JP2012106872A - Oxygen partial pressure controlling method - Google Patents

Oxygen partial pressure controlling method Download PDF

Info

Publication number
JP2012106872A
JP2012106872A JP2010255028A JP2010255028A JP2012106872A JP 2012106872 A JP2012106872 A JP 2012106872A JP 2010255028 A JP2010255028 A JP 2010255028A JP 2010255028 A JP2010255028 A JP 2010255028A JP 2012106872 A JP2012106872 A JP 2012106872A
Authority
JP
Japan
Prior art keywords
partial pressure
oxygen
oxygen partial
gas
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010255028A
Other languages
Japanese (ja)
Other versions
JP5634832B2 (en
Inventor
Ryusuke Iwasaki
隆祐 岩▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Machinery Inc
Original Assignee
Canon Machinery Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Machinery Inc filed Critical Canon Machinery Inc
Priority to JP2010255028A priority Critical patent/JP5634832B2/en
Publication of JP2012106872A publication Critical patent/JP2012106872A/en
Application granted granted Critical
Publication of JP5634832B2 publication Critical patent/JP5634832B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an oxygen partial pressure controlling method capable of reducing an oxygen partial pressure with high operating efficiency over the wide oxygen partial pressure range.SOLUTION: In the oxygen partial pressure controlling method to purify an oxygen-containing gas to an ultra low oxygen pressure gas by an oxygen pump, a plurality of types of oxygen pumps 21a and 21b varied in an electrolytic conduction region are constructed, and the oxygen pump 21a having an electrolytic conduction region in a high oxygen partial pressure range at least is used when an oxygen partial pressure of a purification target gas is high, while the oxygen pump 21b having an electrolytic conduction region in a low oxygen partial pressure range is used when an oxygen partial pressure of the purification target gas is low.

Description

本発明は、酸素含有ガスを酸素ポンプにより低酸素分圧に精製するための酸素分圧制御方法に関する。   The present invention relates to an oxygen partial pressure control method for purifying an oxygen-containing gas to a low oxygen partial pressure with an oxygen pump.

固体電解質を含む電気化学的な酸素ポンプを有する酸素分圧制御装置により、酸素分圧を制御した雰囲気ガスを用いて、単結晶試料等を作成する方法が知られている(例えば、特許文献1,2)。   A method for producing a single crystal sample or the like by using an atmospheric gas whose oxygen partial pressure is controlled by an oxygen partial pressure control device having an electrochemical oxygen pump containing a solid electrolyte is known (for example, Patent Document 1). , 2).

特許文献2に示された図3の酸素分圧制御装置は、バルブ102を通った不活性ガスの流量を設定値に制御するマスフローコントローラ(MFC)103と、このマスフローコントローラ103を通った不活性ガスを目的の酸素分圧に制御可能な電気化学的な酸素ポンプ104と、酸素ポンプ104で制御された不活性ガスの酸素分圧を検出して試料育成装置などの次工程(装置)に供給する供給ガス用の酸素センサ105を有する。   The oxygen partial pressure control device of FIG. 3 disclosed in Patent Document 2 includes a mass flow controller (MFC) 103 that controls the flow rate of the inert gas that has passed through the valve 102 to a set value, and an inert gas that has passed through the mass flow controller 103. Electrochemical oxygen pump 104 capable of controlling the gas to the target oxygen partial pressure, and detecting the oxygen partial pressure of the inert gas controlled by the oxygen pump 104 and supplying it to the next process (device) such as a sample growing apparatus And an oxygen sensor 105 for supply gas.

さらにこの装置は、所望の酸素分圧値を設定する酸素分圧設定部106と、酸素センサ105による検出値を酸素分圧設定部106による設定値と比較して酸素ポンプ104から送り出される不活性ガスの酸素分圧を所定値に制御する制御部107と、酸素センサ105による検出値を表示する酸素分圧表示部108を備える。   Further, this apparatus includes an oxygen partial pressure setting unit 106 that sets a desired oxygen partial pressure value, and an inertness that is sent from the oxygen pump 104 by comparing the detected value by the oxygen sensor 105 with the set value by the oxygen partial pressure setting unit 106. A control unit 107 that controls the oxygen partial pressure of the gas to a predetermined value and an oxygen partial pressure display unit 108 that displays a value detected by the oxygen sensor 105 are provided.

酸素ポンプ104は、図4に示すように、酸素イオン伝導性を有する固体電解質筒状体104aの内外両面に電極104b、104cを形成している。固体電解質筒状体104aは、例えばジルコニア系の固体電解質であり、図示しないヒーターで加熱される。固体電解質筒状体104aの一方の開口から他方の開口に向けて軸方向に不活性ガスを供給する。不活性ガスは、例えばアルゴンであり、通常は微量の酸素(10-1〜10-2Pa[10-6〜10-7atm]程度)を含んでいる。直流電源Eに対し、外面の電極104cを+極に接続し、内面の電極104bを−極に接続して、両電極間に電圧を印加すると、固体電解質筒状体104a内を流れる不活性ガス中の酸素分子(O2)が電気的に還元されてイオン(O2-)化され、固体電解質を通して再び酸素分子(O2)として固体電解質筒状体104aの外部に放出される。固体電解質筒状体104aの外部に放出された酸素分子は、空気等の補助ガスと共に排気される。固体電解質筒状体104aに供給されたAr+O2(10-1〜10-2Pa程度)の不活性ガスは、酸素分子が低減されて目的の酸素分圧に制御された処理済みガス(精製ガス)となり、次工程(装置)に給送される。 As shown in FIG. 4, the oxygen pump 104 has electrodes 104b and 104c formed on both inner and outer surfaces of a solid electrolyte cylindrical body 104a having oxygen ion conductivity. The solid electrolyte cylindrical body 104a is, for example, a zirconia-based solid electrolyte, and is heated by a heater (not shown). An inert gas is supplied in the axial direction from one opening of the solid electrolyte cylindrical body 104a toward the other opening. The inert gas is, for example, argon, and usually contains a trace amount of oxygen (about 10 −1 to 10 −2 Pa [about 10 −6 to 10 −7 atm]). When the DC electrode E is connected to the positive electrode 104c on the outer surface, the negative electrode 104b on the inner surface is connected to the negative electrode, and a voltage is applied between the two electrodes, the inert gas flowing in the solid electrolyte cylindrical body 104a The oxygen molecules (O 2 ) therein are electrically reduced to form ions (O 2− ), and are released again as oxygen molecules (O 2 ) through the solid electrolyte to the outside of the solid electrolyte cylindrical body 104a. The oxygen molecules released to the outside of the solid electrolyte cylindrical body 104a are exhausted together with an auxiliary gas such as air. The inert gas of Ar + O 2 (about 10 −1 to 10 −2 Pa) supplied to the solid electrolyte cylindrical body 104a is a treated gas (purified gas) in which oxygen molecules are reduced and the target oxygen partial pressure is controlled. ) And fed to the next process (device).

なお、図3の酸素ポンプ104は、低酸素分圧状態の制御や微調整等のために、必要に応じて、固体電解質筒状体104aの内外両面の電極104b、104c間に上記と逆極性の直流電圧を印加してポンプ動作を行わせることも可能である。すなわち、外面の電極104cに−極を印加し、内面の電極104bに+極を印加すると、固体電解質筒状体104aの外面に沿って流れる空気などのガス中の酸素分子(O2)が電気的に還元されてイオン(O2-)化され、固体電解質を通して再び酸素分子(O2)として固体電解質筒状体104aの内部に放出される。この場合、固体電解質筒状体104aの内部を流れる不活性ガスの酸素分圧が上昇して、外部に給送される。 Note that the oxygen pump 104 in FIG. 3 has a polarity opposite to that between the electrodes 104b and 104c on the inner and outer surfaces of the solid electrolyte cylindrical body 104a as necessary for the control and fine adjustment of the low oxygen partial pressure state. It is also possible to perform the pump operation by applying the direct current voltage. That is, when a negative electrode is applied to the outer electrode 104c and a positive electrode is applied to the inner electrode 104b, oxygen molecules (O 2 ) in a gas such as air flowing along the outer surface of the solid electrolyte cylindrical body 104a are electrically It is reduced to ions (O 2− ) and is released again as oxygen molecules (O 2 ) through the solid electrolyte into the solid electrolyte cylindrical body 104a. In this case, the oxygen partial pressure of the inert gas flowing inside the solid electrolyte cylindrical body 104a is increased and fed to the outside.

このような酸素ポンプにより酸素分圧を制御したガスを供給すれば、結晶育成、合金化、熱処理、半導体製造工程などが酸素分圧を制御した不活性ガスなどの雰囲気下で行うことができる。   If a gas whose oxygen partial pressure is controlled by such an oxygen pump is supplied, crystal growth, alloying, heat treatment, semiconductor manufacturing process, etc. can be performed in an atmosphere such as an inert gas whose oxygen partial pressure is controlled.

特開2002−326887号公報JP 2002-326887 A 国際公開WO 2008/068844 A1International Publication WO 2008/068844 A1

このような酸素ポンプで使用される固体電解質の特性は、例えば、図5のグラフに示されている。このグラフは、酸素ポンプを作動させる際の固体電解質の作動温度及び固体電解質の電気伝導度の変化を直交軸上に表示したものであり、横軸に絶対温度の逆数(102/T(K-1)、縦軸に電気伝導度(Ω-1・cm-1)を取り、複数の固体電解質(酸素イオン伝導体)の特性を示している。縦軸の電気伝導度にイオン輸率を乗じた値が、固体電解質を通過する酸素イオンの量に対応するものである。したがって、このグラフは、酸素ポンプの作動効率が温度依存性を有することを示している。 The characteristics of the solid electrolyte used in such an oxygen pump are shown, for example, in the graph of FIG. In this graph, changes in the operating temperature of the solid electrolyte and the electrical conductivity of the solid electrolyte when the oxygen pump is operated are displayed on the orthogonal axis, and the horizontal axis represents the reciprocal of absolute temperature (10 2 / T (K -1 ), the vertical axis shows the electrical conductivity (Ω -1 · cm -1 ), and shows the characteristics of multiple solid electrolytes (oxygen ion conductors). The multiplied value corresponds to the amount of oxygen ions passing through the solid electrolyte, so this graph shows that the operating efficiency of the oxygen pump is temperature dependent.

図6は、酸素ポンプを作動させる際の固体電解質の作動温度及びガスの酸素分圧によって特定されるイオン輸率を示す図である。固体電解質には、例えば図6のグラフに示すように、イオン輸率≧0.99と定義される電解伝導領域がある。酸素ポンプをこの領域内で作動させれば、高いイオン輸率に基づき効率的な酸素除去性能が得られるが、この領域外の作動では固体電解質を通じて移動する電子の割合が多くなり、酸素の排出作用が十分には得られない。   FIG. 6 is a diagram showing the ion transport number specified by the operating temperature of the solid electrolyte and the oxygen partial pressure of the gas when the oxygen pump is operated. For example, as shown in the graph of FIG. 6, the solid electrolyte has an electrolytic conduction region defined as an ion transport number ≧ 0.99. If the oxygen pump is operated in this region, an efficient oxygen removal performance can be obtained based on the high ion transport number. However, if the oxygen pump is operated outside this region, the percentage of electrons moving through the solid electrolyte increases, resulting in oxygen discharge. The effect cannot be obtained sufficiently.

従来の酸素分圧制御においては、酸素ポンプに単一種の固体電解質を用いていたため、電解伝導領域がその固体電解質固有の範囲に限られていた。その結果、効率的に制御できる酸素分圧の上下限が、用いる固体電解質の電解伝導領域により制限されていた。特に、酸素分圧が電解伝導領域の下限に接近すると、酸素分圧の低減効率が低下し、目標とする酸素分圧への到達に長時間を要したり、効率アップのために大掛かりな装置を必要とするという問題があった。   In conventional oxygen partial pressure control, since a single type of solid electrolyte is used for the oxygen pump, the electrolytic conduction region is limited to a range unique to the solid electrolyte. As a result, the upper and lower limits of the oxygen partial pressure that can be efficiently controlled are limited by the electrolytic conduction region of the solid electrolyte used. In particular, when the oxygen partial pressure approaches the lower limit of the electrolytic conduction region, the oxygen partial pressure reduction efficiency decreases, and it takes a long time to reach the target oxygen partial pressure, or a large-scale device for increasing efficiency. There was a problem of needing.

そこで、本発明は、このような従来技術の問題点を解決し、広い範囲の酸素分圧に亘って高い作動効率で酸素分圧の制御を行うことができる酸素分圧制御方法を提供することを目的とする。   Therefore, the present invention provides an oxygen partial pressure control method capable of solving such problems of the prior art and performing oxygen partial pressure control with high operating efficiency over a wide range of oxygen partial pressures. With the goal.

本発明は、前記目的を達成するため、酸素含有ガスを酸素ポンプにより低酸素分圧に精製するための酸素分圧制御方法であって、固体電解質の酸素イオン輸率が1に近い温度−酸素分圧域である電解伝導領域が異なる複数種の酸素ポンプを構成し、精製対象ガスの酸素分圧が高いときは、高い酸素分圧域に電解伝導領域を持つ酸素ポンプ及び低い酸素分圧域に電解伝導領域を持つ酸素ポンプの内、少なくとも高い酸素分圧域に電解伝導領域を持つ酸素ポンプを用い、精製対象ガスの酸素分圧が低いときは、低い酸素分圧域に電解伝導領域を持つ酸素ポンプを用いることを特徴とする酸素分圧制御方法を提供するものである。   In order to achieve the above object, the present invention provides an oxygen partial pressure control method for purifying an oxygen-containing gas to a low oxygen partial pressure with an oxygen pump, wherein the oxygen ion transport number of the solid electrolyte is close to 1. When multiple types of oxygen pumps with different electrolytic conduction regions in the partial pressure region are configured and the oxygen partial pressure of the gas to be purified is high, an oxygen pump having an electrolytic conduction region in the high oxygen partial pressure region and a low oxygen partial pressure region If the oxygen partial pressure of the gas to be purified is low, use the oxygen pump having an electrolytic conduction region at least in the high oxygen partial pressure region. An oxygen partial pressure control method characterized by using an oxygen pump is provided.

上記制御方法においては、電解伝導領域が異なる複数種の酸素ポンプを構成し、精製対象ガスの酸素分圧が高いときは、少なくとも高い酸素分圧域に電解伝導領域を持つ酸素ポンプを用い、精製対象ガスの酸素分圧が低いときは、低い酸素分圧域に電解伝導領域を持つ酸素ポンプを用いる。このような排出を効率的に行うには、精製対象ガスの酸素分圧を、電解伝導領域の酸素分圧域に含む酸素ポンプを用いるのが望ましい。本発明では、この観点から、精製対象ガスの酸素分圧が高いときは、少なくとも高い電解伝導領域に酸素分圧域を持つ酸素ポンプを用いる。こうして用いる酸素ポンプは、電解伝導領域内での作動に基づく高い作動効率を可能とする。さらに、本発明においては、精製対象ガスの酸素分圧が低いときは、低い酸素分圧域に電解伝導領域を持つ酸素ポンプを用いる。上記の酸素分圧域が高い酸素ポンプの作動は、精製対象ガスの酸素分圧低下と共に、電解伝導領域の限界に到達または接近し、これに伴って効率が低下する。これに対し、精製対象ガスの酸素分圧が低くなったときに、低い酸素分圧域に電解伝導領域を持つ酸素ポンプを用いることにより、その酸素ポンプを電解伝導領域内で作動させることができ、この段階においても高効率の酸素排出が可能となる。このようにして、本発明によれば、広い範囲の酸素分圧に亘って高い作動効率で酸素分圧の低減を行うことができる。   In the above control method, a plurality of types of oxygen pumps having different electrolytic conduction regions are configured, and when the oxygen partial pressure of the gas to be purified is high, an oxygen pump having an electrolytic conduction region in at least a high oxygen partial pressure region is used for purification. When the oxygen partial pressure of the target gas is low, an oxygen pump having an electrolytic conduction region in a low oxygen partial pressure region is used. In order to efficiently perform such discharge, it is desirable to use an oxygen pump that includes the oxygen partial pressure of the gas to be purified in the oxygen partial pressure region of the electrolytic conduction region. In the present invention, from this viewpoint, when the oxygen partial pressure of the gas to be purified is high, an oxygen pump having an oxygen partial pressure region in at least a high electrolytic conduction region is used. The oxygen pump used in this way allows a high operating efficiency based on operation in the electrolytic conduction region. Furthermore, in the present invention, when the oxygen partial pressure of the gas to be purified is low, an oxygen pump having an electrolytic conduction region in a low oxygen partial pressure region is used. The operation of the oxygen pump having a high oxygen partial pressure region reaches or approaches the limit of the electrolytic conduction region as the oxygen partial pressure of the gas to be purified decreases, and the efficiency decreases accordingly. On the other hand, when the oxygen partial pressure of the gas to be purified becomes low, the oxygen pump can be operated in the electrolytic conduction region by using an oxygen pump having an electrolytic conduction region in the low oxygen partial pressure region. Even at this stage, highly efficient oxygen discharge becomes possible. Thus, according to the present invention, the oxygen partial pressure can be reduced with high operating efficiency over a wide range of oxygen partial pressures.

以上のように、本発明によれば、広い範囲の酸素分圧に亘って高い作動効率で酸素分圧の低減を行い得る酸素分圧制御方法を提供することができる。   As described above, according to the present invention, it is possible to provide an oxygen partial pressure control method capable of reducing the oxygen partial pressure with high operating efficiency over a wide range of oxygen partial pressures.

本発明の一実施形態に係る酸素分圧制御方法を実施するための装置を示すブロック図である。It is a block diagram which shows the apparatus for implementing the oxygen partial pressure control method which concerns on one Embodiment of this invention. 本発明に係る酸素分圧制御方法に関し、固体電解質の温度と到達酸素分圧との関係を示すグラフである。It is a graph which shows the relationship between the temperature of a solid electrolyte and the ultimate oxygen partial pressure regarding the oxygen partial pressure control method which concerns on this invention. 従来の酸素分圧制御装置の一例を示すブロック図である。It is a block diagram which shows an example of the conventional oxygen partial pressure control apparatus. 固体電解質を用いた酸素ポンプの原理の説明図である。It is explanatory drawing of the principle of the oxygen pump using a solid electrolyte. 酸素ポンプで使用される固体電解質の温度(逆数)と電気伝導係数(対数)との関係を示すグラフである。It is a graph which shows the relationship between the temperature (reciprocal number) and electrical conductivity coefficient (logarithm) of the solid electrolyte used with an oxygen pump. 固体電解質の温度(逆数)と到達酸素分圧(対数)とによって特定されるイオン輸率を示すグラフである。It is a graph which shows the ion transport number specified by the temperature (reciprocal number) and ultimate oxygen partial pressure (logarithm) of a solid electrolyte.

以下、本発明の実施形態について添付図面を参照しつつ説明する。図1は、本発明の一実施形態に係る酸素分圧制御方法を実施するための装置を示すブロック図である。この酸素分圧制御装置1は、精製対象ガスである原料ガスを低酸素分圧に制御したガスに精製するガス精製部10と、ガスを環流させるための循環路4と、該循環路中に設けられた循環ポンプ5とを備えており、精製中のガスを循環させて精製度を上げる循環タイプとなっている。精製されたガスは、循環路4での循環後または循環と並行して、精製ガスを用いる処理装置Fに供給される。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a block diagram showing an apparatus for carrying out an oxygen partial pressure control method according to an embodiment of the present invention. The oxygen partial pressure control device 1 includes a gas purification unit 10 for purifying a source gas, which is a purification target gas, into a gas controlled to have a low oxygen partial pressure, a circulation path 4 for circulating the gas, and the circulation path. It is provided with a circulation pump 5 provided, and is a circulation type that raises the degree of purification by circulating the gas being purified. The purified gas is supplied to the processing apparatus F using the purified gas after circulation in the circulation path 4 or in parallel with the circulation.

循環路4は、ガス精製部10の上流側及び下流側に接続された共通流路41と、処理装置Fを経る作動流路42と、処理装置Fを経ない流路を形成するバイパス流路43とを備えている。ガス精製部10の下流側の共通流路41は、酸素センサ22、循環用ポンプ5及び制御弁61を経て作動流路42及びバイパス流路43に接続している。作動流路42及びバイパス流路43の終端は、制御弁62を経て、ガス精製部10の上流側の共通流路41に接続している。また、ガス精製部10の上流側の共通流路41には、レギュレータ(REG)12、マスフローコントローラ(MFC)13が設けられている。   The circulation path 4 includes a common flow path 41 connected to the upstream side and the downstream side of the gas purification unit 10, a working flow path 42 that passes through the processing apparatus F, and a bypass flow path that forms a flow path that does not pass through the processing apparatus F. 43. The common flow path 41 on the downstream side of the gas purification unit 10 is connected to the working flow path 42 and the bypass flow path 43 through the oxygen sensor 22, the circulation pump 5 and the control valve 61. The terminal ends of the working channel 42 and the bypass channel 43 are connected to the common channel 41 on the upstream side of the gas purification unit 10 via the control valve 62. Further, a regulator (REG) 12 and a mass flow controller (MFC) 13 are provided in the common flow path 41 on the upstream side of the gas purification unit 10.

循環路4の始端410(図の上左端)は、装置外のガス供給源に接続されるようになっており、該供給源から不活性ガス等の原料ガスが供給される。また、循環路4の始端410の直ぐ下流側には、制御弁11が設けられている。   The starting end 410 (upper left end in the figure) of the circulation path 4 is connected to a gas supply source outside the apparatus, and a raw material gas such as an inert gas is supplied from the supply source. A control valve 11 is provided immediately downstream of the starting end 410 of the circulation path 4.

制御弁11は、始端410からの原料ガス流と、共通流路41からの精製ガス流との切り換え及びガス流の遮断の制御をするようになっている。レギュレータ12は、酸素ポンプ及び酸素センサに接続された共通流路41の圧力を一定に保持し、マスフローコントローラ13は、制御弁11を通過した原料ガスの流量を設定値に制御する。   The control valve 11 controls the switching of the raw material gas flow from the start end 410 and the purified gas flow from the common flow path 41 and the shutoff of the gas flow. The regulator 12 keeps the pressure of the common flow path 41 connected to the oxygen pump and the oxygen sensor constant, and the mass flow controller 13 controls the flow rate of the raw material gas that has passed through the control valve 11 to a set value.

この酸素分圧制御装置1は、2個の酸素ポンプ21a,21bを備えている。各酸素ポンプは、図4に示したのと同様に固体電解質、電圧印可機構等を備えて構成され、各々筒状の固体電解質211a,211bの内外面に白金等の電極層を設け、直流電源の−極を内側、+極を外側に接続している。酸素センサ22は、酸素ポンプにより制御された酸素分圧を検知して検知信号を発する。ガス精製部10はさらに、酸素ポンプ21a,21bを収容する精製室27を備えている。精製室27内の共通流路41は、分配装置29を経て酸素ポンプ21a,21bに接続されている。   The oxygen partial pressure control device 1 includes two oxygen pumps 21a and 21b. Each oxygen pump is configured to include a solid electrolyte, a voltage application mechanism, and the like, as shown in FIG. 4, and is provided with electrode layers such as platinum on the inner and outer surfaces of the cylindrical solid electrolytes 211a and 211b, respectively. The negative pole is connected to the inner side and the positive pole to the outer side. The oxygen sensor 22 detects the oxygen partial pressure controlled by the oxygen pump and generates a detection signal. The gas purification unit 10 further includes a purification chamber 27 that houses oxygen pumps 21a and 21b. The common flow path 41 in the purification chamber 27 is connected to the oxygen pumps 21 a and 21 b via the distribution device 29.

精製室27内には、加熱部28a,28bが設けられている。これらの加熱部は、各々酸素ポンプ21a,21bに対して作用し、固体電解質211a,211bを各々温度制御下に加熱するように構成されている。この加熱部は、例えば、固体電解質211の外周にシースヒータを装着し、その外側を断熱材で覆ったもの等とすることができる。加熱部の温度制御は、酸素ポンプの作動状態に応じて制御部23により行われる。制御部23は、統括部23a、温度操作部23b及び演算部23cを備えており、酸素ポンプ21の作動状態を演算部23cで判別し、統括部23aの指令の下に温度操作部23bが加熱部28の温度を操作する。その制御については後述する。   In the refining chamber 27, heating units 28a and 28b are provided. These heating units act on the oxygen pumps 21a and 21b, respectively, and are configured to heat the solid electrolytes 211a and 211b under temperature control. The heating unit can be, for example, one in which a sheath heater is attached to the outer periphery of the solid electrolyte 211 and the outside is covered with a heat insulating material. The temperature control of the heating unit is performed by the control unit 23 according to the operating state of the oxygen pump. The control unit 23 includes a general unit 23a, a temperature operation unit 23b, and a calculation unit 23c. The operation unit 23c determines the operating state of the oxygen pump 21, and the temperature operation unit 23b is heated under a command from the general unit 23a. The temperature of the unit 28 is manipulated. The control will be described later.

図1に示した酸素分圧制御装置1は、次のようにして使用される。目標とする酸素分圧を、酸素分圧設定部24に入力する。酸素ポンプ21a,21bは、加熱部28a,28bにより所定温度に加熱され、固体電解質211a,211bに所定の電圧が印加される。   The oxygen partial pressure control apparatus 1 shown in FIG. 1 is used as follows. The target oxygen partial pressure is input to the oxygen partial pressure setting unit 24. The oxygen pumps 21a and 21b are heated to a predetermined temperature by the heating units 28a and 28b, and a predetermined voltage is applied to the solid electrolytes 211a and 211b.

初期段階では、ガス精製部10は、制御弁61,62により共通流路41からバイパス流路43に流れる循環経路に設定される。この状態で、制御弁11を開き、循環ポンプ5を作動させることにより、共通流路41の始端410から原料ガスを導入する。原料ガスは、短時間に目的とする酸素分圧に到達できるように、或る程度低い酸素分圧とされ、高純度ガス(酸素分圧が約10-2Pa)程度の低酸素分圧とするのが望ましい。 In the initial stage, the gas purification unit 10 is set to a circulation path that flows from the common flow path 41 to the bypass flow path 43 by the control valves 61 and 62. In this state, by opening the control valve 11 and operating the circulation pump 5, the source gas is introduced from the start end 410 of the common flow path 41. The source gas has a certain low oxygen partial pressure so that the target oxygen partial pressure can be reached in a short time, and a low oxygen partial pressure of about a high purity gas (oxygen partial pressure is about 10 −2 Pa). It is desirable to do.

導入された原料ガスは、レギュレータ12、マスフローコントローラ13により圧力及び流量が制御され、酸素ポンプにおいて酸素が除去されることにより酸素分圧が低下する。その酸素分圧は酸素センサ22により検知され、酸素分圧表示部25に表示される。   The introduced source gas is controlled in pressure and flow rate by the regulator 12 and the mass flow controller 13, and the oxygen partial pressure is lowered by removing oxygen in the oxygen pump. The oxygen partial pressure is detected by the oxygen sensor 22 and displayed on the oxygen partial pressure display unit 25.

こうしてガスはバイパス流路43から共通流路41へと循環し、酸素ポンプによる酸素除去が繰り返される。酸素分圧制御部23は、検知された酸素分圧と、酸素分圧設定部24によって設定された目標値との比較に基づいて、各々の作動電流を調節し、ガス循環に基づいて、酸素分圧を目標値に近づけて行く。例えば、温度600℃において約10-25Pa程度の従来到達可能な酸素分圧であれば、このようにして得ることができる。 Thus, the gas circulates from the bypass channel 43 to the common channel 41, and oxygen removal by the oxygen pump is repeated. The oxygen partial pressure control unit 23 adjusts each operating current based on the comparison between the detected oxygen partial pressure and the target value set by the oxygen partial pressure setting unit 24, and based on the gas circulation, Move the partial pressure closer to the target value. For example, an oxygen partial pressure of about 10 −25 Pa that can be conventionally reached at a temperature of 600 ° C. can be obtained in this way.

求める酸素分圧がこのような値であれば、共通流路41からバイパス流路43に流れる循環によって酸素分圧表示部25が示す酸素分圧が上記値に到達したところで、制御弁61,62を切り換えて、ガス流を共通流路41から作動流路42を流れる経路とする。これにより、所定酸素分圧のガスは、処理装置Fへと流れ、処理装置Fにおいて目的とする処理が行われることとなる。   If the required oxygen partial pressure is such a value, when the oxygen partial pressure indicated by the oxygen partial pressure display unit 25 reaches the above-mentioned value by circulation flowing from the common flow path 41 to the bypass flow path 43, the control valves 61 and 62 are used. To switch the gas flow from the common flow path 41 to the working flow path 42. As a result, the gas having a predetermined oxygen partial pressure flows to the processing apparatus F, and the target processing is performed in the processing apparatus F.

図示の装置は、高い作動効率で酸素分圧の低減を行うために、さらに次のように構成されている。その構成は、異なる特性を備えた固体電解質への精製対象ガス分配の切り換え、固体電解質作動のための加熱の切り換え、並びに、固体電解質作動のための電圧印加の切り換えを、選択的に可能とするものである。以下では、先ず、異なる特性を備えた固体電解質への精製対象ガス分配の切り換えについて説明する。   The illustrated apparatus is further configured as follows in order to reduce the oxygen partial pressure with high operating efficiency. The configuration selectively enables switching of the gas to be purified to a solid electrolyte having different characteristics, switching of heating for solid electrolyte operation, and switching of voltage application for solid electrolyte operation. Is. In the following, first, switching of the gas to be purified to be distributed to a solid electrolyte having different characteristics will be described.

各酸素ポンプ21a,21bの固体電解質211a,211bが、相互に異なる特性を備えたものとされている。固体電解質の特性は、固体電解質の材質、寸法、作動温度等を異なるものとすることにより相互に異なったものとすることができる。材質の異なる固体電解質は、ジルコニア、ランタンガレート、トリア等、異なる種類のものを用いる他、同じ種類であっても添加剤等の種類や量を異ならせることにより得ることができる。このように、固体電解質得が特性を異にすることにより、酸素ポンプ21a,21bは、電解伝導領域の酸素分圧域の高低が、相互に異なったものとなる。この実施形態では、酸素ポンプ21aの電解伝導領域の酸素分圧域が高く、酸素ポンプ21bの電解伝導領域の酸素分圧域が低く設定されている。分配装置29は、制御部23による制御下に、単一または複数の酸素ポンプ21a,21bに対して精製対象ガスを分配する。加熱部28a,28bは、制御部23の制御下に、各固体電解質を適切な温度に加熱する。   The solid electrolytes 211a and 211b of the oxygen pumps 21a and 21b have different characteristics from each other. The characteristics of the solid electrolyte can be made different from each other by making the material, dimensions, operating temperature, etc. of the solid electrolyte different. Solid electrolytes of different materials can be obtained by using different types of materials such as zirconia, lanthanum gallate, and tria, and by using different types and amounts of additives, even if they are the same type. As described above, when the characteristics of the solid electrolyte are different, the oxygen pumps 21a and 21b have different oxygen partial pressure regions in the electrolytic conduction region. In this embodiment, the oxygen partial pressure region in the electrolytic conduction region of the oxygen pump 21a is set high, and the oxygen partial pressure region in the electrolytic conduction region of the oxygen pump 21b is set low. The distributor 29 distributes the purification target gas to the single or plural oxygen pumps 21a and 21b under the control of the control unit 23. The heating units 28 a and 28 b heat each solid electrolyte to an appropriate temperature under the control of the control unit 23.

酸素分圧制御装置1の制御部23は、これらの構成に基づいて、精製対象ガスの酸素分圧が高いときは、高い酸素分圧域に電解伝導領域を持つ酸素ポンプ21aに分配を行い、精製対象ガスの酸素分圧が低いときは、低い酸素分圧域に電解伝導領域を持つ酸素ポンプ21bに分配を行う。なお、精製対象ガスの酸素分圧が高いときは、高い酸素分圧域に電解伝導領域を持つ酸素ポンプ21aと、低い酸素分圧域に電解伝導領域を持つ酸素ポンプ1bとの双方に分配を行うようにすることもできる。この構成により、以下の作用効果が得られる。   Based on these configurations, the control unit 23 of the oxygen partial pressure control device 1 distributes to the oxygen pump 21a having the electrolytic conduction region in the high oxygen partial pressure region when the oxygen partial pressure of the gas to be purified is high, When the oxygen partial pressure of the gas to be purified is low, the gas is distributed to the oxygen pump 21b having the electrolytic conduction region in the low oxygen partial pressure region. When the oxygen partial pressure of the gas to be purified is high, the gas is distributed to both the oxygen pump 21a having an electrolytic conduction region in a high oxygen partial pressure region and the oxygen pump 1b having an electrolytic conduction region in a low oxygen partial pressure region. You can also do it. With this configuration, the following operational effects can be obtained.

酸素ポンプの作動工程を、固体電解質の温度(逆数)と到達酸素分圧(対数)に対するイオン輸率の関係をグラフ上で見れば、図2のようになる。図2は、酸素分圧域が高い電解伝導領域Da(酸素ポンプ21a)と、酸素分圧域が低い電解伝導領域Db(酸素ポンプ21b)の2つの電解伝導領域を示している。電解伝導領域は、図6にも示したように、横軸に温度の逆数、縦軸に酸素分圧の対数をとったときに、縦軸に近い側を頂点とするようにV字を横向きにした横V字形(またはその一部分)の境界線を有し、その境界線内の領域が電解伝導領域に相当する。電解伝導領域Daは、酸素分圧の上限ラインUa及び下限ラインLaで囲まれた領域であり、電解伝導領域Dbは、酸素分圧の上限ラインUb及び下限ラインLbで囲まれた領域である。電解伝導領域Daにおける低酸素分圧部分と、電解伝導領域Dbにおける高酸素分圧部分とは、図示のように一部を重複させている。   The operation of the oxygen pump is shown in FIG. 2 when the relationship between the ion transport number with respect to the temperature (reciprocal) of the solid electrolyte and the partial pressure of oxygen (logarithm) is seen on the graph. FIG. 2 shows two electrolytic conduction regions, an electrolytic conduction region Da (oxygen pump 21a) having a high oxygen partial pressure region and an electrolytic conduction region Db (oxygen pump 21b) having a low oxygen partial pressure region. As shown in FIG. 6, when the horizontal axis represents the reciprocal of temperature and the vertical axis represents the logarithm of oxygen partial pressure, the electrolytic conduction region has a V-shaped sideways so that the side close to the vertical axis is the apex. The horizontal V-shaped boundary line (or a part thereof) has a boundary line, and a region within the boundary line corresponds to an electrolytic conduction region. The electrolytic conduction region Da is a region surrounded by the oxygen partial pressure upper limit line Ua and the lower limit line La, and the electrolytic conduction region Db is a region surrounded by the oxygen partial pressure upper limit line Ub and the lower limit line Lb. The low oxygen partial pressure portion in the electrolytic conduction region Da and the high oxygen partial pressure portion in the electrolytic conduction region Db are partially overlapped as illustrated.

従来は、酸素ポンプに単一種の固体電解質を用いていたため、電解伝導領域がその固体電解質固有の範囲に限られていた。特に、低い酸素分圧の精製ガスを得る場合は、酸素分圧域が低い電解伝導領域Dbを有する固体電解質を用いて精製を行う。その結果、矢印(b) で示す精製で得られる酸素分圧が実質的な限界となっていた。また、酸素分圧が下限ラインLbに接近するにつれて酸素分圧低減効率が低下し、目標酸素分圧への到達に長時間を要するという問題があった。なお、得ようとする精製ガスの酸素分圧が高い場合は、電解伝導領域Daを有する固体電解質を用いて精製を行うが、この場合も、矢印(a) で示す精製で得られる酸素分圧が実質的な限界となり、また、酸素分圧が下限ラインLaに接近するにつれて酸素分圧低減効率が低下し、目標酸素分圧への到達に長時間を要するという問題があった。   Conventionally, since a single type of solid electrolyte is used for the oxygen pump, the electrolytic conduction region is limited to a range unique to the solid electrolyte. In particular, when obtaining a purified gas having a low oxygen partial pressure, purification is performed using a solid electrolyte having an electrolytic conduction region Db having a low oxygen partial pressure region. As a result, the oxygen partial pressure obtained by the purification indicated by the arrow (b) was a practical limit. In addition, the oxygen partial pressure reduction efficiency decreases as the oxygen partial pressure approaches the lower limit line Lb, and there is a problem that it takes a long time to reach the target oxygen partial pressure. In addition, when the oxygen partial pressure of the purified gas to be obtained is high, purification is performed using a solid electrolyte having an electrolytic conduction region Da. In this case as well, the oxygen partial pressure obtained by the purification indicated by the arrow (a) is performed. However, the oxygen partial pressure reduction efficiency decreases as the oxygen partial pressure approaches the lower limit line La, and there is a problem that it takes a long time to reach the target oxygen partial pressure.

これに対し、酸素分圧制御装置1の制御部23は、矢印(c) で示すように、精製対象ガスの酸素分圧が高いときは、高い酸素分圧域に電解伝導領域Daを持つ酸素ポンプ21aに分配を行い、精製対象ガスの酸素分圧が低くなると、低い酸素分圧域に電解伝導領域Dbを持つ酸素ポンプ酸素21bに分配を行う。これにより、上限ラインUaから下限ラインLbに至る広い範囲に亘って精製を行なうことができる。また、2つの電解伝導領域間の移行の際、精製しているガスの酸素分圧が、高い電解伝導領域Daの下限ラインLaに到達または接近する前に、精製対象ガスの分配先を酸素ポンプ21aから酸素ポンプ21bに切り換えることにより、下限ラインLaへの到達または接近に伴う酸素分圧低下効率の低下を回避することができ、高い効率をもって精製を行うことができる。なお、図2において、矢印(a), (b), (c) を水平軸方向にずらせて表示しているのは、矢印の重なりによる不明瞭を避けるための便宜的なものであり、実質的には同じ絶対温度での作動を示すものである。また、精製範囲は、各矢印において上限ラインから下限ラインまでとして表示しているが、これらのラインの間の範囲とすることもできる。   On the other hand, as shown by an arrow (c), the control unit 23 of the oxygen partial pressure control device 1 has an oxygen having an electrolytic conduction region Da in a high oxygen partial pressure region when the oxygen partial pressure of the gas to be purified is high. When distribution is performed to the pump 21a and the oxygen partial pressure of the gas to be purified decreases, distribution is performed to the oxygen pump oxygen 21b having the electrolytic conduction region Db in the low oxygen partial pressure region. Thereby, refining can be performed over a wide range from the upper limit line Ua to the lower limit line Lb. Further, when the oxygen partial pressure of the gas being purified reaches or approaches the lower limit line La of the high electrolysis conduction region Da during the transition between the two electrolysis conduction regions, the distribution destination of the gas to be refined is an oxygen pump. By switching from 21a to the oxygen pump 21b, it is possible to avoid a reduction in oxygen partial pressure reduction efficiency due to reaching or approaching the lower limit line La, and purification can be performed with high efficiency. In FIG. 2, the arrows (a), (b), and (c) are shifted in the horizontal axis direction for convenience in order to avoid ambiguity due to overlapping of the arrows. In particular, it shows the operation at the same absolute temperature. Moreover, although the refinement | purification range is displayed as an upper limit line to a lower limit line in each arrow, it can also be set as the range between these lines.

精製対象ガスの分配の切り換えは、分配装置29に対する制御部23の作動によって行われる。制御部23の演算部23cは、酸素ポンプにより得られる酸素分圧が電解伝導領域における酸素分圧の下限値に到達または接近したことを検知する。この検知は、例えば、演算部23cにおいて、予め準備した電解伝導領域の分布データと、精製装置の作動温度及び酸素分圧の測定値とを比較することにより行うことができる。すなわち、電解伝導領域の分布データは、図6に例示したように、固体電解質の材質等にしたがって定まるので、精製装置の作動温度及び酸素分圧の測定値と分布データとの比較により、電解伝導領域に対する現在の制御位置を判別することができる。これをモニタ等することにより、酸素ポンプにより得られる酸素分圧が電解伝導領域における酸素分圧の下限値に到達または接近したことを検知することができる。   The distribution of the gas to be purified is switched by the operation of the control unit 23 with respect to the distribution device 29. The calculation unit 23c of the control unit 23 detects that the oxygen partial pressure obtained by the oxygen pump has reached or approached the lower limit value of the oxygen partial pressure in the electrolytic conduction region. This detection can be performed, for example, by comparing the distribution data of the electrolytic conduction region prepared in advance with the measured values of the operating temperature and oxygen partial pressure of the purifier in the calculation unit 23c. That is, as illustrated in FIG. 6, the distribution data of the electrolytic conduction region is determined according to the material of the solid electrolyte and the like. Therefore, by comparing the measured values of the operating temperature and oxygen partial pressure of the purification apparatus with the distribution data, The current control position for the region can be determined. By monitoring this, it is possible to detect that the oxygen partial pressure obtained by the oxygen pump has reached or approached the lower limit value of the oxygen partial pressure in the electrolytic conduction region.

上記検知はまた、演算部23cにおいて、酸素ポンプにおける酸素分圧の測定値の変化率が所定値より低減したことを判別することにより行うことができる。酸素ポンプによる酸素分圧の低減効率は、電解伝導領域の下限値に到達または接近したときに低下する。したがって、予め酸素分圧の低減効率についての下限値を設定しておき、酸素ポンプによる酸素分圧をモニタ等しながら、低減効率を算出し、その低減効率、すなわち変化率が、設定した下限値に到達または接近したことにより、電解伝導領域における酸素分圧の下限値に到達または接近したことを検知することができる。酸素分圧の低減効率は、例えば、酸素ポンプに流れる電流に対する酸素分圧の低下量として算出することができる。   The detection can also be performed by determining that the rate of change of the measured value of the oxygen partial pressure in the oxygen pump is reduced from a predetermined value in the calculation unit 23c. The reduction efficiency of the oxygen partial pressure by the oxygen pump decreases when the lower limit value of the electrolytic conduction region is reached or approached. Accordingly, a lower limit value for the oxygen partial pressure reduction efficiency is set in advance, and the reduction efficiency is calculated while monitoring the oxygen partial pressure by the oxygen pump, and the reduction efficiency, that is, the rate of change is the set lower limit value. It is possible to detect that the lower limit value of the oxygen partial pressure in the electrolytic conduction region has been reached or approached. The oxygen partial pressure reduction efficiency can be calculated, for example, as the amount of decrease in oxygen partial pressure with respect to the current flowing through the oxygen pump.

このようにして酸素分圧が電解伝導領域における下限値に到達または接近したことが検知されると、統括部23aは分配装置29に対して指令信号を発し、これにしたがって分配装置29は、精製対象ガスの分配の上記切り換えを行う。   When it is detected that the oxygen partial pressure has reached or approached the lower limit value in the electrolytic conduction region in this way, the supervising unit 23a issues a command signal to the distribution device 29, and the distribution device 29 accordingly purifies. The above switching of the distribution of the target gas is performed.

次に、広い酸素分圧に適用するための構成例として、固体電解質作動のための加熱温度の設定について説明する。図1に示す酸素分圧制御装置1において、加熱部28a,28bは、制御部23により、各々の加熱温度が独立して制御される。固体電解質は、温度により電解伝導領域(イオン輸率が1となる範囲)及び電気伝導率が異なる。   Next, setting of the heating temperature for operating the solid electrolyte will be described as a configuration example for applying to a wide oxygen partial pressure. In the oxygen partial pressure control apparatus 1 shown in FIG. 1, the heating temperatures of the heating units 28 a and 28 b are independently controlled by the control unit 23. The solid electrolyte differs in electrolytic conductivity region (range in which the ion transport number is 1) and electrical conductivity depending on temperature.

固体電解質211aを備えた酸素ポンプ21aは電解伝導領域の酸素分圧域が高く、固体電解質211bを備えた酸素ポンプ21bの電解伝導領域の酸素分圧域が低くなるように加熱部28a,28bが設定されており、ここでは、加熱部28aが加熱部28bより高い温度の設定されている。したがって、図2に矢印(c) で示した精製過程が得られる。これにより、先に述べたのと同様にして、上限ラインUaから下限ラインLbに至る広い範囲に亘って精製を行なうことができ、また、精製しているガスの酸素分圧が、高い電解伝導領域Daの下限ラインLaに到達または接近する前に、作動を酸素ポンプ21aから酸素ポンプ21bに切り換えることにより、下限ラインLaへの到達または接近に伴う酸素分圧低下効率の低下を回避することができ、高い効率をもって精製を行うことができる。   The oxygen pump 21a provided with the solid electrolyte 211a has a high oxygen partial pressure region in the electrolytic conduction region, and the heating units 28a and 28b have a low oxygen partial pressure region in the electrolytic conduction region of the oxygen pump 21b provided with the solid electrolyte 211b. Here, the temperature of the heating unit 28a is set higher than that of the heating unit 28b. Accordingly, the purification process indicated by the arrow (c) in FIG. 2 is obtained. Thereby, in the same manner as described above, purification can be performed over a wide range from the upper limit line Ua to the lower limit line Lb, and the oxygen partial pressure of the gas being purified has a high electrolytic conductivity. By switching the operation from the oxygen pump 21a to the oxygen pump 21b before reaching or approaching the lower limit line La of the region Da, it is possible to avoid a decrease in the oxygen partial pressure reduction efficiency associated with reaching or approaching the lower limit line La. And purification can be performed with high efficiency.

上記加熱部の作動の切り換えは、酸素ポンプにより得られる酸素分圧が電解伝導領域における下限値に到達または接近したことを検知することに基づいて行われる。この検知は、精製対象ガスの分配の切り換えについて説明したのと同様にして行うことができる。   The switching of the operation of the heating unit is performed based on detecting that the oxygen partial pressure obtained by the oxygen pump has reached or approached the lower limit value in the electrolytic conduction region. This detection can be performed in the same manner as described for switching the distribution of the gas to be purified.

精製対象ガスの供給は、酸素ポンプ21a,21bの双方に対して行いながら、加熱部28a,28bを制御することにより、作動する酸素ポンプを所定のものに限定することができる。或いは、前述の分配装置29により、精製対象ガスの供給先を所定の酸素ポンプとした上で、加熱部28a,28bの制御により、作動する酸素ポンプをその供給先のものとしてもよい。   By supplying the gas to be purified to both the oxygen pumps 21a and 21b and controlling the heating units 28a and 28b, the operating oxygen pump can be limited to a predetermined one. Alternatively, the supply device of the gas to be purified may be a predetermined oxygen pump by the distribution device 29 described above, and the oxygen pump that is operated by the control of the heating units 28a and 28b may be the supply destination.

以上、本発明の実施形態について説明したが、本発明はこれに限定されるものではなく、その趣旨を逸脱しない限りにおいて種々の変更が可能である。例えば、精製対象ガスの酸素分圧に応じて酸素分圧域の高低が異なる電解伝導領域の酸素ポンプを用いるにあたっては、前述のように、精製対象ガス分配の切り換え、固体電解質の加熱の切り換え、並びに、固体電解質の作動温度の設定を、選択的に行えばよい。この場合、選択した構成以外の構成は、各酸素ポンプに共通とすることができる。すなわち、酸素ポンプへの精製対象ガスの供給、固体電解質の加熱、固体電解質の作動温度の設定の内、選択外となった構成を共通化することができる。   As mentioned above, although embodiment of this invention was described, this invention is not limited to this, A various change is possible unless it deviates from the meaning. For example, in using the oxygen pump of the electrolytic conduction region in which the oxygen partial pressure range differs depending on the oxygen partial pressure of the purification target gas, as described above, switching of the purification target gas distribution, switching of the heating of the solid electrolyte, In addition, the operation temperature of the solid electrolyte may be selectively set. In this case, configurations other than the selected configuration can be common to the oxygen pumps. That is, a configuration that is not selected among the supply of the gas to be purified to the oxygen pump, the heating of the solid electrolyte, and the setting of the operating temperature of the solid electrolyte can be shared.

酸素分圧制御装置は、電解伝導領域が異なる3種類以上の酸素ポンプを備え、精製対象ガスの酸素分圧の高低に応じて、用いる酸素ポンプを切り換えるようにしてもよい。また、酸素分圧制御装置は、実施形態に示した循環タイプのものに代えて、ガス精製部(酸素ポンプ)を経た精製ガスを、同じ精製過程に戻すことなく、処理装置に供給するタイプ(ワンパスタイプ)とすることもできる。酸素分圧が目標値よりも低くなった場合には、固体電解質に印加する電圧の極性を逆にして酸素ポンプ内に酸素を取り込むことにより、目標値の酸素分圧を得ることができる。   The oxygen partial pressure control device may include three or more types of oxygen pumps having different electrolytic conduction regions, and the oxygen pump to be used may be switched according to the level of the oxygen partial pressure of the gas to be purified. In addition, the oxygen partial pressure control device is a type that supplies purified gas that has passed through a gas purification unit (oxygen pump) to a processing device without returning to the same purification process (instead of the circulation type shown in the embodiment). One pass type). When the oxygen partial pressure becomes lower than the target value, the target partial oxygen partial pressure can be obtained by reversing the polarity of the voltage applied to the solid electrolyte and taking oxygen into the oxygen pump.

上記実施形態では、筒状をなす固体電解質の内側を、精製すべきガスの供給側とし、固体電解質の外側を酸素の排出側としたが、これを逆にして、固体電解質の外側を、精製すべきガスの供給側、内側を酸素の排出側とすることもできる。また、固体電解質を平面または曲面の板状とすることもできる。この場合は、固体電解質の一方の側及び他方の側のいずれかを、精製すべきガスの供給側、反対の側を酸素の排出側とすることができる。そして、固体電解質の供給側及び排出側のガスが相互に混合しないように、固体電解質に隣接する仕切り部材をガス精製部に設けるのが望ましい。   In the above embodiment, the inside of the solid electrolyte in the form of a cylinder is the gas supply side to be purified, and the outside of the solid electrolyte is the oxygen discharge side, but this is reversed and the outside of the solid electrolyte is purified. The gas supply side and the inside of the gas to be supplied can be the oxygen discharge side. Further, the solid electrolyte may be a flat or curved plate. In this case, either the one side or the other side of the solid electrolyte can be the supply side of the gas to be purified, and the opposite side can be the oxygen discharge side. It is desirable to provide a partition member adjacent to the solid electrolyte in the gas purification unit so that the gas on the supply side and the discharge side of the solid electrolyte are not mixed with each other.

1: 酸素分圧制御装置
4: 循環路
10: ガス精製部
21a,21b:酸素ポンプ
23: 制御部
28a,28b:加熱部
23a: 統括部
23b: 温度操作部
23c: 演算部
29: 分配装置
211a,211b:固体電解質
F: 処理装置
Da,Db:電解伝導領域
Ua,Ub:上限ライン
La,Lb:下限ライン
1: Oxygen partial pressure control device 4: Circulation path 10: Gas purification unit 21a, 21b: Oxygen pump 23: Control unit 28a, 28b: Heating unit 23a: General unit 23b: Temperature operation unit 23c: Calculation unit 29: Distribution device 211a , 211b: solid electrolyte F: treatment device Da, Db: electrolytic conduction region Ua, Ub: upper limit line La, Lb: lower limit line

Claims (5)

酸素含有ガスを酸素ポンプにより低酸素分圧に精製するための酸素分圧制御方法であって、
固体電解質の酸素イオン輸率が1に近い温度−酸素分圧域である電解伝導領域が異なる複数種の酸素ポンプを構成し、
精製対象ガスの酸素分圧が高いときは、高い酸素分圧域に電解伝導領域を持つ酸素ポンプ及び低い酸素分圧域に電解伝導領域を持つ酸素ポンプの内、少なくとも高い酸素分圧域に電解伝導領域を持つ酸素ポンプを用い、精製対象ガスの酸素分圧が低いときは、低い酸素分圧域に電解伝導領域を持つ酸素ポンプを用いることを特徴とする酸素分圧制御方法。
An oxygen partial pressure control method for purifying an oxygen-containing gas to a low oxygen partial pressure with an oxygen pump,
The oxygen ion transport number of the solid electrolyte is a temperature close to 1, and a plurality of types of oxygen pumps having different electrolytic conduction regions that are oxygen partial pressure regions are configured,
When the oxygen partial pressure of the gas to be purified is high, electrolysis is performed at least in the high oxygen partial pressure region among the oxygen pump having the electrolytic conduction region in the high oxygen partial pressure region and the oxygen pump having the electrolytic conduction region in the low oxygen partial pressure region. An oxygen partial pressure control method characterized by using an oxygen pump having a conduction region and using an oxygen pump having an electrolytic conduction region in a low oxygen partial pressure region when the oxygen partial pressure of the gas to be purified is low.
前記酸素分圧域の高い電解伝導領域における低酸素分圧部分と、前記酸素分圧域の低い電解伝導領域における高酸素分圧部分とが、一部を重複させていることを特徴とする請求項1に記載の酸素分圧制御方法。   The low oxygen partial pressure portion in the electrolytic conduction region having a high oxygen partial pressure region and the high oxygen partial pressure portion in the electrolytic conduction region having a low oxygen partial pressure region overlap each other. Item 2. The oxygen partial pressure control method according to Item 1. 精製対象ガスの酸素分圧の高低に応じて、用いる酸素ポンプの変更をするにあたり、複数の酸素ポンプのいずれかにおいて電解伝導領域が相互に異なる複数種の固体電解質を設け、いずれかの固体電解質を選択可能とすることにより、前記電解伝導領域が異なる複数種の酸素ポンプを構成することを特徴とする請求項1に記載の酸素分圧制御方法。   When changing the oxygen pump to be used according to the level of oxygen partial pressure of the gas to be purified, one of the plurality of oxygen pumps is provided with a plurality of types of solid electrolytes having different electroconductive regions, and one of the solid electrolytes 2. The oxygen partial pressure control method according to claim 1, wherein a plurality of types of oxygen pumps having different electrolytic conduction regions are configured. 精製対象ガスの酸素分圧の高低に応じて、用いる酸素ポンプの変更をするにあたり、複数の酸素ポンプの固体電解質における作動温度を変えることにより、前記電解伝導領域が異なる複数種の酸素ポンプを構成することを特徴とする請求項1に記載の酸素分圧制御方法。   When changing the oxygen pump to be used in accordance with the oxygen partial pressure of the gas to be purified, by changing the operating temperature of the solid electrolyte of the plurality of oxygen pumps, a plurality of types of oxygen pumps having different electrolytic conduction regions are configured. The oxygen partial pressure control method according to claim 1, wherein: 精製対象ガスの酸素分圧の高低に応じて、用いる酸素ポンプの変更をするにあたり、複数の酸素ポンプに対するガス供給先を切り換えることにより、前記変更を行うことを特徴とする請求項1から4のいずれかに記載の酸素分圧制御方法。   5. The change according to claim 1, wherein the change is performed by switching the gas supply destination to a plurality of oxygen pumps when changing the oxygen pump to be used in accordance with the oxygen partial pressure of the gas to be purified. The oxygen partial pressure control method according to any one of the above.
JP2010255028A 2010-11-15 2010-11-15 Oxygen partial pressure control method Expired - Fee Related JP5634832B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010255028A JP5634832B2 (en) 2010-11-15 2010-11-15 Oxygen partial pressure control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010255028A JP5634832B2 (en) 2010-11-15 2010-11-15 Oxygen partial pressure control method

Publications (2)

Publication Number Publication Date
JP2012106872A true JP2012106872A (en) 2012-06-07
JP5634832B2 JP5634832B2 (en) 2014-12-03

Family

ID=46492951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010255028A Expired - Fee Related JP5634832B2 (en) 2010-11-15 2010-11-15 Oxygen partial pressure control method

Country Status (1)

Country Link
JP (1) JP5634832B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012106873A (en) * 2010-11-15 2012-06-07 Canon Machinery Inc Oxygen partial pressure controlling method
JP2012107892A (en) * 2010-11-15 2012-06-07 Canon Machinery Inc Oxygen partial pressure detection method
JP2014217844A (en) * 2013-05-01 2014-11-20 株式会社デンソー Brazing sheet brazing method and heat exchanger
JP2016180617A (en) * 2015-03-23 2016-10-13 新コスモス電機株式会社 Chemoluminescent gas detection device and chemoluminescent gas detection method
JP2017177223A (en) * 2017-05-11 2017-10-05 株式会社デンソー Brazing sheet brazing method and manufacturing method of heat exchanger

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02129861A (en) * 1988-11-09 1990-05-17 Mitsubishi Heavy Ind Ltd Oxygen ion conductor
JPH08266852A (en) * 1995-03-22 1996-10-15 Praxair Technol Inc Multistage electrolyte membrane
JP2007204347A (en) * 2006-02-06 2007-08-16 Matsushita Electric Ind Co Ltd Apparatus for concentrating oxygen
JP2008538533A (en) * 2005-04-22 2008-10-30 プラクスエア・テクノロジー・インコーポレイテッド Gas stream purification method
JP2009250686A (en) * 2008-04-02 2009-10-29 Canon Machinery Inc Oxygen pump and restoration method of oxygen pump
JP2010216017A (en) * 2010-06-10 2010-09-30 National Institute Of Advanced Industrial Science & Technology Oxygen partial pressure controller, and method for recovering solid electrolyte for oxygen partial pressure controlling

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02129861A (en) * 1988-11-09 1990-05-17 Mitsubishi Heavy Ind Ltd Oxygen ion conductor
JPH08266852A (en) * 1995-03-22 1996-10-15 Praxair Technol Inc Multistage electrolyte membrane
JP2008538533A (en) * 2005-04-22 2008-10-30 プラクスエア・テクノロジー・インコーポレイテッド Gas stream purification method
JP2007204347A (en) * 2006-02-06 2007-08-16 Matsushita Electric Ind Co Ltd Apparatus for concentrating oxygen
JP2009250686A (en) * 2008-04-02 2009-10-29 Canon Machinery Inc Oxygen pump and restoration method of oxygen pump
JP2010216017A (en) * 2010-06-10 2010-09-30 National Institute Of Advanced Industrial Science & Technology Oxygen partial pressure controller, and method for recovering solid electrolyte for oxygen partial pressure controlling

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012106873A (en) * 2010-11-15 2012-06-07 Canon Machinery Inc Oxygen partial pressure controlling method
JP2012107892A (en) * 2010-11-15 2012-06-07 Canon Machinery Inc Oxygen partial pressure detection method
JP2014217844A (en) * 2013-05-01 2014-11-20 株式会社デンソー Brazing sheet brazing method and heat exchanger
JP2016180617A (en) * 2015-03-23 2016-10-13 新コスモス電機株式会社 Chemoluminescent gas detection device and chemoluminescent gas detection method
JP2017177223A (en) * 2017-05-11 2017-10-05 株式会社デンソー Brazing sheet brazing method and manufacturing method of heat exchanger

Also Published As

Publication number Publication date
JP5634832B2 (en) 2014-12-03

Similar Documents

Publication Publication Date Title
JP5634832B2 (en) Oxygen partial pressure control method
JP7498985B2 (en) Faraday shield device that can be used for plasma etching system and heating thereof
WO2020172066A1 (en) System and method for controlling a multi-state electrochemical cell
US20080217187A1 (en) Oxygen Partial Pressure Control Apparatuses and Methods of Using Solid Electrolytes for Oxygen Partial Pressure Control
JP5550530B2 (en) Oxygen partial pressure control method
JP5229508B2 (en) Oxygen partial pressure control apparatus and solid electrolyte recovery method for oxygen partial pressure control
JP2007008750A (en) Gas pump
TWI702631B (en) Method of controlling power output by a power supply configured to supply power to a plasma torch in a gas treatment system and computer program to be executed by a processor
CN103290381A (en) A method for improving the magnetron sputtering deposition rate of SiO2 thin film
JP4970013B2 (en) Oxygen partial pressure controller
JP4285663B2 (en) Oxygen partial pressure control device and gas supply method
WO2018174034A1 (en) Electrolyzed water generating device and electrolyzed water generating method
JP5634831B2 (en) Oxygen partial pressure control method and control apparatus
CN109564987B (en) Plasma apparatus and plasma processing method
JP5362687B2 (en) Oxygen partial pressure detection method
Matsumoto et al. Automatic regulation of hydrogen partial pressure using a proton conducting ceramic based on SrCeO3
TW201713169A (en) Control of power supplied to a plasma torch to compensate for changes at an electrode
JP5000572B2 (en) Oxygen pump and oxygen pump recovery method
JP5071809B2 (en) Solid electrolyte type oxygen partial pressure control method
JP2008016323A (en) Fuel cell system and operation method of fuel cell
JP2006100152A (en) Fuel cell system and its inspection system
CN107916406B (en) Method and magnetron device for bipolar magnetron sputtering
JP2007022912A (en) Gas pump
JP5138211B2 (en) Oxygen pump
RU2209257C2 (en) Method of control of voltage at mercury electrlyzer anodes of chlorine and caustic soda production process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141015

R150 Certificate of patent or registration of utility model

Ref document number: 5634832

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees