KA−10)で示される脂環式炭化水素(C10)、
式(KA−11)で示される脂環式炭化水素(C14)、
式(KA−12)で示される脂環式炭化水素(C17)、
式(KA−13)で示される脂環式炭化水素(C10)、
式(KA−14)で示される脂環式炭化水素(C11)、
式(KA−15)で示される脂環式炭化水素(C15)、
式(KA−16)で示される脂環式炭化水素(C12)、
式(KA−17)で示される脂環式炭化水素(C14)、
式(KA−18)で示される脂環式炭化水素(C15)、
式(KA−19)で示される脂環式炭化水素(C17)、
式(KA−20)で示される脂環式炭化水素(C9)、
式(KA−21)で示される脂環式炭化水素(C8)及び、
式(KA−22)で示される脂環式炭化水素(C10

Figure 2012107204

Figure 2012107204
Figure 2012107204
Figure 2012107204
などが挙げられる。なお、ここに示した脂環式炭化水素を「式(KA−1)〜式(KA−19)の脂環式炭化水素」という場合がある。
2価の脂環式炭化水素基とは、式(KA−1)〜式(KA−19)の脂環式炭化水素から水素原子を2個取り去った基が挙げられる。
本明細書において、芳香族炭化水素基は1価の芳香族炭化水素基であり、典型的にはアリール基である。具体的にいえば、フェニル基(C)、ナフチル基(C10)、アントリル基(C14)、ビフェニル基(C12)、フェナントリル基(C14)及びフルオレニル基(C13)などを挙げることができる。
脂肪族炭化水素基は置換基を有することがある。該置換基としては、ハロゲン原子、アルコキシ基、アシル基、アリール基、アラルキル基及びアリールオキシ基を挙げることができる。
ハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。
アルコキシ基としては、メトキシ基(C)、エトキシ基(C)、プロポキシ基(C)、ブトキシ基(C)、ペンチルオキシ基(C)、ヘキシルオキシ基(C)、ヘプチルオキシ基(C7)、オクチルオキシ基(C8)、デシルオキシ基(C10)及びドデシルオキシ基(C12)などが挙げられ、該アルコキシ基は直鎖でも分岐していてもよい。
アシル基としては、アセチル基(C)、プロピオニル基(C)、ブチリル基(C)、バレイル基(C)、ヘキシルカルボニル基(C)、ヘプチルカルボニル基(C7)、オクチルカルボニル基(C8)、デシルカルボニル基(C10)及びドデシルカルボニル基(C12)などのアルキル基とカルボニル基とが結合したものに加え、ベンゾイル基(C7)などのようにアリール基とカルボニル基とが結合したものが挙げられる。該アシル基のうち、アルキル基とカルボニル基とが結合したものの該アルキル基は直鎖でも分岐していてもよい。
アリール基としては、上述の芳香族炭化水素基のアリール基として例示したものと同じであり、アリールオキシ基としては、当該アリール基と酸素原子とが結合したものが挙げられる。
アラルキル基としては、ベンジル基(C7)、フェネチル基(C8)、フェニルプロピル基(C9)、ナフチルメチル基(C11)及びナフチルエチル基(C12)などが挙げられる。
芳香族炭化水素基も置換基を有することがある。該置換基としては、ハロゲン原子、アルコキシ基、アシル基、アルキル基及びアリールオキシ基が挙げられる。該アルキル基は、鎖式脂肪族炭化水素基として例示したものと同じであり、芳香族炭化水素基に任意に有する置換基のうち、該アルキル基以外のものは、脂肪族炭化水素基の置換基として例示したものと同じものを含む。
<樹脂A>
樹脂Aは、前記式(a)で表される構造単位(以下、場合により「構造単位(a)」という。)を有する。
<構造単位(a)>
前記式(a)のR、W及びXについて説明する。
は、フッ素原子又は炭素数1〜6のフッ化アルキル基である。このフッ化アルキル基とは、すでに説明したアルキル基のうち、炭素数6以下のもので、該アルキル基を構成する水素原子のうち、少なくも1つがフッ素原子に置換されている基を意味し、該アルキル基を構成する水素原子の全てがフッ素原子に置換されているペルフルオロアルキル基が好ましい。このペルフルオロアルキル基は、トリフルオロメチル基、ペンタフルオロエチル基、ヘプタフルオロプロピル基及びノナフルオロブチル基などが挙げられる。
このようにRはフッ素原子であっても、フッ化アルキル基であっても、これらを組み合わせて有していてもよいが、複数のRのうち少なくとも1つはフッ素原子であると好ましく、複数のRの全てがフッ素原子であるとさらに好ましい。
Wは炭素数3〜36の脂肪族環であり、この炭素数は5〜24の範囲であると好ましく、6〜18の範囲であるとさらに好ましく、アダマンタン環、シクロヘキサン環及びノルボルネン環が一層好ましい。Wの脂肪族環は置換基を有していてもよい。また、Wの脂肪族環を構成するメチレン基は、酸素原子、硫黄原子、カルボニル基又はスルホニル基に置き換わっていてもよい。すなわち、Wの脂肪族環とは、環を構成する原子が酸素原子や硫黄原子である場合も含む。
Wが、アダマンタン環、シクロヘキサン環又はノルボルネン環である場合をさらに詳しくいえば、構造単位(a)の
Figure 2012107204
で示される部分構造が、式(aa−1)、式(aa−2)、式(aa−3)又は式(aa−4)で表される構造[式(aa−1)〜式(aa−4)で表される構造]である場合を挙げることができる。
Figure 2012107204

[式(aa−1)、式(aa−2)、式(aa−3)及び式(aa−4)中、環を構成するメチレン基は、酸素原子、硫黄原子、カルボニル基又はスルホニル基に置き換わっていてもよく、環を構成する水素原子は、ヒドロキシ基、炭素数1〜12のアルキル基、炭素数1〜12のアルコキシ基、炭素数3〜12の脂環式炭化水素基又は炭素数6〜10の芳香族炭化水素基に置換されていてもよい。]
ここに示した式(aa−1)〜式(aa−4)で表される構造のうち、さらに好ましくは、式(aa−1)で表される構造である。式(aa−1)で表される構造のうち、後述する構造単位(a)を誘導しうる化合物[前記式(a’)で表される化合物(以下、場合により「化合物(a’)」という。)を製造する際の容易さを考慮すれば、メチレン基が酸素原子などに置き換わっていない構造が特に好ましい。
式(aa−1)〜式(aa−4)で表される構造において、環を構成する水素原子が置換されることもある、アルキル基、アルコキシ基、脂環式炭化水素基及び芳香族炭化水素基の具体例は、各々炭素数が上述の範囲において、すでに例示したものを含む。このように環を構成する水素原子が置換基に置換されていてもよいが、化合物(a’)を製造する際の容易さを考慮すれば、このような置換基を有さないことが好ましい。
は炭素数1〜17の2価の脂肪族炭化水素基又は単結合を表し、かかる脂肪族炭化水素基は炭素炭素不飽和結合を有さない、飽和の脂肪族炭化水素基が好ましい。当該脂肪族炭化水素基は、鎖式炭化水素基及び脂環式炭化水素基のいずれであってもよく、鎖式炭化水素基及び脂環式炭化水素基が組み合わさったものでもよい。鎖式炭化水素基及び脂環式炭化水素基が組み合わさった基とは、典型的には、シクロアルカンジイル基を含む2価の基であり、たとえば、式(X−A)〜式(X−C)で表される基が挙げられる。
Figure 2012107204
[式(Xx−A)〜式(X−C)中、XX1及びXX2は、それぞれ独立に、置換基を有していてもよい炭素数1〜6のアルキレン基を表し、該アルカンジイル基に含まれるメチレン基は酸素原子又はカルボニル基で置換されていてもよい。ただし、式(X−A)〜式(X−C)で表される基の炭素数は1〜17である。]
なお、Xの脂肪族炭化水素基において、該脂肪族炭化水素基を構成するメチレン基は、酸素原子又はカルボニル基に置き換わっていてもよい。このようにメチレン基が酸素原子又はカルボニル基に置き換わった基としては、例えば以下のものが挙げられる。(*は、−CO−O−との結合手を表す。)
Figure 2012107204
以上、Xの具体例などを示したが、これらの中でも、Xは単結合が好ましい。
は、ハロゲン原子を有してもよい炭素数1〜6のアルキル基(ハロアルキル基)、水素原子又はハロゲン原子を表す。
ハロゲン原子の具体例はすでに説明したものを含む。ハロアルキル基は、Rのフッ化アルキル基と同様に、アルキル基を構成する水素原子の一部又は全部がハロゲン原子に置き換わったものである。以上の中でも、Rは、水素原子又はメチル基が好ましい。
構造単位(a)は、式(a−1)、式(a−2)及び式(a−3)のいずれかで表されるものが好ましく、これらのうち、Wがアダマンタン環である式(a−1)で表される構造単位(a)がより好ましい。
Figure 2012107204
[式(a−1)、式(a−2)及び式(a−3)中、R、n、R及びXは、前記と同義である。]
構造単位(a)としては、式(a1−1−1)〜式(a1−1−7)、式(a2−1−1)〜式(a2−1−3)及び式(a3−1−1)〜式(a3−1−3)のいずれかで表される構造が好ましい。該構造単位(a)としては、n1〜n7、n11〜n13及びn21〜n23は、1〜10の整数を表すか、2又は3が好ましい。
Figure 2012107204
Figure 2012107204
Figure 2012107204

構造単位(a)としては、式(a−1−1)で表される構造単位(a)、及び式(a1−1−6)で表される構造単位(a)が好ましく、n1が2又は3である式(a−1−1)で表される構造単位(a)、及び、n6が2又は3である式(a−1−6)で表される構造単位(a)がより好ましい。
構造単位(a)は、樹脂(A)の製造において、上述の化合物(a’)から誘導される。化合物(a’)は、構造単位(a)を誘導しうる新規な化合物であり、本発明は、該化合物(a’)も含む。ここで化合物(a’)の製造方法について一例を示す。
化合物(a)は、例えば、式(a’−1)で表される化合物と、式(a’−2)で表される化合物とを、溶剤中、酸触媒の存在下で反応させることにより製造することができる。
Figure 2012107204
[これらの式中、R、n、X、R及びWは、上記と同じ意味を表す。]
この反応は、溶媒中、20〜200℃程度の温度範囲で、好ましくは、50〜150℃程度の温度範囲で、式(a’−1)で表される化合物、及び、式(a’−2)で表される化合物を混合することにより実施できる。溶媒としては、非プロトン性溶媒が好ましく、具体的には、1,2−ジクロロエタンなどが挙げられる。酸触媒としては、p−トルエンスルホン酸などが用いられる。
式(a’−1)で表される化合物は例えば、以下で表される化合物などが挙げられる。
Figure 2012107204
式(a’−2)で表される化合物は例えば、以下で表される化合物などが挙げられる。
Figure 2012107204
化合物(a’)としては、以下のとおりである。該化合物(a’)はいずれも上述の製造方法などにより製造することができる。すでに説明した、n1が2又は3である式(a−1−1)で表される構造単位(a)、及び、n6が2又は3である式(a−1−6)で表される構造単位(a)を誘導できる点では、式(a’−1−2)、式(a’−1−3)及び式(a’−1−12)のいずれかで表される化合物(a’)が好ましい。
Figure 2012107204
Figure 2012107204
樹脂(A)中の構造単位(a)の含有割合は、樹脂(A)の全構造単位に対する質量換算で表して、例えば1〜100質量%であり、好ましくは5〜95質量%であり、より好ましくは10〜90質量%である。
樹脂(A)により、CD均一性に優れ、欠陥の発生数が少ないレジストパターンを製造し得る本レジスト組成物を得ることができる。レジスト組成物に用いる樹脂は、アルカリ水溶液に不溶又は難溶であり、酸の作用によりアルカリ水溶液に可溶となる特性を有する必要であるが、本レジスト組成物に用いる樹脂(A)は、このような特性を有するものであっても、有さないものであってもよい。前者(アルカリ水溶液に不溶又は難溶であり、酸の作用によりアルカリ水溶液に可溶となる特性を有する樹脂(A))を、以下「樹脂(AA)」ということにし、後者を、以下「樹脂(AB)」ということにする。なお、ここでいう「酸の作用によりアルカリ水溶液に可溶」となるとは、酸の接触前ではアルカリ水溶液に不溶又は難溶であるが、酸の接触後にはアルカリ水溶液に可溶となることを意味する。このような樹脂(AA)は、分子内にある親水性基の一部又は全部が、酸との接触により脱離し得る保護基により保護されているものであり、樹脂(AA)が酸と接触すると該保護基が脱離して、樹脂(AA)はアルカリ水溶液に可溶となる。該保護基により保護されている親水性基を以下、「酸不安定基」ということにする。該親水性基としては、ヒドロキシ基又はカルボキシ基が挙げられ、カルボキシ基がより好ましい。
一方、酸不安定基を有さない樹脂(AB)は酸不安定基を有しないものであり、該樹脂(AB)は本レジスト組成物において、添加剤として使用できるものである。このような樹脂(AB)を含有する本レジスト組成物に用いても、CD均一性に優れ、欠陥の発生数が少ないレジストパターンを製造することができる。
<構造単位(a1)>
まず、樹脂(A)のうち、樹脂(AA)について説明する。上述のとおり、樹脂(AA)は酸不安定基を有するものであり、構造単位(a)と、酸不安定基を有する構造単位(以下、場合により「構造単位(a1)」という。)とを有していることが好ましい。構造単位(a1)は通常、酸不安定基を有する製造用原料(モノマー)に由来するものである。樹脂(AA)は、構造単位(a1)を1種のみ有していてもよく、2種以上を有していてもよい。以下、好適な構造単位(a1)について詳述する。
<酸不安定基>
構造単位(a1)が有する酸不安定基の好適例を説明する。親水性基がカルボキシ基である場合の酸不安定基は、該カルボキシ基の水素原子が、有機残基に置き換わり、カルボキシ基の−O−と結合する該有機残基の原子が第三級炭素原子である基が挙げられる。このような酸不安定基のうち、好ましい酸不安定基は例えば、以下の式(1)で表される基(以下、場合により「酸不安定基(1)」という。)である。
Figure 2012107204
式(1)中、Ra1、Ra2及びRa3(Ra1〜Ra3)は、それぞれ独立に、炭素数1〜8の脂肪族炭化水素基を表すか、Ra1及びRa2が互いに結合して、それらが結合する炭素原子とともに炭素数3〜20の環を形成する。Ra1及びRa2が互いに結合して形成される環、及び該脂肪族炭化水素基を構成するメチレン基は、酸素原子、硫黄原子又はカルボニル基に置き換わっていてもよい。*は結合手を表す。
a1〜Ra3の脂肪族炭化水素基は、アルキル基又は脂環式炭化水素基が好ましい。該アルキル基としては、すでに例示したアルキル基のうち、炭素数が1〜8のものが挙げられる。該脂環式炭化水素基も、すでに例示したもののうち、炭素数が8以下のものを挙げることができる。
a1及びRa2が互いに結合して環を形成するとは、−C(Ra1)(Ra2)(Ra3)で表される基が、下記に示すいずれかの基となることをいう。このような環の炭素数は、好ましくは3〜12の範囲である。
Figure 2012107204
酸不安定基(1)としては、1,1−ジアルキルアルコキシカルボニル基(式(1)中、Ra1〜Ra3が全てアルキル基である基、このアルキル基のうち、1つはtert−ブトキシカルボニル基であると好ましい。)、2−アルキルアダマンタン−2−イルオキシカルボニル基(式(1)中、Ra1及びRa2が互いに結合し、これらが結合する炭素原子とともにアダマンチル環を形成し、Ra3がアルキル基である基)及び1−(アダマンタン−1−イル)−1−アルキルアルコキシカルボニル基(式(1)中、Ra1及びRa2がアルキル基であり、Ra3がアダマンチル基である基)などが挙げられる。
一方、親水性基がヒドロキシ基である場合の酸不安定基は、該ヒドロキシ基の水素原子が、有機残基に置き換わり、アセタール構造又はケタール構造を含む基となったものが挙げられる。このような酸不安定基のうち、好ましい酸不安定基は例えば、以下の式(2)で表される基(以下、場合により「酸不安定基(2)」という。)である。

Figure 2012107204
式(2)中、Rb1及びRb2は、それぞれ独立に、水素原子又は炭素数1〜20の炭化水素基を表し、Rb3は、炭素数1〜20の炭化水素基を表し、Rb2及びRb3は互いに結合して、それらが各々結合する炭素原子及び酸素原子とともに炭素数3〜20の環を形成してもよい。該炭化水素基がメチレン基を含む場合、そのメチレン基は、酸素原子、硫黄原子又はカルボニル基に置き換わっていてもよく、Rb2及びRb3は互いに結合して形成される環を構成するメチレン基も、酸素原子、硫黄原子又はカルボニル基に置き換わっていてもよい。*は結合手を表す。
b1〜Rb3の炭化水素基は、脂肪族炭化水素基及び芳香族炭化水素基のいずれでもよく、その具体例も炭素数の上限が20以下である範囲において、すでに例示したものを含むが、Rb1及びRb2のうち、少なくとも1つは水素原子の酸不安定基(2)が好ましい。
酸不安定基(2)としては、以下の基が挙げられる。
Figure 2012107204
構造単位(a1)は、酸不安定基と炭素−炭素二重結合とを有するモノマー(a1)から誘導されるものが好ましく、酸不安定基を有する(メタ)アクリル系モノマーであるモノマー(a1)から誘導されるものがさらに好ましい。
当該構造単位(a1)は好ましくは、酸不安定基(1)又は酸不安定基(2)を有するものであり、これらの酸不安定基をともに有していてもよい。より好ましくは酸不安定基(1)を有する構造単位(a1)である。
酸不安定基(1)を有する構造単位(a1)の中でも、酸不安定基(1)が、炭素数5〜20の脂肪族環構造を有する基が好ましい。立体的に嵩高い脂肪族環構造を有する基の構造単位(a1)を有する樹脂(AA)は、該樹脂(AA)を含有する本レジスト組成物を用いてレジストパターンを製造したとき、より良好な解像度でレジストパターンを製造することができる。
脂肪族環構造を有する酸不安定基(1)を有する構造単位(a1)の中でも、式(a1−1)で表される構造単位(以下、「構造単位(a1−1)」という場合がある。)及び式(a1−2)で表される構造単位(以下、「構造単位(a1−2)」という場合がある。)が好ましい。酸不安定基を有する樹脂(A)は、これらを単独で有していてもよく、2種以上を有していてもよい。
Figure 2012107204
式(a1−1)中、
a1は、酸素原子又は−O−(CH2k1−CO−O−(k1は1〜7の整数を表し、*はカルボニル基との結合手を表す。)で表される基を表す。
a4は、水素原子又はメチル基を表す。
a6は、炭素数1〜10の脂肪族炭化水素基を表す。
m1は0〜14の整数を表す。
式(a1−2)中、
a2は、酸素原子又は−O−(CH2k1−CO−O−(k1及び*は上記と同じ意味である。)で表される基を表す。
a5は、水素原子又はメチル基を表す。
a7は、炭素数1〜10の脂肪族炭化水素基を表す。
n1は0〜10の整数を表す。
n2は0〜5の整数を表す。
a1及びLa2は、好ましくは、酸素原子又は、k1が1〜4の整数である*−O−(CH2k1−CO−O−で表される基であり、より好ましくは酸素原子又は*−O−CH2−CO−O−であり、さらに好ましくは酸素原子である。
a4及びRa5は、好ましくはメチル基である。
a6及びRa7の脂肪族炭化水素基のうち、好ましくは炭素数1〜8のアルキル基又は炭素数3〜10の脂環式炭化水素基である。Ra6及びRa7の脂肪族炭化水素基はそれぞれ独立に、好ましくは炭素数8以下のアルキル基又は炭素数8以下の脂環式炭化水素基であり、より好ましくは炭素数6以下のアルキル基又は炭素数6以下の脂環式炭化水素基である。
m1は、好ましくは0〜3の整数、より好ましくは0又は1である。
n1は、好ましくは0〜3の整数、より好ましくは0又は1である。
n2は、好ましくは0〜2の整数、より好ましくは0又は1である。
構造単位(a1−1)としては、例えば、以下のものが挙げられる。
Figure 2012107204
Figure 2012107204
Figure 2012107204
Figure 2012107204
Figure 2012107204
Figure 2012107204
ここに示す式(a1−1−1)〜式(a1−1−38)で表される構造単位(a1−1)において、以下に示す部分構造Mを、以下に示す部分構造Aに置き換えたものも構造単位(a1−1)の具体例として挙げることができる。
Figure 2012107204
以上の構造単位(a1−1)としては、式(a1−1−1)、式(a1−1−2)及び式(a1−1−3)の構造単位(a1−1)、並びにこれらの構造単位(a1−1)の部分構造Mが部分構造Aに置き換えられたものが好ましく、式(a1−1−1)、式(a1−1−2)及び式(a1−1−3)の構造単位(a1−1)がより好ましく、式(a1−1−1)及び式(a1−1−2)の構造単位(a1−1)がさらに好ましい。なお、これら好ましい構造単位(a1−1)を有する樹脂(AA)は、該樹脂(AA)を製造する際に、2−メチルアダマンタン−2−イル(メタ)アクリレート、2−エチルアダマンタン−2−イル(メタ)アクリレート又は2−イソプロピルアダマンタン−2−イル(メタ)アクリレートを製造用原料(モノマー)として用いればよい。
構造単位(a1−2)としては、例えば、以下のものが挙げられる。
Figure 2012107204
式(a1−2−1)〜式(a1−2−12)で示される構造単位(a1−2)において、構造単位(a1−1)の例示と同様に、部分構造Mを部分構造Aに置き換えたものも構造単位(a1−2)として挙げることができる。
なかでも、式(a1−2−1)、式(a1−2−2)、式(a1−2−4)及び式(a1−2−5)のいずれかで表される構造単位(a1−2)、あるいは、これらの構造単位(a1−2)の部分構造Mが部分構造Aに置き換えられたものがより好ましく、式(a1−2−4)で表される構造単位(a1−2)及び式(a1−2−4)で表される構造単位の部分構造Mが部分構造Aに置き換えられたものがより好ましい。構造単位(a1−2)を有する樹脂(AA)を製造するためには、1−エチルシクロヘキサン−1−イル(メタ)アクリレートなどをモノマーとして用い、樹脂(AA)を製造すればよい。
樹脂(AA)が、構造単位(a1−1)及び/又は構造単位(a1−2)を有する場合、樹脂(AA)の全構造単位を100モル%としたとき、これらの構造単位の合計含有割合は、10〜95モル%の範囲が好ましく、15〜90モル%の範囲がより好ましく、20〜85モル%の範囲がさらに好ましく、25〜60モル%の範囲が一層好ましい。。構造単位(a1−1)及び/又は構造単位(a1−2)の合計含有割合を、このような範囲にするためには、樹脂(AA)を製造する際に、全モノマーに対する、これらの構造単位を誘導するモノマーの合計使用量を調節すればよい。具体的には、樹脂(A)を製造するために全モノマー量(100モル%)に対して、構造単位(a1−1)及び/又は構造単位(a1−2)を誘導するモノマーの使用量が、10〜95モル%の範囲であると好ましく、15〜90モル%の範囲であるとより好ましく、20〜85モル%の範囲であるとさらに好ましく、25〜60モル%の範囲であると一層好ましい。
樹脂(A)には、構造単位(a1−1)及び構造単位(a1−2)の他に、酸不安定基を有する構造単位(a1)〔他の構造単位(a1)〕を有していてもよい。
かかる他の構造単位(a1)として例えば、以下の式(a1−3)で表されるノルボルネン環を有するモノマー(以下、場合により「モノマー(a1−3)」という。)から誘導されるものが挙げられる。
Figure 2012107204
式(a1−3)中、
a9は、水素原子、ヒドロキシ基を有していてもよい炭素数1〜3のアルキル基、カルボキシル基、シアノ基又は−COORa13を表す。
a13は、炭素数1〜20の脂肪族炭化水素基を表し、該脂肪族炭化水素基に含まれる水素原子は、ヒドロキシ基で置換されていてもよく、該脂肪族炭化水素基を構成するメチレン基は、酸素原子又はカルボニル基に置き換わっていてもよい。なお、Ra9のアルコキシカルボニル基の中では、Ra13として炭素数1〜8のアルキル基又は炭素数3〜20の脂環式炭化水素基が好ましい。
a10、Ra11及びRa12(Ra10〜Ra12)は、それぞれ独立に、炭素数1〜20の脂肪族炭化水素基を表すか、或いは、Ra10及びRa11が互いに結合して、これらが結合している炭素原子とともに、炭素数3〜20の環を形成し、該脂肪族炭化水素基に含まれる水素原子は、ヒドロキシ基などで置換されていてもよく、該脂肪族炭化水素基を構成するメチレン基は、酸素原子又はカルボニル基に置き換わっていてもよい。
a9のヒドロキシ基を有するアルキル基としては例えば、ヒドロキシメチル基及び2−ヒドロキシエチル基などが挙げられる。
a10〜Ra12の脂肪族炭化水素基としては、鎖式炭化水素基(例えば、アルキル基)及び脂環式炭化水素基が挙げられ、炭素数20以下の範囲において、すでに例示したものを含む。
a10及びRa11が互いに結合して形成される環は脂肪族環が好ましく、具体的には、シクロへキサン環及びアダマンタン環がより好ましい。
a9の−COORa13としては例えば、メトキシカルボニル基(C)及びエトキシカルボニル基(C)など、すでに例示したアルコキシ基にカルボニル基がさらに結合した基が挙げられる。
モノマー(a1−3)としては例えば、5−ノルボルネン−2−カルボン酸−tert−ブチル、5−ノルボルネン−2−カルボン酸1−シクロヘキシル−1−メチルエチル、5−ノルボルネン−2−カルボン酸1−メチルシクロヘキシル、5−ノルボルネン−2−カルボン酸2−メチル−2−アダマンチル、5−ノルボルネン−2−カルボン酸2−エチル−2−アダマンチル、5−ノルボルネン−2−カルボン酸1−(4−メチルシクロヘキシル)−1−メチルエチル、5−ノルボルネン−2−カルボン酸1−(4−ヒドロキシシクロヘキシル)−1−メチルエチル、5−ノルボルネン−2−カルボン酸1−メチル−1−(4−オキソシクロヘキシル)エチル及び5−ノルボルネン−2−カルボン酸1−(1−アダマンチル)−1−メチルエチルなどが挙げられる。
モノマー(a1−3)を用いて製造された樹脂(AA)にはモノマー(a1−3)に由来する、立体的に嵩高い構造単位が含まれることになる。このように立体的に嵩高い構造単位を有する樹脂(AA)を含有する本レジスト組成物により、レジストパターンを製造すれば、より良好な解像度でレジストパターンを得ることができる。さらにモノマー(a1−3)を用いることにより、樹脂(AA)の主鎖に剛直なノルボルナン環を導入できるため、該樹脂(AA)を含有する本レジスト組成物は、ドライエッチング耐性に優れたレジストパターンが得られ易いという傾向がある。
上述のように、良好な解像度でレジストパターンを製造できることや、ドライエッチング耐性に優れたレジストパターンが得られ易いという点では、樹脂(AA)の全構造単位(100モル%)に対する、モノマー(a1−3)に由来する構造単位の含有割合は10〜95モル%の範囲が好ましく、15〜90モル%の範囲がより好ましく、20〜85モル%の範囲がさらに好ましい。
酸不安定基(1)を有する構造単位(a1)を誘導できるモノマー(a1−3)について説明したが、次に酸不安定基(2)を有する構造単位(a1)を誘導できるモノマー、すなわち酸不安定基(2)を有するモノマーの具体例を挙げる。
酸不安定基(2)を有するモノマーとしては、例えば、以下の式(a1−4)で表されるモノマー(以下、「モノマー(a1−4)」という。)が挙げられる。
Figure 2012107204
式(a1−4)中、
a32は、水素原子、ハロゲン原子、又は、ハロゲン原子を有してもよい炭素数1〜6のアルキル基(ハロゲン化アルキル基)を表す。
a33は、ハロゲン原子、ヒドロキシ基、炭素数1〜6のアルキル基、炭素数1〜6のアルコキシ基、炭素数2〜4のアシル基、炭素数2〜4のアシルオキシ基、アクリロイル基又はメタクリロイル基を表す。
laは0〜4の整数を表す。laが2以上である場合、複数のRa33は同一であっても異なってもよい。
a34及びRa35はそれぞれ独立に、水素原子又は炭素数1〜12の炭化水素基を表す。
a2は、単結合又は炭素数1〜17の脂肪族炭化水素基を表し、該脂肪族炭化水素基に含まれる水素原子は、ハロゲン原子、ヒドロキシ基、炭素数1〜6のアルコキシ基、炭素数2〜4のアシル基及び炭素数2〜4のアシルオキシ基で置換されていてもよい。Xa2の脂肪族炭化水素基としては、鎖式炭化水素基であると好ましく、アルキル基であるとより好ましい。該脂肪族炭化水素基を構成するメチレン基は、酸素原子、硫黄原子、カルボニル基、スルホニル基又は−N(R)−で示される基に置き換わっていてもよい。ここで、Rは、水素原子又は炭素数1〜6のアルキル基を表す。
a3としては、炭素数1〜18の炭化水素基であり、好ましくは、炭素数3〜18の脂環式炭化水素基又は炭素数6〜18の芳香族炭化水素基であり、該炭化水素基は、ハロゲン原子、ヒドロキシ基、炭素数1〜6のアルキル基、炭素数1〜6のアルコキシ基、炭素数2〜4のアシル基又は炭素数2〜4のアシルオキシ基を有していてもよい。
式(a1−4)のRa32、Ra33、Ra34、Ra35及びXa2の具体例を挙げる。
a32の「ハロゲン原子を有してもよいアルキル基」のうち、アルキル基としては、炭素数1〜6の範囲において、すでに例示したものを含み、ハロゲン原子を有するアルキル基(ハロアルキル基)としては、このアルキル基に含まれる水素原子がハロゲン原子に置き換わったものである。具体的にハロゲン原子を有するアルキル基を挙げると、例えば、トリフルオロメチル基、ペルフルオロエチル基、ペルフルオロプロピル基、ペルフルオロイソプロピル基、ペルフルオロブチル基、ペルフルオロsec−ブチル基、ペルフルオロtert−ブチル基、ペルフルオロペンチル基、ペルフルオロヘキシル基、トリクロロメチル基、トリブロモメチル基及びトリヨードメチル基などである。
a32及びRa33のハロゲン原子、アルコキシ基及びアシル基の具体例はすでに例示したものを含む。
a34及びRa35の炭化水素基は、鎖式炭化水素基、脂環式炭化水素基及び芳香族炭化水素基のいずれであってもよい。その具体例は、各々の炭素数の範囲において、すでに例示したものを含む。これらのうち、該鎖式炭化水素基としては、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、オクチル基及び2−エチルヘキシル基が好ましく、該脂環式炭化水素基としては、シクロヘキシル基、アダマンチル基、2−アルキルアダマンタン−2−イル基、1−(アダマンタン−1−イル)アルカン−1−イル基及びイソボルニル基などが好ましい。該芳香族炭化水素基は、フェニル基、ナフチル基、アントリル基、p−メチルフェニル基、p−tert−ブチルフェニル基、p−アダマンチルフェニル基、トリル基、キシリル基、クメニル基、メシチル基、ビフェニル基、フェナントリル基、2,6−ジエチルフェニル基及び2−メチル−6−エチルフェニルが好ましい。
a32及びRa33がアルキル基である場合、炭素数1〜4のアルキル基が好ましく、メチル基又はエチル基がより好ましく、メチル基が特に好ましい。
a33のアルコキシ基としては、メトキシ基又はエトキシ基がより好ましく、メトキシ基が特に好ましい。
上述したように、Xa2及びYa3は、これらを構成する水素原子がハロゲン原子、ヒドロキシ基などに置換されていてもよいが、このように水素原子が置換されている場合、その置換基は好ましくはヒドロキシ基である。
モノマー(a1−4)としては、例えば、以下のものが挙げられる。。
Figure 2012107204
Figure 2012107204
Figure 2012107204

ここに示すモノマー(a1−4)において、以下に示す部分構造V’を、以下に示す部分構造P’置き換えたものもモノマー(a1−4)の具体例として挙げることができる。
Figure 2012107204
樹脂(AA)が、モノマー(a1−4)に由来する構造単位を有する場合、その含有割合は、樹脂(AA)の全構造単位(100モル%)に対して、10〜95モル%の範囲が好ましく、15〜90モル%の範囲がより好ましく、20〜85モル%の範囲がさらに好ましい。
酸不安定基(2)を有するモノマーとして、例えば、式(a1−5)で表されるモノマー(以下、「モノマー(a1−5)」という場合がある。)も用いることができる。
Figure 2012107204
式(a1−5)中、
31は、水素原子及びメチル基が好ましい。
は、酸素原子が好ましい。
及びLは、それぞれ独立に酸素原子又は硫黄原子である。L及びLは、一方が酸素原子、他方が硫黄原子であると好ましい。
s1は、1が好ましい。
s2は、0〜2の整数が好ましい。
は、単結合又は炭素数1〜6のアルカンジイル基であり、該アルカンジイル基を構成するメチレン基は、酸素原子又はカルボニル基に置き換わっていてもよい。Zとしては、単結合又は−CH−CO−O−が好ましい。
モノマー(a1−5)としては、例えば、以下のモノマーが挙げられる。ここでは、R31がメチル基である具体例を示すことにするが、このメチル基を水素原子に置き換えたものも、モノマー(a1−5)の具体例である。
Figure 2012107204
Figure 2012107204
樹脂(AA)が、モノマー(a1−5)に由来する構造単位を有する場合、その含有割合は、樹脂(AA)の全構造単位(100モル%)に対して、10〜95モル%の範囲が好ましく、10〜90モル%の範囲がより好ましく、10〜85モル%の範囲がさらに好ましく、10〜70モル%の範囲が一層好ましい。。
<酸安定構造単位>
樹脂(AA)としては、構造単位(a)及び構造単位(a1)に加えて、酸不安定基を有さない構造単位(以下、場合により「酸安定構造単位」という。)を有していると好ましい。
樹脂(AA)が酸安定構造単位を有する場合、構造単位(a1)の含有割合を基準にして、酸安定性構造単位の含有割合を定めるとよい。構造単位(a1)の含有割合と酸安定性構造単位の含有割合との比は、〔構造単位(a1)〕/〔酸安定構造単位〕で表して、好ましくは10〜80モル%/90〜20モル%であり、より好ましくは20〜60モル%/80〜40モル%である。また、構造単位(a1)がアダマンタン環を有する構造単位、特に構造単位(a1−1)を含む場合、構造単位(a1)の総量(100モル%)に対して、構造単位(a1−1)の割合を15モル%以上とすることが好ましい。このようにすると、樹脂(AA)を含有する本レジスト組成物から得られるレジストパターンのドライエッチング耐性がより良好になる傾向がある。なお、構造単位(a1)の含有割合を基準にして、酸安定性構造単位の含有割合を定める場合には、構造単位(a)を酸安定構造単位に含めて含有割合を算出するとよい。
酸安定構造単位としては、ヒドロキシ基又はラクトン環を有する構造単位が好ましい。ヒドロキシ基を有する酸安定構造単位(以下、「酸安定構造単位(a2)」という場合がある。)及び/又はラクトン環を有する酸安定構造単位(以下、「酸安定構造単位(a3)」という場合がある。)を有する樹脂(AA)は、当該樹脂(AA)を含有する本レジスト組成物を基板に塗布したとき、基板上に形成される塗布膜、又は塗布膜から得られる組成物層が基板との間に優れた密着性を発現し易くなり、この本レジスト組成物は良好な解像度で、レジストパターンを製造することができる。
<酸安定構造単位(a2)>
酸安定構造単位(a2)を樹脂(AA)に導入する場合、当該樹脂(AA)を含有する本レジスト組成物からレジストパターンを製造する際の露光源の種類によって、各々、好適な酸安定構造単位(a2)を選択することができる。すなわち、本レジスト組成物を、KrFエキシマレーザ露光(波長:248nm)、電子線あるいはEUV光などの高エネルギー線露光に用いる場合には、酸安定構造単位(a2)として、フェノール性ヒドロキシ基を有する酸安定構造単位(a2−0)を樹脂(AA)に導入することが好ましい。短波長のArFエキシマレーザ露光(波長:193nm)を用いる場合は、酸安定構造単位(a2)として、後述の式(a2−1)で表される酸安定構造単位を樹脂(AA)に導入することが好ましい。このように、樹脂(AA)が有する酸安定構造単位(a2)は各々、レジストパターンを製造する際の露光源によって好ましいものを選ぶことができるが、樹脂(AA)が有する酸安定構造単位(a2)は、露光源の種類に応じて好適な酸安定構造単位(a2)1種のみを有していてもよく、露光源の種類に応じて好適な酸安定構造単位(a2)2種以上を有していてもよく、或いは、露光源の種類に応じて好適な酸安定構造単位(a2)と、それ以外の酸安定構造単位(a2)とを組み合わせて有していてもよい。
<酸安定構造単位(a2−1)>
酸安定構造単位(a2)としては、以下の式(a2−1)で表される構造単位(以下、場合により「酸安定構造単位(a2−1)」という。)が挙げられる。
Figure 2012107204
式(a2−1)中、
a3は、酸素原子又は−O−(CH2k2−CO−O−(k2は1〜7の整数を表す。)を表し、*はカルボニル基(−CO−)との結合手を表す。
a14は、水素原子又はメチル基を表す。
a15及びRa16は、それぞれ独立に、水素原子、メチル基又はヒドロキシ基を表す。
o1は、0〜10の整数を表す。
a3は、好ましくは、酸素原子又は、k2が1〜4の整数である−O−(CH2k2−CO−O−で表される基であり、より好ましくは、酸素原子又は、−O−CH2−CO−O−であり、より好ましくは酸素原子である。
a14は、好ましくはメチル基である。
a15は、好ましくは水素原子である。
a16は、好ましくは水素原子又はヒドロキシ基である。
o1は、好ましくは0〜3の整数、より好ましくは0又は1である。
酸安定構造単位(a2−1)としては、例えば、以下のものが挙げられる。
Figure 2012107204
Figure 2012107204
Figure 2012107204

ここに示す式(a2−1−1)〜式(a2−1−17)で示される構造単位(a2−1)において、構造単位(a)の具体例と同様に、部分構造Mを部分構造Aに置き換えたものも構造単位(a2−1)の具体例として挙げることができる。
例示した酸安定構造単位(a2−1)の中でも、式(a2−1−1)、式(a2−1−2)、式(a2−1−13)及び式(a2−1−15)で表される構造単位(a2−1)、並びにこれらの構造単位(a2−1)の部分構造Mが部分構造Aに置き換わったものが好ましく、式(a2−1−1)、式(a2−1−2)、式(a2−1−13)及び式(a2−1−15)で表される構造単位がより好ましい。これらの構造単位(a2−1)を有する樹脂(AA)は、3−ヒドロキシアダマンタン−1−イル(メタ)アクリレート、3,5−ジヒドロキシアダマンタン−1−イル(メタ)アクリレート又は(メタ)アクリル酸1−(3,5−ジヒドロキシアダマンタン−1−イルオキシカルボニル)メチルを、該樹脂(AA)製造用のモノマーとして用いればよい。
樹脂(AA)が、酸安定構造単位(a2−1)を有する場合、その含有割合は、樹脂(AA)の全構造単位(100モル%)に対して、3〜40モル%が好ましく、3〜35モル%の範囲がより好ましく、3〜30モル%の範囲がさらに好ましく、3〜15モル%が特に好ましい。。
<酸安定構造単位(a2−0)>
酸安定構造単位(a2)は、以下の式(a2−0)で表されるもの(以下、「酸安定構造単位(a2−0)」という。)も挙げることができる。
Figure 2012107204
式(a2−0)中、
a30は、水素原子、ハロゲン原子、又はハロゲン原子を有してもよい炭素数1〜6のアルキル基を表す。
a31は、ハロゲン原子、ヒドロキシ基、炭素数1〜6のアルキル基、炭素数1〜6のアルコキシ基、炭素数2〜4のアシル基、炭素数2〜4のアシルオキシ基、アクリロイル基又はメタクリロイル基を表す。
maは0〜4の整数を表す。maが2以上の整数である場合、複数のRa31は互いに同一であっても異なってもよい。
a30のハロゲン原子及びハロゲン原子を有してもよい炭素数1〜6のアルキル基としては、式(a1−4)のRa32で例示したものと同じである。これらのうち、Ra30は、炭素数1〜4のアルキル基が好ましく、メチル基又はエチル基がより好ましく、メチル基が特に好ましい。
a31のアルキル基としては、炭素数1〜4のアルキル基が好ましく、炭素数1又は2のアルキル基がより好ましく、メチル基が特に好ましい。
a31のアルコキシ基としては、式(a1−4)のRa33で例示したものと同じものを挙げることができる。これらのうち、Ra31は、炭素数1〜4のアルコキシ基が好ましく、メトキシ基又はエトキシ基がより好ましく、メトキシ基が特に好ましい。
maは0、1又は2が好ましく、0又は1がより好ましく、0が特に好ましい。
酸安定構造単位(a2−0)としては、以下の酸安定構造単位(a2−0)を誘導するモノマー(以下、「酸安定モノマー(a2−0)」という場合がある。)などが挙げられる。
Figure 2012107204

ここに例示する具体例において、ベンゼン環に結合しているメチル基やエチル基を、Ra31として例示したその他の置換基に置き換えたものも、酸安定モノマー(a2−0)の具体例である。
このような酸安定モノマー(a2−0)を用いて、樹脂(AA)を製造する場合は、該酸安定モノマー(a2−0)にあるフェノール性ヒドロキシ基が保護基で保護されているモノマーを用いることもできる。例えば、酸で脱離する保護基で保護されたフェノール性ヒドロキシ基は、酸との接触により該アセチル基が脱保護されるため、これを用いて重合した重合体から容易に酸安定構造単位(a2−0)の前駆構造単位を有する樹脂を製造することができる。ただし、樹脂(AA)は上述のとおり、酸不安定基を持つ構造単位(a)を有していたり、構造単位(a)に加えて、酸不安定基を有する構造単位を有していたりするので、フェノール性ヒドロキシ基が適当な保護基で保護されてなるモノマーに由来する構造単位を脱保護する際には、この酸不安定基を著しく損なわないよう、塩基との接触により脱保護することが好ましい。塩基との接触により脱保護する保護基としては例えば、アセチル基等が好ましい。塩基としては、例えば、4−ジメチルアミノピリジン及びトリエチルアミンなどが挙げられる。
酸安定モノマー(a2−0)の中では、4−ヒドロキシスチレン又は4−ヒドロキシ−α−メチルスチレンが特に好ましい。4−ヒドロキシスチレン又は4−ヒドロキシ−α−メチルスチレンを用いて、樹脂(AA)を製造する際には、これらにあるフェノール性ヒドロキシ基が適当な保護基で保護したものを用いることが好ましい。
樹脂(AA)が、酸安定構造単位(a2−0)を有する場合、その含有割合は、樹脂(AA)の全構造単位(100モル%)に対して、5〜95モル%が好ましく、10〜80モル%の範囲がより好ましく、15〜80モル%の範囲がさらに好ましい。
<酸安定構造単位(a3)>
酸安定構造単位(a3)が有するラクトン環は例えば、β−プロピオラクトン環、γ−ブチロラクトン環及びδ−バレロラクトン環のような単環式でもよく、単環式のラクトン環と他の環との縮合環でもよい。これらラクトン環の中で、γ−ブチロラクトン環及びγ−ブチロラクトン環と他の環との縮合環が好ましい。
酸安定構造単位(a3)は好ましくは、以下の式(a3−1)、式(a3−2)又は式(a3−3)で表されるものである。樹脂(AA)は、これらのうち1種のみを有していてもよく、2種以上を有していてもよい。なお、以下の説明においては、式(a3−1)で示されるものを「酸安定構造単位(a3−1)」という場合があり、式(a3−2)で示されるものを「酸安定構造単位(a3−2)」という場合があり、式(a3−3)で示されるものを「酸安定構造単位(a3−3)」という場合がある。
Figure 2012107204

[式(a3−1)中、
a4は、酸素原子又は−O−(CH2k3−CO−O−(k3は1〜7の整数を表す。)を表す。*はカルボニル基との結合手を表す。
a18は、水素原子又はメチル基を表す。
p1は0〜5の整数を表す。
a21は炭素数1〜4の脂肪族炭化水素基を表し、p1が2以上の場合、複数のRa21は互いに同一であっても異なってもよい。
式(a3−2)中、
a5は、酸素原子又は−O−(CH2k3−CO−O−(k3は1〜7の整数を表す。)を表す。*はカルボニル基との結合手を表す。
q1は、0〜3の整数を表す。
a22は、カルボキシ基、シアノ基又は炭素数1〜4の脂肪族炭化水素基を表し、q1が2以上の場合、複数のRa22は、互いに同一であっても異なってもよい。
式(a3−3)中、
a6は、酸素原子又は−O−(CH2k3−CO−O−(k3は1〜7の整数を表す。)を表す。*はカルボニル基との結合手を表す。
a20は、水素原子又はメチル基を表す。
r1は、0〜3の整数を表す。
a23は、カルボキシ基、シアノ基又は炭素数1〜4の脂肪族炭化水素基を表し、r1が2以上の場合、複数のRa23は、互いに同一であっても異なってもよい。]
式(a3−1)〜式(a3−3)において、La4〜La6は、式(a2−1)のLa3で説明したものが挙げられる。
a4〜La6は、それぞれ独立に、酸素原子又は、k3が1〜4の整数である*−O−(CH2k3−CO−O−で表される基が好ましく、酸素原子又は、*−O−CH2−CO−O−がより好ましく、さらに好ましくは酸素原子である。
a18〜Ra21は、好ましくはメチル基である。
a22及びRa23は、それぞれ独立に、好ましくはカルボキシ基、シアノ基又はメチル基である。
p1、q1及びr1は、それぞれ独立に、好ましくは0〜2の整数であり、より好ましくは0又は1である。
酸安定構造単位(a3−1)としては、例えば、以下のものが挙げられる。
Figure 2012107204
Figure 2012107204
γ−ブチロラクトン環とノルボルナン環との縮合環を有する酸安定構造単位(a3−2)としては、例えば以下のものが挙げられる。
Figure 2012107204
Figure 2012107204
γ−ブチロラクトン環とシクロヘキサン環との縮合環を有する酸安定構造単位(a3−3)は例えば、以下のものが挙げられる。
Figure 2012107204

ここに示す式(a3−1−1)〜式(a3−1−11)で表される構造単位(a3−1)、式(a3−2−1)〜式(a3−2−11)で表される構造単位(a3−2)及び式(a3−3−1)〜式(a3−3−6)で表される構造単位(a3−3)において、構造単位(a)の例示と同様に、部分構造Mを部分構造Aに置き換えたものも、各々構造単位(a3−1)、構造単位(a3−2)及び構造単位(a3−3)として挙げることができる。また、この例示において、ラクトン環が有する置換基(Ra21〜Ra23)としてメチル基を有するものも例示したが、このメチル基を上述のような基に置き換えたものも、酸安定構造単位(a3)の具体例である。
酸安定構造単位(a3)の中でも、α−(メタ)アクリロイロキシ−γ−ブチロラクトン、β−(メタ)アクリロイロキシ−γ−ブチロラクトン、α−(メタ)アクリロイロキシ−β,β−ジメチル−γ−ブチロラクトン、α−(メタ)アクリロイロキシ−α−メチル−γ−ブチロラクトン、β−(メタ)アクリロイロキシ−α−メチル−γ−ブチロラクトン、(メタ)アクリル酸(5−オキソ−4−オキサトリシクロ[4.2.1.03,7]ノナン−2−イル、(メタ)アクリル酸テトラヒドロ−2−オキソ−3−フリル及び(メタ)アクリル酸2−(5−オキソ−4−オキサトリシクロ[4.2.1.03,7]ノナン−2−イルオキシ)−2−オキソエチルから誘導される酸安定構造単位(a3)が好ましい。
樹脂(AA)が、酸安定構造単位(a3−1)、酸安定構造単位(a3−2)及び酸安定構造単位(a3−3)からなる群より選ばれる酸安定構造単位(a3)を有する場合、その合計含有割合は、樹脂(AA)の全構造単位(100モル%)に対して、5〜60モル%の範囲が好ましく、5〜50モル%の範囲がより好ましく、10〜40モル%の範囲がさらに好ましく、15〜40モル%の範囲が特に好ましく、20〜40モル%の範囲が一層好ましい。。
また、酸安定構造単位(a3−1)、酸安定構造単位(a3−2)及び酸安定構造単位(a3−3)それぞれの含有量は、樹脂(A)の全構造単位(100モル%)に対して、5〜60モル%の範囲が好ましく、10〜55モル%の範囲がより好ましく、20〜50モル%の範囲がさらに好ましく、20〜45モル%の範囲が一層好ましい。
<酸安定モノマー(a4)>
樹脂(AA)は、酸安定構造単位(a2)及び酸安定構造単位(a3)以外の酸安定構造単位を有していてもよい。このような酸安定構造単位を、当該酸安定構造単位を誘導し得る酸安定モノマーを示すことで説明する。以下、酸安定構造単位(a2)及び酸安定構造単位(a3)以外の酸安定構造単位を誘導し得る酸安定モノマーを、場合により「酸安定モノマー(a4)」という。
該酸安定モノマー(a4)としては、以下の式(a4−1)で表される無水マレイン酸、下記式(a4−2)で表される無水イタコン酸、及び、下記式(a4−3)で表されるノルボルネン環を有する酸安定モノマー(以下、「酸安定モノマー(a4−3)」という場合がある。)などを挙げることができる。
Figure 2012107204
[式(a4−3)中、
a25及びRa26は、それぞれ独立に、水素原子、ヒドロキシ基を有していてもよい炭素数1〜3のアルキル基、シアノ基、カルボキシ基又は−COORa27を表すか、或いはRa25及びRa26は互いに結合して−CO−O−CO−を形成する。
a27は、炭素数1〜18の脂肪族炭化水素基を表し、該脂肪族炭化水素基を構成するメチレン基は、酸素原子又はカルボニル基に置き換わっていてもよい。但し−COORa27が酸不安定基となるものは除く(例えばRa27は、第三級炭素原子が−O−と結合するものを含まない)〕
式(a4−3)のRa25及びRa26において、ヒドロキシ基を有していてもよいアルキル基としては、メチル基、エチル基、プロピル基、ヒドロキシメチル基及び2−ヒドロキシエチル基などが好ましい。
a27の脂肪族炭化水素基は、好ましくは炭素数1〜8のアルキル基及び炭素数4〜18の脂環式炭化水素基であり、より好ましくは炭素数1〜6のアルキル基及び炭素数4〜12の脂環式炭化水素基であり、メチル基、エチル基、プロピル基、2−オキソ−オキソラン−3−イル基及び2−オキソ−オキソラン−4−イル基などがさらに好ましい。
酸安定モノマー(a4−3)としては、例えば、2−ノルボルネン、2−ヒドロキシ−5−ノルボルネン、5−ノルボルネン−2−カルボン酸、5−ノルボルネン−2−カルボン酸メチル、5−ノルボルネン−2−カルボン酸2−ヒドロキシ−1−エチル、5−ノルボルネン−2−メタノール及び5−ノルボルネン−2,3−ジカルボン酸無水物などが挙げられる。
樹脂(AA)が、式(a4−1)で表される無水マレイン酸に由来する構造単位、式(a4−2)で表される無水イタコン酸に由来する構造単位及びモノマー(a4−3)に由来する構造単位からなる群より選ばれる少なくとも1種の構造単位を有する場合、その合計含有割合は、樹脂(AA)の全構造単位(100モル%)に対して、2〜40モル%の範囲が好ましく、3〜30モル%の範囲がより好ましく、5〜20モル%の範囲がさらに好ましい。
さらに、酸安定モノマー(a4)としては、例えば、式(a4−4)で表されるスルトン環を有する酸安定モノマー(以下、「酸安定モノマー(a4−4)」という場合がある。)などが挙げられる。
Figure 2012107204
[式(a4−4)中、
a7は、酸素原子又は−T−(CH2k2−CO−O−を(k2は1〜7の整数を表す。Tは酸素原子又はNHである。)表し、*はカルボニル基との結合手を表す。
a28は、水素原子又はメチル基を表す。
16は、置換基を有していてもよいスルトン環基を表す。]
スルトン環基に含まれるスルトン環としては、脂環式炭化水素を構成するメチレン基のうち、隣り合うメチレン基2つが、一方が酸素原子、他方がスルホニル基に置き換わったものであり、下記に示すものなどが挙げられる。スルトン環基の代表例は、下記スルトン環にある水素原子の1つが、結合手に置き換わったものであり、式(a4−4)においてはLa7との結合手が該当する。
Figure 2012107204
置換基を有していてもよいスルトン環基とは、上述の結合手に置き換わった水素原子以外の水素原子がさらに置換基(水素原子以外の1価の基)に置き換わったものであり、該置換基は、ヒドロキシ基、シアノ基、炭素数1〜6のアルキル基、炭素数1〜6のフッ化アルキル基、炭素数1〜6のヒドロキシアルキル基、炭素数1〜6のアルコキシ基、炭素数1〜7のアルコキシカルボニル基、炭素数1〜7のアシル基及び炭素数1〜8のアシルオキシ基からなる群より選ばれる。
酸安定モノマー(a4−4)としては、例えば、以下のものが挙げられる。
Figure 2012107204
Figure 2012107204
Figure 2012107204
Figure 2012107204
Figure 2012107204
Figure 2012107204
Figure 2012107204
Figure 2012107204
Figure 2012107204
Figure 2012107204
Figure 2012107204
Figure 2012107204

ここに示した酸安定モノマー(a4−4)において、部分構造M’を部分構造A’に置き換えたものも、酸安定モノマー(a4−4)として挙げることができる。
Figure 2012107204
樹脂(AA)が、酸安定モノマー(a4−4)に由来する構造単位を有する場合、その含有割合は、樹脂(AA)の全構造単位(100モル%)に対して、2〜40モル%の範囲が好ましく、3〜35モル%の範囲がより好ましく、5〜30モル%の範囲がさらに好ましい。
また、酸安定モノマー(a4)としては、例えば、以下に示すようなフッ素原子を有する酸安定モノマー〔以下、「酸安定モノマー(a4−5)」という場合がある。〕も用いることができる。
Figure 2012107204
このような酸安定モノマー(a4−5)の中でも、単環式又は多環式の脂環を有する(メタ)アクリル酸5−(3,3,3−トリフルオロ−2−ヒドロキシ−2−[トリフルオロメチル]プロピル)ビシクロ[2.2.1]ヘプト−2−イル、(メタ)アクリル酸6−(3,3,3−トリフルオロ−2−ヒドロキシ−2−[トリフルオロメチル]プロピル)ビシクロ[2.2.1]ヘプト−2−イル、(メタ)アクリル酸4,4−ビス(トリフルオロメチル)−3−オキサトリシクロ[4.2.1.02,5]ノニルが好ましい。
樹脂(AA)が、酸安定モノマー(a4−5)に由来する構造単位を有する場合、その合計含有割合は、樹脂(AA)の全構造単位(100モル%)に対して、1〜20モル%の範囲が好ましく、2〜15モル%の範囲がより好ましく、3〜10モル%の範囲がさらに好ましい。
<酸安定モノマー(a4−6)>
酸安定モノマー(a4)として、以下の式(3)で表される基を有する酸安定モノマー[以下、式(3)で表される基を有する酸安定モノマーを、場合により、「酸安定モノマー(a4−6)」という。]を挙げることができる。
Figure 2012107204
[式(3)中、R10は、炭素数1〜6のフッ化アルキル基を表す。*は結合手を表す。]
10のフッ化アルキル基としては、ジフルオロメチル基、トリフルオロメチル基、1,1−ジフルオロエチル基、2,2−ジフルオロエチル基、2,2,2−トリフルオロエチル基、ペルフルオロエチル基、1,1,2,2−テトラフルオロプロピル基、1,1,2,2,3,3−ヘキサフルオロプロピル基、ペルフルオロエチルメチル基、1−(トリフルオロメチル)−1,2,2,2−テトラフルオロエチル基、ペルフルオロプロピル基、1,1,2,2−テトラフルオロブチル基、1,1,2,2,3,3−ヘキサフルオロブチル基、1,1,2,2,3,3,4,4−オクタフルオロブチル基、ペルフルオロブチル基、1,1−ビス(トリフルオロ)メチル−2,2,2−トリフルオロエチル基、2−(ペルフルオロプロピル)エチル基、1,1,2,2,3,3,4,4−オクタフルオロペンチル基、ペルフルオロペンチル基、1,1,2,2,3,3,4,4,5,5−デカフルオロペンチル基、1,1−ビス(トリフルオロメチル)−2,2,3,3,3−ペンタフルオロプロピル基、パーフルオロペンチル基、2−(ペルフルオロブチル)エチル基、1,1,2,2,3,3,4,4,5,5−デカフルオロヘキシル基、1,1,2,2,3,3,4,4,5,5,6,6−ドデカフルオロヘキシル基、ペルフルオロペンチルメチル基及びペルフルオロヘキシル基が挙げられる。
10のフッ化アルキル基は、その炭素数が1〜4であると好ましく、トリフルオロメチル基、ペルフルオロエチル基及びペルフルオロプロピル基がより好ましく、トリフルオロメチル基が特に好ましい。
酸安定モノマー(a4−6)としては、例えば、以下で表されるものが挙げられる。
Figure 2012107204

ここに示した酸安定モノマー(a4−6)の具体例において、酸安定モノマー(a4−4)の具体例と同様に、部分構造M’を部分構造A’に置き換えたものも、酸安定モノマー(a4−6)の具体例として含む。
また、酸安定モノマー(a4−6)としては、以下のものも挙げることができる。
Figure 2012107204
樹脂(AA)が、酸安定モノマー(a4−6)に由来する構造単位を有する場合、その含有割合は、樹脂(AA)の全構造単位(100モル%)に対して、5〜90モル%の範囲が好ましく、10〜80モル%の範囲がより好ましく、20〜70モル%の範囲がさらに好ましい。
<酸安定モノマー(a4−7)>
酸安定モノマー(a4)としては、以下の式(4)で表される基を有する酸安定モノマー[以下、式(4)で表される基を有する酸安定モノマーを、場合により、「酸安定モノマー(a4−7)」という。]も挙げられる。
Figure 2012107204

[式(4)中、
11は置換基を有してもよい炭素数6〜12の芳香族炭化水素基を表す。
12は、置換基を有してもよい炭素数1〜12の炭化水素基を表し、該炭化水素基は、ヘテロ原子を含んでいてもよい。
は、単結合、−(CHm10−SO−O−*又は−(CHm10−CO−O−*を表し、ここに示す−(CHm10−を構成するメチレン基は、酸素原子、カルボニル基又はスルホニル基に置き換わっていてもよく、−(CHm10−に含まれる水素原子は、フッ素原子に置き換わっていてもよい。
m10は、1〜12の整数を表す。]
11における炭素数6〜12の芳香族炭化水素基は、炭素数の上限が異なる以外は、式(2)のRb1〜Rb3におけるアリール基の例示と同じものを含む。これら芳香族炭化水素基が置換基を有する場合、その置換基は、炭素数1〜4のアルキル基、ハロゲン原子、フェニル基、ニトロ基、シアノ基、ヒドロキシ基、フェニルオキシ基及びtert−ブチルフェニル基などである。なお、炭素数1〜4のアルキル基が置換したアリール基とは、Rb1〜Rb3として例示したものと同じである。
11としては、以下の基が挙げられる。なお、*は炭素原子との結合手である。
Figure 2012107204
12における炭素数1〜12の炭化水素基は、鎖式脂肪族炭化水素基、脂環式炭化水素基及び芳香族炭化水素基のいずれでもよい。
脂肪族炭化水素基としては、典型的にはアルキル基であり、その具体例は式(a1−4)のRa34及びRa35として例示したものと同じである。脂環式炭化水素基としては、炭素数の上限が異なる以外は、式(1)のRa1〜Ra3で例示したものと同じある。
なお、R12が脂肪族炭化水素基又は脂環式炭化水素基である場合、これら脂肪族炭化水素基又は脂環式炭化水素基はヘテロ原子を含んでいてもよい。ヘテロ原子としては、ハロゲン原子、硫黄原子、酸素原子及び窒素原子などである〔連結基として、スルホニル基、カルボニル基を含む形態でもよい〕。
このようなヘテロ原子を含むR12としては、以下の基が挙げられる。
Figure 2012107204
12が芳香族炭化水素基である場合、その具体例は、R11の場合と同じである。
としては、下記に示す基が挙げられる。
Figure 2012107204
式(4)で表される基を含む酸安定モノマー(a4)としては、例えば、式(a4−7)で表されるモノマー(以下、場合により「酸安定モノマー(a4−7)」という。)が挙げられる。
Figure 2012107204

[式(a4−7)中、
13は、水素原子又はメチル基を表す。
11、R12及びAは、上記と同じ意味を表す。]
酸安定モノマー(a4−7)としては、例えば、以下のものが挙げられる。
Figure 2012107204
ここに示した酸安定モノマー(a4−7)の具体例において、酸安定モノマー(a4−4)の例示と同様に、部分構造M’を部分構造A’に置き換えたものも、酸安定モノマー(a4−7)の具体例として含む。
樹脂(AA)が、酸安定モノマー(a4−7)に由来する構造単位を有する場合、その含有割合は、樹脂(AA)の全構造単位(100モル%)に対して、5〜90モル%の範囲が好ましく、10〜80モル%の範囲がより好ましく、20〜70モル%の範囲がさらに好ましい。
酸安定モノマー(a4)としては、以下の式(a4−8)で示されるモノマー[以下、場合により、「酸安定モノマー(a4−8)」という。]も挙げることができる。
Figure 2012107204
[式(a4−8)中、
は、炭素数3〜36の脂肪族環を表す。
は、単結合又は炭素数1〜17の脂肪族炭化水素基を表す。該脂肪族炭化水素基に含まれるメチレン基は、酸素原子又はカルボニル基に置き換わっていてもよいが、Aのうち、酸素原子に結合している原子は炭素原子である。
14は、水素原子、ハロゲン原子、炭素数1〜6のアルキル基又は炭素数1〜6のハロゲン化アルキル基を表す。
15及びR16は、それぞれ独立に、炭素数1〜6のアルキル基又は炭素数1〜6のハロゲン化アルキル基を表す。
は、単環式又は多環式の炭素数3〜36の脂肪族環であり、その炭素数は5〜18の範囲が好ましく、6〜12の範囲がより好ましい。より具体的には、すでに脂環式炭化水素基の説明において、式(KA−1)〜式(KA−22)で示した脂環式炭化水素の形式で示した脂肪族環を挙げることができる。すなわち、式(a6−1)において
Figure 2012107204
で示される部分構造は、式(KA−1)〜式(KA−22)で示した脂環式炭化水素に含まれる1個の水素原子がAとの結合手に、脂環式炭化水素の環を構成する1つの炭素原子に結合している2つの水素原子が、−O−CO−R15及び−O−CO−R16との結合手に置き換わったものを挙げることができる。
の脂肪族環は、シクロヘキサン環、アダマンタン環、ノルボルナン環及びノルボルネン環が好ましい。
の脂肪族炭化水素基は、炭素数が17以下の範囲において、すでに例示したアルカンジイル基及び2価の脂環式炭化水素基を挙げることができ、炭素数が17以下の範囲であれば、アルカンジイル基と脂環式炭化水素基とを組み合わせた脂肪族炭化水素基であってもよい。また、Aの脂肪族炭化水素基は置換基を有していてもよい。
ここで、アルカンジイル基と脂環式炭化水素基とを組み合わせた脂肪族炭化水素基の代表例を示しておく。かかる脂肪族炭化水素基としては、以下の式(X−A)、式(X−B)及び式(X−C)で表される基などが挙げられる。
Figure 2012107204
式中、
X1及びXX2は、それぞれ独立に、単結合又は置換基を有していてもよい炭素数1〜6のアルカンジイル基を表し、XX1及びXX2がともに単結合であることはなく、式(X−A)、式(X−B)及び式(X−C)で表される基の総炭素数は17以下である。
また、すでに述べたように、Aの脂肪族炭化水素基は、該脂肪族炭化水素基を構成するメチレン基が、酸素原子又はカルボニル基に置き換わっていてもよい。このような基の代表例としては、例えば、式(a)の基(a−1)で例示したものを含む。
は、単結合又は*−(CHs1−CO−O−(*は−O−との結合手を表し、s1は1〜6の整数を表す。)で表される基が好ましく、単結合又は*−CH−CO−O−(*は−O−との結合手を表す。)で表される基がより好ましい。
14は、水素原子又はメチル基が好ましい。
14、R15及びR16(以下、「R14〜R16」のように表記する。)のアルキル基としては、炭素数が1〜6の範囲において、その具体例は、すでに例示したものを含む。ハロゲン化アルキル基としては、フッ素原子を有するアルキル基が特に好ましい。R15及びR16のハロゲン化アルキル基のうち、好ましいものとしては、トリフルオロメチル基、ペルフルオロエチル基、ペルフルオロプロピル基及びペルフルオロブチル基などが挙げられ、中でも、トリフルオロメチル基、ペルフルオロエチル基及びペルフルオロプロピル基が挙げられる。
酸安定モノマー(a4−8)としては、以下に示すモノマー等が挙げられる。なお、R14〜R16及びAは、上記と同じ意味を表す。
Figure 2012107204

これらの中でも、
Figure 2012107204
で表される酸安定モノマー(a4−8)がより好ましい。
酸安定モノマー(a4−8)として、以下で表されるものが挙げられる。
Figure 2012107204
ここに示した酸安定モノマー(a4−8)において、酸安定モノマー(a4−4)の例示と同様に、部分構造M’を部分構造A’に置き換えたものも、酸安定モノマー(a4−8)の具体例として含む。
好ましい酸安定モノマー(a4−8)は例えば、次のようにして製造できる。すなわち、酸安定モノマー(a4−8)は、式(a4−8−a)で表される化合物と、式(a4−8−b)で表される化合物とを反応させることにより製造する。式(a4−8−a)で表される化合物の代表例は例えば、特開2002−226436号公報に記載されている1−メタクリロイルオキシ−4−オキソアダマンタンなどが挙げられる。また、式(a4−8−b)で表される化合物としては、例えばペンタフルオロプロピオン酸無水物、ヘプタフルオロ酪酸無水物及びトリフルオロ酢酸無水物などが挙げられる。この反応は、用いる式(a4−8−b)で表される化合物の沸点温度付近で加温することにより、実施することが好ましい。

Figure 2012107204
[式(a4−8−a)及び式(a4−8−b)中、W、A、R14、R15及びR16は、上記と同じ意味を表す。]
樹脂(AA)が、酸安定モノマー(a4−8)に由来する構造単位を有する場合、その含有割合は、樹脂(AA)の全構造単位(100モル%)に対して、5〜90モル%の範囲が好ましく、10〜80モル%の範囲がより好ましく、20〜70モル%の範囲がさらに好ましい。
<樹脂(A)及びその製造方法>
樹脂(A)のうち樹脂(AA)は、構造単位(a)を誘導する化合物(a’)と、構造単位(a1)を誘導するモノマー[好ましくは、構造単位(a1−1)又は構造単位(a1−2)を誘導するモノマー]を、さらに好ましくは酸安定構造単位を誘導するモノマーとを共重合させたものであり、より好ましくは、化合物(a’)、構造単位(a1−1)及び/又は構造単位(a1−2)を誘導するモノマー、酸安定構造単位(a2)及び/又は酸安定構造単位(a3)を誘導するモノマーとを共重合させたものである。
樹脂(AA)は、構造単位(a1)として、アダマンチル基を有する構造単位(a1−1)及びシクロへキシル基を有する構造単位(a1−2)のうち、少なくとも1種を有することが好ましく、アダマンチル基を有する構造単位(a1−1)を有することがさらに好ましい。酸安定構造単位(a2)としては、ヒドロキシアダマンチル基を有する構造単位(a2−1)を用いることが好ましい。酸安定構造単位(a3)としては、γ−ブチロラクトン環を有する酸安定構造単位(a3−1)及びγ−ブチロラクトン環とノルボルナン環との縮合環を有する酸安定構造単位(a3−2)の少なくとも1種を有することが好ましい。樹脂(A)は、上述したようなモノマーを公知の重合法(例えばラジカル重合法)に供して重合(共重合)させればよい。
樹脂(AA)の全構造単位(100モル%)に対する、構造単位(a1)の含有割合は、すでに構造単位(a1−1)及び構造単位(a1−2)の各々などについて説明したが、これらの合計、すなわち構造単位(a1)は、樹脂(AA)の全構造単位(100モル%)に対して、好ましくは10〜80モル%の範囲であり、より好ましくは20〜60モル%の範囲である。
また、アダマンチル基を有する構造単位(特に構造単位(a1−1))を有する場合には、該構造単位を、構造単位(a1)の合計(100モル%)に対して15モル%以上とすることが好ましい。このようにすると、樹脂(AA)を含有する本レジスト組成物から得られるレジストパターンのドライエッチング耐性がより良好になる傾向がある。
樹脂(AA)の重量平均分子量は、2,500以上50,000以下であると好ましく、3,000以上30,000以下がさらに好ましい。なお、ここでいう重量平均分子量は、ゲルパーミュエーションクロマトグラフィー分析により、標準ポリスチレン基準の換算値として求められるものであり、該分析の詳細な分析条件は、本願の実施例で詳述する。
次に、樹脂(AB)について説明する。樹脂(AB)は上述のとおり、酸不安定基を有さないものであり、具体的には、構造単位(a1)を有さず、構造単位(a)を有する樹脂は該当する。
樹脂(AB)の中では、酸安定モノマー(a4−4)、酸安定モノマー(a4−5)、酸安定モノマー(a4−6)、酸安定モノマー(a4−7)及び酸安定モノマー(a4−8)からなる群より選ばれる酸安定モノマーと、化合物(a’)とを共重合させたものが好ましく、酸安定モノマー(a4−5)及び酸安定モノマー(a4−6)からなる群より選ばれる酸安定モノマーと、化合物(a’)とを共重合させたものがさらに好ましい。かかる樹脂(AB)も、このようなモノマーを公知の重合法(例えばラジカル重合法)に供することにより製造できる。
酸安定モノマー(a4−4)、酸安定モノマー(a4−5)、酸安定モノマー(a4−6)、酸安定モノマー(a4−7)及び酸安定モノマー(a4−8)からなる群より選ばれる酸安定モノマー(a4)と、化合物(a’)とを共重合させて樹脂(AB)を得る場合、当該樹脂(AB)が有する構造単位(a)の含有割合は、当該樹脂(AB)の全構造単位(100モル%)に対して、5〜95モル%の範囲が好ましく、10〜90モル%の範囲がより好ましい。
特に、酸安定モノマーが、酸安定モノマー(a4−7)及び酸安定モノマー(a4−8)からなる群より選ばれる場合、樹脂(AB)が有する構造単位(a)の含有割合は、当該樹脂(AB)の全構造単位(100モル%)に対して、15〜85モル%の範囲が好ましく、20〜80モル%の範囲がより好ましい。
樹脂(AB)の重量平均分子量は、特に該樹脂(AB)を本レジスト組成物の添加剤として用いる場合、8,000以上80,000以下が好ましく、10,000以上60,000以下がさらに好ましい。なお、ここでいう重量平均分子量もルパーミエーションクロマトグラフィー分析(GPC分析)により、標準ポリスチレン基準の換算値として求められるものである。該GPC分析の詳細な分析条件は、本願の実施例で詳述する。
樹脂(AB)を添加剤として本レジスト組成物に用いる場合、該本レジスト組成物には、該樹脂(AB)に加えて、アルカリ水溶液に不溶又は難溶であり、酸の作用によりアルカリ水溶液に可溶となる特性を有する樹脂(X)が必要である。
樹脂(X)は例えば、構造単位(a1)と、酸安定構造単位(a2)及び/又は酸安定構造単位(a3)とを有するものが好ましい。樹脂(X)が有する構造単位(a1)は、アダマンチル基を有する構造単位(a1−1)及びシクロへキシル基を有する構造単位(a1−2)の少なくとも1種であると好ましく、アダマンチル基を有する構造単位(a1−1)がさらに好ましい。酸安定構造単位(a2)は、ヒドロキシアダマンチル基を有する構造単位(a2−1)が好ましく、酸安定構造単位(a3)は、γ−ブチロラクトン環を有する構造単位(a3−1)及びγ−ブチロラクトン環とノルボルナン環との縮合環を有する構造単位(a3−2)の少なくとも1種が好ましい。なお、樹脂(X)についても、これらの構造単位を誘導するモノマーを、公知の重合法(例えばラジカル重合法)に供することにより製造できる。
樹脂(X)の重量平均分子量は、好ましくは、2,500以上(より好ましくは3,000以上)、50,000以下(より好ましくは30,000以下)である。
<本レジスト組成物>
本レジスト組成物は、樹脂(A)を含有することにより、欠陥の発生量が少なく、CD均一性が良好なレジストパターンを製造できるという効果を発現する。本レジスト組成物が、樹脂(A)のうち、樹脂(AA)を含む場合には、当該樹脂(AA)以外に、酸発生剤及び溶剤という構成成分を含有し、さらに必要に応じて、本技術分野でクエンチャーと呼ばれる塩基性化合物などの添加剤を含有することがある。また、樹脂(A)として樹脂(AB)を用いる場合、樹脂(X)を含有する。以下、樹脂以外の成分、すなわち、酸発生剤、添加剤及び溶剤の順で説明していく。なお、以下の説明において、本レジスト組成物から溶剤を取り除いたものを、本レジスト組成物の「固形分」ということがある。この固形分の本レジスト組成物総質量に対する含有重量割合(以下、場合により「含有量」という。)は、液体クロマトグラフィー及びガスクロマトグラフィーなどの公知の分析手段で測定できる。
<酸発生剤>
酸発生剤は、非イオン系とイオン系とに分類される。非イオン系酸発生剤には、有機ハロゲン化物、スルホネートエステル類(例えば2−ニトロベンジルエステル、芳香族スルホネート、オキシムスルホネート、N−スルホニルオキシイミド、N−スルホニルオキシイミド、スルホニルオキシケトン、ジアゾナフトキノン 4−スルホネート)、スルホン類(例えばジスルホン、ケトスルホン、スルホニルジアゾメタン)等が含まれる。イオン系酸発生剤は、オニウムカチオンを含むオニウム塩(例えば、ジアゾニウム塩、ホスホニウム塩、スルホニウム塩及びヨードニウム塩など)が代表的である。オニウム塩のアニオンとしては、スルホン酸アニオン、スルホニルイミドアニオン及びスルホニルメチドアニオンなどがある。
酸発生剤(B)としては、例えば特開昭63−26653号、特開昭55−164824号、特開昭62−69263号、特開昭63−146038号、特開昭63−163452号、特開昭62−153853号、特開昭63−146029号や、米国特許第3,779,778号、米国特許第3,849,137号、独国特許第3914407号、欧州特許第126,712号等に記載の放射線によって酸を発生する化合物を使用できる。
本レジスト組成物に含有される酸発生剤は、以下の式(B1)で表される酸発生剤(以下、場合により「酸発生剤(B1)」という。)が好ましい。なお、以下の説明において、この酸発生剤(B1)のうち、正電荷を有するZは「有機カチオン」といい、該有機カチオンを除去してなる負電荷を有するものを「スルホン酸アニオン」ということがある。
Figure 2012107204
式(B1)中、
1及びQ2は、それぞれ独立に、フッ素原子又は炭素数1〜6のペルフルオロアルキル基を表す。
b1は、置換基を有していてもよい炭素数1〜17の脂肪族炭化水素基を表す。該脂肪族炭化水素基を構成するメチレン基は、酸素原子又はカルボニル基に置き換わっていてもよい。
Yは、置換基を有していてもよい炭素数1〜18の脂肪族炭化水素基を表し、該脂肪族炭化水素基を構成するメチレン基は、酸素原子、カルボニル基又はスルホニル基に置き換わっていてもよい。
+は、有機カチオンを表す。
1及びQ2のペルフルオロアルキル基の具体例は、すでに例示したアルキル基のうち、炭素数1〜6のアルキル基において、該アルキル基に含まれる水素原子の全部がフッ素原子に置き換わったものが該当する。
本レジスト組成物に含有される酸発生剤としては、Q1及びQ2は、それぞれ独立に、トリフルオロメチル基又はフッ素原子の酸発生剤(B1)が好ましく、Q1及びQ2がともにフッ素原子である酸発生剤(B1)がさらに好ましい。
b1の脂肪族炭化水素基の具体例は、すでに例示したアルカンジイル基、及び、上述の式(KA−1)〜式(KA−22)の脂環式炭化水素から水素原子を2個取り去った基などである。
b1における前記脂肪族炭化水素基を構成するメチレン基が、酸素原子又はカルボニル基に置き換わったものとしては、例えば、以下の式(b1−1)、式(b1−2)、式(b1−3)、式(b1−4)、式(b1−5)及び式(b1−6)〔以下、式(b1−1)〜式(b1−6)のように表記する。〕のいずれかで示される基が挙げられる。なお、式(b1−1)〜式(b1−6)は、その左右を式(B1)に合わせて記載しており、左側の結合手は、C(Q1)(Q2)と結合し、右側の結合手はYと結合している。以下の式(b1−1)〜式(b1−6)の具体例も同様である。なお、*は結合手を表し、一方はYと、他方はCQの炭素原子(Q1及びQ2と結合している炭素原子)と結合している。
Figure 2012107204
式(b1−1)〜式(b1−6)中、
b2は、単結合又は炭素数1〜15の2価の脂肪族炭化水素基を表し、この脂肪族炭化水素基は脂肪族飽和炭化水素基が好ましい。
b3は、単結合又は炭素数1〜12の2価の脂肪族炭化水素基を表し、この脂肪族炭化水素基は脂肪族飽和炭化水素基が好ましい。
b4は、炭素数1〜13の2価の脂肪族炭化水素基を表し、これらの脂肪族炭化水素基は脂肪族飽和炭化水素基が好ましい。但しLb3及びLb4の合計炭素数の上限は13である。
b5は、炭素数1〜15の2価の飽和炭化水素基を表す。
b6及びLb7は、それぞれ独立に、炭素数1〜15の2価の脂肪族炭化水素基を表し、これらの脂肪族炭化水素基は脂肪族飽和炭化水素基が好ましい。但しLb6及びLb7の合計炭素数の上限は16である。
b8は、炭素数1〜14の2価の脂肪族炭化水素基を表し、この脂肪族炭化水素基は脂肪族飽和炭化水素基が好ましい。
b9及びLb10は、それぞれ独立に、炭素数1〜11の2価の脂肪族炭化水素基を表し、これらの脂肪族炭化水素基は脂肪族飽和炭化水素基が好ましい。但しLb9及びLb10の合計炭素数の上限は12である。
本発明のレジスト組成物に用いる酸発生剤としては、これらの中でも、式(b1−1)で表される2価の基をLb1として有する酸発生剤(B1)が好ましく、Lb2が単結合又はメチレン基である式(b1−1)で表される2価の基をLb1として有する酸発生剤(B1)がより好ましい。
b1は、好ましくは式(b1−1)〜式(b1−4)のいずれかで表される基であり、さらに好ましくは式(b1−1)〜式(b1−3)のいずれかで表される基である。
ここで、好ましい式(b1−1)〜式(b1−3)のいずれかで表される基の具体例を挙げる。なお、*は結合手を表し、左右の*の定義は上述のとおりである。
式(b1−1)で表される2価の基は例えば、以下のものが挙げられる。
Figure 2012107204
式(b1−2)で表される2価の基は例えば、以下のものが挙げられる。
Figure 2012107204
式(b1−3)で表される2価の基は例えば、以下のものが挙げられる。
Figure 2012107204
b1の脂肪族炭化水素基は、置換基を有していてもよい。この置換基は例えば、ハロゲン原子、ヒドロキシ基、カルボキシ基、炭素数6〜18の芳香族炭化水素基、炭素数7〜21のアラルキル基、炭素数2〜4のアシル基及びグリシジルオキシ基等が挙げられる。芳香族炭化水素基、アラルキル基及びアシル基の具体例はすでに説明したとおりである。
式(B1)におけるYは置換基を有していてもよい炭素数1〜18の脂肪族炭化水素基を表す。該脂肪族炭化水素基としては、アルキル基及び脂環式炭化水素基が好ましく、炭素数1〜6のアルキル基及び炭素数3〜12の脂環式炭化水素基がより好ましく、炭素数3〜12の脂環式炭化水素基がさらに好ましい。
Yの脂肪族炭化水素基が置換基を有する場合、該置換基としては例えば、ハロゲン原子(但し、フッ素原子を除く)、ヒドロキシ基、炭素数1〜12のアルコキシ基、炭素数6〜18の芳香族炭化水素基、炭素数7〜21のアラルキル基、炭素数2〜4のアシル基、グリシジルオキシ基又は−(CH2j2−O−CO−Rb1で表される基(式中、Rb1は、炭素数1〜16の炭化水素基を表す。j2は、0〜4の整数を表す。)などが挙げられる。ここでいう芳香族炭化水素基及びアラルキル基には、例えば、アルキル基、ハロゲン原子又はヒドロキシ基をさらに有していてもよい。
Yの脂肪族炭化水素基に含まれるメチレン基は、酸素原子、スルホニル基及びカルボニル基からなる群より選ばれる基(2価の基)に置き換わっていてもよい。脂環式炭化水素基に含まれるメチレン基が、酸素原子、スルホニル基又はカルボニル基に置き換わった基としては例えば、環状エーテル基(脂環式炭化水素基を構成するメチレン基の1つ又は2つが酸素原子に置き換わった基)、環状ケトン基(脂環式炭化水素基を構成するメチレン基の1つ又は2つがカルボニル基に置き換わった基)、スルトン環基(す脂環式炭化水素基を構成するメチレン基のうち隣り合う2つのメチレン基が、それぞれ、酸素原子及びスルホニル基に置き換わった基)及びラクトン環基(脂環式炭化水素基を構成するメチレン基のうち隣り合う2つのメチレン基が、それぞれ、酸素原子及びカルボニル基に置き換わった基)などが挙げられる。
Yの脂環式炭化水素基の好ましい基は、以下に示す式(Y1)、式(Y2)、式(Y3)、式(Y4)及び式(Y5)のいずれかで表される基が挙げられ、なかでも、式(Y1)、式(Y2)、式(Y3)及び式(Y5)でそれぞれ表される基がさらに好ましく、式(Y1)及び式(Y2)で表される脂環式炭化水素基がより好ましい。なお、これらの脂環式炭化水素基に含まれる水素原子が置換基に置き換わっていてもよい。
Figure 2012107204
置換基を有する脂環式炭化水素基としては例えば、以下のものである。
Figure 2012107204

Figure 2012107204

Figure 2012107204
Figure 2012107204
Yの脂環式炭化水素基は、式(Y1)及び式(Y2)で示したようにアダマンタン環を有する基であると好ましく、これらが置換基を有する場合、その置換基はヒドロキシ基が好ましい。すなわち、置換基を有する脂環式炭化水素基としては、ヒドロキシアダマンチル基がYとして好ましい。
スルホン酸アニオンの好適例を具体的に示すと、式(b1−1−1)、式(b1−1−2)、式(b1−1−3)、式(b1−1−4)、式(b1−1−5)、式(b1−1−6)、式(b1−1−7)、式(b1−1−8)及び式(b1−1−9)〔以下、「式(b1−1−1)〜式(b1−1−1−9)」のように表記する。〕で表されるスルホン酸アニオンを挙げることができる。この式(b1−1−1)〜式(b1−1−1−9)のいずれかで表されるスルホン酸アニオンにおいて、Lb1は式(b1−1)で表される基が好ましい。また、Rb2及びRb3は、それぞれ独立に、Yの脂肪族炭化水素基が有していてもよい置換基として挙げたものと同じであり、炭素数1〜4の脂肪族炭化水素基及びヒドロキシ基が好ましく、メチル基及びヒドロキシ基がより好ましい。
Figure 2012107204
前記式(b1−1−1)〜式(b1−1−9)で表されるスルホン酸アニオンの具体例は例えば、特開2010−204646号公報に記載されているスルホン酸アニオンを挙げることができる。
以下、好ましいスルホン酸アニオンとして、Lb1が前記式(b1−1)で表される基であり、Yが、前記式(Y1)及び前記式(Y2)で表される脂環式炭化水素基等である具体例を挙げる。Yが無置換の脂環式炭化水素基であるスルホン酸アニオンとしては、以下の式(b1−s−1)〜式(b1−s−9)のいずれかで表されるものが挙げられる。
Figure 2012107204
Yがヒドロキシ基を有する脂環式炭化水素基であるスルホン酸アニオンとしては、以下の式(b1−s−10)〜式(b1−s−18)のいずれかで表されるものが挙げられる。
Figure 2012107204
Yが環状ケトン基であるスルホン酸アニオンとしては、以下の式(b1−s−19)〜式(b1−s−29)のいずれかで表されるものが挙げられる。
Figure 2012107204

Figure 2012107204
Yが芳香族基を有する脂環式炭化水素基であるスルホン酸アニオンとしては、以下の式(b1−s−30)〜式(b1−s−35)のいずれかで表されるものが挙げられる。
Figure 2012107204
Yが、前記ラクトン環基又は前記スルホン酸環基であるスルホン酸アニオンとしては、以下の式(b1−s−36)〜式(b1−s−41)のいずれかで表されるものが挙げられる。
Figure 2012107204
また、Yはアルキル基であってもよい。このようなスルホン酸アニオンとしては例えば、以下の式(b1−s−42)で表されるものが挙げられる。
Figure 2012107204
酸発生剤(B1)中の有機カチオン(Z+)は例えば、有機スルホニウムカチオン、有機ヨードニウムカチオン、有機アンモニウムカチオン、ベンゾチアゾリウムカチオン及び有機ホスホニウムカチオンなどの有機オニウムカチオンが挙げられる。これらの中でも、有機スルホニウムカチオン及び有機ヨードニウムカチオンが好ましく、有機スルホニウムカチオンがより好ましく、さらに好ましくは、以下の式(b2−1)、式(b2−2)、式(b2−3)及び式(b2−4)〔以下、「式(b2−1)〜式(b2−4)」のように表記する。〕のいずれかで表される有機カチオンである。
Figure 2012107204
式(b2−1)〜式(b2−4)において、
b4、Rb5及びRb6は、それぞれ独立に、炭素数1〜30の炭化水素基を表し、該炭化水素基としては、炭素数1〜30のアルキル基、炭素数3〜18の脂環式炭化水素基及び炭素数6〜18の芳香族炭化水素基が好ましい。該アルキル基は、ヒドロキシ基、炭素数1〜12のアルコキシ基又は炭素数6〜18の芳香族炭化水素基を有していてもよく、該脂環式炭化水素基は、ハロゲン原子、炭素数2〜4のアシル基又はグリシジルオキシ基を有していてもよく、該芳香族炭化水素基は、ハロゲン原子、ヒドロキシ基、炭素数1〜18のアルキル基、炭素数3〜18の飽和環状炭化水素基又は炭素数1〜12のアルコキシ基を有していてもよい。
b7及びRb8は、それぞれ独立に、ヒドロキシ基、炭素数1〜12のアルキル基又は炭素数1〜12のアルコキシ基を表す。
m2及びn2は、それぞれ独立に0〜5の整数を表す。
b9及びRb10は、それぞれ独立に、炭素数1〜18のアルキル基又は炭素数3〜18の脂環式炭化水素基を表す。
b11は、水素原子、炭素数1〜18のアルキル基、炭素数3〜18の脂環式炭化水素基又は炭素数6〜18の芳香族炭化水素基を表す。
b9、Rb10及びRb11は、それぞれ独立に、脂肪族炭化水素基であり、該脂肪族炭化水素基がアルキル基である場合、その炭素数は1〜12であることが好ましく、該脂肪族炭化水素基が脂環式炭化水素基である場合、その炭素数は3〜18であることが好ましく、4〜12であることがさらに好ましい。
b12は、炭素数1〜18の炭化水素基を表す。この炭化水素基のうち、芳香族炭化水素基は、炭素数1〜12のアルキル基、炭素数1〜12のアルコキシ基、炭素数3〜18の脂環式炭化水素基又は炭素数1〜12のアルキルカルボニルオキシ基を有していてもよい。
b9とRb10との組み合わせ、及び/又は、Rb11とRb12との組み合わせは、それぞれ独立に、互いに結合して3員環〜12員環(好ましくは3員環〜7員環)の脂環式炭化水素環を形成していてもよく、これらの3員環〜12員環(好ましくは3員環〜7員環)は脂環又は、該脂環式炭化水素環に含まれるメチレン基が、酸素原子、硫黄原子又はカルボニル基で置き換わっている環である。
b13、Rb14、Rb15、Rb16、Rb17及びRb18は、それぞれ独立に、ヒドロキシ基、炭素数1〜12のアルキル基又は炭素数1〜12のアルコキシ基を表す。
b11は、酸素原子又は硫黄原子を表す。
o2、p2、s2及びt2は、それぞれ独立に、0〜5の整数を表す。
q2及びr2は、それぞれ独立に、0〜4の整数を表す。
u2は0又は1を表す。
o2が2以上であるとき、複数のRb13は互いに同一でも異なっていてもよく、p2が2以上であるとき、複数のRb14は互いに同一でも異なっていてもよく、s2が2以上であるとき、複数のRb15は互いに同一でも異なっていてもよく、t2が2以上であるとき、複数のRb18は互いに同一でも異なっていてもよい。
b12のアルキルカルボニルオキシ基としては、すでに例示したアシル基と酸素原子とが結合したものである。
b9〜Rb12のアルキル基の好適例は、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、オクチル基及び2−エチルヘキシル基などである。
b9〜Rb11の脂環式炭化水素基の好適例は、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロデシル基、2−アルキルアダマンタン−2−イル基、1−(アダマンタン−1−イル)アルカン−1−イル基及びイソボルニル基などである。
b12の芳香族炭化水素基としては、フェニル基、4−メチルフェニル基、4−エチルフェニル基、4−tert−ブチルフェニル基、4−シクロへキシルフェニル基、4−メトキシフェニル基、ビフェニリル基及びナフチル基などである。
b12の芳香族炭化水素基とアルキル基が結合したものとしては、アラルキル基が挙げられ、具体的にはベンジル基等が挙げられる。
b9とRb10との組み合わせが結合して形成する環としては例えば、チオラン−1−イウム環(テトラヒドロチオフェニウム環)、チアン−1−イウム環及び1,4−オキサチアン−4−イウム環などが挙げられる。
b11とRb12との組み合わせが結合して形成する環としては例えば、オキソシクロヘプタン環、オキソシクロヘキサン環、オキソノルボルナン環及びオキソアダマンタン環などが挙げられる。
式(b2−1)〜式(b2−4)で表される有機カチオンの具体例は、特開2010−204646号公報に記載されたものを挙げることができる。
例示した有機カチオンの中でも、カチオン(b2−1)が好ましく、以下の式(b2−1−1)で表される有機カチオン〔以下、「カチオン(b2−1−1)」という場合がある。〕がより好ましく、トリフェニルスルホニウムカチオン(式(b2−1−1)中、v2=w2=x2=0である。)又はトリトリルスルホニウムカチオン(式(b2−1−1)中、v2=w2=x2=1であり、Rb19、Rb20及びRb21がいずれもメチル基である。)がさらに好ましい。
Figure 2012107204

式(b2−1−1)中、
b19、Rb20及びRb21は、それぞれ独立に、ハロゲン原子(より好ましくはフッ素原子)、ヒドロキシ基、炭素数1〜18の脂肪族炭化水素基又は炭素数1〜12のアルコキシ基を表す。
該脂肪族炭化水素基としては、炭素数は1〜12の脂肪族炭化水素基が好ましく、炭素数1〜12のアルキル基及び炭素数4〜18の脂環式炭化水素基がより好ましい。該脂肪族炭化水素基は、置換基として、ハロゲン原子、ヒドロキシ基、炭素数1〜12のアルコキシ基、炭素数6〜18の芳香族炭化水素基、炭素数2〜4のアシル基又はグリシジルオキシ基を有していてもよい。
v2、w2及びx2は、それぞれ独立に0〜5の整数(好ましくは0又は1)を表す。
v2が2以上のとき、複数のRb19は互いに同一でも異なっていてもよく、w2が2以上のとき、複数のRb20は互いに同一でも異なっていてもよく、x2が2以上のとき、複数のRb21は互いに同一でも異なっていてもよい。
なかでも、Rb19、Rb20及びRb21は、それぞれ独立に、好ましくは、ハロゲン原子(より好ましくはフッ素原子)、ヒドロキシ基、炭素数1〜12のアルキル基、又は炭素数1〜12のアルコキシ基であることが好ましい。
カチオン(b2−1−1)としては、以下のものが挙げられる。
Figure 2012107204
Figure 2012107204
Figure 2012107204
Figure 2012107204
また、有機カチオンとしては、式(b2−3)で表される有機カチオンのうち、以下の有機カチオンも好適なものとして挙げることができる。
Figure 2012107204
酸発生剤(B1)を、それを構成するスルホン酸アニオン及び有機カチオンの各々について説明したが、該酸発生剤(B1)は該スルホン酸アニオン及び該有機カチオンの組合せである。該スルホン酸アニオンと該有機カチオンとは任意に組み合わせることができる。該スルホン酸アニオン及び該有機カチオンの組み合わせを表1に示す。なお、表1において、式(b1−s−1)で表されるスルホン酸アニオンなどを、その式番号に応じて、「(b1−s−1)」などと表し、式(b2−c−1)で表される有機カチオンなどを、その式番号に応じて、「(b2−c−1)」などと表すことにする。
Figure 2012107204
さらに好ましい酸発生剤(B1)を具体的に示す。このような酸発生剤(B1)は、以下の式(B1−1)、式(B1−2)、式(B1−3)、式(B1−4)、式(B1−5)、式(B1−6)、式(B1−7)、式(B1−8)、式(B1−9)、式(B1−10)、式(B1−11)、式(B1−12)、式(B1−13)、式(B1−14)、式(B1−15)、式(B1−16)及び式(B1−17)のいずれかで表される塩である。中でも、酸発生剤(B)は、中でもトリフェニルスルホニウムカチオンを含む塩及びトリトリルスルホニウムカチオンを含む塩が好ましく酸発生剤(B1)である、式(B1−2)、式(B1−3)、式(B1−6)、式(B1−7)、式(B1−11)、式(B1−12)、式(B1−13)及び(B1−14)のいずれかで表される塩がより好ましい。また、すでに述べたように、Yが置換基を有していてもよい脂環式炭化水素基が好ましいので、この点では、式(B1−2)、式(B1−3)、(B1−6)、式(B1−7)及び式(B1−11)のいずれかで表される塩がより好ましい。
Figure 2012107204
Figure 2012107204
Figure 2012107204
Figure 2012107204
酸発生剤(B)は、酸発生剤(B1)とは異なる酸発生剤を含んでいてもよい。この場合は、酸発生剤(B)の総量における酸発生剤(B1)の含有割合は、70質量%以上が好ましく、90質量%以上がより好ましい。ただし、本レジスト組成物における酸発生剤(B)は、実質的に酸発生剤(B1)のみであることがさらに好ましい。
<塩基性化合物(以下、場合により「塩基性化合物(C)」という。)>
本発明のレジスト組成物は、塩基性化合物(C)を含むことが好ましい。ここでいう「塩基性化合物」とは、酸を捕捉するという特性を有する化合物、特に、酸発生剤から発生する酸を捕捉するという特性を有する化合物を意味する。
塩基性化合物(C)は、好ましくは塩基性の含窒素有機化合物であり、例えばアミン及び、塩基性のアンモニウム塩が挙げられる。アミンとしては、脂肪族アミン及び芳香族アミンのいずれでもよい。脂肪族アミンとしては、第一級アミン、第二級アミン及び第三級アミンが挙げられる。塩基性化合物(C)として、好ましくは、式(C1)で表される化合物〜式(C8)で表される化合物が挙げられ、より好ましくは式(C1−1)で表される化合物が挙げられる。
Figure 2012107204
[式(C1)中、Rc1、Rc2及びRc3は、それぞれ独立に、水素原子、炭素数1〜6のアルキル基、炭素数5〜10の脂環式炭化水素基又は炭素数6〜10の芳香族炭化水素基を表し、該アルキル基及び該脂環式炭化水素基に含まれる水素原子は、ヒドロキシ基、アミノ基又は炭素数1〜6のアルコキシ基で置換されていてもよく、該芳香族炭化水素基に含まれる水素原子は、炭素数1〜6のアルキル基、炭素数1〜6のアルコキシ基、炭素数5〜10の脂環式炭化水素又は炭素数6〜10の芳香族炭化水素基で置換されていてもよい。]
Figure 2012107204
[式(C1−1)中、Rc2及びRc3は、上記と同じ意味を表す。
c4は、炭素数1〜6のアルキル基、炭素数1〜6のアルコキシ基、炭素数5〜10の脂環式炭化水素又は炭素数6〜10の芳香族炭化水素基を表す。
m3は0〜3の整数を表し、m3が2以上のとき、複数のRc4は、互いに同一でも異なっていてもよい。]
Figure 2012107204
[式(C2)、式(C3)及び式(C4)中、Rc5、Rc6、Rc7及びRc8は、それぞれ独立に、Rc1と同じ意味を表す。
c9は、炭素数1〜6のアルキル基、炭素数3〜6の脂環式炭化水素基又は炭素数2〜6のアルカノイル基を表す。
n43は0〜8の整数を表し、n43が2以上のとき、複数のRc9は、互いに同一でも異なっていてもよい。]
Figure 2012107204
[式(C5)及び式(C6)中、Rc10、Rc11、Rc12、Rc13及びRc16は、それぞれ独立に、Rc1と同じ意味を表す。
c14、Rc15及びRc17は、それぞれ独立に、Rc4と同じ意味を表す。
o3及びp3は、それぞれ独立に0〜3の整数を表し、o3又はp3が2以上であるとき、それぞれ、複数のRc14及びRc15は互いに同一でも異なってもよい。
c1は、炭素数1〜6のアルキレン基、−CO−、−C(=NH)−、−S−又はこれらを組合せた2価の基を表す。]
Figure 2012107204
[式(C7)及び式(C8)中、Rc18、Rc19及びRc20は、それぞれ独立に、Rc4と同じ意味を表す。
q3、r3及びs3は、それぞれ独立に0〜3の整数を表し、q3、r3及びs3が2以上であるとき、それぞれ、複数のRc18、Rc19及びRc20は互いに同一でも異なってもよい。
c2は、単結合又は炭素数1〜6のアルキレン基、−CO−、−C(=NH)−、−S−又はこれらを組合せた2価の基を表す。]
式(C1)で表される化合物としては、1−ナフチルアミン、2−ナフチルアミン、アニリン、ジイソプロピルアニリン、2−,3−又は4−メチルアニリン、4−ニトロアニリン、N−メチルアニリン、N,N−ジメチルアニリン、ジフェニルアミン、ヘキシルアミン、ヘプチルアミン、オクチルアミン、ノニルアミン、デシルアミン、ジブチルアミン、ジペンチルアミン、ジヘキシルアミン、ジヘプチルアミン、ジオクチルアミン、ジノニルアミン、ジデシルアミン、トリエチルアミン、トリメチルアミン、トリプロピルアミン、トリブチルアミン、トリペンチルアミン、トリヘキシルアミン、トリヘプチルアミン、トリオクチルアミン、トリノニルアミン、トリデシルアミン、メチルジブチルアミン、メチルジペンチルアミン、メチルジヘキシルアミン、メチルジシクロヘキシルアミン、メチルジヘプチルアミン、メチルジオクチルアミン、メチルジノニルアミン、メチルジデシルアミン、エチルジブチルアミン、エチルジペンチルアミン、エチルジヘキシルアミン、エチルジヘプチルアミン、エチルジオクチルアミン、エチルジノニルアミン、エチルジデシルアミン、ジシクロヘキシルメチルアミン、トリス〔2−(2−メトキシエトキシ)エチル〕アミン、トリイソプロパノールアミンエチレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン、4,4’−ジアミノ−1,2−ジフェニルエタン、4,4’−ジアミノ−3,3’−ジメチルジフェニルメタン、4,4’−ジアミノ−3,3’−ジエチルジフェニルメタン等が挙げられ、好ましくはジイソプロピルアニリンが挙げられ、特に好ましくは2,6−ジイソプロピルアニリンが挙げられる。
式(C2)で表される化合物としては、ピペラジン等が挙げられる。
式(C3)で表される化合物としては、モルホリン等が挙げられる。
式(C4)で表される化合物としては、ピペリジン及び特開平11−52575号公報に記載されているピペリジン骨格を有するヒンダードアミン化合物等が挙げられる。
式(C5)で表される化合物としては、2,2’−メチレンビスアニリン等が挙げられる。
式(C6)で表される化合物としては、イミダゾール、4−メチルイミダゾール等が挙げられる。
式(C7)で表される化合物としては、ピリジン、4−メチルピリジン等が挙げられる。
式(C8)で表される化合物としては、1,2−ジ(2−ピリジル)エタン、1,2−ジ(4−ピリジル)エタン、1,2−ジ(2−ピリジル)エテン、1,2−ジ(4−ピリジル)エテン、1,3−ジ(4−ピリジル)プロパン、1,2−ジ(4−ピリジルオキシ)エタン、ジ(2−ピリジル)ケトン、4,4’−ジピリジルスルフィド、4,4’−ジピリジルジスルフィド、2,2’−ジピリジルアミン、2,2’−ジピコリルアミン、ビピリジン等が挙げられる。
アンモニウム塩としては、テトラメチルアンモニウムヒドロキシド、テトライソプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、テトラヘキシルアンモニウムヒドロキシド、テトラオクチルアンモニウムヒドロキシド、フェニルトリメチルアンモニウムヒドロキシド、3−(トリフルオロメチル)フェニルトリメチルアンモニウムヒドロキシド、テトラ−n−ブチルアンモニウムサリチラート及びコリン等が挙げられる。
<溶剤(以下、場合により「溶剤(D)」という。)>
本レジスト組成物に含有される溶剤(D)は、用いる樹脂(A)[樹脂(AA)又は樹脂(AB)]の種類及びその量と、酸発生剤の種類及びその量などに応じ、さらに後述するレジストパターンの製造において、基板上に本レジスト組成物を塗布する際の塗布性が良好となるという点から適宜、最適なものを選ぶことができる。
好適な溶剤(D)の例としては、エチルセロソルブアセテート、メチルセロソルブアセテート及びプロピレングリコールモノメチルエーテルアセテートなどのグリコールエーテルエステル類;プロピレングリコールモノメチルエーテルなどのグリコールエーテル類;乳酸エチル、酢酸ブチル、酢酸アミル及びピルビン酸エチルなどのエステル類;アセトン、メチルイソブチルケトン、2−ヘプタノン及びシクロヘキサノンなどのケトン類;γ−ブチロラクトンなどの環状エステル類を挙げることができる。溶剤(D)は、1種のみを使用してもよく、2種以上を併用してもよい。
<その他の成分>
本レジスト組成物は、必要に応じて、樹脂(A)[樹脂(AA)又は樹脂(AB)]、酸発生剤(B)、溶剤(D)及び必要に応じて用いられる塩基性化合物(C)以外の構成成分を含有していてもよい。この構成成分を「成分(F)」という場合がある。かかる成分(F)に特に限定はなく、本技術分野で公知の添加剤、例えば、増感剤、溶解抑止剤、界面活性剤、安定剤及び染料などである。
<本レジスト組成物及びその調製方法>
本レジスト組成物は、樹脂(A)、酸発生剤(B)[好ましくは、酸発生剤(B1)]及び溶剤(D)を混合することで、又は、
樹脂(A)、酸発生剤(B)[好ましくは、酸発生剤(B1)]、塩基性化合物(C)及び溶剤(D)を混合することで調製することができる。さらに、上述のとおり、樹脂(A)が樹脂(AB)である場合、樹脂(X)を混合する必要があり、必要に応じて成分(F)を混合することもある。かかる混合において、その混合順は任意であり、特に限定されるものではない。混合する際の温度は、10〜40℃の範囲から、用いる樹脂(A)などの種類や樹脂(A)などの溶剤(D)に対する溶解度に応じて適切な温度範囲を選ぶことができる。混合時間は、混合温度に応じて選べばよく、0.5〜24時間が好ましい。なお、混合手段は特に限定されず、攪拌混合などを用いることができる。
溶剤(D)の含有量は、上述のとおり、樹脂(A)の種類などに応じて適宜調節できるが、本レジスト組成物総質量に対して、溶剤(D)は90質量%以上であると好ましい。溶剤(D)の含有量が90質量%である本レジスト組成物では、該本レジスト組成物総質量に対する固形分の含有量は10質量%に該当する。このような含有量で溶剤(D)を含有する本レジスト組成物は、例えば後述するレジストパターンの製造方法において、厚み30〜300nm程度の組成物層を形成可能な薄膜レジストとして適している。この観点からは、本レジスト組成物総質量に対する溶剤(D)の含有量は、より好ましくは92質量%以上であり、さらに好ましくは94質量%以上である。該溶剤(D)の含有量の上限は例えば、99.9質量%以下であり、好ましくは99質量%以下である。
この溶剤(D)の含有量は、本レジスト組成物を調製する際の溶剤(D)の使用量により制御可能であり、本レジスト組成物を調製した後には、該本レジスト組成物を、例えば液体クロマトグラフィー又はガスクロマトグラフィーなどの公知の分析手段に供して求めることもできる。
樹脂(A)の本レジスト組成物に対する含有量は、当該樹脂(A)が樹脂(AA)である場合、該本レジスト組成物の固形分の総質量に対して、好ましい範囲が選択される。該固形分の総質量に対する樹脂(A)の含有量は、80質量%以上99質量%以下であると好ましい。
本レジスト組成物が樹脂(AB)及び樹脂(X)を含有する場合、その合計含有量は、該本レジスト組成物の固形分の総質量に対して、好ましい範囲が選択される。該固形分の総質量に対する合計含有量は、80質量%以上99質量%以下であると好ましい。
本レジスト組成物に対する酸発生剤の含有質量は、本レジスト組成物に含有される樹脂(A)の総質量に対して、好ましい範囲が選択される。酸発生剤が酸発生剤(B1)である場合、具体的には、樹脂(A)100質量部に対して、酸発生剤(B1)が好ましくは1質量部以上であり、より好ましくは3質量部以上である。また、樹脂(A)100質量部に対して、酸発生剤(B1)が好ましくは30質量部以下であり、より好ましくは25質量部以下である。
本レジスト組成物に塩基性化合物(C)を用いる場合、その含有量は本レジスト組成物の固形分の総質量に対して、0.01〜1質量%程度が好ましい。
これら樹脂(A)、酸発生剤及び溶剤(D)、並びに必要に応じて用いられる塩基性化合物(C)の各々の好適な含有量も、本レジスト組成物を調製する際の各々の使用量により制御可能である。本レジスト組成物を調製した後には、該本レジスト組成物を、例えばガスクロマトグラフィー、液体クロマトグラフィー等の公知の分析手段に供して求めることもできる。
なお、成分(F)を本レジスト組成物に用いる場合には、当該成分(F)の種類に応じて、適切な含有量を調節することもできる。
このように、樹脂(A)、酸発生剤及び溶剤(D)、並びに必要に応じて用いられる塩基性化合物(C)又は成分(F)の各々を好ましい含有量で混合した後は、孔径0.01〜0.2μm程度のフィルターを用いてろ過等することにより、本レジスト組成物は調製できる。
<レジストパターンの製造方法>
続いて、本レジスト組成物を用いるレジストパターンの製造方法について説明する。
本発明のレジストパターンの製造方法は、
(1)本レジスト組成物を基板上に塗布する工程、
(2)塗布後の組成物を乾燥させて、該基板上に組成物層を形成する工程、
(3)組成物層を露光する工程、
(4)露光後の組成物層を加熱する工程、
(5)加熱後の組成物層を現像する工程
を含むものである。以下、ここに示す工程の各々を、「工程(1)」〜「工程(5)」のようにいう。
工程(1)における本レジスト組成物の基板上への塗布は、スピンコーターなど、半導体の微細加工のレジスト材料塗布用として広く用いられている塗布装置によって行うことができる。かくして基板上にレジスト組成物からなる塗布膜が形成される。当該塗布装置の条件(塗布条件)を種々調節することで、該塗布膜の膜厚は調整可能であり、適切な予備実験等を行うことにより、所望の膜厚の塗布膜になるように塗布条件を選ぶことができる。本レジスト組成物を塗布する前の基板は、微細加工を実施しようとする種々のものを選ぶことができる。なお、本レジスト組成物を塗布する前に、基板を洗浄したり、反射防止膜を形成しておいたりすることもできる。この反射防止膜の形成には例えば、市販の有機反射防止膜用組成物を用いることができる。
工程(2)においては、基板上に塗布された本レジスト組成物、すなわち塗布膜から溶剤〔溶剤(D)〕を除去する。このような溶剤除去は、例えば、ホットプレート等の加熱装置を用いた加熱手段(いわゆるプリベーク)、又は減圧装置を用いた減圧手段により、或いはこれらの手段を組み合わせて、該塗布膜から溶剤を蒸発させることにより行われる。加熱手段や減圧手段の条件は、本レジスト組成物に含まれる溶剤(D)の種類等に応じて選択でき、例えばホットプレートを用いる加熱手段の場合、該ホットプレートの表面温度を50〜200℃程度の範囲にすることが好ましい。また、減圧手段では、適当な減圧機の中に、塗布膜が形成された基板を封入した後、該減圧機の内部圧力を1〜1.0×10Pa程度にすればよい。かくして塗布膜から溶剤を除去することにより、該基板上には組成物層が形成される。
工程(3)は該組成物層を露光する工程であり、好ましくは、露光機を用いて該組成物層を露光するものである。この際には、微細加工を実施しようとする所望のパターンパターンが形成されたマスク(フォトマスク)を介して露光が行われる。露光機の露光光源としては、KrFエキシマレーザ(波長248nm)、ArFエキシマレーザ(波長193nm)、F2エキシマレーザ(波長157nm)のような紫外域のレーザ光を放射するもの、固体レーザ光源(YAG又は半導体レーザ等)からのレーザ光を波長変換して遠紫外域または真空紫外域の高調波レーザ光を放射するもの等、種々のものを用いることができる。また、該露光機は液浸露光機であってもよい。また、露光機は、電子線又は超紫外光(EUV)を照射するものであってもよい。
上述のとおり、マスクを介して露光することにより、該組成物層には露光された部分(露光部)及び露光されていない部分(未露光部)が生じる。露光部の組成物層では該組成物層に含まれる酸発生剤(B1)が露光エネルギーを受けて酸を発生し、さらに発生した酸との作用により、樹脂(AA)〔又は樹脂(X)〕にある酸不安定基が脱保護反応により親水性基を生じ、結果として露光部の組成物層にある樹脂(AA)〔又は樹脂(X)〕はアルカリ水溶液に可溶なものとなる。一方、未露光部では露光エネルギーを受けていないため、樹脂(AA)〔又は樹脂(X)〕はアルカリ水溶液に対して不溶又は難溶のままとなる。かくして、露光部にある組成物層と未露光部にある組成物層とは、アルカリ水溶液に対する溶解性が著しく相違することとなる。
工程(4)においては、露光部で生じうる脱保護基反応を、さらにその進行を促進するための加熱処理(いわゆるポストエキスポジャーベーク)が行われる。かかる加熱処理は前記工程(2)で示したホットプレートを用いる加熱手段などが好ましい。なお、工程(4)におけるホットプレート加熱を行う場合、該ホットプレートの表面温度は50〜200℃程度が好ましく、70〜150℃程度がより好ましい。加熱処理により、上記脱保護反応が促進される。
工程(5)は、加熱後の組成物層を現像する工程であり、好ましくは、加熱後の組成物層を現像装置を用いて現像する工程である。現像する工程で、加熱後の組成物層をアルカリ水溶液と接触させると、露光部の組成物層は該アルカリ水溶液に溶解して除去され、未露光部の組成物層は基板上に残るため、当該基板上にレジストパターンが製造される。
前記アルカリ水溶液としては、「アルカリ現像液」と称される本技術分野でで公知のものを用いることができる。該アルカリ水溶液としては例えば、テトラメチルアンモニウムヒドロキシドの水溶液や(2−ヒドロキシエチル)トリメチルアンモニウムヒドロキシド(通称コリン)の水溶液などが挙げられる。
現像後、製造されたレジストパターンに、超純水等でリンス処理を行うことが好ましく、さらに基板及びレジストパターン上に残存している水分を除去することが好ましい。
以上のような工程(1)〜工程(5)を含むレジストパターン製造方法によれば、CD均一性に優れ、欠陥の発生数が少ないレジストパターンを形成できる。
<用途>
本レジスト組成物は、KrFエキシマレーザ露光用のレジスト組成物、ArFエキシマレーザ露光用のレジスト組成物、電子線(EB)照射用のレジスト組成物又はEUV露光機用のレジスト組成物、さらに液浸露光用のレジスト組成物として好適である。
工に利用できる。
実施例を挙げて、本発明をさらに具体的に説明する。例中、含有量ないし使用量を表す「%」及び「部」は、特記しないかぎり質量基準である。
また重量平均分子量は、ゲルパーミュエーションクロマトグラフィーにより求めた値である。なお、ゲルパーミエーションクロマトグラフィーの分析条件は下記のとおりである。
カラム:TSKgel Multipore HXL-M x 3+guardcolumn(東ソー社製)
溶離液:テトラヒドロフラン
流量:1.0mL/min
検出器:RI検出器
カラム温度:40℃
注入量:100μl
分子量標準:標準ポリスチレン(東ソー社製)
合成例1〔式(I1)で表される化合物の合成〕
Figure 2012107204
式(I1−1)で表される化合物18.00部及び1,2−ジクロロエタン72.00部を反応器に仕込み、23℃で30分間攪拌した後、式(I1−2)で表される化合物24.90部及びp−トルエンスルホン酸1.46部を添加した。その後、100℃まで昇温し、同温度で3時間還流攪拌した。得られた反応物を、23℃まで冷却後、クロロホルム216.00部を添加して30分間攪拌し、不溶物をろ過して除去した。得られたろ液に、8.7%炭酸水素ナトリウム水溶液155.79部を加え、23℃で30分間攪拌し、さらに、静置、分液した。回収された有機層に、イオン交換水108.00部を仕込み23℃で30分間攪拌した後、分液することにより有機層を水洗した。この水洗操作を10回繰り返した。回収された有機層を濃縮した後、得られた濃縮物に、n−ヘプタン60.00部を加えて攪拌し、上澄液を回収した。回収された上澄液を濃縮した後、得られた濃縮物に、n−ヘプタン16.00部及び酢酸エチル2.00部を加えて、0℃で12時間攪拌した後、ろ過することにより、式(I1)で表される化合物11.07部を得た。
MS:378.2
合成例2〔式(I2)で表される化合物の合成〕
Figure 2012107204
式(I2−1)で表される化合物18.00部及び1,2−ジクロロエタン72.00部を反応器に仕込み、23℃で30分間攪拌した後、式(I2−2)で表される化合物32.58部及びp−トルエンスルホン酸1.46部を添加した。その後、100℃まで昇温し、同温度で3時間還流攪拌した。得られた反応物を、23℃まで冷却後、クロロホルム200部を添加して30分間攪拌し、不溶物をろ過して除去した。得られたろ液に、8.7%炭酸水素ナトリウム水溶液150部を加え、23℃で30分間攪拌し、さらに、静置、分液した。回収された有機層に、イオン交換水100部を仕込み23℃で30分間攪拌した後、分液することにより有機層を水洗した。この水洗操作を5回繰り返した。回収された有機層を濃縮した後、得られた濃縮物に、n−ヘプタン100部を加えて攪拌し、上澄液を回収した。回収された上澄液を濃縮した後、得られた濃縮物に、n−ヘプタン20部及び酢酸エチル2部を加えて、23℃で3時間攪拌した後、ろ過することにより、式(I2)で表される化合物8.89部を得た。
MS:428.1
樹脂の合成において使用した化合物(モノマー)を下記に示す。
Figure 2012107204
以下、これらのモノマーを式番号に応じて、「モノマー(A)」〜「モノマー(O)」という。
実施例1〔樹脂A1の合成〕
モノマーとして、モノマー(E)、モノマー(F)、モノマー(G)、モノマー(H)及びモノマー(I1)を用い、そのモル比(モノマー(E):モノマー(F):モノマー(G):モノマー(H):モノマー(I1))が40:10:17:30:3となるように混合し、全モノマー量の1.5質量倍のジオキサンを加えて溶液とした。当該溶液に、開始剤としてアゾビスイソブチロニトリル及びアゾビス(2,4−ジメチルバレロニトリル)を全モノマー量に対して各々、1mol%及び3mol%添加し、これらを75℃で約5時間加熱した。得られた反応混合物を、大量のメタノール/水混合溶媒に注いで樹脂を沈殿させ、この樹脂をろ過した。かくして得られた樹脂を再び、ジオキサンに溶解させて得られる溶解液をメタノール/水混合溶媒に注いで樹脂を沈殿させ、この樹脂をろ過するという再沈殿操作を2回行い、重量平均分子量7.9×10の樹脂A1(共重合体)を収率66%で得た。この樹脂A1は、以下の構造単位を有するものである。
Figure 2012107204
実施例2〔樹脂A2の合成〕
モノマーとして、モノマー(I1)及びモノマー(L)を用い、そのモル比(モノマー(I1):モノマー(L))が20:80となるように混合し、全モノマー量の1.5質量倍のジオキサンを加えて溶液とした。当該溶液に、開始剤としてアゾビスイソブチロニトリル及びアゾビス(2,4−ジメチルバレロニトリル)を全モノマー量に対して各々、0.7mol%及び2.1mol%添加し、これらを75℃で約5時間加熱した。得られた反応混合物を、大量のメタノール/水混合溶媒に注いで樹脂を沈殿させ、この樹脂をろ過した。かくして得られた樹脂を再び、ジオキサンに溶解させて得られる溶解液をメタノール/水混合溶媒に注いで樹脂を沈殿させ、この樹脂をろ過するという再沈殿操作を2回行い、重量平均分子量1.5×10の樹脂A2(共重合体)を収率59%で得た。この樹脂A2は、以下の構造単位を有するものである。
Figure 2012107204
実施例3〔樹脂A3の合成〕
モノマーとして、モノマー(I1)及びモノマー(M)を用い、そのモル比(モノマー(I1):モノマー(M))が50:50となるように混合し、全モノマー量の1.5質量倍のジオキサンを加えて溶液とした。当該溶液に、開始剤としてアゾビスイソブチロニトリル及びアゾビス(2,4−ジメチルバレロニトリル)を全モノマー量に対して各々、0.7mol%及び2.1mol%添加し、これらを75℃で約5時間加熱した。得られた反応混合物を、大量のメタノール/水混合溶媒に注いで樹脂を沈殿させ、この樹脂をろ過した。かくして得られた樹脂を再び、ジオキサンに溶解させて得られる溶解液をメタノール/水混合溶媒に注いで樹脂を沈殿させ、この樹脂をろ過するという再沈殿操作を2回行い、重量平均分子量1.3×10の樹脂A3(共重合体)を収率60%で得た。この樹脂A3は、以下の構造単位を有するものである。
Figure 2012107204
実施例4〔樹脂A4の合成〕
モノマーとして、モノマー(I1)及びモノマー(N)を用い、そのモル比(モノマー(I1):モノマー(N))が60:40となるように混合し、全モノマー量の1.5質量倍のジオキサンを加えて溶液とした。当該溶液に、開始剤としてアゾビスイソブチロニトリル及びアゾビス(2,4−ジメチルバレロニトリル)を全モノマー量に対して各々、0.7mol%及び2.1mol%添加し、これらを75℃で約5時間加熱した。得られた反応混合物を、大量のメタノール/水混合溶媒に注いで樹脂を沈殿させ、この樹脂をろ過した。かくして得られた樹脂を再び、ジオキサンに溶解させて得られる溶解液をメタノール/水混合溶媒に注いで樹脂を沈殿させ、この樹脂をろ過するという再沈殿操作を2回行い、重量平均分子量1.3×10の樹脂A4(共重合体)を収率61%で得た。この樹脂A4は、以下の構造単位を有するものである。
Figure 2012107204
実施例5〔樹脂A5の合成〕
モノマーとして、モノマー(I1)及びモノマー(O)を用い、そのモル比(モノマー(I1):モノマー(O))が20:80となるように混合し、全モノマー量の1.5質量倍のジオキサンを加えて溶液とした。当該溶液に、開始剤としてアゾビスイソブチロニトリル及びアゾビス(2,4−ジメチルバレロニトリル)を全モノマー量に対して各々、0.7mol%及び2.1mol%添加し、これらを75℃で約5時間加熱した。得られた反応混合物を、大量のメタノール/水混合溶媒に注いで樹脂を沈殿させ、この樹脂をろ過した。かくして得られた樹脂を再び、ジオキサンに溶解させて得られる溶解液をメタノール/水混合溶媒に注いで樹脂を沈殿させ、この樹脂をろ過するという再沈殿操作を2回行い、重量平均分子量1.3×10の樹脂A5(共重合体)を収率68%で得た。この樹脂A5は、以下の構造単位を有するものである。
Figure 2012107204
合成例3〔樹脂A6の合成〕
モノマーとして、モノマー(E)、モノマー(K)、モノマー(F)、モノマー(H)及びモノマー(G)を用い、そのモル比(モノマー(E):モノマー(K):モノマー(F):モノマー(H):モノマー(G))が32:7:8:10:43となるように混合し、全モノマー量の1.5質量倍のジオキサンを加えて溶液とした。当該溶液に、開始剤としてアゾビスイソブチロニトリル及びアゾビス(2,4−ジメチルバレロニトリル)を全モノマー量に対して各々、1mol%及び3mol%添加し、これらを73℃で約5時間加熱した。得られた反応混合物を、大量のメタノール/水混合溶媒に注いで樹脂を沈殿させ、この樹脂をろ過した。かくして得られた樹脂を再び、ジオキサンに溶解させて得られる溶解液をメタノール/水混合溶媒に注いで樹脂を沈殿させ、この樹脂をろ過するという再沈殿操作を2回行い、重量平均分子量8.9×10の樹脂A6(共重合体)を収率78%で得た。この樹脂A6は、以下の構造単位を有するものである。
Figure 2012107204
合成例4〔樹脂A7の合成〕
モノマーとして、モノマー(A)、モノマー(B)及びモノマー(C)を用い、そのモル比(モノマー(A):モノマー(B):モノマー(C))が36:34:30となるように混合し、全モノマー量の1.5質量倍のジオキサンを加えて溶液とした。当該溶液に、開始剤としてアゾビスイソブチロニトリル及びアゾビス(2,4−ジメチルバレロニトリル)を全モノマー量に対して各々、1.5mol%及び4.5mol%添加し、これらを75℃で約5時間加熱した。得られた反応混合物を、大量のメタノール/水混合溶媒に注いで樹脂を沈殿させ、この樹脂をろ過した。かくして得られた樹脂を再び、ジオキサンに溶解させて得られる溶解液をメタノール/水混合溶媒に注いで樹脂を沈殿させ、この樹脂をろ過するという再沈殿操作を2回行い、重量平均分子量5.0×10の樹脂A7(共重合体)を収率48%で得た。この樹脂A7は、以下の構造単位を有するものである。

Figure 2012107204
合成例5〔樹脂A8の合成〕
モノマーとして、モノマー(B)及びモノマー(D)を用い、そのモル比(モノマー(B):モノマー(D))が70:30となるように混合し、全モノマー量の1.5質量倍のジオキサンを加えて溶液とした。当該溶液に、開始剤としてアゾビスイソブチロニトリル及びアゾビス(2,4−ジメチルバレロニトリル)を全モノマー量に対して各々、1mol%及び3mol%添加し、これらを75℃で約5時間加熱した。得られた反応混合物を、大量のメタノール/水混合溶媒に注いで樹脂を沈殿させ、この樹脂をろ過した。かくして得られた樹脂を再び、ジオキサンに溶解させて得られる溶解液をメタノール/水混合溶媒に注いで樹脂を沈殿させ、この樹脂をろ過するという再沈殿操作を2回行い、重量平均分子量6.7×10の樹脂A8(共重合体)を収率58%で得た。この樹脂A8は、以下の構造単位を有するものである。
Figure 2012107204
実施例6〔樹脂A9の合成〕
モノマーとして、モノマー(I2)及びモノマー(O)を用い、そのモル比(モノマー(I2):モノマー(O))が20:80となるように混合し、全モノマー量の1.5質量倍のジオキサンを加えて溶液とした。当該溶液に、開始剤としてアゾビスイソブチロニトリル及びアゾビス(2,4−ジメチルバレロニトリル)を全モノマー量に対して各々、0.7mol%及び2.1mol%添加し、これらを75℃で約5時間加熱した。得られた反応混合物を、大量のメタノール/水混合溶媒に注いで樹脂を沈殿させ、この樹脂をろ過した。かくして得られた樹脂を再び、ジオキサンに溶解させて得られる溶解液をメタノール/水混合溶媒に注いで樹脂を沈殿させ、この樹脂をろ過するという再沈殿操作を2回行い、重量平均分子量1.6×10の樹脂A9(共重合体)を収率79%で得た。この樹脂A6は、以下の構造単位を有するものである。
Figure 2012107204
実施例7〜14及び比較例1
<レジスト組成物の調製>
実施例1〜5及び合成例2〜4で得られた樹脂A1〜樹脂A8;
以下に示す酸発生剤B1〜B2;
以下に示す塩基性化合物C1;
の各々を表2に示す質量部で、以下に示す溶剤に溶解し、さらに孔径0.2μmのフッ素樹脂製フィルターで濾過して、レジスト組成物を調製した。
Figure 2012107204
<樹脂>
A1〜A8:樹脂A1〜樹脂A8
<酸発生剤>
B1:
Figure 2012107204
B2:
Figure 2012107204
<塩基性化合物:クエンチャー>
C1:2,6−ジイソプロピルアニリン
<溶剤>
プロピレングリコールモノメチルエーテルアセテート 265.0部
プロピレングリコールモノメチルエーテル 20.0部
2−ヘプタノン 20.0部
γ−ブチロラクトン 3.5部
<レジストパターンの製造及びその評価>
実施例7〜14の本レジスト組成物及び比較例1のレジスト組成物は以下のようにして欠陥評価、並びに、液浸露光によるCD均一性(CDU)評価を行った。以下、本レジスト組成物及び比較例1のレジスト組成物を総称して、「レジスト組成物」ということがある。
<欠陥評価>
12インチのシリコン製ウェハー(基板)に、レジスト組成物を、乾燥後の膜厚が0.15μmとなるように塗布(スピンコート)した。塗布後、ダイレクトホットプレート上にて、表1のPB欄に示す温度で60秒間プリベーク(PB)し、ウェハー上に組成物層を形成させた。
このようにして組成物層を形成したウェハーに、現像機[ACT−12;東京エレクトロン(株)製]を用いて、60秒間、水リンスを行った。
その後、欠陥検査装置[KLA−2360;KLAテンコール製]を用いて、ウェハ上の欠陥数を測定した。
結果を表3に示す。
<レジスト組成物の液浸露光評価>
以下のようにして、レジスト組成物の液浸露光を行い、CD均一性(CDU)評価を実施した。
シリコンウェハに、有機反射防止膜用組成物(ARC−29;日産化学(株)製)を塗布して、205℃、60秒の条件でベークすることによって、厚さ780Åの有機反射防止膜を形成した。次いで、前記の有機反射防止膜の上に、上記のレジスト組成物を乾燥(プリベーク)後の膜厚が85nmとなるようにスピンコートした。レジスト組成物を塗布したシリコンウェハをダイレクトホットプレート上にて、表1の「PB」欄に記載された温度で60秒間プリベークし、レジスト膜を形成した。レジスト膜が形成されたシリコンウェハに、液浸露光用ArFエキシマステッパー(XT:1900Gi;ASML社製、NA=1.35、3/4Annular X−Y偏光)で、コンタクトホールパターン(ホールピッチ100nm/ホール径70nm)を形成するためのマスクを用いて、露光量を段階的に変化させて露光した。なお、液浸媒体としては超純水を使用した。
露光後、前記シリコンウェハを、ホットプレート上にて、表1の「PEB」欄に記載された温度で60秒間ポストエキスポジャーベーク処理した。次いでこのシリコンウェハを、2.38%テトラメチルアンモニウムヒドロキシド水溶液で60秒間のパドル現像を行った。
現像後に得られたレジストパターンにおいて、前記マスクを用いて形成したホール径が55nmとなる露光量を実効感度とした。
<CD均一性(CDU)評価>
実効感度において、ホール径70nmのマスクで形成したパターンのホール径を、一つのホールにつき24回測定し、その平均値を一つのホールの平均ホール径とした。同一ウェハ内の、ホール径70nmのマスクで形成したパターンの平均ホール径を400箇所測定したものを母集団として標準偏差を求めた。
この結果を表3に示す。
Figure 2012107204
本レジスト組成物(実施例7〜実施例14)を用いて得られるレジストパターンは欠陥の発生数も少なく、優れたCDUで、レジストパターンを形成することができた。一方、比較例1のレジスト組成物では、得られるレジストパターンの欠陥の発生数も多く、CDUも不良であった。
本発明のレジスト組成物は、半導体の微細加工に利用できる。

Claims (8)

  1. 式(a)で表される構造単位を有する樹脂。
    Figure 2012107204
    [式(a)中、
    は、フッ素原子又は炭素数1〜6のフッ素化アルキル基を表し、複数のRはそれぞれ独立である。
    nは、1〜10の整数を表す。
    Wは、炭素数3〜36の脂肪族環を表す。該脂肪族環を構成するメチレン基は、酸素原子、硫黄原子、カルボニル基又はスルホニル基に置き換わっていてもよく、該脂肪族環に含まれる水素原子は、ヒドロキシ基、炭素数1〜12のアルキル基、炭素数1〜12のアルコキシ基、炭素数3〜12の脂環式炭化水素基又は炭素数6〜10の芳香族炭化水素基で置換されていてもよい。
    は、炭素数1〜17の脂肪族炭化水素基又は単結合を表し、該脂肪族炭化水素基を構成するメチレン基は酸素原子又はカルボニル基に置き換わっていてもよい。
    は、ハロゲン原子を有してもよい炭素数1〜6のアルキル基、水素原子又はハロゲン原子を表す。]
  2. 前記式(a)の
    Figure 2012107204
    で表される部分構造が、式(aa−1)、式(aa−2)、式(aa−3)又は式(aa−4)で表される構造である請求項1記載の樹脂。
    Figure 2012107204

    [式(aa−1)、式(aa−2)、式(aa−3)及び式(aa−4)中、環を構成するメチレン基は、酸素原子、硫黄原子、カルボニル基又はスルホニル基に置き換わっていてもよく、環を構成する水素原子は、ヒドロキシ基、炭素数1〜12のアルキル基、炭素数1〜12のアルコキシ基、炭素数3〜12の脂環式炭化水素基又は炭素数6〜10の芳香族炭化水素基に置換されていてもよい。]
  3. 前記式(a)の
    Figure 2012107204
    で表される部分構造が、前記式(aa−1)で表される構造である請求項2記載の樹脂。
  4. 前記式(a)の複数のRのうち、少なくとも1つはフッ素原子である請求項1〜3のいずれか記載の樹脂。
  5. 請求項1〜4のいずれか記載の樹脂と、酸発生剤と、溶剤とを含有するレジスト組成物。
  6. さらに塩基性化合物を含有する請求項5記載のレジスト組成物。
  7. (1)請求項5又は6記載のレジスト組成物を基板上に塗布する工程、
    (2)塗布後の組成物を乾燥させて組成物層を形成する工程、
    (3)組成物層を露光する工程、
    (4)露光後の組成物層を加熱する工程、
    (5)加熱後の組成物層を現像する工程、
    を含むレジストパターンの製造方法。
  8. 式(a’)で表される化合物。
    Figure 2012107204
    [式(a’)中、
    は、フッ素原子又は炭素数1〜6のフッ素化アルキル基を表し、複数のRはそれぞれ独立である。
    nは、1〜10の整数を表す。
    Wは、炭素数3〜36の脂肪族環を表す。該脂肪族環を構成するメチレン基は、酸素原子、硫黄原子、カルボニル基又はスルホニル基に置き換わっていてもよく、該脂肪族環に含まれる水素原子は、ヒドロキシ基、炭素数1〜12のアルキル基、炭素数1〜12のアルコキシ基、炭素数3〜12の脂環式炭化水素基又は炭素数6〜10の芳香族炭化水素基で置換されていてもよい。
    は、炭素数1〜17の脂肪族炭化水素基又は単結合を表し、該脂肪族炭化水素基を構成するメチレン基は酸素原子又はカルボニル基に置き換わっていてもよい。
    は、ハロゲン原子を有してもよい炭素数1〜6のアルキル基、水素原子又はハロゲン原子を表す。]
JP2011208602A 2010-10-22 2011-09-26 レジスト組成物及びレジストパターンの製造方法 Withdrawn JP2012107204A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011208602A JP2012107204A (ja) 2010-10-22 2011-09-26 レジスト組成物及びレジストパターンの製造方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010237120 2010-10-22
JP2010237120 2010-10-22
JP2011208602A JP2012107204A (ja) 2010-10-22 2011-09-26 レジスト組成物及びレジストパターンの製造方法

Publications (1)

Publication Number Publication Date
JP2012107204A true JP2012107204A (ja) 2012-06-07

Family

ID=46493149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011208602A Withdrawn JP2012107204A (ja) 2010-10-22 2011-09-26 レジスト組成物及びレジストパターンの製造方法

Country Status (1)

Country Link
JP (1) JP2012107204A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2011125684A1 (ja) * 2010-03-31 2013-07-08 Jsr株式会社 感放射線性樹脂組成物、レジストパターン形成方法、重合体及び化合物
JP2015043079A (ja) * 2013-07-24 2015-03-05 Jsr株式会社 感放射線性樹脂組成物、レジストパターン形成方法、重合体、化合物及び化合物の製造方法
KR20160024806A (ko) * 2014-08-25 2016-03-07 스미또모 가가꾸 가부시키가이샤 레지스트 조성물 및 레지스트 패턴의 제조방법
KR20160101873A (ko) * 2015-02-18 2016-08-26 스미또모 가가꾸 가부시키가이샤 화합물, 수지 및 포토레지스트 조성물
JP2016210765A (ja) * 2015-04-28 2016-12-15 住友化学株式会社 塩、酸発生剤、レジスト組成物及びレジストパターンの製造方法
JP2017206681A (ja) * 2016-05-13 2017-11-24 住友化学株式会社 化合物、樹脂、レジスト組成物及びレジストパターンの製造方法
TWI661271B (zh) * 2014-08-25 2019-06-01 日商住友化學股份有限公司 化合物、樹脂、抗蝕劑組合物及抗蝕劑圖案之製造方法

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2011125684A1 (ja) * 2010-03-31 2013-07-08 Jsr株式会社 感放射線性樹脂組成物、レジストパターン形成方法、重合体及び化合物
JP5655855B2 (ja) * 2010-03-31 2015-01-21 Jsr株式会社 感放射線性樹脂組成物、レジストパターン形成方法、重合体及び化合物
JP2015043079A (ja) * 2013-07-24 2015-03-05 Jsr株式会社 感放射線性樹脂組成物、レジストパターン形成方法、重合体、化合物及び化合物の製造方法
US9638996B2 (en) 2014-08-25 2017-05-02 Sumitomo Chemical Company, Limited Resist composition and method for producing resist pattern
KR102419879B1 (ko) * 2014-08-25 2022-07-12 스미또모 가가꾸 가부시키가이샤 레지스트 조성물 및 레지스트 패턴의 제조방법
KR20160024806A (ko) * 2014-08-25 2016-03-07 스미또모 가가꾸 가부시키가이샤 레지스트 조성물 및 레지스트 패턴의 제조방법
JP2016048371A (ja) * 2014-08-25 2016-04-07 住友化学株式会社 レジスト組成物及びレジストパターンの製造方法
TWI641907B (zh) * 2014-08-25 2018-11-21 日商住友化學股份有限公司 抗蝕劑組合物及抗蝕劑圖案之製造方法
TWI661271B (zh) * 2014-08-25 2019-06-01 日商住友化學股份有限公司 化合物、樹脂、抗蝕劑組合物及抗蝕劑圖案之製造方法
KR20160101873A (ko) * 2015-02-18 2016-08-26 스미또모 가가꾸 가부시키가이샤 화합물, 수지 및 포토레지스트 조성물
JP2016169207A (ja) * 2015-02-18 2016-09-23 住友化学株式会社 化合物、樹脂、レジスト組成物及びレジストパターンの製造方法
US9644056B2 (en) 2015-02-18 2017-05-09 Sumitomo Chemical Company, Limited Compound, resin and photoresist composition
KR102537409B1 (ko) * 2015-02-18 2023-05-26 스미또모 가가꾸 가부시키가이샤 화합물, 수지 및 포토레지스트 조성물
JP2016210765A (ja) * 2015-04-28 2016-12-15 住友化学株式会社 塩、酸発生剤、レジスト組成物及びレジストパターンの製造方法
JP2017206681A (ja) * 2016-05-13 2017-11-24 住友化学株式会社 化合物、樹脂、レジスト組成物及びレジストパターンの製造方法
JP7162713B2 (ja) 2016-05-13 2022-10-28 住友化学株式会社 樹脂、レジスト組成物及びレジストパターンの製造方法
JP2022008646A (ja) * 2016-05-13 2022-01-13 住友化学株式会社 樹脂、レジスト組成物及びレジストパターンの製造方法

Similar Documents

Publication Publication Date Title
JP6145526B2 (ja) レジスト組成物及びレジストパターンの製造方法
JP6195692B2 (ja) レジスト組成物及びレジストパターンの製造方法並びに新規化合物及び樹脂
JP5824320B2 (ja) レジスト組成物及びレジストパターンの製造方法
KR101827576B1 (ko) 수지, 레지스트 조성물 및 레지스트 패턴의 제조 방법
JP6222263B2 (ja) 樹脂、レジスト組成物及びレジストパターン製造方法
JP5934502B2 (ja) 樹脂、レジスト組成物及びレジストパターン製造方法
JP5903833B2 (ja) 樹脂、レジスト組成物及びレジストパターン製造方法
JP2012193170A (ja) 塩、酸発生剤、レジスト組成物及びレジストパターンの製造方法
JP2012123376A (ja) レジスト組成物及びレジストパターンの製造方法
JP5763463B2 (ja) レジスト組成物及びレジストパターンの製造方法
JP2012107204A (ja) レジスト組成物及びレジストパターンの製造方法
JP5935295B2 (ja) 樹脂、レジスト組成物及びレジストパターン製造方法
JP5824321B2 (ja) レジスト組成物及びレジストパターンの製造方法
JP2012108480A (ja) レジスト組成物及びレジストパターンの製造方法
JP2012153878A (ja) 樹脂、レジスト組成物及びレジストパターンの製造方法
JP2012078800A (ja) レジスト組成物及びレジストパターンの製造方法
JP2013040319A (ja) 樹脂、レジスト組成物及びレジストパターンの製造方法
JP6159833B2 (ja) レジスト組成物及びレジストパターンの製造方法
JP2012177101A (ja) 樹脂、レジスト組成物及びレジストパターンの製造方法
JP2012167254A (ja) 樹脂、レジスト組成物及びレジストパターンの製造方法
JP2012144699A (ja) 樹脂、レジスト組成物及びレジストパターンの製造方法
JP5909923B2 (ja) 化合物、樹脂及びレジスト組成物
JP5783012B2 (ja) レジスト組成物及びレジストパターンの製造方法
JP2012088690A (ja) レジスト組成物及びレジストパターンの製造方法
JP2012168497A (ja) レジスト組成物及びレジストパターン製造方法

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141202